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Abstract

Due to the importance of precision medicine, it is essential to identify the right patients for the 

right treatment. Biomarkers, which have been commonly used in clinical research as well as in 

clinical practice, can facilitate selection of patients with a good response to the treatment. In this 

paper, we describe a biomarker threshold adaptive design with survival endpoints. In the first 

stage, we determine subgroups for one or more biomarkers such that patients in these subgroups 

benefit the most from the new treatment. The analysis in this stage can be based on historical or 

pilot studies. In the second stage, we sample subjects from the subgroups determined in the first 

stage and randomly allocate them to the treatment or control group. Extensive simulation studies 

are conducted to examine the performance of the proposed design. Application to a real data 

example is provided for implementation of the first-stage algorithms.
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Introduction

Many new anticancer agents are molecularly targeted and therefore may only benefit a 

subgroup of a histologically defined population. Predictive biomarkers have been utilized to 

identify the sensitive subset to optimize treatment efficacy and safety in clinical practice. For 

example, in recurrent or metastatic squamous-cell carcinoma of the head and neck 

(SCCHN), loss of phosphate and tensin homolog (PTEN) expression had a negative effect 

on tumor response to epidermal growth factor receptor (EGFR) monoclonal antibodies (Mao 

et al., 2010); and EGFR expression level has been negatively associated with overall survival 

(Ang et al., 2002; Grandis et al., 1998; Nicholson et al., 2001; Reimers et al., 2007), which 

makes EGFR a potential positive prognostic factor for anti-EGFR antibodies. The 
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SPECTRUM study is a phase-3 trial of chemotherapy with or without panitumumab (an 

anti-EGFR antibody) in patients with SCCHN (Vermorken et al., 2013). EGFR and PTEN 

data had been collected retrospectively using stored samples. It is of interest to prospectively 

evaluate the predictive value of EGFR and PTEN for panitumumab in SCCHN, while 

preliminary information may be derived from the SPECTRUM study. The benefits and 

challenges of incorporating biomarkers into the development of anticancer agents have been 

increasingly discussed (Renfro et al., 2016). Many design options have been proposed in the 

literature.

A biomarker is typically measured as a continuous or semi-continuous variable. The target 

subset is defined based on a chosen cutpoint of the biomarker. If the cutpoint is known but it 

is not known whether the biomarker is predictive, a biomarker-by-treatment interaction 

design (all-comer) can be employed where the study is stratified by the biomarker status and 

the hypotheses can be set up based on the overall population or the biomarker positive 

subset. If there exists strong evidence that the treatment is only effective in the positive 

biomarker subgroup, e.g., from early phase studies, an enrichment design can be utilized to 

limit the study population only to the positive subset. In addition, a subgroup enrichment 

design can include an interim analysis to decide whether or not the treatment is only 

effective in the positive subset and thus discontinue enrollment of patients in the non-

sensitive subset. Freidlin et al. (2010) provided detailed discussions on phase-3 clinical trials 

that integrate treatment and biomarker evaluation.

In practice, there may be limited data available to identify a single biomarker or to determine 

a known cutpoint to define a sensitive subset before initiation of the phase-3 study. Then the 

selection of the cutpoint will be based on the study itself and will be part of the study 

objective. A number of methods have been suggested to prospectively including selection of 

the cutpoint into the study design (Renfro et al., 2016). For example, adaptive signature 

design (ASD) enrolls all comers into two stages (Freidlin and Simon, 2005). A classifier 

(i.e., cutpoint) is developed using data from stage- 1 patients only, and the classifier is not 

used to restrict enrollment in stage 2 but to define a subset of sensitive patients. Note that 

when there are multiple biomarkers or the treatment effect is not monotonic as a function of 

the biomarker under the alternative, there may not exist a simple cutpoint. For clarification, 

we emphasize here that we use “cutpoint” only when there is only one biomarker and the 

treatment effect is monotonic as a function of the biomarker under the alternative. In the 

final analysis, the comparison can be made based on the overall population using data from 

all patients enrolled in both stages or on the sensitive subset accrued during stage 2 together 

with some multiplicity adjustment procedure. Freidlin et al. (2010) extended ASD to cross- 

validated ASD where the stage-1 data is also used to test the sensitive subset to improve 

efficiency. A subgroup enrichment design can also be developed to limit enrollment of the 

second-stage patients to the sensitive subset.

Recently, Simon and Simon (2013) proposed a different adaptive enrichment phase-3 design 

(AED). The design in the beginning enrolls all patients, and sequentially restricts entry in an 

adaptive manner. It gives much of the efficiency of the “enrichment” approach without the 

need to choose a subset beforehand. The objective of the design is to improve the chance of 

a positive study by progressively limiting enrollment to patients who respond to the 
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treatment. The appropriate primary null hypothesis of this design is that no subpopulation 

benefits from treatment over control. Therefore, this design may not be able to draw a 

conclusion about which subset of patients will benefit the most from the treatment. 

Consequently, the AED of Simon and Simon (2013) essentially reduces to a non-adaptive 

design when all patients respond to the treatment, even though the treatment effect may be 

different on subjects with different biomarker values. In Simon and Simon (2013), there was 

little detailed discussion regarding the algorithm to enrich the study particularly for survival 

endpoints, which are commonly used in clinical trials for anticancer agents. Additionally, 

little was discussed on the data used in the final analysis. More recently, Renfro et al. (2014) 

proposed an adaptive design by selecting the biomarker threshold for which the interaction 

effect between the biomarker and the treatment is the most significant. However, the design 

assumes that the experimental treatment is hypothesized to work better for patients with 

higher biomarker values than patients with lower biomarker values. This assumption may 

not be true in practice and consequently may lead to loss of power.

In this manuscript, we will propose a new AED design, called the biomarker threshold 

adaptive design (BTAD). Similar to the AED design in Simon and Simon (2013), our design 

does not adaptively adjust the total sample size after stage 1 or the sample size in stage 2. 

The stage-1 analysis can be based on historical or pilot studies. The enrichment in stage 2 is 

expected to increase power for hypothesis testing using either data from stage 2 alone or 

combined data from both stages. The Cox regression model for survival endpoints is 

employed for the AED. However, the proposed methods can be easily generalized to any 

other applications where a regression model is mainly used for inference. Different criteria 

for determination of the biomarker cutpoint based on stage-1 data are proposed. Our 

algorithm can potentially provide better enrichment in stage 2 than that of Simon and Simon 

(2013), and thus result in a more powerful procedure. Furthermore, while motivated by 

cancer studies, the proposed design is general and can be readily applied to clinical trials on 

other diseases.

This paper is organized as follows. In the next section, we use a group sequential framework 

and propose an optimal algorithm to determine, at a given interim analysis, which patient 

population will be enrolled next to enrich the study. Factors that may impact the algorithm 

are investigated. Furthermore, we discuss valid statistical methods for the final data analysis. 

We then evaluate the performance of the proposed design through extensive simulations. A 

real data example from the SPECTRUM study is used to demonstrate the determination of 

the biomarker cutpoint and to evaluate the performance of the proposed design compared 

with the non-adaptive design as well. We conclude the paper with some discussions.

Biomarker threshold adaptive design

We consider a BTAD to identify one or more predictive biomarkers. Specifically, our goal is 

to identify a subset of patients according to a biomarker of interest such that the treatment 

achieves the maximum beneficial effect compared to the control in this subset. One can then 

oversample patients in that subset to improve the overall efficiency of the design. In the 

simplest case, there exists a threshold for a single biomarker, such that the treatment effect is 

larger (or smaller) in one group than the other. Let T, X and A denote the survival endpoint, 
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the biomarker of interest and the treatment indicator, respectively. The treatment indicator A 

takes value 1 for the new treatment and 0 for the control. We propose two ways to determine 

the threshold. In this paper, we refer to the subject subset with either X ≤ c or X > c 

identified by our methods with better treatment effect as the “biomarker positive subgroup”, 

and the complement as the “biomarker negative subgroup.”

BTAD1.

For a given cutpoint c, we first consider the following Cox models for the two subgroups X 

≤ c and X > c, respectively

λ t X ≤ c, A = λ
1c

t exp β
1c

A

and

λ t X > c, A = λ
2c

t exp β
2c

A .

Note that the smaller the regression coefficients β1c and β2c, the better the effect of the new 

treatment compared to the control. Based on the observed data in the first stage 

Y
i

= min T
i
, C

i
, Δ

i
= I T

i
≤ C

i
, X

i
, A

i
, i = 1, …, n

1
, where Ci, and ∆i are the censoring 

time and event indicator, respectively, we can obtain the estimators of β1c and β2c, denoted 

by β
1c

 and β
2c

. We denote the total sample size and that of stages 1 and 2 as n, n1 and n2, 

respectively. We select the threshold c to minimize min β
1c

, β
2c

 for c ∈ , where  is the 

support of X. In the second stage, we then sample the remaining n2 = n – n1 subjects only 

from subgroup X ≤ c if β
1c

< β
2c

, and subgroup X > c otherwise.

BTAD2.

Alternatively, we can fit a Cox model including both the main effects of X and A and their 

interaction effect

λ t X, A = λ
c

t exp γ
1c

I X > c + γ
2c

A + γ
3c

I X > c A .

Based on the observed data from the n1 subjects in the first stage, we can obtain the estimate 

of the treatment by biomarker interaction effect γ
3c

, denoted by γ
3c

. We select the threshold c

to maximize γ
3c

 for c ∈ . In the second stage, we sample the remaining n2 = n – n1 

subjects from subgroup X ≤ c if γ
3c

> 0 and X > c otherwise.

It is worth clarifying that by “biomarker negative subgroup”, we do not mean that in this 

group the treatment is not promising. Instead, we mean that the treatment effect is better in 

the “biomarker positive subgroup” than in the “biomarker negative subgroup.” Therefore, it 

is possible that the treatment is promising for the overall population, but the proposed 

designs intend to identify the subpopulation such that the treatment is more promising than 
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the other. One limitation is that the proposed designs may fail to recruit patients for which 

there is also treatment effect but the treatment is not as effective as in the other subgroup.

There are a few differences between BTAD1 and BTAD2. First of all, BTAD1 aims to 

identify the subgroup that responds the best to the treatment whereas BTAD2 aims to 

identify a subgroup that responds to the treatment better than the other subgroup and the 

threshold is chosen such that the difference between treatment effects in these two subgroups 

is the greatest. Second, compared to BTAD1, BTAD2 has an additional assumption that the 

hazard functions in the control group are proportional between the two biomarker 

subgroups. On the other hand, when the proportional hazards assumption is valid, BTAD2 

tends to yield more efficient parameter estimators and is numerically more stable especially 

when the sample size is small.

We can use a grid search method, for example, at certain sample percentiles of X, to select 

the threshold. To ensure reliable estimates of the unknown parameters, especially when the 

sample size is small or moderately large, we also suggest selecting the threshold such that 

there are at least 30% of subjects in each biomarker subgroup. A computer program in C 

language implementing BTAD1 and BTAD2 is available freely at http://mason.gmu.edu/

gdiao/software/BTAD.

Once we collect all the data, it is of interest to test the hypothesis

H0:λ t X = x, A = 0 = λ t X = x, A = 1 , t ∈ 0, τ , x ∈ � , (1)

where  is the support of X and τ is the end of study. That is, under the null hypothesis, 

there is no difference between the hazard functions in the treatment group and control group 

for any biomarker value. Furthermore, one may be interested in estimating the treatment 

effect. A natural question is which dataset to use in the final analysis after collecting all the 

data from the first and second stages. One can consider three types of datasets: (a) data from 

the second stage only; (b) all the data including both stages; and (c) data with subjects from 

the biomarker positive group only from both stages, that is, data including subjects selected 

according to the determined threshold from the first stage and all subjects from the second 

stage. We emphasize here that while using the first two types of data can preserve the type-I 

error rate, using the third type of data will lead to an inflated type-I error rate. When the null 

hypothesis is true, regardless of the threshold selected in the first stage, the data in the 

second stage are still collected under the null hypothesis; therefore, using the first two types 

of data can still preserve the type-I error rate. However, since we determine the threshold by 

selecting a subgroup in the first stage in which the treatment effect is better than the other 

subgroup, biased sampling arises and leads to an inflated type-I error rate if we include only 

the biomarker positive group in the final analysis. This observation is evident in the 

simulation studies in Section 3.

Note that the null hypothesis defined in (1) is general. In practice, to test this null 

hypothesis, one has to impose certain model assumptions. For example, by testing β = 0 in 

the Cox model with only the treatment indicator A as the covariate, i.e.,

Diao et al. Page 5

J Biopharm Stat. Author manuscript; available in PMC 2019 January 22.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://mason.gmu.edu/~gdiao/software/BTAD/
http://mason.gmu.edu/~gdiao/software/BTAD/


λ t A = λ
0

t exp βA ,

besides the Cox model assumption, we assume that patients within each biomarker subgroup 

have equal chances to receive either treatment or that there is no biomarker effect on the 

survival endpoint. On the other hand, if we assume the model

λ t X, A = λ0 t exp β1A + β2X + β3X × A , (2)

then testing the null hypothesis defined in (1) is equivalent to testing β1 = β3 = 0. Under the 

null hypothesis defined in (1), all these tests using the appropriate data sets with correct 

model specification can control the type-I error; however, they will lead to different powers 

given different alternative hypothesis (for example, see Figure 2 in the Simulation Studies 

Section).

Suppose the true model is (2). We consider three models in the final analysis. The first 

model includes the treatment effect only,

λ
∗

t X, A = λ
0
∗

t exp β
1
∗

A .

This is a misspecified model if β2 ≠ 0 or β3 ≠ 0. Therefore β
1
∗
 is not a consistent estimator of 

β1 or β3. Instead, β
1
∗ may have a complicated form involving all the parameters in the true 

model. The second model we consider includes both treatment and biomarker main effects

λ
∗

t X, A = λ
0
∗

t exp β
1
∗

A + β
2
∗

X .

In this case, β
1
∗

≈ β
1

+ β
3
E X . If β1 = 0 and E(X) = 0, we may fail to detect the true 

treatment effect. Hence, one needs to use caution when interpreting the results under this 

model. We may also fit the correctly specified model in the final analysis including both 

main effects and the interaction effect between the treatment and biomarker. We will still 

have consistent parameter estimates under this model using both the first-stage and second-

stage data, as is evident by the simulation studies in Section 3. In all three models, we 

propose to use a Wald-type test statistic to test the null hypothesis H0 of no treatment effect.

Simulation studies

We conducted extensive simulation studies to examine the performance of BTAD and we 

compare it to that of the standard non-adaptive design. We consider a two-arm trial with one 

biomarker X. We generate data from the exponential distribution under the following two 

scenarios:
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λ t X, A = exp β1A + β2X + β3X × A (3)

and

λ t X, A = exp β1A + β2I X > c + β3I X > c A , (4)

where c is the population median of the distribution of X. Under both scenarios, the baseline 

hazard is equal to 1. We considered three different distributions for X : (1) Uniform(0,1); (2) 

N(0; 1); and (3) EXP(1). The regression parameters are set to be

β
1

= 0, β
2

= − 0.5, β
3

= 0, − 0.1, …, − 0.6.

Under model (3), the hazard ratio between the treatment group and control group given X = 

x is exp(β1 + β3x). Therefore, for a positive number x, the above hazard ratio decreases as β3 

decreases. Consequently the smaller the value of β3, the better the treatment effect for 

positive values of X. For example when X = 0.5, the hazard ratio ranges from 1 to 0.741 as 

j3 varies from 0 to −0.6. On the other hand, when X = –0.5, the hazard ratio ranges from 1 to 

1.350. For each simulation, we generate 1,000 replicates with n = 200 or n = 300. In all 

simulations, we fix the censoring time at 10.

In the first set of simulation studies, we compare the performance of the non-adaptive 

design, BTAD1, and BTAD2. Specifically, we sample n1 = n/2 subjects from the general 

population. Based on these n/2 subjects, we determine the threshold c and biomarker 

positive group. We use a grid search method for selecting the threshold from the 30th, 

40th,..., and 70th sample percentiles of the biomarker data. We then sample subjects from 

the biomarker positive group only in the second stage. In the final analysis, we evaluate the 

treatment effect based on all n subjects from both the first stage and the second stage with or 

without adjusting for the biomarker.

Table 1 presents the frequencies of selected groups X ≤ c and X > c with n = 200 and n = 

300 under different scenarios with β3 fixed at −0.6. This table suggests that increasing the 

sample size can improve the frequency of a correctly selected biomarker subgroup. 

Histograms of the selected cutpoints under data generation model (3) with β3 = –0.6 for n = 

300 are presented in Figure 1. Similar results are obtained under data generation model (4) 

(data not shown).

Using all the data in both stages, we compare the powers of detecting the treatment effect of 

the following 10 methods with different designs and different analyses:

1. non-adaptive design and X adjusted;

2. non-adaptive design and X not adjusted;

3. adaptive design using BTAD1, X adjusted;
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4. adaptive design using BTAD1, X not adjusted;

5. adaptive design using BTAD2, X adjusted;

6. adaptive design using BTAD2, X not adjusted;

a. adaptive design using BTAD1 under the constraint such that only the 

subgroup X > c is selected, X adjusted;

b. adaptive design using BTAD1 under the constraint such that only the 

subgroup X > c is selected, X not adjusted;

c. adaptive design using BTAD2 under the constraint such that only the 

subgroup X > c is selected, X adjusted;

d. adaptive design using BTAD2 under the constraint such that only the 

subgroup X > c is selected, X not adjusted.

Note that methods (7)-(10) assume that subjects with larger values of the biomarker respond 

better to the new treatment as in Simon and Simon (2013). This assumption may not be true 

in practice. Figures 2 and 3 present the type-I error rates and powers for testing the null 

hypothesis H0 under data generation models (3) and (4), respectively. The tests under the 

proposed adaptive design have correct control of the type-I error rate and are consistently 

more powerful than the tests under the non-adaptive design. The analyses with and without 

adjusting for the biomarker effect yield comparable results in most cases; however, the test 

of the treatment effect without adjusting for the biomarker effect can be substantially more 

powerful than the one adjusting for the biomarker effect when the mean biomarker value and 

the main treatment effect are close to 0. For example, as shown in Figure 2 when X~N(0, 1), 

since the treatment effect β
1
∗ under the model adjusting for X is approximately 

β
1

+ β
3
E X = 0, there is essentially no power to detect treatment effect under the non-

adaptive design. Methods 7–10 show that if the assumption on the constraint is correct, then 

the power is higher, as expected. BTAD1 and BTAD2 show similar performance in all 

simulations in Figures 2 and 3.

In the second set of simulations, we investigate which types of datasets are suitable for the 

final analysis under the proposed BTAD. In particular, we compare the type-I error rates and 

powers of the tests for testing H0 at the nominal significance level of 0.05 using the three 

different types of data in the final analysis as described in Section 2. Figure 4 displays the 

results based on the adaptive design using BTAD1. It is obvious that using the biomarker 

positive group only can lead to an inflated type-I error rate, while using the second-stage 

data only or all the data including both first and second-stage data preserves the type-I error 

rate. The tests using all the data are more powerful than those using the second-stage data 

only with the exception when X~N(0, 1). As discussed in the end of Section 2, the treatment 

effect β
1
∗ under the fitted models is approximately β

1
+ β

3
E X . Therefore, the power of the 

test depends on both the sample size in the final analysis and the approximate effect size 

β
1

+ β
3
E X . Although the sample size in the combined data set including both stages is 

larger than the sample size in the second stage only, the expectation of X in the second-stage 
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data set can be much larger than that in the combined data set leading to a larger effect size 

and consequently a larger power.

Finally, we conducted simulation studies to examine the estimates of the regression 

coefficients by fitting the true model including both the main effects of biomarker and 

treatment and their interaction effect. We considered a non-adaptive design, BTAD1 and 

BTAD2 using the second-stage data only, using both the first-stage and second-stage data, 

and using data from biomarker positive subgroup only. The results for data generation model 

(3) are presented in Table 2–4. By fitting the full model with interaction effects using all the 

data, we can still estimate the parameters consistently, although there is some efficiency loss 

compared to the non-adaptive design. Using the biomarker positive subgroup only will lead 

to a biased estimate of the treatment effect. Furthermore, using the second-stage data only or 

the biomarker positive subgroup data only leads to substantial efficiency loss of the 

parameter estimates. BTAD1 and BTAD2 have similar performance.

SPECTRUM study

We consider a head and neck cancer clinical trial as a case study to demonstrate how to 

determine the cutpoint using our algorithms for biomarkers with different patterns of 

biomarker-outcome relationship as described in Section 2. The SPECTRUM study is a 

multicenter, randomized, open- label, phase-3 trial of chemotherapy with or without 

panitumumab in patients with recurrent or metastatic SCCHN (Vermorken et al., 2013). The 

primary endpoint was overall survival. For our analysis, 526 (80.0%) subjects were 

randomly selected from the 657 subjects in the SPECTRUM trial for demonstration purpose. 

The dataset with 526 subjects is treated as the data collected in stage 1. There are no stage-2 

data; therefore, the inference after stage 2 is not available in this analysis.

In a literature review of more than 200 tumor studies by Nicholson et al. (2001), EGFR is 

reported to act as a prognostic factor for OS in solid tumors with increased EGFR expression 

generally associated with a reduced OS rate. In SCCHN, a correlation between higher EGFR 

expression and poorer OS was claimed by Ang et al. (2002). The OS rates for subjects with 

high EGFR expressing SCCHN ( > median mean absorbance) compared to those with low 

EGFR expressing SCCHN were significantly lower (p = 0.0006). These studies (reporting 

mean absorbance) were performed using automated image analysis to quantify expression 

levels. EGFR-negative tumors have shown a tendency toward a better prognosis in OS (70% 

vs. 45%, p = 0.10) by Reimers et al. (2007). In addition, when tumor levels of EGFR 

expression (intensity and tumor cell extent) were analyzed as continuous variables, cause-

specific survival was reduced among subjects with higher levels of EGFR (p = 0.0001) 

(Grandis et al., 1998).

In SCCHN, PTEN has been shown to be frequently altered at the genetic and biochemical 

level (Pedrero et al., 2005). In metastatic colorectal cancer, the prevailing hypothesis is that 

lack of PTEN expression predicts resistance to EGFR antibody therapy. There have been 

four small studies that have evaluated the association of PTEN expression and patient 

response to EGFR antibodies and a meta-analysis of these data showed that loss of PTEN 
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expression had a negative effect on tumor response to EGFR monoclonal antibodies (pooled 

risk ratio, 0.22; 95% confidence interval, 0.10–0.50; P = 0.001) (Mao et al., 2010).

We first perform an exploratory analysis on two biomarkers MEMASPE (tumor cell 

percentage with membrane staining total 1±3% for EGFR) and CYTOSPPT (Tumor cell 

percentage with cytoplasmic staining total 1±3% for PTEN). Among the total number of 526 

subjects, 163 subjects have non-missing MEMASPE values and 290 subjects have non-

missing CYTOSPPT values. Subjects with missing biomarker values were excluded from 

the analysis. For each biomarker, we first plot the histogram. Additionally, we fit the 

following Cox model allowing for biomarker-dependent treatment effects,

λ t X = x, A = λ0 t exp g0 x + d x A , (5)

where g0(x) and d(x) are estimated nonparametrically by using B-splines. The results are 

presented in Figure 5. Both biomarkers are left skewed with a spike around a value of 100. It 

appears that the treatment effect, as a function of MEMASPE, is monotonically increasing; 

that is, patients with larger values of MEMASPE respond to the treatment better. In contrast, 

the treatment effect as a function of CYTOSPPT, is not monotone. The treatment doesn’t 

appear to have a beneficial effect on patients with CYTOSPPT values around 20 whereas 

patients with CYTOSPPT values around 80 respond to the treatment the best.

We used a grid search approach ranging from the 30th sample percentile to the 70th sample 

percentile with a step size of 2% to determine the biomarker positive subgroup. For 

MEMASPE, both BTAD1 and BTAD2 identify the positive subgroup with MEMASPE > 

94.6, which is the 66th sample percentile. This result agrees well with the results presented 

in Figure 5, and the proposed methods correctly identify the biomarker subgroup which 

responds to the treatment the best. For CYTOSPPT, BTAD1 identifies the positive subgroup 

with CYTOSPPT > 92.5 (sample median) and BTAD2 identifies the positive subgroup with 

CYTOSPPT > 76.05 (30th sample percentile). Although the proposed methods do not 

identify the subgroup in which the treatment effect is the largest, they still identify a 

subgroup with beneficial treatment effect compared to a majority of the other patients. More 

discussion on this topic is provided in Section 5.

Finally, we conducted a simulation study based on the SPECTRUM study to examine the 

performance of the proposed BTAD using the biomarker MEMASPE. In the first stage, we 

randomly sampled 60 patients from the entire dataset and then determine the cutpoint using 

BTAD1 and BTAD2. In the second stage, we randomly sampled up to 30 patients with 

positive biomarkers from the remaining 103 patients. We then repeated this procedure 1,000 

times and estimated the treatment effect using all the data from both the first stage and the 

second stage. With the biomarker adjusted, the empirical powers for testing the treatment 

effect at the significance level of 0.05 are 91.6% and 89.6% based on BTAD1 and BTAD2, 

respectively, compared to a power of 62.2% based on the non-adaptive design. Without 

adjusting for the biomarker, the empirical powers are 85.9%, 83.0%, and 50.7% based on 

BTAD1, BTAD2, and the non-adaptive design, respectively. In about 25% of the 1000 

simulated datasets, there are fewer than 30 patients with positive biomarkers in the second 
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stage. Even though the sample sizes are smaller on average in the BTAD than the 

nonadaptive design, there is substantial power increase of the BTAD over the non-adaptive 

design.

Discussion

In this paper, we proposed a method to determine the threshold based on the estimates of the 

treatment effect in each biomarker subgroup. Naturally, one would want to take into account 

the variation of the parameter estimates in the decision process. For example, one may use a 

statistic for testing the treatment effect in each subgroup to select the threshold. However, 

such an approach may lead to selecting the biomarker negative group with a larger sample 

size in the first stage.

Renfro et al. (2014) considered the same model as in BTAD2 including the interaction effect 

between treatment and biomarker. Assuming that patients with higher biomarker values 

respond to the treatment better, the threshold was selected such that the treatment-by-

biomarker interaction is most significant. To relax the assumption on the direction of the 

interaction effect, we can extend the approach of Renfro et al. (2014) such that the threshold 

c is selected the same way but in the second stage we sample subjects from subgroup with 

X ≤ c if γ
3c

> 0 and X > c otherwise. Our limited simulation studies suggest that in general 

the performance of this extension is comparable with BTAD2; however, compared to 

BTAD1 and BTAD2, this approach tends to select threshold near the sample median of the 

biomarker value and can have reduced power, particularly when X is generated from a 

normal distribution.

We have assumed that treatment effect is monotone as a function of the biomarker, in 

particular, a model with a change point, at which the treatment effect changes. In practical 

applications, it is possible that the treatment effect curve is not monotone. Violation of the 

monotonicity assumption may lead to inaccurate identification of the biomarker positive 

subgroup. In this case, we may consider the general model (5) as described in Section 4. In 

particular, when d(x) is a step function with a change-point at c, the above model reduces to 

the model under consideration in this paper. The general model (5) also includes settings 

such that the marginal treatment effect is not 0 and/or the interaction effect is not linear on 

the biomarker scale. In general, we can estimate g0(x) and d(x) nonparametrically, e.g., 

using smoothing splines. We can then determine the biomarker positive group as

ℛ
c

= {x:d x < c},

for a constant c. The constant c can be chosen to minimize

ℛ
c

d x dF
X

x

ℛ
c

dF
X

x
−

ℛ
c
C

d x dF
X

x

ℛ
c
C

dF
X

x
,
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subject to

min

ℛ
c

dF
X

x ,

ℛ
c
C

dF
X

x } ≥ q, for a pre − specified value q,

where ℛ
c
C is the complement set of ℛ

c
, and FX(x) is the cumulative distribution function of 

X. Future research is warranted along this direction.

When there is no interaction effect between the biomarker of interest and treatment, this 

biomarker is not a predictive biomarker. Therefore, such a biomarker is not an appropriate 

candidate for identifying subpopulations of patients who are most likely to respond to the 

treatment. In view of this, we can first perform hypothesis testing to test H0 : β1c = β2c for 

BTAD1 and H0 : γ3c = 0 for BTAD2. Then, we continue the algorithm of the adaptive 

design given that there is some level of evidence of an interaction effect between the 

biomarker and the treatment.

Simon and Simon (2013) proposed to sample all subjects from the positive biomarker group. 

Such a design may not differ much from the non-adaptive design if the treatment is better 

than the control in every biomarker group. On the other hand, our proposed methodology is 

based on sampling subjects who will benefit the most from the treatment. Even if the 

treatment is better than the control in every biomarker group, our proposed design aims to 

select the group who respond to the treatment the best. Therefore, our proposed methods 

tend to be more powerful than the method of Simon and Simon (2013) because of larger 

effect sizes.

We can extend our proposed methods to two or more biomarkers X. For example, for p 

biomarkers, we can have a p – dimensional search for the thresholds (C1,…,CP). However, 

the computational burden increases geometrically as the number of biomarkers increase. An 

alternative approach is to first construct a composite score or risk factor βTX, which can be 

obtained by fitting a Cox model

λ t X , A = λ t exp β
T

X + γA .

We then treat the composite score as a new biomarker and apply the aforementioned 

methods to determine a threshold for this composite score. This is a current area of research.

When comparing the non-adaptive and adaptive approaches, we assume that the sample 

sizes used are the same. Like many other enrichment designs, the proposed adaptive 

approaches can be more costly compared to a non-adaptive design as the adaptive designs 

typically require additional screening and more patients need to be recruited in order to have 

sufficient number of biomarker positive patients in the second stage. It would be interesting 

to conduct cost-benefit analysis to compare the non-adaptive and adaptive designs.
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In this paper, we focus on survival endpoints and assume a Cox model for the relationship 

between treatment and the survival outcome. However, the proposed methods can be 

generalized to regression models for different types of outcome data, such as binary, count, 

and normal outcomes. Second, when the proportional hazards assumption does not hold, the 

proposed methods can still preserve type-I error under the null hypothesis but may not be as 

powerful as seen now. Alternatively, other regression models for survival endpoints such as 

the proportional odds model, accelerated failure time model, or additive hazard model can be 

considered.
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Figure 1. 

Histograms of selected cutpoints under data generation model (3) with β3 = –0.6. From the 

left panel to the right panel, the distributions of X are Uniform(0,1), N(0,1), and EXP(1), 

respectively. The upper and lower panels correspond to the results from BTAD1 and 

BTAD2, respectively. The magenta bars correspond to selected groups X>c, and the blue 

bars for X ≤ c.
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Figure 2. 

Type-I error rates and powers under data generation model (3). All data from both stages are 

included in the analysis. The dotted reference line corresponds to the y-axis at 0.05.
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Figure 3. 

Type-I error rates and powers under data generation model (4). All data from both stages are 

included in the analysis. The dotted reference line corresponds to the y-axis at 0.05.
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Figure 4. 

Type-I error rates and powers for BTAD1 under data generation model (3) using different 

types of data in the final data analysis. The dotted reference line corresponds to the y-axis at 

0.05.
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Figure 5. 

Results for MEMASPE (tumor cell percentage with membrane staining total 1±3% for 

EGFR) and CYTOSPPT (tumor cell percentage with cytoplasmic staining total 1±3% for 

PTEN). Among the total number of 526 subjects, 163 subjects have non-missing 

MEMASPE values and 290 subjects have non-missing CYTOSPPT values. The dotted 

vertical lines represent the selected thresholds by using BTAD1 (94.6 for MEMASPE and 

92.5 for CYTOSPPT).
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Table 1.

Relative frequencies of selected subgroups. Under the true simulation models, the subgroup (X > c) is 

expected to be selected.

Data generation model

BTAD1 BTAD2

X ≤ c X > c X ≤ c X > c

n = 200

(3), X~Uniform(0,1) 0.242 0.758 0.239 0.761

(4), X~Uniform(0,1) 0.137 0.863 0.142 0.858

(3), X~N(0,1) 0.031 0.969 0.031 0.969

(4), X~N(0,1) 0.142 0.858 0.145 0.855

(3), X~EXP(1) 0.090 0.910 0.066 0.934

(4), X~EXP(1) 0.151 0.849 0.152 0.848

n = 300

(3), X~Uniform(0,1) 0.181 0.819 0.180 0.820

(4), X~Uniform(0,1) 0.072 0.928 0.088 0.912

(3), X~N(0,1) 0.021 0.979 0.021 0.979

(4), X~N(0,1) 0.094 0.906 0.093 0.907

(3), X~EXP(1) 0.041 0.959 0.027 0.973

(4), X~EXP(1) 0.084 0.916 0.082 0.918

Note: the true regression parameters (β1,β2,β3) are set to be (0, –0.5, –0.6).
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