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Abstract: Breast cancer, the most common form of cancer among women in North America and almeost all of
Eurape, is a significant health problem in terms of both morbidity and mortality. It is estimated that each year
this disease is diagnosed in over one million people worldwide and is the cause of more than 400,000
deaths, Although chemotherapy forms part of a successful treatment regime in many cases, as few as 50%
patients may benefit from this, as a result of intrinsic or acquired multiple drug resistance (MDR). Through the
use of in vitre cell culture models, a number of mechanisms of MDR have been identified; many, if not all, of
which may contribute to breast cancer resistance in the clinical setting, This phenomenon is complicated by
the likely multi-factorial nature of clinical resistance combined with the fact that, although apparently studied
extensively in breast cancer, reported analyses have been performed using a range of analytical techniques;
many on small sub-groups of patients, with differsnt clinicopathological characteristics and receiving a range
of therapeutic approaches, Larger defined studies, using standardised genomic and proteomics profiling
approaches followed by functional genomies studies, are necessary in order to definitively establish the degree
of complexity contributing to drug resistance and to identify novel therapeutic approaches - possibly

involving chemotherapy, drug resistance modulators, and novel targeted therapies — to combat this disease.
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INTRODUCTION

Breast cancer is a leading cause of cancer deaths in
women all over the world {1], with approximately 12% of
women directly affected by this disease. Although the
median age for patients with breast cancer is 65 years [2],
this disease may affect women of all ages. The incidence of
breast cancer in women aged <20 years has been estimated to
be 0.0001%; 0.0014% for ages 20-24vears, 0.0081% for
women between 25-29 years old, and 0.0248% for the 30-34
years age group [3]. Breast cancer, however, is not restricted
to the female population — approximately 1% of all cases is
diagnosed in men.

Ductal carcinoma is invasive and is the most common
type of breast cancer. It originates in the milk ducts of the
breast, but has developed the potential to metastasise to
other parts of the body. Similarly, lobular carcinoma is
invasive; this cancer begins in the milk-producing lobules,
Inflammatory breast cancer is a rare type of advanced cancer.
This form of breast cancer has poorest prognosis; it results
from lymphatic vessels becoming blocked with tumour cells
and, subsequently, becoming inflamed. Other forms of
breast cancer include Paget’s disease, comedocarcinoma,
medullary carcinoma and colloidal carcinoma [4]. Although

o hlstology may influence treatment decisions, the stage of
. disease is usually considered to be more important. Poorly
»i differentiated (high grade) tumours have a worse prognosis
thai ‘well-differentiated (low grade) tumouts. Inflammatory
c cmom has'a poor prognosis, irrespective of stage. For
negative nodes, a group of “special tumour

(typ al medullary, mucinous, papillary, and pure
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tubular types) is associated with a better prognosis. For early
disease without lymph node involvement (stage 1), the S
year survival rate is approximately 80% for invasive ductal
carcinomas and 90-95% for invasive lobular, comedo-
carcinomas, and colloid carcinomas. Unfortunately, breast
cancers spread by lymphatic vessels and blood-borne
metastases. The most common organs involved with
symptomatic metastases are regional lymph nodes, skin,
bone, liver, lung and brain. Indeed, axillary lymph node
metastases are present in 55-70% of patients at the time of
diagnosis when not detected by screening mammography
[4]. Whereas in the US more than 90% of breast cancer
diagnoses now occur during the early stage of this disease
[5], in developing countries approximately 25-30% of cases
have already advanced locally when first diagnosed [1].

CURRENT THERAPIES
Locoregional Treatment of Breast Cancer

Total mastectomy with axillary node dissection
(modified radical mastectomy) was the standard surgical
procedure for patients who choose surgery as their only focal
treatment. Alternatively, some centres have replaced lymph
node dissection with “sentinel node” technique, which
allows a more limited removal of lymph nodes (LN) for
staging purposes, There is apparently no significant survival
difference between total mastectomy with axillary node
dissection and limited surgery (lumpectomy, tylectomy,
total gross removal, or quadrantectomy) followed by
definitive radiotherapy (i.e. generally given as a 4500-5000
cGy to the entire breast, followed by a boost to the area of
the biopsy (1000-2000 cGy) [4]. New techniques of breast
irradiation, including conformal radiotherapy (defined as a
high precision technique, based on the tri-dimensional
volumetric definition of the tumour and the anatomy of
critical organs) and intensity-modulated radiotherapy, have
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been shown to reduce the post-irradiation problems of
cardiac and lung irradiation associated with conventional
methods [6].

Systemic Therapy

At the time of initial treatment with surgery, most
patients with invasive carcinoma -of the breast have a
systemic disease in which micrometastases have already
occurred. Adjuvant systemic therapy (hormonal, monoclonal
antibodies, chemotherapy; or a combination of these), given
immediately after local treatment, is now a standard part of
breast cancer management. Women at sufficient risk to
warrant such therapy include nearly all those with positive
axillary nodes and many with high-risk, node-negative,
disease.

Hormonal Therapy

Estrogen receptor (ER) and progesterone receptor (PgR)
activities are the most predictive factors for response of
primary and metastatic breast cancers to hormonal therapies.
Endocrine therapy is, therefore, generally restricted to
patients with hormone receptor-positive {or unknown)
tumours, whose life is not in immediate danger from
advanced cancer. Patients who develop relapse within 1 year
of primary treatment usually respond poorly to endocrine
treatment [4].

Tamixofen, an antiestrogen, is generally the first
endocrine therapy used in patients with ERT or ER-unknown
tumours. Recent results derived from cell line studies
suggest that the use of vitamin D analogues {e.g. EB1089),
used to inhibit growth of breast cancer cells, may act
synergistically with anti-estrogens [7]. Unfortunately,
tumours expressing high levels of ER co-activator AIB1 and
Her-2/neu (see “Monoclonal Antibodies™) often develop
tamoxifen resistance [8]. Aromatase inhibitors (including
anastrozole and letrozole) block the conversion of androgens
1o estrogens and are generally second-line endocrine agents.
Such aromatase inhibitors, used in patients with large
operable tumours as pre-operative therapy, enabling
subsequent breast conservation surgery instead of
mastectomy, have been proposed [9]. Megestrol acetate, a
progestin, is an alternative second-line, or a third-line,
choice of endocrine therapy. Fourth-line agents, including
fluoxymesterone (an androgen) or diethylstilbestrol (an
estrogen), may be used for those who initially respond but
then become unresponsive to treatment with tamoxifen, an
aromatase inhibitor, and megestrol acetate. (A
comprehensive review of the use of hormonal therapy is
beyond the scope of this document and has been dealt with
in recent review articles e.g. [10-11]).

Monoclonal Antibodies

The erbB receptor family, part of the receptor tyrosine
kinase superfamily, has been shown fo play an important
role in both normal breast development and in the
pathogenesis and progression of breast cancer. Receptor
overexpression has also been shown to be a negative
prognostic indicator, associated with tumour invasiveness
and a lack of responsiveness to standard therapies, including
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both chemotherapy and hormonotherapy [12-13] and
radioresistance in breast cancer [14]. Herceptin (trastuzumab),
a humanised antibody to her-2/meu™ which has been
rationally developed based on tumour biology, is now
utilised in the clinic for metastatic breast cancer treatment
and results in an approximately 30% response rate for her-
2/neu* patients, For less aggressive ER/her-2/neu™
metastatic breast cancer, trastuzumab combined with
endocrine therapy is a feasible approach; for aggressive her-
2/neu’ metastatic cancer, trasuzumab combined with
chemotherapy is warranted [15]. Although phosphorylation
of AKT and/or loss of nuclear expression of cyclin-
dependent kinase inhibitor, p27, may be involved, resistance
to erbB inhibitor therapy is not yet defined [16-18]. Other
monoclonal antibodies currently in the development phase
for use in breast cancer include cetuximab (erbitux), targeting
EGFR (erbB-1), and pertuzumab {omnitarg), specific for her-
2/neut ligand-dependent signalling [19].

CHEMOTHERAPY

Breast cancer is moderately sensitive to cytotoxic drugs
[20] and so chemotherapy plays an important role in the
management of this disease [21-22]. Adjuvant chemotherapy
in early breast cancer decreases the chances of recurrence and
death by 24% and 15% annually, respectively [23}. Neo-
adjuvant/induction chemotherapy (i.e. treatment given before
the primary treatment) was first reported in the 1970s and
initially utilised to convert unresectable tumour to smaller
tumours, making them more amenable to local control with
either surgery or radiotherapy, in addition to indicating
chemosensitivity of the tumour [24]. This is an attractive
treatment option for patients with locally advanced breast
cancer [25]. This form of therapy can reduce tumour size in
80-90% of breast cancer patients [26], with pathological
complete response rates approaching 20% [27]. Randomised
trials have shown that neo-adjuvant chemotherapy is equally
effective, but not superior, to post-operative chemotherapy in
breast cancer 7.e it does not significantly increase
disease/relapse-free survival (DFS) or overall survival (OS)
when compared to adjuvant chemotherapy [28-29]. For those
with metastatic disease, chemotherapy results in response
rates of 25-55% [30] and improves the quality and duration
of life but, with rare exception, does not result in a cure
[20].

Many cytotoxic agents used singly are effective in
achieving partial response in 20-35% of cases. Remission
commonly lasts 4-6 months [4]. As combination therapy,
the antimetabolites 5-fluorouracil and methotrexate. in
combination with the alkylating agent cyclophosphamide
{CMF) have conventionally been used as breast cancer
treatment [21], with a response rate of approximately 60%
achieved for a median duration of 1 year or more [4].

Anthracycline-based regimes (including doxorubicin or
epirubicin) are widely used as first-line chemotherapy for
primary and metastatic breast cancers. Results from meta-
analysis of 5 studies including a total of 1088 cases
indicated that anthracycline-containing regimes confer a
survival benefit over CMF regimes [31]. Conventional first-
line regimes include doxorubicin with cyclophosphamide
(AC); epirubicin with cyclophosphamide (EC); fluorouracil
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fibicin and cyclophosphamide (FAC); and
i ‘with epirubicin and cyclophosphamide (FEC)
-~ patients previously treated with adjuvant CMF
therapy, anthracycline-based regimes are frequently
avoured as first-line chemotherapy for metastatic disease.
 Anthiracycline-taxane combinations have been reported to
it i excess of 50% response rates, with complete
~“'remission in approximately 15% of cases [32]. In some cases
“(albeit few; 3.1%) long-term remissions (> 5 years) have
.~ occurred [33]. Results from recent clinical trials, however,
~“support the use of nonanthracycline-containing regimes as
*"the first option for treating metastatic breast cancer. Analysis
of 93 node-positive patients treated with different
combinations of doxorubicin, docetaxel and CMF, indicated
that, in terms of overall survival (OS) and disease-free
-survival (DFS), docetaxel-based regimes were at least as
successful as standard anthracycline-based adjuvant therapy
[34]. Docetaxel combined with cisplatin as first-line
chemotherapy in metastatic breast cancer resulted in a 60%
response rate, while taxanes with carboplatin, docetaxel with
gemcitabine, or docetaxel with capecitabine, have all been
proposed as feasible combinations [33], Benefits from
taxanes, particularly docetaxel, have also been seen in the
neo-adjuvant setting.

Following failure of first-line chemotherapy, a significant
response may be obtained with second-line anticancer drugs
[36]. The choice of second-line chemotherapy is generally
determined by the first-line regime used, with the taxanes
{paclitaxel and docetaxel) commonly considered to be the
most effective options; particularly if anthracycline-based
regimes have previously been used [2], Indeed, in a phase II
study of 50 patients treated with docetaxel (blocks cells in
G2/M phase) plus gemcitabine (blocks cells in G1/S phase)
following docetaxel failure, 46% of patients responded (3
complete responses, 20 partial responses) suggesting an in
vive synergism between these two drugs and supporting
advancement to a randomised trial [37]. Interestingly, partial
response to paclitaxel in 31.8% (14/44) of metastatic breast
cancer patients who were un-responsive to docetaxel has also
been reported [38], '

Results from clinical frials indicate that capecitabine
(xeloda), a rationally designed cytotoxic drug designed to
generate S5-fluorouracil preferentially in tumour cells by
exploiting their higher thymidine phosphorylase (TPF)
enzyme activity compared to that in normal cells, is effective
and has a favourable safety profile in the chemotherapeutic
treatment of metastatic breast cancer [18]. Results from
phase I [39] and phase II [40-41] clinical trials combining
capecitabine with docetaxel and epirubicin have indicated an
acceptable safety profile and some anti-tumour activity,
warranting more extensive trials in advanced breast cancer.
The ability of certain cytotoxic drugs, such as the taxanes
and cyclophosphamide [42], as well as iressa [43], to up-
regulate the activity of TP indicates the potential for
synergistic activity, if used in combination.

;% Other:agents commonly used in breast cancer include
- vinca-alkaloids, anthraquinones (mitoxantrone), epipodo-

- phyllotoxins (etoposide) [44] and bisphosphonates (which
- are increasingly used to treat the hypercalcaemia associated
isease), Pamidronate, in particular, may be
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useful in postponing “skeletal events” including fracture and
pain in patients with breast cancer metastatic to bone [4].

To overcome problems associated with cell developing
drug resistance (see “Drug Resistance”) and to increase the
efficacy of chemotherapeutic regimes, oncologists have
investigated ways of “fine-tuning” chemotherapy doses and
schedule, including high-dose (based on hypothesis that
escalating the dose will overcome drug resistance and
improve outcome} [20, 45-47] and dose-dense (delivering
standard dose, but with shorter intervals between cycles) [48]
approaches. Whereas high-dose regimes have, in general,
shown no significant improvement over standard regimes
[47], dose-dense adjuvant chemotherapy with doxorubicin
apparently improves clinical outcome [48].

DRUG RESISTANCE

Chemotherapy resistance, whether inherent or acquired, is
a major problem in the management of breast cancer,
Patients refractory to chemotherapy exhibit resistance to
multiple cytotoxic agents of differing structures and, often,
differing functions. This clinical resistance, comparable to
the experimental phenomenon termed multiple drug
resistance (MDR), is likely to be multifactorial and
heterogenous [49-51], with many molecular mechanisms
potentially contributing to the drug resistance phenotype
[21]. Mechanisms (see Fig. 1 for some examples) include
reduction in the intracellular accumulation of anticancer
drugs, by both increasing drug effiux and/or decreasing drug
uptake; drug sequestration; alterations in drug targets (e g.
topoisomerases) or activation of de-toxifying systems
(including glutathione/glutathione-S-transferases; cyto-
chrome P450s); increased repair of drug-induced DNA
damage; disruption in cell signalling; alterations in factors
involved in cell cycle control; and inhibition of apoptosis
[52]. Although drug resistance is conferred o a large number
of clinically and pharmacologically unretated compounds via
some cellular mechanisms, other mechanisms (e g.
topoisomerase II alterations) are more target-spécific,
resulting in resistance to a limited number of agents (see
“Other Mechanisms of Drug Resistance in Breast Cancer™).
However, it should be considered that cancer cells may
display a range of these resistance mechanisms at any given
time, often resulting in multiple drug resistant cells. Many
breast cancer cell lines, which are sensitive, inherently
resistant, or have acquired drug resistance, have been
developed and evaluated as useful in vifro models of this
phenomenon. An extensive review of these cell lines is
beyond the space limitations of this paper. However, a
number of examples of these models is summarised in Table
1. Many of the cellular mechanisms described here are
apparently simultaneously involved in -clinical drug
resistance.

Drug Transpori Proteins

One of the mechanisms of drug resistance that may be
clinically active in breast cancer patients is the prevention of
intracellular drug accumulation by the expression of
transporter proteins that pump drugs out of cells before they
can reach their site(s) of action. In addition, expression of
these transporters on sub-cellular compartments may result
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Fig. 1. Examples of drug resistance mechanisms within the cell,

in drog scquestration within the cell [71], but remote from
its target site of action [72]. Several of these proteins belong
to the ATP-binding cassette (ABC) transmembrane protein
superfamily that utilises energy from ATP hydrolysis to
translocate substrates across cell membranes [21, 52].

Based on sequence homology, 48 different ABC
transporters (grouped into 7 sub-families ranging from A-G)
have been defined in the human genome (see

bttp:/fwww.gene.ucl.ac.uk/nomenclature/genefamily/abe.htm
1 and http://www med.mg.nl/mdl/humanabe htm; [73-761).

ABC family members involved in MDR include MDR1/P-
glycoprotein (ABCB1); MRP family members, MRP1
(ABCC1), MRP2 (ABCC2), MRP3 (ABCC3), MRP4
(ABCC4), MRP5 (ABCCS), MRP6 (ABCCG), and breast
cancer resistant protein/BCRP (ABCG2). The lung
resistance protein, LRP (major vault protein/MVP), is not
an ABC transporter, but it is frequently expressed at high
levels in drug-resistant cell lines and tumour specimens (see
Table 2). However, its role in drug resistance remains
uncertain,

MDRI1/P-Glycoprotein

The multiple drug resistance 1 {MDR1) gene encodes P-
glycoprotein, a 170 kDa plasma membrane protein
consisting of 12 transmembrane domains and 2 ATP-
binding domains [87-88]. Expression of MDR1/Pgp mRNA
and protein have been observed in many normal cell types,
including those of the gastrointestinal tract, liver, kidney,
brain, testes, ovaries, and adrenal glands. Although the
- physiological role of MDR1/Pgp has not yet been clearly
defined, it may include de-toxification and excretion of

s
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Drug Efflux Pumps
(Including:

MRPs

,,,,,,, MDRI1 /Pgp
BCRP)

DNA-Binding Enzymes
= (Topoisomerases)

Cytosolic Phase
-------- T Enzymes
(GSTs)

xenobiotics, as well as hormone transport [52]. Anthra-
cyclines [77], epipodophyllotoxins, vinca alkaloids, geldana-
mycin [76] and taxanes [78] are amongst the drugs to which
MDR1/Pgp confers resistance. Compounds that are,
apparently, not transported by MDR1/Pgp include metho-
trexate, 5-fluorouracil, camptothecins, and hydroxyurea [76].

In breast cancer, the role of MDR1/Pgp gene expression
has been extensively investigated, with contradictory results
ranging from 0% to 100% expression in tumour cells [21,
77] and conflicting reports as to its prognostic/predictive
relevance. A reason for the broad range of conflicting results
may be the different methods of analysis employed —
including immunohistochemistry, with different antibodies;
in situ hybridization; Nerthern blotting; RT-PCR; and
Western blotting. Collating results from twelve RT-PCR
breast cancer studies performed between 1996 and 2001, an
overall detection rate of mdr! mRNA in 63% (334/531
cases) was reported [21]. Pooled results from Northern blot
studies resulted in an overall 28% mdr! mRNA positivity.
While immunohistochemical detection of MDRI1/Pgp
protein in untreated breast cancer ranged from 0% {89] to
100% [90], pooled results from twenty-nine studics reported
between 1989-2001 indicated -an approximately 40%
(744/1840 cases) positivity; with 42% and 44% positivity
found in locally advanced and primary operable breast
cancer, respectively. No significant difference was observed
between expression of MDR1/Pgp protein (by immunohisto-
chemistry) in primary lesions from non-metastatic (74.3%)
and metastatic (72.7%) cases [21, 91-94]. In our study of
177 invasive breast carcinoma cases, we detected MDR1/Pgp
expression in approximately 66% of cases [95].
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“of MDR Associated Géhe's Eip'fésséd: in Human Breé'sf Cancer Cell Lines
Cell Line Drug Resistance Mechanism Drug Resistance/Sensitivity Referenccé
< Expression of MDR-associated genes
T 147D MRPI- drug sensitive cells (53]
MCF-7 MRP1”
BCRP protein
BT20 + ND [54]
MCF-7 + ND
CAMAL +/- ND
HBL100 +/- ND
1.6.2.6. +f- ND
MPL13E - ND
SKBR-3 - ND
T47D . ND
ZR75-1 - ND
MDRI/Pgp protein L-FU_evtoxin, dox, paclitaxel, vincristine (B) [55]
MCF-7 +++ 4+
BT-20 + +t
BT474 ++ ++
SKRB-3 ++++ -
MDA-MB-453 et +
MDA-MB-231/c1.9 transglutaminase™ doxorubicin (S} [56]
MDA-MB-231/c1.16 transglutaminase™ doxorubicin (R)
DRUG SELECTED CELL LINES
MCF-7/VP MRP1" VP-16 (R) [57]
mdrl & MDR1/Pgp™ VM-16 (R) [58]
doxorubicin (R)
mitoxanthrone (R)
vineristine {R)
genistein (S)
| camptothecin (S)
‘ melphalan (S)
: chlorambucil (5)
F MCE-7/Adr MDRI1/Pgp* doxorubicin (R) [59]
MCF-7/Adr-20 defects in caspases, no change in doxorubicin (R) [a0]
MDR1/Pgp or MRP1
w MDA-MB-4355-F/Taxol-10p4p 1 MDR1/Pgp & MRPI paclitaxel (R) [61]
vineristine (R)
docetaxel (R)
doxorubicin (S)
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Table Ncontd.....
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Cell Line Drug Resistance Mechanism Drug Resistance/Sensitivity References
carboplatin (S)
VP-16 (S)
5-FU (S)
MDA-MB-4358-F/Adr-10p10p TMDRI/Pgp & MRP1 doxorubicin (R)
VP16 (R)
docetaxel (R)
paclitaxel (S}
carboplatin (S}
5-FU (8)
MCF-7/dox no T mdri ot mrpl doxorubicin (R) {62]
no T MDR1/Pgp VP-16 (R)
no change in GSH vincristine (R)
no change in GSH peroxidase cisplatin (R)
no change in GSH reductase mitomycin C (R}
no change in GSH transferase
MCF-7/MX novel MTX-pump suggested methotrexate (R) [63]
Teopotecan (R)
VP-16 (R)
MCF-T/AdrVp no T MDR1/Pgp doxorubicin (R) [64]
no change in GST melphalan {R)
1 topoisomerase 1I vinblastine (S)
T novel 95 kDa protein
MCF-7/AdrVp3000 T abead, abeas, abea?, abeb3, mitoxanthrone (R) [206]
abch i,
T abee2, abee3, abees, abecs, doxorubicin (R}
abeg2/berp;
L abca3, abcalt, abcal2, abebd, " daunotubicin (R)
abecd, abecl i; no change in mdr! ’
or mrpl
MCF-7-VPET* | topoisomerase Il mRNA & protein VP-16 (R) [65]
ZR-75B-VP13* T MRPY
MDA-MB-231-VP7*
[* VP-16 selectants]
MCF-7/C4 T DNA repair camptothecin (R) [661
[camptothecin] cisplatin {R)
VP-16 (S)
MCF-7/TPT300 no MDR1/Pgp topotecan (R) (671
{topotecan] no MRP} camptothecin (R)
TBCRP mitoxanthrone (B)
4 topoisomerase
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Table 1)contd....,
Drug Resistance Mechanism Drug Resistance/Sensitivity References
CalcI8/AMSA { topoisomerase I1 activity ASMA (R) [68]
T topoisomerase 1 activity
T GSTmRNA
TRANSFECTED CELL LINES

"MDA-MB-435 pl85¢-erbB2 - c-erbB2 paclitaxel {R) [69]
MDA-MB-435 E1A her2/neu repression sensitises to paclitaxel [70]

Evidence for the induction of MDRI1/Pgp protein
" éxpression by exposure to MDR1 substrate anticancer drugs
is the fact that MDR1/Pgp protein was detected (by
immunohistochemistry) in 52% of cases posi treatment,
compared to 41% of unfreated breast cancer cases [21].

.Dox = adriamycin = doxorubicin; MX = methotrexate; AMSA = 4’~(9-acridinylamino)methanesulphon-m-anisidide; NI = not described; Vp = verapamil, VP = VP-
oside; T= increased levels; 1 = decreased levels; o expressing, ~ = deficient

Significant (p=0.0033) induction of mdr! mRNA (detected
by RT-PCR} was also reported by Lizard-Nacol ef af, [96] in
a study of 75 patients receiving primary chemotherapy. In
agreement with this, pooled data from a range of studies
indicated that the use of such chemotherapy in the neo-

Table 2. Drug Efflux Pumps Associated Genes Expressed in Breast Cancer

Gene GenBank Accession No. Alternative Names Substrates References
MDR1/Pgp AF016535 ABCBI anthracyclines [76]
epipodophyllotoxins [77]
vinca alkaloids [78]
geldanamycin
taxanes
MRP1 L05628 ABCCL mgethotrexate '[79]
anthracyclines
epipodophyllotoxins
vinca alkaloid - vincristine
{taxanes — poor substrates)
BCRP AF098951 ABCG2 /MXR methotrexate [52]
mitoxanthrone [67]
topotecan [80]
irinotecan {81}
flavopiridol {82]
campothecin-derived topoisomerase I inhibitors
indolocarbazole topoisomerase [ inhibitors
imatinib mesylate (gleevec)
anthracyclines (depends on mutation at codon 482)
LRP X79882 . Madjor vault protein platinum agents f83)
alkylating agents
doxorubicin [84]
ATP7B U03464 P-type ATPase cisplatin [85]
carboplatin [86]
oxiliplatin
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adjuvant setting resulted in induction of MDR1 gene
expression i.e. mdr] mRNA expression was induced from
50% to 73% of cases, with MDR1/Pgp protein expression
increased from 43% of cases to 64% [21]. In a study of pre-
and post-neoadjuvantly treated locally advanced breast
carcinomas, MDR 1/Pgp protein expression was reported to
increase from 55% to 100% of cases, regardless of whether
the chemotherapy was anthracycline-based, taxane-based, or
CMTF [97]. Furthermore, results from a study of 359 freshly
resected breast carcinoma specimens indicated that, compared
with the MDR 1/Pgp protein-negative tumours, a significant
increase in doxorubicin and taxol resistance occurred in
MDRI1/Pgp expressing tumours, regardless of prior
treatment [98]. Faneyte et al. [99], however, reported a study
of both breast cancer cell lines and primary specimens where
only very low levels of mdr] mRNA, and no MDR1/Pgp
protein, was detected in the cell lines, with MDR1/Pgp
protein undetectable in 88% tumour specimens from
anthracycline-treated patients. Similarly, mdr/ mRNA
expression (by RT-PCR) was described in approximately
40% of breast cancer specimens, with no MDR 1/Pgp protein
detected (by Western blot or immunohistochemistry) in
breast carcinoma cells; expression was only detected in
interstitial mononuclear cell types [89].

MDR 1/Pgp protein expression has generally been found
not to correlate with many clinicopathological characteristics
of breast cancer patients. In an analysis of 94 specimens
obtained from mastectomy without pre-operative chemo-
therapy, no correlation was found between MDR1/Pgp

protein expression (found in 37.2% of cases) and hormonal

receptor status, menopausal status, tumour size, or axillary
node involvement [100]. Likewise, in a study of 63 primary
breast cancers, no significant association was found to exist
between MDR1/Pgp protein expression and tumour size,
lymph node status, ER or PgR status [101]. In locally
advanced breast carcinomas (80 cases studies), MDR1/Pgp
protein expression was found to be more frequently detected
in lobular carcinomas compared to ductal carcinomas, and in
patients with positive lymph nodes, compared to those with
negative nodes; it was independent of all other clinical
parameters evaluated [97]. In our recent study of 177
invasive breast carcinomas where MDR-1/Pgp protein was
found to be expressed in approximately 66% of cases,
although there was a trend towards its expression being
associated with higher grade tumours (grade II) (albeir
statistically insignificant; log rank p value = 0.085), there
was no correlation with any of the other clinicopathological
features studied, including age at diagnosis, tumour type,
tumour size, ER status and lymph node status [95]. This is
in agreement with other studies indicating clinicopatho-
togical features not to be significantly associated with
expression of MDR1/Pgp protein [ 102-104].

The clinical significance of MDRI1 gene expression in
breast cancer remains controversial with regard to any
prognostic or predictive role. Although MDR1/Pgp
expression has been associated with poor patient outcome in
both primary and advanced cancers, reports have been largely
conflicting [104]. An extensive meta-analysis of such earlier
studies reported MDR1/Pgp protein to be expressed in
approximately 41% of breast tumours, with expression
associated with poor response to treatment [104]. Similarly,
MDRI1/Pgp protein expression {37.2%; 35/94 cases) was
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reported to be significantly (p=0.0433) associated with
shortened DFS in chemotherapy-naive breast tumours, when
compared to those that were MDR1/Pgp negative [100].
Furthermore, recent studies have concluded that mdrl
mRNA expression in primary breast tumours is inversely
correlated with the efficacy of first-line chemotherapy and
that high mdr! (and lung resistance related protemn (/rp})
gene expression is significantly associated with poor
progression-free survival; although no correlation was found
to exist between expression of these genes and post-relapse
overall survival [105]. In contrast to this, in a study of
breast carcinomas pre- (43 cases) and post- (38 cases)
doxorubicin treatment, mdri mRNA expression was found
not to correlate with age at diagnosis, TNM catagories, ER
or PgR status, or DFS (similar findings were observed on
analysis of mrpl, Irp, and berp mRNAs in these specimens
{106]). Similarly, overexpression of MDR1/Pgp protein in
locally advanced breast cancer (48 cases analysed) following
neo-adjuvant chemotherapy (cyclophosphamide + doxoru-
bicin + 5-fluorouracil (CAF); taxotere + doxorubicin; or
CMF) did not significantly correlate with response to
chemotherapy [107].

In invasive breast tumour analysis, in agreement with
results of analysis of 63 such cases where MDR1/Pgp
expression was not found to have potential as a prognostic
marker [101], our study of 177 invasive breast carcinomas
failed to show any significant association between MDR-
1/Pgp protein expression at diagnosis (when analysing
expression as present/absent and <25% tumour cells positive
versus >25% positivity). Furthermore, when patients were
sub-stratified according to chemotherapy status, lymph node
status, tumour histological grade and size, no significant
associations were found to exist between MDR-1/Pgp
expression and either DFS or OS, in any of the sub-groups
studied {95].

As previously mentioned, however, MDR1/Pgp is not
restricted to cancerous cells of the breast, but has also been
detected in normal breast tissue, at both the mRNA and
protein levels. In a study of 40 locally advanced breast
cancers, higher levels of mdr/ mRNA were found in
cancerous compared to normal tissue prior to neo-adjuvant
chemotherapy; however, this difference was no longer
significant following treatment, mainly due to induced
levels of mdr! mRNA in benign tissue [108]. At the protein
level, a broad range of results has been reported on analysis
of normal breast tissue. MDR |/Pgp protein expression has
been reported to be weak in normal tissue and confined to
breast epithelial cells, but absent from stroma [109];
expressed in 88% (21/24 cases) of normal/benign breast
tissues, but restricted to the luminal surface of ductal
epithelium [110]; found in 67% of normal tissue sections
from regions adjacent to locally advanced breast cancer
[111]; and absent from all (5/5) normal breast specimens
[112]. It may be noteworthy that all of these studies, except
the latter immunoblot analysis, involved immunohisto-
chemical techniques.

At the mRNA level, in studies of 75 locally advanced
breast cancers, significantly induced levels of mdri (detected
by RT-PCR) were detected in both tumour and normal
specimens, following primary chemotherapy [96]. Similarly,
analysis of 40 locally advanced breast cancer patients showed
a significant induction of mdr! mRNA following primary




Multiple Drug Resistance in Breast Cancer

-ent.wifh the anthracycline-based regime, CAF, with
.i'levels of-induction in normal compared to tumour
08]. This suggests that MDR1 gene expression in
nse to chemotherapy may be a general event, occurrmg
1i normal and tumour cell types.

.- The MRP (ABCC) subfamily is comprlsed of nine
“fiembers that transport structurally diverse lipophilic anions
“"and hydrophilic peptides [113] and function as drug efflux
“puinps 76, 114]. MRPI, the first described member of the
“ MRP1 family, was identified when using differential
. hybridisation to analyse gene transcripts overexpressed in
“"doxorubicin-resistant lung cancer cell lines lacking
~ MDR/Pgp overexpression [79]. The MRP1 gene encodes a
2107190 kDa trans-membrane protein associated with both cell
embrane and intracellular membrane expression [52]. Its
i activity on intracellular vesicles has been shown to be

.- “'sufficient to confer a drug resistance phenotype, in vitro
. [72]:"MRP1 apparently has an overlapping, but not

" identical, substrate specificity to MDR1/Pgp. MRP1 confers
s 'remstance to anthracyclmes epipodophyllotoxins, metho-
tréxate, and the vinca alkaloid vincristine (but, apparently,
confers nofonly low level resistance to vinblastine [115-
“117]); In'contrast to MDR1/Pgp, taxanes are poor substrates
- for MREI" and its overexpression in cell lings has been
“““shown ‘mot to confer resistance to cisplatin’ and

mltoxanthrone [118].

_ = MRPI_ls ‘expressed by the majority of untreated breast
tumour with results from studies of MRP1 expression in
b_ er patlents apparently provmg less conﬂmtmg

ositivity in operable cases and 10% (2/10 cases) in
dvanced [119] breast carcinomas; 34% (88/259)

ve, bredst carcinomas [95]; 34.8% (8/23) in recurrent
100% (19/19) in a study of mixed breast cancer

aft overall poorer prognosls (120, 122, 1271,
 has been observed in patients with small
node negative patients. Furthermore, MRP1
found to be predictive of overall survival in

o of tumours analysed confirming
atlons that MRP1 protein is detectable in a
ortion: of bieagt cancers, Membranous and granular
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MRP1 positivity was observed in the majority of tumours
studied [95]; again, in agreement with previous analyses
[129]. MRP1 protein expression did not correlate with
established clinical or pathologic characteristics namely, ER
status of patients, LN status, histological sub-type,
histological grade, tumour size or subsequent treatment with
adjuvant chemotherapy. In agreement with our findings,
others have reported that expression of this protein at
diagnosis is independent of node status, menopausai status,
histological sub-type and age of patients [127-128].
Although some reports indicate MRP1 protein expression to
be associated with intermediate histological tumour grade
and larger tumour size, other studies suggest that MRPI
expression is independent of these parameters [120, 127].
Increased MRP1 expression has, however, been shown to be
associated with primary tumours which have distant
metastases and in lymph node metastases compared to
primary tumours [130].

Although, in general, there appears to be a correlation
between MRP1 protein expression and poor outcome for
breast cancer patients, a direct causal role for MRPI in
clinical drug resistance remains to be determined [21]. In a
study of 100 primary breast cancer patients, the absence of
MRP1 protein was found to be significantly associated with
increased DFS and OS, compared to those with MRP1*
tumours [122]. Although in our study of invasive breast
carcinomas we found no association between MRP1
expression at diagnosis (presence/absence and <25% MRPI
expression versus >25% MRP1 expression) and either DFS
or O8, following sub-stratification of cases for more detailed
analyses (7.e. patients who received chemotherapy versus
patients who did not receive chemotherapy; patients with
grade [ versus [T versus TI1 tumours; LN positive patients
versus LN negative patients; patients with tumours <2¢cm
versus >2cm), a significant correlation was observed between
MRP! protein expression in >235% tumour cells and both
DFS (log rank p value = 0.0181) or OS (log rank p value =
0.0171) for patients with high grade tumours {grade I1I) who
received CMF chemotherapy, regardless of lymph node
status. When this sub-group was subjected to multivariate
analysis, MRP] protein expression in <25% of tumour cells
at diagnosis was identified as an independent favourable
prognostic factor for both DFS (log rank p value = 0.008)
and OS (log rank p value = 0.008) [95]. The fact that
expression of MRP1 protein in these invasive carcinomas
only showed prognostic value in chemotherapy (CMF +/-
doxorubicin or paclitaxel) treated patients with grade III
tumours and failed to show similar prognostic relevance in
any of the subgroups of patients who did not receive
chemotherapy, suggests that MRP1 protein expression may
have predictive value in some CMF treated patients.
Furthermore, the relevance of MRP1 in patients treated with
CMF has more recently been confirmed in a study of 516
premenopausal, hormone receptor-positive breast cancer
patients with stage I and II disease, where MRPI expression
was found to be an independent predictor of shorter RFS and
OS [131]. These observations are in agreement with a
previous report of patients treated with a regime of FAC or
FEC, where mrpl (and berp) mRNA expression correlated
with progression-free survival [105]; this effect was not seen
in cyclophosphamide, methotrexate and 5-fluorouracil treated
patients [105]. Similarly, in a study of 27 cases, an
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increased risk of relapse within 10 years of receiving
chemotherapy (mainly mitomycin C) was observed where
primary tumours expressed high levels of mrp/ mRNA
[123]. However, we [126], like others [106, 125], found no
correlation between mrp! mRNA expression and outcome
for patients with invasive breast carcinomas,

Information on possible induction of MRP! gene
expression by chemotherapy is very limited. Results from a
small study of MRP1 protein expression in locally advanced
breast cancers pre- and post- neoadjuvant anthracycline-based
chemotherapy showed increased expression (7.e. in 56%
(9/16) of cases post-therapy compared to 20% (2/10) of cases
pre-therapy), suggesting an inducing effect of treatment
[119]. In a more recent study of patients with locally
advanced breast carcinomas, MRP1 protein expression was
found to be significantly (p<0.001} increased from 62% of
cases prior to chemotherapy to 88% after treatment,
regardless of whether patients received anthracycline-based,
taxane-based, or CMF chemotherapy. Pre-chemotherapy
MRP1 protein expression was more frequently (p=0.02)
observed in patients with distant metastases than in those
without and was associated with shorter DFS (p=0.02).
From this study it was concluded that although response to
chemotherapy was not associated with pre- or post-
chemotherapy expression of MRPI, time to disease
progression may be [97].

As for MDRI1/Pgp, MRP1 gene expression is not
restricted to cancer cells and is frequently detected — at both
the mRNA and protein levels — in normal breast tissue, In a
study of normal tissue adjacent to 55 breast tumours, mrp/
mRNA was detected in all cases [121]. Similarly, lto et al.
[123] reported mrp! mRNA in normal breast tissue, but af
levels that were significantly lower than in the associated
tumours. In a study of 6 normal breast specimens, MRP1
protein was found in 50% of cases (3/6), in epithelial cells;
but not in stroma [119].

Recently, studies have addressed the possible
contribution to breast cancer c¢linical resistance of some of
the newly described members of the MRP family such as
MRP-2 [132] and MRP-8 [133]. Although other MRPs
[134], in addition to MRPI, are frequently expressed in
malignant disease, their possible function(s) and role(s} in
clinical drug resistance have yet to be fully elucidated. A
small study (30 cases) of MRP1, MRP2, and MRP3 gene
expression in untreated and posi-recadjuvant anthracycline-
based tumours indicated mRNA expression for all 3 genes in
all specimens studied, with no significant increase in levels
posi-chemotherapy. MRPI, -2, and -3 proteins were un-
detected [135]. Recent studies involving the analysis of
MRP-7 overexpression in HEK293 cells indicate that, unlike
other MRPs, MRP-7 may confer resistance to taxanes [136].
As taxanes are often considered as first- or second- line
therapy in breast cancer, the involvement of MRP-7 in this
disease warrants investigation. Furthermore, more extensive
studies are now required to determine the relevance -~ if any -
of expression of all members of the MRP family to clinical
outcome for cancer patients.

Breast Cancer Resistance Protein

Breast cancer resistance protein (BCRP; also known as
mitoxanthrone resistance gene (MXR); ABC transporter in
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placenta (ABC-P)), initially cloned by Doyle er al. in 1998
{137], is a 72 kDa half-transporter consisting of enly six
transmembrane domain with one ATP-binding domain.
BCRP apparently functions as a homodimer at the cell
membrane [52, 138-140]. The MDR phenotype conferred by
BCRP is overlapping with, but distinct from, that due to
MDRI1/Pgp i.e. BCRP transports a number of anticancer
drugs including mitoxanthrone, methotrexate, topotecan,
irinotecan, camptothecin-derived and indolocarbazole
topoisomerase I inhibitors, flavopiridol, quinazoline ErbB1
inhibitors and its transportation of anthracyclines depends on
a mutation at codon 482 [52, 67, 80-81, 141-142]. Imatinib
mesylate (ST1571; gleevec), a potent tyrosine kinase
inhibitor, has recently been reported to be a substrate for
BCRP [82]. BCRP expression has been observed in a
number of normal tissue types, including the placenta [143],
brain [144], colon and bile canaliculi [145-146], suggesting
that its physioclogical role may involve protection from
potentially harmful xenobiotics. BCRP expression in stem
cells is proposed to be associated with the maintenance of
the undifferentiated stem cell phenotype [147]. Although
described as “breast cancer resistance protein”, the definitive
role of BCRP in clinical drug resistance in breast cancer is
still unclear [54, 148].

Lung Resistance Protein

Lung resistance protein (LRP) (also known as major
vault protein (MVT)), a 110 kDa protein, is not an ABC
transporter, but its expression is frequently detected at high
levels in drug resistant cell lines and tumour specimens.
LRP is involved in drug transportation from nucleus to
cytoplasm [149-150]. Its expression has been associated with
resistance to platinum, alkylating agents [83] and doxo-
rubicin [84]. In a study of 99 primary breast carcinomas,
LRP protein (analysed by immunohistochemistry} was
undetected in 12% of cases; it was expressed at low levels in
20%, intermediate levels in 47%, and high levels in 21% of
cases. This expression was not significantly associated with
clinicopathological characteristics evaluated, including age at
diagnosis, tumour type, size, or grade, ER status, PgR
status or lymph node status, and showed no correlation with
ouicome for patients in terms of either DFS or OS [151].

Analysis of 48 locally advanced breast cancers following
neoadjuvant CAF chemotherapy (except 2 cases where CMF
or taxotere + doxorubicin were used) indicated no correlation
between LRP protein overexpression post-therapy and
response, whether “response™ was described as complete
response, partial response, no response, or disease
progression [107). Similarly, 4 study of 80 locally advanced
breast carcinomas indicated: LRP protein expression not to
be significantly associated. with any clinical parameters
evaluated [97]. Conflicting results exist with regards to the
induction of LRP by chemotherapeutic agents, Analysm of
13 paired specimens indicated no increased expression of
LRP protein after neo-adjuvant chemotherapy [119], while a
study of locally advanced breast carcinomas pre- and post-
chemotherapy (80 and 68 cases, respectively) showed
significant (p<0.001) increases (from 65% to 97% cases) in
LRP protein expression after neoadjuvant chemotherapy,
regardless of the drug regime (CMF, anthracycline- or
taxane-based therapy) used [97].
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.Co-Expression of Transport Pumps in Breast Cancer

© Following comparative genomic hybridisation (CGH)
analysis of 4 breast tumours post-necadjuvant chemotherapy
(including 3X CMF; 3X ED; 4X FEC; and 6X FEC),
Fazeny-Dorner ef af. [25] reported that 3 patients showed
involvement of genomic regions containing MDR1, MRP1
and BCRP.

Although some breast cancer studies have failed to find a
correlation between mdr] and mrp! mRNA expression [125]
and between MDR1/Pgp and MRPI protein expression (e.g.
Filipits et al. [127]), in other cases, a significant
relationship between expression of these efflux pumps has
been reported. In 1998, Mechetner et al. [98] reported that
pre- chemotherapy MDR1/Pgp and pre- and post- MRP1
expression predicted tumour recurrence and patient death. In
our study of invasive breast carcinomas, a highly significant
association was shown between expression of MDR1/Pgp
and MRP1 proteins at diagnosis (log rank p value <0.0001)
[95]. Furthermore, at the mRNA level, in a study of mdr!,
mrpl, lrp, and berp, while berp and Irp expression did not
correlate with that of other genes, expression of mdrl and
mrp i were associated [106].

ATP7B

Copper-transporting P-type adenosine triphosphatase
(ATP7B) protein, a transporter involved in tumour cell
uptake of cisplatin, carboplatin, and oxiplatin in vitre [85-
86], was found to be expressed in 22% (9/41) of unireated
primary breast tumours. Although present in adjacent normal
tissue, ATP7B levels were upregulated in tumour cells, with
significantly (p=0.012) higher tevels of expression in poorly
differentiated breast carcinomas, compared to moderately- or
well-differentiated carcinomas [152]. However, analysis of
ATP7B in breast cancer is limited and so further evaluation
is necessary to determine if its expression (or lack of
expression) is clinically relevant in resistance to
chemotherapy.

* Other Mechanisms of Drug Resistance in Breast Cancer

As previously mentioned, in addition to drug efflux
< pumps, other mechanisms of drug resistance have been
s described in breast cancer.

Topotsomerase o

Topmsomerase Mo, a nuelear DNA-binding enzyme that
combmes nucleas, hei1case and 11gase actlwty and so

! ty to anthracyclme based therapy [153-155]. Recent
_al_y313 of topoisomerase Ilo expression in breast cancer (50
CaSEs): reported a significant (p<0 05) assocxatlon between
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in advanced breast cancer patients, comparing single agents
(i.e. doxorubicin with docetaxel), indicate topoisomerase o
protein expression to confer a higher probability of response
to doxorubicin only [157]. In an immunohistochemical
analysis of 41 primary breast cancers, where patients received
neo-adjuvant anthracycline-based chemotherapy (FAC or
FEC), topoisomerase Il¢t overexpression (lost after
chemotherapy) was significantly (p=0.03) asscciated with
clinical response [158]. Similarly, an analysis of 36 patients
with progressive metastatic breast cancer, previously treated
with an anthracycline and now receiving cisplatin and
etoposide phosphate, topoisomerase Il {but not topoiso-
merase IIf) indicated protein levels to be significantly
(p<0.001) higher in responding patients, compared to those
with stable or progressive disease [159]. In contrast, a study
of 199 patients with operable breast cancer and treated with
neo-adjuvant FEC, showed neither overexpression or
amplification of topoisomerase Ilo to be predictive of
response [160].

A direct rolefassociation for her-2/neu amplification, in
parallel with topoisomerase Ilo amplification, in breast
cancer drug resistance has yet to be established. The
topoisomerase ITo; gene is located adjacent to her-2/neu
oncogene on chromosome 17q12-¢q21 and it is described as
either amplified or deleted in almost 90% of her-2/neu
amplified breast tumours [161-162]. A number of recent
studies have, therefore, co-investigated topoisomerase Il
and her-2/meu in breast cancer, to establish if they may have
a co-operative relevance, Topoisomerase llo, amplification in
breast cancer has been described as often, but not
exclusively, accompanied by her-2/neu gene amplification
[163]; conversely, lack of topoisomerase o amplification in
the absence of her-2/neu gene amplification has been reported
[164]. Further conflicting studies report amplification of her-
2/neu and topoisomerase Ilo associated with increased
response to pre-operative doxorubicin [153-154]; amplifica-
tion of topoisomerase Ilw, but not her-2/neu, correlating
with response to anthracyclines [165]; while in other cases,
amplification of neither her-2/neu or topoisomerase Ilo, was
predictive of response to FEC [160].

Glutatione-S-Transferases

Glutatione-S-transferases (GSTs) are phase I enzymes
involved in detoxification and cell protection. In'humans, 5
major classes of GSTs have been identified, including «, 1,
7, §, and O [166]. Both GST 7 and W classes are expressed
in breast cancer tissue [167]. GS5Ts have been implicated in
resistance to doxorubicin, melphalan, cisplatin, chloro-
mbucil, and other alkylating agents [168] but, although
GSTs may inactivate chemotherapeutic agents by
conjugating to glutathione, their involvement in in vive
resistance to chemotherapy in unclear [169-175]. A study of
42 primary breast patients was recently reported where GST
T expression in the tumour was associated with poor
response to FAM [176]. Although analysis of 2048 cases of
breast cancer and 1969 controls indicated that single GST
polymorphisms do not confer a risk of breast cancer [166],
studies of GST polymorphisms in 1034 patients with
invasive breast cancer showed no relevance to any of the
GST p or GST O genotypes, but found a significant
association between GST 7 polymorphisms and clinical
outcome in patients who had received chemotherapy [177].
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GST-dependent drug resistance may be of a limited relevance
in vivo. Further studies are necessary to investigate this.

Cytochrome Pysp (CYP430)

CYP450 is a super-family of heme-containing mono-
oxygenases that is involved in the synthesis and metabolism
of a wide range of endogenous and exogenous compounds
[178]. Fifty-seven human CYP genes have been sequenced
and have been grouped into 18 families and 43 sub-families,
according to sequence homology. The families involved in
drug metabolism include CYP1, CYP2 and CYP3. Almost
all anti-cancer drugs are chemically modified by one or more
member(s) of this large family of enzymes. Potentially,
therefore, the expression of certain key metabolic enzymes in
tumours could be a significant determinant of the sensitivity
of these cells to the effects of cytotoxic agents.

Chemotherapeutic drugs are susceptible to different
cytochrome P450 metabolic enzymes; however, in the
majority of cases, a limited number of enzymes are thought
to be particularly important for the conversion of the active
cytotoxic species. Members of the cytochrome PA503A
(CYP3A) family metabolise the vast majority of
xenobiotics; with one isoform, CYP3A4, being responsible
for the metabolism of approximately 50 % of all known
drugs. CYP3A4 is a major metabolising enzyme for
docetaxel, doxorubicin and cyclophosphamide, so its
presence in a tumour may contribute significantly to drug
sensitivity/resistance. Limited information available to date
suggests that CYP3A induction may be frequent in primary
breast tumours, where there is also an association with lower
proliferation rates [179-180]. Evidence of a role for CYP3A4
expression in breast cancer has been further suggested by a
study of normal (5 specimens) and tumour (7 specimens)
breast tissue specimens indicating the presence of two
CYP3A4 variants i.e. one predominantly associated with
tumour tissue and the other associated with normal tissue
[181]. Furthermore, analysis of CYP3A4 in (38 cases) breast
biopsies suggest that intratumoral cyp344 mRNA levels
may be a predictor of response to docetaxel, but not to
cyclophosphamide + epirubicin [182]. However, most
studies reported have been performed on small numbers of
cases with no definitive reports on correlations with
prognostic/predictive variables.

While reduced levels of P450 reductase expression arc
associated with resistance to mitomycin C in breast cancer
[168], the relevance — if any — of other P450s, including
CYP19 (encoding for cytochrome P450 aromatase [183];
inhibitors of which have shown substantial activity in
primary and advanced breast cancer [184-186]); CYP1BI
(detected in many tumour types including breast [187]); and
CYP2E] (expression described as being significantly higher
in tumours compared to normal breast tissue in some [188],
but not in other [189], studies) have yet to be determined.

Mis-Match Repair, Transglutaminase, Glucosyl-
ceramide, p27, Annexin-1, PTEN, BRCA1 and 2, NFkB

Other mechanisms of resistance to chemotherapy in
breast cancer include mis-match repair deficiency. Loss of
DNA mis-match repair has been reported to result in
resistance to cisplatin, alkylating agents, and the
topoisomerase II poison doxorubicin, but apparently this
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does not result in resistance to taxanes [190]. Loss of mis-
match repair protein (MLII1) expression after neo-adjuvant
chemotherapy in node-positive breast cancer (29 cases
studied pre- and post- therapy) has been described as an
independent predictive factor for poor DFS [191]. This
mechanism has also been associated with resistance to
adjuvant CMF in a study of 71 sporadic invasive ductal
carcinomas of the breast {192]. Furthermore, results from in
vitro cell models and a limited number of clinical studies of
breast cancer indicate overexpression of tissue
transglutaminase [56], glucosylceramide synthase [193-194]
and annexin-1 [1957], as well as reduced levels of p27 tumour
suppressor gene expression [196-197] and loss of
phosphatase and tensin homologue deleted on chromosome
10 (PTEN) tumour suppressor gene expression [198-199] to
be associated with chemo-resistance in breast cancer. Recent
studies have associated deficiencies in hENT1 (human
equilibrative nucleoside transporter 1 [200]) expression with
gemcitabine resistance and have proposed that this
mechanism may be associated with poor clinical response to
capecitabine in breast cancer [201].

Although mutations in BRCA1 and BRCA2 are present
in only 5-10% of all breast cancers, compared to the general
population carriers of these mutations have a higher risk of
developing breast cancer, with increased risk of aggressive
contralateral cancer [202]. Results from a study of [25
patients, however, indicate that although BRCA positive
patients more frequently have negative prognostic factors,
their overall prognosis is generally equal or better than those
with wild-type BRCA [203]. Studies evaluating an
association between BRCA1 and BRCA2 mutations and/or
expression and drug resistance are very limited. However,
real-time PCR analysis of brcal and brea2 mRNAs in 25
patients with locally advanced (n=13) or locally recurrent
(n=12) tumours indicates a significant association between
brca? mRNA levels and response to docetaxel ie. brea?
mRNA levels of responders were significantly lower than
those for non-responders. In this study, no such association
was found for brcal mRNA expression [204]. However,
increased expression of Arcal mRNA has been associated
with favourable response to anthracycline (epirubicin)-
containing chemotherapy [205]. Recently the activity of
NFkB has been shown to prognostically sub-divide ER"
primary breast cancers, with increased p50 subunit DNA
binding activity apparently more clinically relevant than
increased p65 activity [206]. A definitive relationship
between NFkB and drug resistance has yet to be determined.

TARGETED THERAPIES

It is becoming increasingly likely that future therapies
will be determined not only by patients characteristics, but
also by the molecular biology of the individual’s tumour
[207-209]. More extensive molecular characterisation, using
modern techniques to obtain information on the genomic
profile of breast tumours will enable more specific,
individualized, treatment. The use of such systems,
including DNA microarrays [131,210-211] and proteomics
[212], in addition to exploiting methods identified in vitro . |
for cell re-sensitising to chemotherapy (e.g. through the use -
of proteasome inhibitors [213], specific taxane-based MDR
reversal reagents (TRAs) [214], and SiRNA/RNAi [215-
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- 216]), will allow further development of customised
therapies directed toward the particular molecular defects ina
given cancer [217].

Recent advances in molecular biology have already led to
a new era of anticancer drugs targeting specific genetic
defects/genes involved in cell proliferation, apoptosis, and
angiogenesis in malignant cells. These include the use of
imatinib mesylate (ST1571; gleevec) for boer/abl-positive
chronic myelogenous leukaemia; trastuzumab (herceptin), an
antibody-based targeted therapy for her-2/neu overexpressing
metastatic breast cancer; cetuximab (erbitux), for EGFR

overexpressing metastatic colorectal cancer and approved for

phase 1II development for breast cancer [19]; rituximab
(rituxan), a monoclonal antibody to CD20 used in non-
Hodgkin’s lymphoma; gefitinib (ZD1839; iressa) a tyrosine
kinase inhibitor of EGFR used in NSCLC and shown to
inhibit BCRP-mediated drug resistance /n vitro and in vivo
[218]; as well as the proteasome inhibitor bortezomib
(valcade) and the anti-angiogenesis agent bevacizumab
(avastin)) are the cause of cautious optimism for the future
[219-220]. To date, enhanced therapeutic efficacy with these
molecular targeting agents over traditional chemotherapy has
been shown in patients with advanced or recurrent disease,
Several vaccines against the HER family of proteins have
also been developed and are currently being investigated as
therapies for breast cancer [19, 221-222]. Further extensive
studies, aimed at establishing appropriate combinations of
targeted therapies (and possibly vaccines) with anticancer
drugs appropriate for specific patient sub-groups, are now
needed.

CONCLUSION

Chemotherapy is an essential component of the current
treatment regimes for breast cancer. Unfortunately, the
efficacy of this treatment is often limited by either inherent
or acquired resistance to cytotoxic drugs, whether used
singularly or in combination, Since MDR1/Pgp was
reported almost 30 years ago, through analysis of relevant
cell lines as inm vifro models and studies of clinical
specimens, our understanding of this multifactorial
phenomenon has greatly increased. However, as a
consequence of the complex nature of drug resistance and the
range of analytical techniques used to assess the relevance of
limited numbers of gene products, many reports to date have
produced conflicting results; leaving us with as many
questions as answers.

The recent development of advanced technologies for
high-throughput genomic (expression microarrays) and
proteomic profile analyses of breast tumours in comparison
to normal tissue, and of drug -resistant compared to
-sensitive cells, should -allow us to clarify discrepancies
observed in previous studies, as well as enabling novel
markers and pathways involved in drug resistance to be
identified and investigated, simultaneously. The relevance of
mRNA/microarray analysis in breast cancer has been
highlighted by Van’t Veer ef al. [210] who performed
expression microarray analysis of 78 sporadic lymph node-
negative tumours (<5 cm in diam.) in women under 55 yrs,
old, Approximately 50% of the cases had developed
metastasis at 5 years. Very few of the patients had received
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systemic treatment. Expression analysis of approx. 25,000
gene transcripts was performed, from which a list of 70
discriminatory genes was identified whose expression
patterns in primary tumours associated with a group of cases
that did not result in metastasis, despite no systemic
therapy. In a more extensive (295 cases} follow-up study,
including lymph node-positive as well as -negative tumours
{again where tumours were <5 cm; age <352 yrs.), with
longer follow-up information, Van de Vijver er al. [223]
reported their previously predicted gene expression profile to
also be a strong predictor of distant metastases development
in lymph node-positive disease.

These exciting microarray studies [210, 223] have been
heralded a break-through and a relevant way to analyse and
evaluate breast biopsies — to the extent that they have formed
the basis of a clinical trial entitled MINDACT (Microarray
for Node Negative Disease may Avoid Chemotherapy), -
using the first microarray-based diagnostic, MammaPrint®
(Agendia BV)). This phase III clinical trial is supported by
€7m EU funds {(contributing approx. 1/3 of the overall
funds), is planned to begin in late 2005 in approximately 39
institutions in 21 countries and it is proposed to involve
approximately 5,000 women over a 3 year period, to
specifically establish if the 70 gene signature identified can
predict response to chemotherapy and so help to reduce the
numbers (estimated at 12-20%) of patients who are “over-
treated” with chemotherapy. More extensive studies,
including different cohort of patients and including non-
cancer breast specimens as controls, are now necessary. It is
anticipated that our increased understanding of the molecular
profile of different breast cancers, compared to normal tissue,
and how these profiles relate to response to different kinds of
therapies, will allow us to translate this knowledge to
selection of best chemotherapeutic and targeted therapy
combinations for individual breast cancer patients.
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ABBREVIATIONS

ABC = ATP-binding cassette

AC = Doxorubicin with cyclophosphamide
Adr = Dox = adriamycin = doxorubicin

CAF = Cyclophosphamide and doxorubicin and 5-
fluorouracil

CGH = Comparative geromic hybridisation
CMF = Cyclophosphamide with methotrexate and 5-

fluorouracil
DFS = Disease-free survival
EC = Epirubicin with cyclophosphamide

ED = Epirubicin and docetaxel
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ER = Esfrogen receptor

FAC = 5-Fluorouracil with doxorubicin and

cyclophosphamide

FAM = 5-Fluorouracil with doxorubicin and mitomycin C

FEC = S5-Fluorouracil with epirubicin and

cyclophosphamide

LN = Lymph node

MDR = Multiple drug resistance

MVP = Major vault protein

MX = Methotrexate

ND = Not described

nX = Cycle number

08 = Overall survival

PgR = Progesterone receptor

RFS = Relapse-free survival

Vp = Verapamil

TP = Thymidine phosphorylase

VP = VP-l6/etoposide
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