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Abstract: Although tremendous progress has been made in treating childhood cancer, it is still one of
the leading causes of death in children worldwide. Because cancer symptoms overlap with those of
other diseases, it is difficult to predict a tumor early enough, which causes cancers in children to be
more aggressive and progress more rapidly than in adults. Therefore, early and accurate detection
methods are urgently needed to effectively treat children with cancer therapy. Identification and
detection of cancer biomarkers serve as non-invasive tools for early cancer screening, prevention, and
treatment. Biosensors have emerged as a potential technology for rapid, sensitive, and cost-effective
biomarker detection and monitoring. In this review, we provide an overview of important biomarkers
for several common childhood cancers. Accordingly, we have enumerated the developed biosensors
for early detection of pediatric cancer or related biomarkers. This review offers a restructured platform
for ongoing research in pediatric cancer diagnostics that can contribute to the development of rapid
biosensing techniques for early-stage diagnosis, monitoring, and treatment of children with cancer
and reduce the mortality rate.
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1. Introduction

A cancer diagnosis is always distressing, particularly when the patient is a child, since
having cancer causes many changes in a child ‘s life. Cancer is a major cause of death in
children around the world. It is estimated that each year, around 400,000 children and
adolescents from 0–19 years old are diagnosed with cancer worldwide [1]. Cancers are
caused by a change in one or more genes in single cells, which then grow into a tumor.
Contrary to cancers in adults, the majority of cases in children are idiopathic. However,
about 10% of cases are due to germline mutation, which is almost always not inherited,
i.e., family history cannot predict the presence of cancers in these patients [2]. A number
of factors can impact the outcome of a tumor, including the biological characteristics and
pathway of a neoplasm’s carcinogenesis, modes of presentation, time to diagnosis, and
treatment options. Sometimes, the initial symptoms may be confused with other illnesses’
conditions, particularly in pediatrics cases, which makes it difficult to suspect a tumor [1,3].
The chance of a child surviving a cancer highly depends on the region where the child
lives, as most cases of cancers in children need advanced technologies and specialists for
diagnosis, effective therapies, and support, which are usually unaffordable and unavailable
in low- and middle-income countries (LMICs) [4]. Generally, in high-income countries,
more than 80% of children diagnosed with cancer are cured, whereas the cure rate in LMICs
is less than 30% [3,4].

The types of cancers in children are entirely different from the ones affecting adults.
In general, the most common children’s cancer types by proportion of overall child cancer
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rates are leukemias, followed by central nervous system (CNS) tumors and lymphomas.
However, the type of cancer can vary to some extent by age [5]. Screening and diagnostic
tests for the detection of cancers have always been challenging in both adults and children.
Traditional tumor biomarkers that are found in blood, urine, cerebrospinal fluid (CSF), or
even body tissues and are raised in connection with cancer have been used in oncology
for a long time. Furthermore, different imaging modalities such as X-ray (plain film
and computed tomography [CT]), ultrasound (US), magnetic resonance imaging (MRI),
single-photon emission computed tomography (SPECT), positron emission tomography
(PET), and optical imaging have been available in areas of cancer detection and follow-up.
However, these methods are expensive, require highly qualified personnel, and may not be
accurate, sensitive, or specific enough to detect a tumor. On the other hand, overdiagnosis
by existing methods is still a major concern, since there is a need to avoid exposing a patient
to invasive treatments. Additionally, biopsy as a definite diagnostic test is an invasive
technique that sometimes needs short admission. Furthermore, the earlier and more precise
diagnosis of cancer maintains a higher chance of cure. In this regard, rapid, sensitive, and
specific detection of cancer biomarkers using biosensors has great clinical significance for
the diagnosis of various cancers [6,7].

2. Potential Biomarkers for Childhood Cancers

Advancements in biochemistry and analytical instruments have played an important
role in the identification of appropriate biomarkers and the development of corresponding
biosensors, leading to significant improvements in treatment of patients in all age groups [8].
In accordance with the National Cancer Institute, a biomarker is “a biological molecule
found in blood, other body fluids, or tissues that is a sign of a normal or abnormal process,
or of a condition or disease “. Cancer biomarkers are biological factors that are identified to
develop decisive, cost-effective, and non-invasive agents for early detection and monitoring
of cancers. These biomarkers consist of a broad range of molecules, such as DNA, RNA,
enzymes, metabolites, transcription factors, and cell surface receptors, that can be measured
objectively by various techniques [9,10].

Due to the wide range of pediatric cancers and constant advances in molecular di-
agnostic techniques, in this review, we have focused on the most common cancer group
in children.

2.1. Leukemias

Leukemias, which are defined as abnormal proliferations of immature white blood
cells (WBC), are kinds of hematologic malignancies that do not form solid neoplasms.
Leukemias are the most common type of cancer in children, accounting for 28% of all cancers
in children [11,12]. Leukemias are originated either from myeloid or lymphoid lineages,
and they are categorized naturally as acute (non-mature cells) and chronic (more mature
cells) [13]. More than 80% of leukemias in children are acute lymphoblastic leukemias
(ALL) and the rest are mostly acute myeloid leukemias (AML). Chronic leukemias are
very rare in children; however, most cases are chronic myelogenous leukemia (CML) [14].
Symptoms of anemia, thrombocytopenia, neutropenia, and persistent bone pain are typical
leukemia presentations due to clonal proliferation of blasts in the bone marrow. Fever,
hepatosplenomegaly, and CNS involvement are other manifestations of children with
leukemia. Many of these symptoms overlap with other common childhood illnesses and
make the diagnosis of leukemia complicated. In addition, acute leukemias can grow rapidly,
so they need to be diagnosed and treated as soon as possible [15].

Several biomarkers have been identified and reviewed for screening, diagnosis, prog-
nosis, and treatment monitoring in childhood leukemia. Among them, a cluster of differen-
tiation (CD) markers, a series of membrane proteins, are widely used for classifying WBCs
and also diagnosing blast cells from normal WBCs. CD19, CD20, CD22, CD 24, and CD79a
are important markers for diagnosis and differentiating Burkitt type ALL (B-ALL) from
other types of leukemias. In pro-B ALL (an unfavorable subset of ALL), lymphoblasts are
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positive for CD19, CD22, CD34, cytoplasmic (cy) CD79a, and TdT. Lymphoblasts in pre-B
ALL are positive for CD10, CD19, CD22, CD34, TdT, cy CD79a, and Cy mµ. Thymic ALL
(T-ALL) are positive for CD1a, cy CD3, CD5, CD7 and TdT [16,17]. Furthermore, there are
specific genetic abnormalities of leukemic cells that play important roles as biomarkers in
prognosis and therapy of leukemias. A number of these chromosomal abnormalities that
act as potential markers include t(9;22), t(12;21), t(8;21), t(15;17), BCR-ABL, TEL-AML1,
AML1-ETO, and PML-RARA [18,19]. Proteomic biomarkers that are other potentially
interesting biomarkers for early diagnosis of ALL were reported by Shi et al. [20]. They
identified platelet factor 4 (PF4), a kind of connective-tissue-activating peptide (CTAP III),
and fragments of the complement component 3a (C3a) as proteomic biomarkers in the
sera of ALL patients [20]. In addition, several miRNAs have been identified in patients
with ALL, which have diagnostic and prognostic values. For instance, miRNA-328 and
miRNA-200 are suggested as two novel biomarkers for diagnosis and prognosis, as well
as miRNA-324-3p, miRNA-508-5p and miRNA-128 as potential diagnostic biomarkers of
childhood ALL. [21–23]. Among other biomarkers related to leukemia, human leukemic
lymphoblasts (CCRF-CEM) are cellular biomarkers that can be detected in the peripheral
blood of children with acute leukemia [24].

2.2. CNS Tumors

Brain and spinal tumors are the second-most-common group of cancers and the lead-
ing cause of morbidity and mortality in children, representing about 25% of childhood
cancers [25]. CNS tumors are normally classified on the basis of histologic features of the
tumor and its probable site of origin in the brain. Nonetheless, the most common types of
brain and spinal cord tumors in children are medulloblastoma (MB) and glioma [26]. Brain
tumors in children are mostly infratentorial and cause acute manifestations related to a
blockage in the flow of the CSF (headache, nausea, vomiting, irritability, abnormal breath-
ing, etc.). However, in the long term, they may present with macrocephaly, delayed psy-
chomotor development, loss of appetite, etc. [27]. Neuroimaging is the primary diagnostic
technique for any kind of brain tumor; nonetheless, recently identified potential diagnostic,
prognostic, and predictive biomarkers have become key tools for the management of these
tumors [28,29]. CSF is considered as the most productive source for biomarkers in child-
hood CNS tumors because of its close vicinity to the tumor mass [30]. In a study, six proteins
in CSF samples of patients with CNS tumors were identified as prospective biomarkers
for metastasis spread, including type 1 collagen, insulin-like growth factor binding pro-
tein 4, procollagen C-endopeptidase enhancer 1, glial-cell-line-derived neurotrophic factor
receptor α2, inter-alpha-trypsin inhibitor heavy chain 4, and neural proliferation and differ-
entiation control protein-1 [31]. Recently, Bruschi et al. introduced six promising biomarkers
from CSF of children with different brain tumors. Among these biomarkers, TATA-binding
protein-associated factor 15 and S100 protein B were able to differentiate between control
and tumor cases [32]. TMSB4X, a cytoskeletal protein inhibiting actin polymerization in-
volved in tumorigenesis, and CD109, a glycosylphosphatidylinositol-anchored cell surface
antigen expressed by T-cells and endothelial cells, are biomarkers found in CSF of patients
with pilocytic astrocytoma (PA), a low-grade cerebellum glioma, that can discriminate
PA from all other brain tumors [33–35]. Another instance is tripartite motif-containing
protein 33 (TRIM33), which is a transcriptional corepressor suppressor of brain tumor devel-
opment that can distinguish PA from the more aggressive diffuse gliomas [36,37]. Recently,
Bookland et al. [38] introduced miRNA-21, miRNA-15b, miRNA-23a, and miRNA-146b as
four miRNAs that can predict the presence, tumor nodule size, and response to therapy of
PA with a high sensitivity and specificity. Heat shock proteins (HSPs), which belong to a
superfamily of chaperones, along with 14.3.3 as an inhibitor of apoptosis are overexpressed
in MB and can discriminate between MB and all other brain tumors [39–41]. Circ NFIX
RNA is another biomarker that is considerably upregulated in glioma cancer cells and has
attracted scientists’ attention, since Circ NFIX could regulate signaling pathways leading
to human glioma cancer progression [42]. Among the biomarkers, glioblastoma-derived
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specific exosomes, which release directly from tumor cells in brain and cross the blood–
brain barrier, hold great potential for early diagnosis of glioblastoma (GBM, a type of
glioma) [43].

2.3. Neuroblastoma

Neuroblastoma (NB) is the most common cancer diagnosed in the first year of in-
fancy [44]. This embryonal malignancy is derived from primordial neuronal crest cells and
is mostly located in adrenal medulla and along the sympathetic nervous system [45]. The
NB’s symptoms depend on the anatomic location of the tumor and the stages of the disease.
Most patients have presentations related to a mass in the belly, such as abdominal disten-
tion, constipation, and high blood pressure. In cases arising from paravertebral sympathetic
ganglia, the spinal cord is usually invaded and patients may have manifestations such as
pain, motor sensory deficit, or Horner syndrome (drooping eyelid, small pupil, and lack
of sweating on one side of face) [46–49]. There are multiple imaging techniques and tests
for diagnosis of neuroblastoma. Ultrasonography is usually the first modality in a child
with a suspicious abdominal mass, followed by CT or MRI for further evaluation of the
tumor extension and stage [50]. Furthermore, nuclear medicine imaging techniques such as
meta-iodobenzylguanidine (MIBG) and fluorodeoxyglucose (FDG) imaging are often used
to define tumor status and detect occult disease and probable metastasis [51]. Along with
imaging, there are several biomarkers in neuroblastoma that are valuable in the process of
tumor accessing. They can be divided into two main groups: 1) Amplification of genetic
and molecular biomarkers such as MYCN (a protein-coding gene), ALK (anaplastic lym-
phoma receptor tyrosine kinase gene) amplification and mutations, chromosomal segments
loss or gain, and dysregulated proteins such as PIM kinase, Far-Upstream Element-Binding
Protein 1 (FUBP1), Ubiquitin C-Terminal Hydrolase L1 (UCHL1), and Tropomodulin1
(TMOD). 2) Circulating biomarkers in serum such as neuron-specific enolase (NSE), circu-
lating tumor cells (CTCs), and miRNAs (such as overexpression of miR-124-3p, miR-9-3p,
miR218-5p, miR490-5p, or miR1538), as well as circulating biomarkers in urine, including
catecholamines and their derivatives such as 3-Methoxytyramine (3-MT), homovanillic
acid (HVA), vanillylmandelic acid (VMA), normetanephrine (NMN), and vanillactic acid
(VLA) [52–54].

2.4. Wilms Tumor

Wilms tumor (WT) or nephroblastoma is the most common kind of primary kidney
tumor and the third-most-common solid tumor in children, accounting for about 5% of
all childhood cancers [55,56]. Wilms tumor may be associated with different congenital
anomalies and syndromes such as WAGR syndrome (a rare genetic disorder and acronym
for Wilms tumor, Aniridia, Genitourinary anomalies, and mental Retardation), Beckwith–
Wiedemann syndrome (macrosomia, macroglossia, abdominal wall defects, Wilms tumor,
hypoglycemia in the newborn period, and unusual ear creases or pits) and Denys–Drash
syndrome (abnormal kidney function, disorders of sexual development in affected males
and Wilms tumor) [57,58]. The most usual feature of WT is a large and painless abdominal
mass in a clinically healthy child [59]. However, about 20% of patients with WT also show
symptoms such as abdominal pain, constipation, urinary tract infections, blood in the urine,
high blood pressure, fever, and weight loss [60,61].

A child with suspected WT is typically examined with imaging techniques in the first
stage. Ultrasound is normally the first choice, which is then followed by further imaging
such as CT or MRI in order to define the stage of the tumor [62,63].

There are a number of biomarkers that have been most identified for their role in
WT characteristics and histology. Among them, loss of heterozygosity (LOH) for both
chromosomes 1p and 16q, which is closely associated with tumor recurrence; mutation
in B7-H1 (programmed death-ligand 1 = PD-L1) as a biomarker of the immune system,
which is related to an increased risk of tumor recurrence; and mutation in P53, which
is involved in an increased risk of recurrence, are promising biomarkers in identify-
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ing WT [64–66]. Furthermore, Ludwig et al. [67] have recently identified miR-100-5p,
miR-130b-3p, and miR-143-3p with diagnostic potentials for differentiation of WT from
controls. They reported that among three recognized miRNAs, higher expression of
miRs-100-5p and -130b-3p in the serum of patients with WT has the greatest potential
for tumor diagnosis regardless of its subtype.

2.5. Lymphomas

Lymphomas originate in transformed cells of the lymphatic system (germinal-center
B cells). There are two major groups of lymphomas, Hodgkin lymphomas (HL) and non-
Hodgkin Lymphomas (NHL), and both types occur in children. However, HL is the most
common lymphoma in children, accounting for approximately 6% of all children’s malig-
nancies, and is most frequent in adolescents [68]. Lymphomas typically affect the whole
body. Most patients with lymphoma present with non-tender lymph node swelling that
may be followed by constitutional symptoms (fever, fatigue, loss of appetite, sweating,
weight loss, or not gaining weight) [69]. Imaging plays a crucial role in the diagnosis,
staging, and follow-up of patients with lymphoma. CT, MRI, and PET are conventional
imaging modalities used in patients with lymphomas for further evaluations [70]. Most
lymphomas are potentially curable when they are diagnosed and treated with a standard
care method. However, recognizing different lymphoma subtypes can be challenging
due to the overlapping features of various lymphoma groups. Thus, the identification
of clinically valuable biomarkers may facilitate the diagnosis and classification of lym-
phoma, which in turn should lead to better stratification of patients and more efficient and
less toxic treatment of children with lymphoma. In this regard, serum CD163 and serum
thymus and activation-regulated chemokine (TARC) are proposed as striking biomarkers
reflecting therapy response in patients with HL [71]. CCL17/TARC is another biomarker
with the potential to facilitate primary care triage and chemotherapy monitoring strategies
for classic Hodgkin lymphoma (cHL) [72]. Determining the levels of a combination of
biomarkers such as Nuclear Factor Kappa B (NF-κB) and CD30 in pediatric HL patients
would support gaining insight into disease progression during tumor treatment [56]. Addi-
tionally, four biological and inflammatory markers (stage IV, high platelet count, ferritin,
and eosinophils) were investigated by Farruggia et al. to classify pediatric patients with
HL into subtypes with various outcomes [73]. More recently, Yu et al. [74] identified S100
calcium-binding protein A8 (S100A8) and leucine-rich alpha-2-glycoprotein 1 (LRG1) as
promising biomarkers for the diagnosis of pediatric NHL.

3. Biosensors for Detection of Biomarkers

Cancer biomarkers are commonly detected by conventional techniques, including
enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), Western
blotting, immunofluorescence, flow cytometry, and liquid chromatography–mass spec-
trometry [75–79]. Nevertheless, these assays are complex, time-consuming, require compli-
cated and expensive instrumentation, and sometimes fail to detect a low concentration of
biomarkers in the early stages of cancer. Therefore, the development of a reliable, rapid,
and sensitive method for biomarker detection, especially in the early stages of cancer,
is essential. In this regard, biosensors have shown attractive features compared to the
techniques mentioned earlier and have improved health and quality of life. On the other
hand, biosensors are promising candidates for the specific and simultaneous detection of
biomarkers and the study of their associated reactions, because their components can be
easily modified and improved.

A biosensor is an integrated receptor–transducer device capable of transforming a
biological reaction into a measurable signal, which can be further amplified and analyzed
(Figure 1) [80,81]. The biorecognition element has the most important function in the
biosensor, as it defines the selectivity and sensitivity of the designed biosensor by specific
binding to a target analyte. Therefore, selecting a suitable bioreceptor is the first step to
improving the biosensors’ design and development [82,83]. At this point, various types
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of biosensors have been developed for the determination of cancer biomarkers. Many
researchers have enhanced the sensitivity of biosensors by integrating nanomaterials into
biosensing assays [84,85]. Novel chemical, physical, optical, and electrical properties of
different nanomaterials and their large specific surface areas can significantly improve the
ability of biosensors to detect biomarkers. In addition, it is proved that the detection of
multiple biomarkers can remarkably advance the specificity of a biosensor for the diagnosis
of early-stage cancer [85,86].
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4. Developed Biosensors for Childhood Cancers in Clinical Practice

To date, numerous cancer biomarkers have been identified for various cancers in
children and adults. Although a variety of biosensors have been developed for biomarker
detection, only a limited number of them have been designed for childhood cancers. Here,
the developed biosensors for biomarker detection related to childhood cancers are reviewed

4.1. Electrochemical Biosensors

Among the developed biosensing technologies for cancer biomarker detection, elec-
trochemical biosensors have gained much attention due to their low cost, ease of use,
suitability for miniaturization, fast response time, and high sensitivity with low detection
limit. In particular, electrochemical nano-biosensors using various nanomaterials have
been recently used for ultra-sensitive detection of biomarkers [87].

Mazloum Ardakani et al. [88] developed a set of disposable electrochemical nano-
biosensors for early detection of acute lymphoblastic leukemia. Their biosensor package
included a DNA sensor, an aptasensor that can detect BCR-ABL1 as a mutant gene, and
carcinoembryonic antigen (CEA) as a cancer biomarker. To improve the sensitivity of their
biosensors, they used a nanocomposite of carbon quantum dots and gold nanoparticles (Au
NPs) for preparing both DNA and aptamer biosensors. With the proposed nano-biosensor
package, they could detect BCR-ABL1 and CEA in a wide linear range with the detection
limits of 1.5 and 0.95 pM, respectively. According to their research, a negative test result of
DNA sensor was related to a person who did not have ALL. In contrast, a positive DNA
test suggested that the patient had a mutant gene and was at risk of ALL. The aptamer test
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was performed to verify the positivity in case of a positive DNA test. A positive aptasensor
test illustrated that the patient definitely had ALL. On the contrary, a negative aptasensor
test would mean that the person had no ALL but was at risk of ALL because of having the
mutant gene responsible for ALL.

Avelino et al. [89] developed a simple, rapid, and highly sensitive electrochemical
DNA biosensor to diagnose BCR/ABL oncogene for both ALL and CML at attomolar
concentrations. They used a composition of Au-NPs and polyaniline, an organic–inorganic
hybrid material, with synergistic properties and robust biosensitive platforms, to attach
DNA probes to the gold electrode. By applying complementary DNA (cDNA) samples
from patients to the biosensor surface and hybridizing with immobilized DNA probes, the
concentration of the BCR/ABL fusion gene could be determined at the lowest concentration
compared with the other reported values.

Dinani et al. [23] fabricated an aptasensor based on Au NPs/Fe3O4/reduced graphene
oxide (rGO) for the determination of miRNA-128 concentration as a diagnostic biomarker
for ALL. They decorated the rGO films with Fe3O4 as a suitable substrate for easier deposi-
tion of AuNPs as well as rapid immobilization of aptamers on the surface of the electrode,
which improved the electrochemical conductivity of the rGO sheets and the sensitivity
of the fabricated biosensor. MiRNA-128 was then detected in low concentrations using
label-free and methylene blue-labeled methods (Figure 2). Both label-free and labeled
aptasensors showed high selectivity for miRNA-128. Their proposed platform could be
integrated into wearable biosensors for real-time monitoring of individuals. Furthermore,
compared to the previous studies, they could detect miRNA-128 at a very low concentration
(fM), confirming the high applicability of the developed nano-biosensor for early detection
of ALL.

Amouzadeh Tabrizi et al. [24] designed a flow injection aptamer–aptamer sandwich
electrochemical biosensor for determination of CCRF-CEM cells in the presence of H2O2 as
an electroactive component. They used a nanoplatform of poly (3,4-ethylenedioxythiophene)
decorated with Au NPs for immobilizing the thiolated sgs8c aptamer and multiwall carbon
nanotubes decorated with perylene tetracarboxylic acid and palladium NPs for catalytic
labeling of aptamer. Then, the CCRF-CEM cells were sandwiched between them. The
catalytically labeled aptamer bound to the CCRF-CEM cells catalyzes the electrocatalytic
reduction of H2O2 and enhances the electrocatalytic reduction signal of H2O2 depending on
the concentration of CCRF-CEM cells. With the proposed setup, they could also determine
the CCRF-CEM cancer cells in human serum samples.

Recently, Rinaldi et al. [72] presented an electrochemical sandwich immunosensor as a
point-of-care test for CCL17/TARC detection as a potential biomarker of cHL (Figure 3).
The proposed sensor was able to distinguish patients with cHL from healthy volunteers
as well as perform secondary care chemotherapy monitoring. In this regard, a gold elec-
trode was first modified with a thiolated heterobifunctional crosslinker, Sulfo-LC-SPDP, to
immobilize the specific capture antibody. Then, a biotinylated CCL17 secondary antibody
conjugated with an enzyme was added to develop the final sandwich immunosensor for the
determination of the CCL17/TARC level in the serum of a patient with cHL. The designed
biosensor with lower and upper quantitation limits of 387 and 50,000 pg/mL towards
CCL17/TARC showed a high dynamic range compared to the equivalent colorimetric
ELISA platform, implying an essential step towards developing a rapid test for the staging
and treatment of cHL.

A label-free electrochemical biosensor was designed based on Zr/metal-organic frame-
works (Zr-MOFs) for early detection of GBM-derived exosomes in the blood of patients
with GBM. These exosomes are marked by highly expressed human epidural growth factor
receptor (EGFR) and EGFR variant (v) III mutations (EGFRvIII). Therefore, a peptide ligand
was attached to the electrode surface as a sensing layer that could specifically bind to
EGFR and EGFRvIII and capture GBM-derived exosomes. At the same time, encapsulated
Zr-MOFs with methylene blue were combined with the GBM-derived exosomes through
the interaction of phosphate groups of exosomes with Zr4+ and produced an electrochemi-
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cal signal. The proposed method was able to quantitatively measure the concentration of
GBM-derived exosomes, ranging from 9.5 × 103 to 1.9 × 107 particles/µL, with a detection
limit of 7.83 × 103 particles/µL. In addition, the prepared biosensing platform was used to
analyze GBM-derived exosomes in human serum. It could distinguish GBM patients from
healthy groups, demonstrating its feasibility for early diagnosis and monitoring of GBM
therapy [43].
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Moazzam et al. [90] fabricated an ultrasensitive and fast electrochemical biosensor for
direct detection of PD-L1 in whole-blood samples using a dispersible electrode based on
modified gold-coated magnetic nanoparticles (Figure 4). First, a labeled antibody conju-
gated with gold-coated magnetic nanoparticles (Ab1-Au@MNPs) was added to the PD-L1
solution in the blood. Then, the resulting magnetically separated PD-L1-Ab1-Au@MNPs
were mixed with a second reporter antibody (biotinylated detection antibody) conjugated
with a horseradish-peroxidase–streptavidin-labeled (HRP-Ab2) to build an immunosand-
wich structure of HRP-Ab2-(PD-L1)-Ab1-Au@MNPs. Then, the separated sandwiched
HRP-Ab2-(PD-L1)-Ab1-Au@MNPs were collected on the gold macroelectrode surface
(as working electrode) by applying a magnet, and PD-L1 detection was performed in
ferrocenemethanol (Fc) solution as a redox mediator and in the presence of H2O2 as a
substrate of HRP. The reported dispersible electrochemical sensor was able to detect PD-L1
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with an ultralow detection limit of 15 attomolar, which is 2600 000 times lower than the
detection limit obtained with commercially available ELISA kits.
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4.2. Optical Biosensors

Optical biosensing technology is the second class of biosensors, after electrochem-
ical, that has been extensively studied in cancer diagnostics and therapy. It can de-
tect cancer biomarkers easily, directly, and in real time. Optical biosensors generally
include colorimetric, fluorometric, chemiluminescence, and surface plasmon resonance
(SPR)-based biosensors.

To develop a non-invasive liquid biopsy for early diagnosis of leukemia with high
sensitivity and specificity, Huang et al. [91] proposed a dual-signal amplification fluo-
rescent protocol to detect leukemia-derived nanosized exosomes. As shown in Figure 5,
they first modified magnetic bead conjugates with anti-CD63 antibodies (MB-CD63) to
entrap leukemia-cell-derived exosomes containing CD63 and nucleolin. Subsequently,
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a DNA primer with a nucleolin recognition aptamer (AS1411) was used to bind to the
exosome, triggering a rolling circle amplification (RCA) reaction, to generate multiple
repeated sequences for hybridization of fluorescent-labeled DNA (DNA-FAM), which was
immobilized on AuNPs (GNP-DNA-FAM). Here, the fluorescence of FAM is quenched
by AuNPs due to its specific optical effect. In the last step, they introduced nicking en-
donuclease (Nb·BbvCI) assisted target recycling, resulting in the release of FAM from the
GNP-DNA-FAM conjugates, which transitioned from the quenching state to the emission
state so that the fluorescence signals gradually increased. Using the suggested platform as
a dual signal amplification strategy, they could detect exosomes at concentrations as low as
100 particles per µL.
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Luo et al. [92] prepared a localized surface plasmon resonance (LSPR) biosensing
platform for the specific detection of serum PD-L1 using excessively tilted fiber grating
(ExTFG) coated with large-sized (∼160 nm) gold nanoshells. Anti-PD-L1 monoclonal
antibodies were immobilized on an ExTFG-LSPR platform for label-free detection of PD-L1.
The designed biosensor was able to specifically detect PD-L1 at a low concentration of
5 pg/mL in fetal bovine serum as a complex serum medium.

Recently, an LSPR biosensor chip was developed based on the immobilization of
antibodies on the surface of Au nano-islands decorated with AgNPs (Ag@AuNIs) for the
detection of monocarboxylate transporter 4 (MCT4) as a GBM progression biomarker [93].
The anti-MCT4 antibodies on the surface of Ag@AuNIs-modified chips had a remarkable
ability to detect exosomes, resulting in the generation of a strong LSPR response. Therefore,
the proposed biosensor sensitively and selectively detected the enhancement of MCT4
content in malignant hypoxic GBM cell-derived exosomes and the increased MCT4 content
in exosomes from blood serum of GBM mice in a wide dynamic range, with a detection limit
of 0.4 ng/mL, confirming its potential for early detection of GBM initiation and progression.

PD-L1 expressing extracellular vehicles (EVs) are of remarkable clinical relevance,
since they have the potential to diagnosis cancer and to evaluate the patient’s response to
anti-PD-L1/PD-L1 immunotherapy. In this context, Khan et al. [94] developed an aptamer-
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based chemiluminescence (CL) sensor for the detection of PD-L1@EVs using Fe3O4@TiO2
beads to capture EVs directly from undiluted serum without the need for additional ultra-
centrifugation and isolation. To improve specificity, a biotin-labeled PD-L1 aptamer was
first added to bind to PD-L1@EVs. Streptavidin-modified alkaline phosphates (ALP) were
then added to bind the aptamer via the strong biotin–streptavidin binding. The addition of
CDP-Star, a chemiluminescent ALP substrate, triggers chemiluminescence proportional
to the concentration of PD-L1@EVs. The prepared assay showed high sensitivity and
specificity towards PD-L1@EVs in a wide linear range of 105 to 108 EVs/mL and a very
low detection limit of 2.584 × 105 EVs/mL.

Recently, electrochemiluminescence (ECL) (the combination of electrochemical meth-
ods and chemiluminescence) has gained popularity in sensor and biosensor applications
due to the numerous advantages of ECL over chemiluminescence, such as controlled
selectivity by changing the electrode potential, higher sensitivity, and time and position
control of the light-emitting response. An ECL aptasensor for the detection of miRNA-16 in
patients with leukemia based on polymerase-assisted signal amplification and aggregation
of the illuminator was reported by Zhang et al. [95]. The assembled mercapto-modified
capture DNA (CP) on Fe3O4@Au NPs was immobilized on the surface of a magneto-
controlled glassy carbon electrode by Au-S bond, which was then hybridized with the
target miRNA-16. In the presence of bases, primer, and polymerase, the polymerization be-
gan, leading to the release of miRNA-16. After the hybridization reaction between the probe
DNA (PDNA) and the remaining sequence of the CP’s stem component and formation of
the core–shell sun-like structure, they embedded pyridine ruthenium (Ru(bpy)3

2+) complex
into the assistance DNA (ADNA), which was loaded on a nanogold surface. Lastly, the
composite of AuNPs@(PDNA+ADNA- Ru(bpy)3

2+ was added and the ECL intensity was
recorded. Due to the polymerization cycle and aggregation of Ru(bpy)3

2+ as the illuminator,
they were able to significantly increase the sensitivity and detect miRNA 16 at a very low
concentration, with a detection limit of 4.3 × 10−17 cells/mL.

4.3. Electrical Biosensors

Electrical biosensors provide label-free, rapid, highly sensitive and direct detection of
biomolecules. In electrical biosensors, capturing a target by a biological receptor results in
a change in potential, impedance, or current that can be correlated with target concentra-
tion. Recently, electrical biosensors based on semiconductor nanowires and nanoribbons
have been considered for real-time and label-free detection of macromolecules and cancer
biomarkers at subfemtomolar concentrations [96,97]. Silicon nanoribbons as extended sili-
con nanostructures have been recently introduced as highly sensitive (bio)sensor chips for
potential use in medicine and biotechnology when at least femtomolar or lower detection is
required [98–100]. Ivanov et al. [101] developed a silicon nanoribbon-based DNA-biosensor
for the detection of circular RNA nuclear factor IX (circNFIX) as a molecular biomarker of
glioma in humans (Figure 6). Using the proposed assay, they were able to detect circNFIX
in plasma samples from glioma patients with a limit of detection of 1.1 × 10−17 M in real
time. A summary of developed biosensors for childhood cancer is shown in Table 1.

Table 1. Summary of developed biosensors for childhood cancers.

Biosensor Material Detection Method Biomarker Ref.

DNA-aptamer/COD 1-Au NPs Electrochemical BCR-ABL1/CEA [88]
NA/Au-NPs- PANI 2 Electrochemical BCR-ABL [89]

Aptamer/Au NPs-Fe3O4-rGO 3 Electrochemical miRNA-128 [23]
Aptamer/PEDOT 4-Au NPs Electrochemical CCRF-CEM cells [24]

Aptamer/Au NPs-Fe3O4-rGO Electrochemical CCL17/TARC [72]
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Table 1. Cont.

Biosensor Material Detection Method Biomarker Ref.

Protein/Zr-MOFs 5

Antibody/labeled
DNA/Au NPs

Antibody/ExTFG-Au 6

Antibody/Ag@AuNIs 7

Aptamer/Fe3O4@TiO2
Aptamer/Fe3O4@Au NPs

DNA/silicon

Electrochemical
Electrochemical

Optical
Optical
Optical
Optical
Optical

Electrical

GBM-derived exosome
PD-L1

leukemia-derived exosomes
PD-L1

MCT4 8

PD-L1
miRNA-16
circNFIX 9

[43]
[90]
[91]
[92]
[93]
[94]
[95]
[101]

1. COD: carbon quantum dots, 2. PANI: polyaniline, 3. rGO: reduced graphene oxide, 4. PEDOT: poly(3,4-
ethylenedioxythiophene), 5. Zr-MOF: Zr/metal-organic frameworks, 6. excessively tilted fiber grating, 7. silver
nanoparticles decorated on gold nano-islands, 8. MCT4: monocarboxylate transporter 4, 9. circNFIX: circular RNA
nuclear factor IX.
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A list of the abbreviations used in this review is provided in Table 2.

Table 2. List of abbreviations used in this review.

Abbreviation Explanation Abbreviation Explanation

LMICs Low- and middle-income countries AML1-ETO Fusion protein resulting from t(8;21)(q22;q22)
translocation

CNS Central nervous system PML-RARA Promyelocytic leukemia/retinoic acid
receptor alpha

CSF Cerebrospinal fluid PF4 Platelet factor 4
CT Computed tomography CTAP III Connective tissue-activating peptide III
US Ultrasound C3a Complement component 3a

MRI Magnetic resonance imaging miRNA Micro ribonucleic acid
US Ultrasonography CCRF-CEM Human leukemic lymphoblast

SPECT Single-photon emission computed tomography MB Medulloblastoma
PET Positron emission tomography TMSB4X Tripartite motif-containing protein 33

DNA Deoxyribonucleic acid HSPs Heat shock proteins
RNA Ribonucleic acid GBM Glioblastoma

WBCALL White blood cell Acute lymphoblastic leukemia ALK Anaplastic lymphoma receptor tyrosine
kinase gene

AML Acute lymphoblastic leukemia MIBG Meta-iodobenzylguanidine
CML Chronic myeloid leukemia NB Neuroblastoma
CD Cluster of differentiation FDG Fluorodeoxyglucose

TDT Terminal deoxyribonucleotidyl transferase MYCN N-myc proto-oncogene protein
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Table 2. Cont.

Abbreviation Explanation Abbreviation Explanation

T-ALL Thymic ALL PIM kinase Pim-1 proto-oncogene, serine/threonine kinase
BCR-ABL Chimeric gene of BCR and ABL TARC Thymus and activation-regulated chemokine

TEL-AML1 Fusion gene resulting from t(12;21) translocation CCL17/TARC C-C Motif Chemokine Ligand 17/thymus and
activation-regulated chemokine

FUBP1 Far-Upstream Element-Binding Protein 1 cHL Classic Hodgkin lymphoma
UCHL1 Ubiquitin C-Terminal Hydrolase L1 NF-κB Nuclear Factor Kappa B
TMOD Tropomodulin1 S100A8 S100 calcium-binding protein A8

NSE Neuron-specific enolase LRG1 Leucine-rich alpha-2-glycoprotein 1
CTCs Circulating tumor cells ELISA Enzyme-linked immunosorbent assay
3-MT 3-Methoxytyramine
HVA Homovanillic acid PCR Polymerase chain reaction
VMA Vanillylmandelic acid CEA Carcinoembryonic antigen
NMN Normetanephrine Au NPs Gold nanoparticles
VLA Vanillactic acid Fe3O4 Iron oxide
WT Wilms tumor

WAGR Wilms tumor, aniridia, genitourinary problems
and range of developmental delays rGO Reduced graphene oxide

LOH Loss of heterozygosity H2O2 Hydrogen peroxide

PD-L1 Programmed death-ligand 1 Sulfo-LC-SPDP Sulfosuccinimidyl 6-[3′-(2-
pyridyldithio)propionamido]hexanoate

HL Hodgkin lymphomas Zr-MOFs Zr/metal-organic frameworks
NHL Non-Hodgkin lymphomas EGFR Epidural growth factor receptor

Au@MNPs
Fc

SPR
LSPR

CL
ALS
ECL

circNFIX
NR

Gold-coated magnetic nanoparticles
Ferrocenemethanol

Surface plasmon resonance
Localized surface plasmon resonance

Chemiluminescence
Alkaline phosphates

Electrochemiluminescence
Circular RNA nuclear factor IX

nanoribbon

HRP
RCA
FAM

ExTFG
Au NIs
MCT4

EVs
TiO2

Ru(bpy)3
2+

Horseradish peroxidase
Rolling circle amplification

Fluorescent-label
Excessively tilted fiber grating

Au nano-islands
Monocarboxylate transporter 4

Extracellular vehicles
Titanium dioxide

Pyridine ruthenium complex

5. Conclusions and Future Outlook

This review highlights the concern about childhood cancers and the importance of
biomarker detection for early diagnosis and prognosis of malignancies in this age group.
Biosensors are shown to be an accurate, non-invasive, and rapid technology for detecting
specific biomarkers of childhood cancers. However, biosensors should have high sensitivity
to detect very low levels of biomarkers at the early stages of cancer. The application of
nanotechnology in developing biosensors has had a tremendous impact on the sensitive
detection of biomarkers at the trace level, allowing earlier diagnosis of cancer and improved
patient survival. On the other hand, detecting a panel of biomarkers associated with
a particular cancer type may reduce diagnostic time and ultimately positively impact
clinical outcomes. In this context, the integration of nanomaterials into electrochemical
biosensors makes them the best candidates for future clinical applications in simultaneous
measurement of multiple biomarkers, because of their ease of use, their fast and highly
sensitive response, and the possibility of miniaturization as well as the development of
point-of-care devices. Considering the limited research on biosensors for childhood cancers,
studies and development of ultrasensitive and wearable biosensors for clinical use have
great potential, not only for non-invasive and cost-effective diagnosis of pediatric cancers,
but also for monitoring the patient’s treatment progress. However, a comprehensive
understanding of molecular changes, cancer cell behavior, and associated biomarkers, as
well as the mechanisms of interaction between nanomaterials on the surface of biosensors
and various biomarkers, are the major challenges in biosensor design and require further
investigation.
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