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Abstract: Alzheimer’s disease (AD) is the most common degenerative disorder in the elderly in
developed countries. Currently, growing evidence is pointing at endothelial dysfunction as a key
player in the cognitive decline course of AD. As a main component of the blood–brain barrier (BBB),
the dysfunction of endothelial cells driven by vascular risk factors associated with AD allows the
passage of toxic substances to the cerebral parenchyma, producing chronic hypoperfusion that
eventually causes an inflammatory and neurotoxic response. In this process, the levels of several
biomarkers are disrupted, such as an increase in adhesion molecules that allow the passage of
leukocytes to the cerebral parenchyma, increasing the permeability of the BBB; moreover, other
vascular players, including endothelin-1, also mediate artery inflammation. As a consequence
of the disruption of the BBB, a progressive neuroinflammatory response is produced that, added
to the astrogliosis, eventually triggers neuronal degeneration (possibly responsible for cognitive
deterioration). Recently, new molecules have been proposed as early biomarkers for endothelial
dysfunction that can constitute new therapeutic targets as well as early diagnostic and prognostic
markers for AD.

Keywords: albumin; Alzheimer’s disease; cell adhesion molecules; endothelial dysfunction;
endothelin-1; EPCs; metalloproteinases; neuroimaging; vascular alteration; VEGF

1. Introduction

Alzheimer’s disease (AD) is the main neurodegenerative disease leading to dementia
and cognitive impairment in the elderly worldwide. The classic pathophysiological hall-
marks of AD are extracellular β-amyloid (Aβ) plaques and intracellular tau tangles, which
eventually lead to the impairment of cognitive functions. These features progress slowly
and are asymptomatic in the first stages of the disease. In fact, this fact hinders an acute
premortem diagnosis if not aided by biological markers, as AD symptomatology may share
similarities with other causes of dementia.

Besides cellular alterations, AD is also characterized by the presence of several vas-
cular alterations, including small infarcts, or lacunes, due to the occlusion of branches
of cerebral arteries, increases in the number of atrophic vessels and amount of vascular
tortuosity (abnormal twists and turns in vessels), and decreases in microvascular density
and length. Indeed, such brain vascular-associated alterations underlie many pathophys-
iological mechanisms of AD [1,2]. Accordingly, the two-hit vascular hypothesis points
at the initial damage in cerebral vasculature (hit one) as the inducer of the accumulation
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of β-amyloid in the brain (hit two) [3]. Remarkably, cerebral blood–brain barrier (BBB)
leakage and microbleeds are associated with cognitive decline in patients with mild cogni-
tive impairment (MCI) and early AD, which opens the door to search for new biomarkers
allowing for the diagnosis of AD before symptoms start. Importantly, many recent studies
assessed the relationship between AD and stroke, another vascular-related neurological
disease with a worldwide impact [4,5]. In this regard, a meta-analysis revealed that all
stroke subtypes significantly increase the risk of developing AD [4]; and, more recently,
that several differentially expressed genes and cellular pathways are shared by both stroke
and AD [5]. Furthermore, our group has highlighted that higher numbers of circulating
endothelial progenitor cells (EPCs) within the first week following stroke have a positive
impact on functional outcome [6–9], and several studies point to EPCs as a beneficial target
for AD [1]. Altogether, EPCs may offer a new target to find a treatment for AD based on
their recent molecular and genetic connections.

In this review, we will focus on vascular-related biomarkers with the potential to
become indicators of either the beginning and/or progression of AD; therefore, we will
review the latest evidence regarding the relationship between vascular damage and AD, as
well as how this interconnection has an impact on AD pathophysiology.

2. Vascular Alterations in AD Brains

The presence of vascular alterations entails an increased risk of developing demen-
tia [10]. A meta-analysis of 2856 patients showed that a 60% prevalence of dementia was
present in patients with macroinfarcts and lacunar disease; this percentage diminishes
to 56% in small-vessel disease patients, and ranges from 57 to 70% in the presence of
microinfarcts (depending on the number of lesions) [10]. More precisely, a post-mortem
study found that 80% of AD patients had vascular pathology (e.g., presence of large infarcts,
lacunes and multiple microinfarcts, hemorrhages, atherosclerosis, and arteriosclerosis),
which has a higher prevalence than in other neurodegenerative diseases [11]. Furthermore,
the presence of cerebrovascular disease, any condition affecting blood flow and blood
vessel structure negatively, increases the risk of dementia in AD, with a more prominent
effect in the earlier stages of the pathology [11]. Although microvascular alterations occur
during normal ageing, they are especially prominent in neurodegenerative diseases, such as
AD [12]. Some of these alterations include a decrease in the microvascular density, and the
increase in both the number of atrophic vessels and string capillaries in AD patients [12–14].
In addition, fusiform dilatations, tortuosity, abnormal branching and fusions, as well as a
reduction of the total length were detected in capillaries from AD samples [13,15,16].

The analysis of brain samples from AD patients has yielded a large amount of evi-
dence indicating the presence of vascular alterations (Figure 1). For example, immuno-
histochemical analysis has detected the presence of potentially neurotoxic substances in
the parenchyma due to their extravasation through the BBB, such as prothrombin, throm-
bin, fibrinogen, fibrin, albumin, and immunoglobulins [15,17–21]. In the specific case of
prothrombin, levels of this protein in the prefrontal cortex were higher as the Braak stage
increased, pointing to a greater damage of the BBB throughout the disease progression [20].
Furthermore, there is an extravasation and accumulation of immune cells in AD brains
that are mediated by the overexpression of molecules such as monocyte chemoattractant
protein-1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), and integrins, promot-
ing neuroinflammation as well as BBB damage [17,22–26]. In addition, the release of
many pro-inflammatory mediators, such as interleukin (IL)-1β (IL-1β), IL-6, IL-8, tumor
necrosis factor α (TNF-α), TWEAK, and transforming growth factor β (TGF-β), into the
vessels strengthen such marked neuroinflammation [17,22,27,28]. Finally, accumulation of
erythrocytes and hemosiderin deposits was also detected in AD brain samples, and this
is consistent with the presence of microbleeds detected by magnetic resonance imaging
(MRI) [29].
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icytes in the capillaries of the cortex, and a 33% one in the hippocampus compared to 
controls [19]. Accordingly, decreased pericyte marker platelet-derived growth factor re-
ceptor-β (PDGFRβ) and marked degeneration of pericytes were observed [13,15,19]. Both 
signals would explain the increase in BBB leakage, since the presence of soluble PDGFRβ 
(sPDGFRβ) in cerebrospinal fluid (CSF) is a marker of BBB leakage [30]. Tight junctions 
(TJ) are fundamental elements for the correct maintenance of the BBB that connect endo-
thelial cells with each other [31]. Three important proteins of TJ are claudin-5, occludin, 
and zonula occludens 1 (ZO-1), all of which are decreased in cortical areas of AD patients 
[32–34]. 

Reduced levels of claudin-5 and occludin were correlated with higher Braak states, 
Aβ40 levels, and loss of synaptic markers, such as synaptophysin [34]. Interestingly, Aβ 
deposits downregulated the expression of occludin and ZO-1 [32]. Furthermore, the de-
crease in TJ levels could be also explained by the overexpression of cyclophilin A (CypA), 
metalloprotease-9 (MMP-9), and MMP-2, since this pathway promotes the TJ degradation 
[15,35]. Furthermore, increased levels of endothelin-1 (ET-1), a potent vasoconstrictor, are 
also associated with BBB leakage [36]. 

Alteration and damage of the BBB not only induce the extravasation of substances 
but also tissue hypoperfusion. Consistent with data from neuroimaging studies, biochem-
ical evidence of cerebral hypoperfusion was found in AD brain tissue. For example, a de-
creased myelin-associated glycoprotein/proteolipid protein-1 ratio, which indicates hy-
poperfusion, was detected in AD brains [21,36]. Moreover, this decrease was associated 

Figure 1. Several vascular-related alterations during AD. Different studies using in vivo and post-
mortem approaches have brought to light multiple evidence highlighting a feasible role of vascular
dysfunction in AD pathophysiology.

Pericytes are one of the most important cells in the brain as their role is keeping the
structure of the BBB intact. In AD patients, there is a ~60% decrease in the number of
pericytes in the capillaries of the cortex, and a 33% one in the hippocampus compared
to controls [19]. Accordingly, decreased pericyte marker platelet-derived growth factor
receptor-β (PDGFRβ) and marked degeneration of pericytes were observed [13,15,19]. Both
signals would explain the increase in BBB leakage, since the presence of soluble PDGFRβ
(sPDGFRβ) in cerebrospinal fluid (CSF) is a marker of BBB leakage [30]. Tight junctions (TJ)
are fundamental elements for the correct maintenance of the BBB that connect endothelial
cells with each other [31]. Three important proteins of TJ are claudin-5, occludin, and zonula
occludens 1 (ZO-1), all of which are decreased in cortical areas of AD patients [32–34].

Reduced levels of claudin-5 and occludin were correlated with higher Braak states,
Aβ40 levels, and loss of synaptic markers, such as synaptophysin [34]. Interestingly, Aβ

deposits downregulated the expression of occludin and ZO-1 [32]. Furthermore, the de-
crease in TJ levels could be also explained by the overexpression of cyclophilin A (CypA),
metalloprotease-9 (MMP-9), and MMP-2, since this pathway promotes the TJ degrada-
tion [15,35]. Furthermore, increased levels of endothelin-1 (ET-1), a potent vasoconstrictor,
are also associated with BBB leakage [36].

Alteration and damage of the BBB not only induce the extravasation of substances
but also tissue hypoperfusion. Consistent with data from neuroimaging studies, biochem-
ical evidence of cerebral hypoperfusion was found in AD brain tissue. For example, a
decreased myelin-associated glycoprotein/proteolipid protein-1 ratio, which indicates
hypoperfusion, was detected in AD brains [21,36]. Moreover, this decrease was associated
positively with PDGFRβ levels, but negatively with ET-1 levels, Braak stages, Aβ, and
plaque levels [21,36]. Furthermore, several molecular changes have also been observed in
the cerebral endothelium of AD patients, many of which eventually lead to an increase
in brain Aβ accumulation. For example, there is a lower expression of the lipoprotein
receptor-related protein 1 (LRP-1) and a higher expression of the receptor for advanced
glycation end products (RAGE) in the brain endothelium [32,37,38]. LRP-1 is a transporter
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that together with P-glycoprotein (P-gp) is involved in Aβ clearance, while RAGE is a
receptor that uptakes Aβ from the circulation into the parenchyma [32,37,38].

Overall, there are robust data from AD brains pointing at a clear relationship between
the vascular system and AD; however, most of these results come from post-mortem
analysis, impeding their use for AD diagnosis but not for discovering new therapeutic
targets; thus, it is necessary to study these molecules in the early stages of the disease
and assess their potential to be used as biomarkers of AD beginning and/or evolution.
In the following sections, we will review and discuss the most recent and relevant works
addressing the role of these molecules as potential AD biomarkers.

3. Neuroimaging to Find Vascular Biomarkers in AD

Several neuroimaging techniques are being used to detect vascular alterations in
AD, such as positron emission tomography (PET), computed tomography (CT), and/or
MRI. PET can detect changes in the activity of many transporters and receptors present in
the BBB that are essential for the maintenance of its homeostasis. In this sense, PET can
detect reduced expressions of the glucose transporter 1 (GLUT-1) and P-gp in the BBB of
MCI and AD patients by using different tracers, such as (18)F-FDG and [11C]-verapamil,
which reveal alterations in both energy metabolism and Aβ clearance [39–41]. Regarding
CT, it allowed the detection of vascular calcifications in the hippocampus of AD patients,
which have been associated with increased cognitive impairment [42]. Moreover, it has
been suggested that vascular microcalcifications may be associated with the presence of
hyperphosphorylated tau (p-tau) in neurons [43].

On the other hand, MRI is a key neuroimaging approach for the detection of cere-
brovascular alterations in AD, such as BBB leakage, microbleedings, and white-matter
hyperintensities (WMH). Moreover, the arterial spin labeling MRI (ASL-MRI) allows the
measurement of the cerebral blood flow (CBF). In early AD, lower CBF and local blood
volume were detected in the grey matter, being the low CBF correlated with increased BBB
leakage [44]. In this line, dynamic contrast-enhanced MRI (DCE-MRI) is the main technique
to measure BBB leakage by using gadolinium-based contrast agents. Similar to CBF, a
global leakage of the BBB was detected in early AD, with a greater leakage in the deep grey
matter and cortex that was significantly associated with a lower score on the Mini-Mental
State Examination (MMSE) cognitive test [45]. Interestingly, MCI patients showed BBB
leakage in the hippocampus (subfield CA1, CA3, and dentate gyrus) and parahippocam-
pal gyrus independently of both tau and Aβ concentrations in CSF [46]. Indeed, higher
leakage in these regions significantly predicts cognitive impairment [46]. Recently, a study
assessed the use of new MRI-based technology to study the BBB permeability in MCI
patients without contrast agents, by analyzing the leakage of small molecules, such as
water [47]. Lin and colleagues showed that AD patients had increased BBB permeability
compared to controls, but only for small molecules and not large ones such as albumin [47].
Remarkably, this BBB leakage was correlated with AD markers in CSF (Aβ and p-tau) and
worse episodic memory. Overall, it seems that the BBB leakage already starts in important
memory-related regions during MCI, and this evolves into global BBB leakage in early AD.
It is also important to mention that BBB leakage in the hippocampus also occurs in aging in
an age-dependent manner [48].

Finally, MRI technology is particularly useful to study the presence of microbleeds
through the acquisition of T2*-weighted sequences that detect iron deposits and, conse-
quently, hemosiderin deposits [49]. Both AD and MCI patients present a higher percentage
of microbleeds compared to age-matched and cognitively healthy controls [49]. In the case
of MCI, the prevalence of these lesions ranges between 24.3–41%, while the prevalence
varies between 40–48% in AD subjects [50,51]. These microbleeds mostly occur in lobar
regions, although they have also been detected in non-lobar regions, such as basal ganglia
or thalamus [49–51]. Another damage associated with cerebrovascular dysfunction is the
presence of white-matter lesions detected as hyperintensities (WMHs), which eventually
evolved to leukoaraiosis. Normally asymptomatic, leukoaraiosis precedes neurological
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diseases, such as AD and stroke [52,53]. Of interest, a soluble form of TWEAK (sTWEAK),
a well-known pro-inflammatory biomarker, has been recently described as a leukoaraiosis
biomarker in stroke [53], although this has not yet been addressed in AD. WMHs in the
fornix, splenium of the corpus callosum, temporal lobe, and subcortical multilobar white
matter, are associated with greater cognitive impairment [54,55]. Interestingly, WMHs
volume is more strongly associated with preclinical AD than other biomarkers of neurode-
generation, and it also shows a correlation with brain deposits of Aβ [56]. In AD patients,
there is a greater presence of these lesions than in age-matched controls [54,55,57].

4. Vascular Biomarkers in AD

In this section, we will review the latest evidence and relevant works assessing the
potential of several vascular-related molecules to become AD biomarkers.

4.1. Vascular Inflammation
4.1.1. Osteopontin (OPN)

OPN is an inflammatory biomarker whose expression is increased under conditions
of stress, tissue damage, cerebral ischemia, and vascular diseases [58–61] (Figure 2). Im-
portantly, higher levels of OPN are closely related to chronic inflammatory diseases such
as vascular inflammation and/or atherosclerosis [61]. It is generally accepted that OPN
plays a role in inflammation-associated neurological diseases, including AD. Interestingly,
MCI patients who eventually developed AD showed elevated levels of OPN in CSF sam-
ples [59,60], which aligns with data from AD patients, either in the absence or presence of
cardiovascular disease [58,59]. Curiously, AD patients with a recent diagnosis had higher
levels of OPN in plasma and CSF samples than those diagnosed more than two years
before [59,60]. Importantly, the diagnostic sensitivity of OPN to detect AD was higher in
the absence of cerebrovascular disease than in its presence, 92.3% vs. 81% respectively [58].
In addition, OPN levels were positively associated with neuroimaging markers of brain
atrophy and worse global cognition, verbal memory, visual memory, executive function,
attention, language, visual-motor speed, and visuoconstruction [58]; however, other studies
found that elevated levels of OPN in the CSF of AD patients were significantly associated
with less cognitive impairment [59,60] (Table 1); therefore, OPN levels in plasma and CSF
may have a different correlation with cognitive status depending on the stage of the disease;
thus, further studies are mandatory to evaluate whether OPN levels could be used as
complementary biomarkers of AD progression.

4.1.2. Cell Adhesion Molecules (CAMs)

CAMs are glycoproteins localized on the cell surface that mediate adhesion between
cells and/or between cells and the extracellular matrix. One of their functions is to mediate
the adhesion and trafficking of leukocytes through the vasculature for their subsequent
extravasation into damaged or inflamed tissue. There are four types of CAMs: cadherins,
integrins, selectins, and the immunoglobulin superfamily. Interestingly, CAMs have been
linked to vascular disease and, in fact, they are released from the endothelial membrane in
their soluble form and can be detected in blood as biomarkers [62,63] (Figure 2). Vascular
cell adhesion molecule-1 (VCAM-1) and intracellular cell adhesion molecule-1 (ICAM-1),
involved in the process of immune cell extravasation, are considered biomarkers of vas-
cular dysfunction and inflammation [60,64]. Significantly elevated levels of VCAM-1 and
ICAM-1 have been detected in both plasma and CSF samples from AD subjects compared
to controls and MCI patients [17,22,23,60,64–66]. Interestingly, both protein concentrations
were associated with elevated CSF levels of total tau (T-tau) and p-tau, and Aβ pathol-
ogy [66], as well as with BBB permeability (measured by CSF/serum albumin ratio) [65].
Remarkably, VCAM-1 and ICAM-1 were strongly associated with a more rapid progression
of cognitive impairment in AD due to their association with a longitudinal increase in CDR-
SB scores [62,66]. Overall, this could indicate alterations in the vasculature since increased
plasma levels of these molecules in other pathological settings, such as peripheral arterial
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disease, are positively correlated with microvascular impaired endothelium-dependent
vasodilation [67]; however, there were also controversial results showing lower levels of
VCAM-1 in CSF samples from AD patients compared to controls [65]. Besides VCAM-1 and
ICAM-1, AD has also been linked to other CAMs, such as selectins [68,69]. In this way, lev-
els of E-selectin in CSF samples are inversely correlated with the ratio of total-tau/Aβ42 in
CSF [68], and elevated P-selectin levels were detected in the blood of AD patients compared
to controls [69] (Table 1). Therefore, most of the evidence appears to support the potential
use of these molecules as markers for the progression of AD, although more studies are
needed to fully confirm such a role as there is some controversy surrounding it.

Table 1. Main studies assessing biomarkers for vascular inflammation in AD.

Biomarker Publications Results

OPN

- Chai et al. [57]

- AD patients show elevated levels of OPN, and those were
positively associated with brain atrophy, worse global cognition,
verbal memory, visual memory, executive function, attention,
language, visual-motor speed, and visuoconstruction.

- Comi et al. [58], and Sun et al. [59]
- MCI patients developing AD and recently diagnosed AD

patients had higher levels of OPN, and this was significantly
associated with less cognitive impairment.

CAMs

- Janelidze et al. [66]
- A positive association between VCAM-1 and ICAM-1 levels

and CSF levels of total tau (T-tau) and p-tau, and Aβ pathology.
A higher increase in CDR-SB scores.

- Li et al. [68] - Inverse correlation between levels of E-selectin in CSF samples
and total-tau/Aβ42 ratio in AD patients.

- Järemo et al. [69] - Blood from AD patients showed higher levels of P-selectin.

4.2. Vascular Damage
4.2.1. Vascular Endothelial Cadherin (VE-Cadherin)

VE-cadherin is a CAM that is expressed in endothelial cells where it mediates the
interaction between adjacent cells, making it a key protein to control vascular leakage [70];
therefore, elevated plasma levels of soluble VE-cadherin are indicative of vascular damage
and dysfunction, as well as alterations in the BBB [71,72]. Interestingly, Aβ induces the
release of the extracellular domain of VE-cadherin, and, so, elevated plasma levels of
soluble VE-cadherin have been detected in AD patients, indicating vascular and BBB
damage [72] (Figure 2). This blood biomarker could be used as an indicator of cognitive
impairment as well, as its plasma levels were negatively correlated with the MMSE score
and positively correlated with the CDR [72] (Table 2).

4.2.2. Albumin

Albumin represents one of the most used biomarkers to determine the degree of BBB
leakage by measuring the ratio CSF/serum-plasma albumin [73] (Figure 2). Given that albu-
min is a protein only synthesized in the liver, its presence in the CSF means BBB damage and
eventually diffusion from the blood to both the CSF and the brain [73]. Several studies showed
that AD patients have elevated ratios of both CSF/plasma [73,74] and CSF/serum [75–77]
albumin compared to controls. Notably, a meta-analysis of data from 796 AD patients dis-
covered that those with late-onset AD (disease onset over 65 years of age) had a significantly
higher CSF/serum albumin ratio than controls, and this ratio was also positively correlated
with the concentration of both Aβ42 and neurofilament light chain (NFL) (a biomarker of
neuronal damage) [77]. Conversely, another meta-analysis from 854 AD patients found that
albumin had a small effect size as a biomarker [76], which suggests that it is not useful for the
diagnosis of the disease, but it is suitable for measuring BBB leakage (Table 2).
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liver, thus, implying diffusion from the blood to the brain tissue (4). The action of several vasoactive 
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voke BBB leakage by inducing the cleavage of tight junction proteins and basal lamina components 
(6), as well as high levels of fibrinogen (7). Under ischemic conditions or the presence of the Aβ 

Figure 2. Several cellular pathways underlying endothelial dysfunction. (A) Inflammation: CAMs are
released from the endothelial membrane in their soluble form, and this process is involved in immune
cell extravasation causing vascular dysfunction and inflammation (1). OPN acting through its receptor
causes brain inflammation (2). (B) Vascular damage: Aβ induces the release of the extracellular domain
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of VE-cadherin, increasing leakage due to vascular damage (3). The presence of albumin in both the
CSF and the brain means BBB damage as it is a protein only synthesized in the liver, thus, implying
diffusion from the blood to the brain tissue (4). The action of several vasoactive molecules may cause
either vasoconstriction or vasodilatation during AD (5). Several MMPs provoke BBB leakage by
inducing the cleavage of tight junction proteins and basal lamina components (6), as well as high
levels of fibrinogen (7). Under ischemic conditions or the presence of the Aβ peptide, there is a
release of the soluble fragment of the PDGFRβ from pericytes, indicating damage (8). The soluble
EPCR competes with the cellular EPCR for protein C binding, having an indirect pro-apoptotic, pro-
coagulant, and pro-inflammatory function (9). (C) Growth factors: angiogenin (10), VEGF (11), and
Ang-1 (12) promote angiogenesis; besides, VEGF can promote BBB leakage in the brain under ischemic
conditions, an event that can be diminished by Ang-1. (D) Cells and microparticles: CPCs (CD34+)
are a group of cells involved in tissue maintenance and repair, including HPCs (CD34+/CD133+)
and EPCs (CD34+/CD133+/KDR), that are associated with vascular repair (13). Elevated amounts of
endothelial-derived EMPs usually indicate endothelial injury (14).

4.2.3. Soluble Platelet-Derived Growth Factor Receptor-β (sPDGFRβ)

Another important marker of BBB damage is the sPDGFRβ [78]. High levels of this
molecule, either in CSF or serum, reflect the release of the soluble fragment of the PDGFRβ
from pericytes, a situation that occurs in the presence of ischemia or Aβ peptide [79]
(Figure 2). Recently, Miner and colleagues have observed that the CSF concentration of
sPDGFRβ is elevated in AD patients compared to controls, and it correlated with the levels
of markers for AD progression, such as p-tau and T-tau in the CSF [30]. Furthermore, they
also looked at the presence of albumin in the CSF and found that sPDGFRβ levels correlated
with albumin ones in CSF samples [30] (Table 2); therefore, this may be indicating that
levels of both markers in the CSF can be used as a rate of cerebrovascular damage and/or
its progression in AD.

4.2.4. Vasoactive Molecules

The atrial natriuretic peptide (ANP) is a cardiac hormone involved in the regulation of
blood pressure and volume by promoting renal natriuresis and diuresis, as well as in vasodi-
lation through the relaxation of vascular smooth muscle [80]. In addition, adrenomedullin
(ADM) is a peptide that is involved in angiogenesis and cardiovascular homeostasis, and it
also exhibits vasodilatory properties [81]. As previously mentioned, ET-1 is a paracrine hor-
mone that acts as a vasoconstrictor primarily, but also as a vasodilator occasionally [82]. In
this regard, ET-1 binds to the ETB receptor on smooth muscle to stimulate vasoconstriction,
while binding to the ETA receptor on the endothelium releases vasodilatory substances,
such as NO [82]. Therefore, all these three vasoactive molecules are considered biomarkers
for several diseases associated with vascular dysfunction [80–83] (Figure 2). Interestingly,
plasma samples from AD patients have shown that levels of pro-ADM and pro-ANP were
increased compared to healthy subjects, in contrast to the levels of C-terminal ET-1 precur-
sor fragment (CT-proET-1) which were decreased [83]. Controversially, elevated levels of
ET-1 were also detected in AD brain samples [84]. Moreover, the pro-ANP/CT-proET-1
ratio was significantly elevated in patients with AD, displaying a diagnostic specificity
and sensitivity of 80% and 72%, respectively [83]. This ratio may indicate a higher rate of
vasodilatation versus vasoconstriction, highlighting a possible compensatory mechanism
against vascular alterations seen in AD. In addition, the brain natriuretic peptide (BNP) is a
hormone secreted by the cardiac ventricles. Among its functions, blood pressure regulation
and cardiac remodeling are two of the most important [85]. Furthermore, elevated plasma
levels of BNP are related to hypoxia and are an independent predictor of endothelial func-
tion [86,87]. Marksteiner and colleagues found higher plasma levels of N-terminal pro-BNP
(BNP precursor) in both AD and MCI patients than in controls [88] (Table 2).

Homocysteine, a byproduct of methionine, is considered another important biomarker
of endothelial dysfunction [89]. Elevated plasma levels of this molecule induce decreased
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levels of NO by several pathways, leading to endothelial dysfunction [90,91]. Recently, a
meta-analysis has found both significantly increased plasma levels of homocysteine and
decreased levels of folic acid in AD patients compared to controls [91]. Since folic acid
and vitamin B12 are needed to re-methylate homocysteine and obtain methionine, low
levels of either of them promote an increase in those of homocysteine and, thus, a higher
risk of endothelial dysfunction [90,91]. Likewise, every increase of 5 µmol/L in plasma
levels of homocysteine was associated with a 12% increased risk of AD [91]. Importantly,
homocysteine levels can be lowered by dietary supplementation of folic acid and vitamin
B [92], opening a new approach to the prevention of endothelial dysfunction and AD
(Table 2).

Overall, studies focusing on vasoactive molecules brought inconclusive results. Whereas
evidence in cardiac hormones may suggest that there is a trend to decrease vasoconstriction
and increase vasodilatation in AD, studies on homocysteine seem to show the opposite;
therefore, more studies are needed to fully elucidate the adaptive mechanism balancing the
vascular dysfunction present in AD patients.

4.2.5. Metalloproteinases (MMPs)

MMPs are endoproteinases that can degrade nearly all components of the extracellular
matrix [93]. In addition, MMPs regulate proinflammatory processes and BBB leakage
by inducing the cleavage of proinflammatory mediators, tight junction proteins, and
basal lamina components [93] (Figure 2). Interestingly, certain MMPs, such as MMP-2,
3, and 9, exhibit a global Aβ-degrading activity, which is thought to reduce amyloid
plaques [93]; however, microglia may enhance Aβ accumulation through an MMP-9-
dependent mechanism [93]. Several alterations in the levels of MMPs have been detected
in both CSF and plasma samples from AD patients [94–99]. Each MMP displayed different
results in either CSF or plasma samples of AD patients: whereas the concentration of MMP-
2 was significantly reduced [95], higher levels of MMP-3 were detected when compared
to either MCI or controls [95,96]. Interestingly, the levels of MMP-3 correlated positively
with CSF levels of T-tau and p-tau, and negatively with cognitive impairment [96]. Of
note, cognitively normal patients with either AD-associated risk markers (e.g., T-tau, p-tau,
and Aβ42 levels in the CSF) or the APOE4 allele showed elevated CSF levels of the MMP-
3/Tissue inhibitor of metalloproteinase 1 (TIMP-1) ratio compared to counterparts without
risk factors [97]. In contrast, the results regarding MMP-9 levels are controversial. On the
one hand, Lorenzl and co-workers observed that plasma samples from AD patients showed
higher levels of MMP-9 [94], but lower ones in the study developed by Horstman and
colleagues [95]. This difference could be explained by the sample size as the former study
analyzed more than twice the samples than the latter. On the other hand, CSF samples
from AD patients did not show significant changes in MMP-9 levels in AD compared to
control subjects [96,98]. Peptidylprolyl isomerase A, also known as cyclophilin A (CypA),
facilitates protein folding and activates MPP-9 (Figure 2). A recent study has shown that
plasma levels of CypA correlate with the MMSE score and global grey-matter volume
(GMV) in AD patients positively [100]. In this regard, CypA may be indirectly involved in
BBB disruption [99]. Besides MMP-3 and 9, increased levels of MMP-10 were detected and
correlated with T-tau concentration in CSF samples from AD patients [98] (Table 2).

Finally, the action of metalloproteinases also promotes the release of the endothelial
cell protein C receptor (EPCR) into the blood, which is physiologically present in vascu-
lar endothelial cells [101–103]. The binding of protein C to the receptor present in cells
has anticoagulant functions, limits the inflammatory response, exerts a protective role
at the vascular endothelial barrier, and reduces endothelial cell apoptosis in response to
proinflammatory cytokines and ischemia [101,102] (Figure 2); however, when EPCR is
soluble, it competes with cellular EPCR for protein C binding and, hence, the binding of
protein C to sEPCR has an indirect pro-apoptotic, pro-coagulant, and pro-inflammatory
function [101–103]. Interestingly, elevated serum levels of sEPCR were detected in AD
patients, and they were positively correlated MMSE scores [104].
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4.2.6. Blood Coagulation System

Fibrinogen is a glycoprotein that is mainly involved in coagulation, as well as vasore-
activity and vascular permeability, inducing endothelial dysfunction at high concentra-
tions [105] (Figure 2). In fact, plasma levels of fibrinogen are elevated in cardiovascular
and cerebrovascular diseases [105], as well as in AD [106]; however, a later study found no
significant differences in plasma levels of fibrinogen from AD samples compared to those
in controls [107]. Despite this, correlations between fibrinogen levels and different AD
biomarkers were found: (1) plasma concentration of fibrinogen was positively correlated
with plasma concentration of Aβ40 and Aβ42 as well as CSF concentration of T-tau and
p-tau-181, but negatively correlated with CSF concentration of Aβ42; (2) plasma concentra-
tion of fibrinogen was positively correlated with T-tau/Aβ42 and p-tau/Aβ42 ratios [107]
(Table 2).

Plasminogen activator inhibitor-1 (PAI-1) is a regulator of the fibrinolytic system by
inhibiting tissue-plasminogen activator (t-PA), eventually promoting clot formation [108].
PAI-1 is used as a biomarker of endothelial dysfunction and senescence [109]. Of interest,
plasma levels of PAI-1 progressively increase in patients with either MCI or AD [110].
Thrombomodulin has been proposed as a BBB damage biomarker, since it is able to disrupt
the vascular barrier in tissues other than CNS [111]. Interestingly, serum levels of the
soluble thrombomodulin antigen were observed to be elevated in AD patients compared to
controls [111] (Table 2).

Table 2. Main studies assessing biomarkers for vascular damage in AD.

Biomarkers Publications Results

VE-cadherin - Lee et al. [72]
- AD patients had elevated plasma levels of soluble VE-cadherin,

and those were negatively correlated with the MMSE score and
positively correlated with the CDR.

Albumin

- Musaeus et al. [73],
and Janelidze et al. [74] - Elevated ratio of CSF/plasma albumin in AD patients.

- Olson et al. [76] - Small effects size of albumin as a biomarker for AD.

- Skillbäck et al. [77]
- Higher ratio of CSF/serum albumin in AD patients than in

controls, which was also positively correlated with the
concentration of both Aβ42 and neurofilament light chain.

sPDGFRβ - Miner et al. [30]
- Samples of CSF from AD patients showed increased levels of

sPDGFRβ, that were correlated with the levels AD progression
markers, such as p-tau and T-tau in the CSF.

Vasoactive
molecules

- Buerger et al. [83]

- Increased levels of pro-ADM and pro-ANP but decreased levels
of CT-proET-1 in plasma samples from AD patients.

- The pro-ANP/CT-proET-1 ratio was also higher in AD patients
and displayed a diagnostic specificity and sensitivity of 80%
and 72%, respectively.

- Marksteiner et al. [88] - Both MCI and AD patients had higher plasma levels of
N-terminal pro-BNP than controls.

- Wang et al. [91]

- Elevated levels of homocysteine in plasma samples from AD
patients.

- Every increase of 5 µmol/L in plasma levels of homocysteine
was associated with a 12% increased risk of AD.
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Table 2. Cont.

Biomarkers Publications Results

MMPs

- Lorenzl et al. [94] - High levels of MMP-9 in plasma samples from AD patients.

- Horstmann et al. [95]

- Significant reduction in the plasma concentration of MMP-2
and MMP-9 in AD patients.

- Higher plasma levels of MMP-3 than those from either MCI or
control subjects.

- Hanzel et al. [96]

- MMP3 levels correlate positively with CSF levels of T-tau and
p-tau, but negatively with cognitive impairment.

- No significant changes in the CSF concentration of MMP-9 from
AD samples compared to controls.

- Stomrud et al. [97]

- Cognitively normal patients with either AD-associated risk
markers or the APOE4 allele showed elevated CSF levels of the
MMP-3/Tissue inhibitor of metalloproteinase 1 (TIMP-1) ratio
compared to counterparts without risk factors.

- Bjerke et al. [98] - CSF samples from AD patients displayed increased levels of
MMP-10, which were correlated with T-tau concentration.

- Zhu et al. [104] - Increased serum levels of sEPCR were detected in AD patients,
showing a positive correlation with MMSE scores.

Fibrinogen - Fan et al. [107]

- Different correlations between plasma levels of fibrinogen and
several AD biomarkers:

- Plasma concentration of fibrinogen was positively correlated
with plasma concentration of Aβ40 and Aβ42 as well as CSF
concentration of T-tau and p-tau-181, but negatively correlated
with CSF concentration of Aβ42.

- Plasma concentration of fibrinogen was positively correlated
with T-tau/Aβ42 and p-tau/Aβ42 ratios.

PAI-1 - Oh et al. [110] - Progressive increase in plasma levels of PAI-1 in both MCI and
AD patients

4.3. Growth Factors
4.3.1. Vascular Endothelial Growth Factor (VEGF)

VEGF is a growth factor primarily involved in vasculogenesis and angiogenesis, and it
is essential for proper vascular homeostasis [112,113]; moreover, VEGF is involved in adult
hippocampal neurogenesis and hippocampal-dependent memory by increasing synaptic
strength [114,115]. However, under ischemic conditions, VEGF also has harmful effects on
the central nervous system by promoting BBB leakage in the brain [116] (Figure 2).

There is great controversy about the relevance of VEGF levels in both serum and CSF
samples from AD patients. On the one hand, different studies from Mateo and colleagues
and Li Huang and co-workers detected significantly lower serum levels of VEGF in AD
patients compared to controls [117,118]. On the other hand, other studies reported an
increase in serum levels of VEGF [119,120]. Indeed, elevated VEGF levels were associated
with better memory and language performance in APOE4 carriers with severe–moderate
AD [119]. Finally, other recent studies found no significant differences in serum levels of
VEGF in AD patients compared to controls [121,122], although significantly higher levels
have been detected in MCI patients [121,122] (Table 3).

Regarding CSF samples, either elevated [74,123,124], decreased [125] or unchanged [126]
levels of VEGF have been detected. Accordingly, those three different outcomes have
evidenced different correlations with cognitive impairment and altered in neuroimaging
studies. For example, high CSF VEGF levels were associated with lower cognitive impair-



Cells 2023, 12, 962 12 of 20

ment, larger hippocampal volume, and less hippocampal atrophy [123]. This aligns with
another study showing that elevated VEGF levels were associated with better executive
function and episodic memory, and with a higher mean bilateral FDG-PET signal in the
inferior parietal cortex and middle and inferior temporal gyrus [124]. Both works support
previous reports suggesting that the relationship between elevated VEGF levels, improved
cognitive function, and fewer anatomical and physiological alterations could be explained
by the beneficial effect of VEGF on the hippocampus [114,115]; however, the combination
of VEGF levels, the 3 classical CSF biomarkers of AD (Aβ1-42, T-tau, and p-tau), and an-
other marker (heart-type fatty acid binding protein) displayed a sensitivity of 82.61% and
specificity of 85.71% to distinguish between AD and controls [125]. Interestingly, patients
with a CSF concentration of Aβ42 ≤ 192 pg/mL had a VEGF concentration in the CSF
significantly lower compared to those patients with higher CSF Aβ42 levels [124] (Table 3).

Overall, more studies are mandatory to fully elucidate the relationship between VEGF
and AD. Some explanations for the contradictory results may be the difference in sample
size and the presence of depression in the patients (it has been previously reported that AD
patients with depression have higher VEGF serum levels than those without [127]).

4.3.2. Angiogenin

Angiogenin is a protein that induces endothelial proliferation, migration, invasion,
and tube formation, thus participating in angiogenesis [128] (Figure 2). Beneficial roles have
been suggested following hypoxia [129] and in neurodegenerative diseases [130]; however,
the levels of angiogenin have yielded controversial results in the AD field. Kim and
colleagues detected significantly reduced levels of angiogenin in the serum of AD patients
compared to controls, and these reduced levels were associated with worse cognitive
function [120]. Conversely, another analysis revealed elevated plasma levels of angiogenin
in AD patients that were associated with a worse cognitive function [131] (Table 3). Of
note, the patient database in the latter study was 10 times higher than the one in the former
study. Nevertheless, further studies are needed to understand the role of this growth factor
during AD pathogenesis.

4.3.3. Angiopoietin-1 (Ang-1)

Ang-1 is a growth factor involved in angiogenesis, neurogenesis, and vascular protec-
tive functions, such as inhibition of endothelial apoptosis, suppression of inflammatory
genes, and inhibition of vascular leakage [132,133] (Figure 2). Analysis of AD patients’
serum showed elevated levels of Ang-1 which were inversely correlated with MMSE
scores [134]. Recently, it has been shown that Ang-1 accelerated the disease progression
by promoting the formation of amyloid plaques and Aβ42, and increasing memory and
learning impairment in the APP/PS1 transgenic mouse model [135]; however, it has been
suggested that hypoxia might underlie such increases in Ang-1 levels in AD, since this
pathological condition induces an increase in the expression of this growth factor [134]
(Table 3).

4.4. Blood Cells and Microparticles

Analysis of blood cells by flow cytometry can easily be used as a biomarker. Although
this method of biomarker analysis is interesting and would be an easy technique to apply
in the routine diagnosis of AD, there is no consistency between the results from studies
currently available. In the AD field, circulating progenitor cells (CPCs), hematopoietic
progenitor cells (HPCs), and endothelial progenitor cells (EPCs) are the main cells stud-
ied [1,2,136] (Figure 2). CPCs are a group of cells involved in tissue maintenance and
repair, including HPCs and EPCs that are associated with vascular repair, their main
marker being CD34+ [1,136]. Elevated levels of CPCs have been detected in AD patients,
and this was correlated with cognitive decline [137,138]. However, other studies have
found a reduction in CPCs in MCI and AD patients [139,140], that correlated with the CSF
Aβ42/40 ratio and Aβ1-42 levels, as well as with hippocampal hyperperfusion, lower cortical
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thickness of the lower posterior cingulate gyrus, and memory alterations [139,140]. Simi-
larly, studies addressing HPCs (CD34+/CD133+) levels show antagonistic results. A work
from Stellos and colleagues found high levels of HPCs in AD patients that were inversely
correlated with cognition [137]. In contrast, other studies showed lower levels of HPCs
in samples from MCI and early AD patients compared to controls [139,141]. Regarding
EPCs (CD34+/CD133+/KDR+), either lower [139,142] or unchanged [143,144] numbers
of these cells have been detected in both AD and MCI patients, although the reduction
in EPC numbers was correlated with increased cognitive impairment [142]. Remarkably,
the properties of EPCs derived from patients in culture were altered when compared to
those cells extracted from controls (e.g., reduction in migration, adhesion and chemotaxis,
reduction of colony formation) [144–146]. The interaction between Aβ1-42 and EPCs has
been suggested as an explanation for these modifications [146].

Table 3. Studies assessing growth factors as biomarkers for AD.

Biomarkers Publications Results

VEGF

- Mateo et al. [117]
and Huang et al. [118]

- Lower serum levels of VEGF in AD patients compared to controls.

- Álvarez et al. [119]
and Kim et al. [120]

- There is an increase in serum levels of VEGF in AD patients,
which were associated with better memory and language
performance in APOE4 carriers with severe–moderate AD.

- Callahan et al. [121]
and Schipke et al. [122]

- No significant differences in serum levels of VEGF in AD patients
compared to controls.

- Significant higher levels in MCI patients.

- Guo et al. [125]

- The combination of VEGF levels, the three classical CSF
biomarkers of AD (Aβ1-42, T-tau, and p-tau), and another marker
(heart-type fatty acid binding protein) displayed sensitivity of
82.61% and a specificity of 85.71% to distinguish between AD and
control subjects.

- Hohman et al. [123]
- High levels of VEGF in the CSF were associated with lower

cognitive impairment, higher hippocampal volume, and less
hippocampal atrophy.

- Tubi et al. [124]

- Elevated VEGF levels were associated with better executive
function and episodic memory, and with a higher mean bilateral
FDG-PET signal in the inferior parietal cortex and middle and
inferior temporal gyrus.

Angiogenin

- Kim et al. [120]
- Reduced levels of angiogenin in the serum of AD patients

compared to controls, which were associated with worse
cognitive function.

- Qin et al. [131] - Elevated plasma levels of angiogenin in AD patients were
associated with a worse cognitive function.

Ang-1 - Schreitmüller et al. [134] - Levels of Ang-1 were increased in serum samples from AD
patients, and they were inversely correlated with MMSE scores.

In recent years, microparticles analysis from plasma and blood samples by flow cy-
tometry was able to detect membrane fragments derived from apoptotic cells or different
cellular processes. Among microparticles being studied currently, endothelial micropar-
ticles (EMPs), derived from endothelial cells, appear as a promising option by indicating
endothelial injury (Figure 2). Moreover, EMPs are elevated in different vascular pathologies,
such as acute coronary syndromes or hypertension, among others [147]. In AD, plasma
levels of EMPs are elevated compared to controls, and they correlate with cognitive impair-
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ment [148]; however, no significant differences in EMP levels between AD patients and
controls have been recently reported [143].

5. Concluding Remarks

The main goal of this review was to compile the most remarkable and recent stud-
ies addressing different vascular-related molecules and cells as potential biomarkers or
therapeutic targets in AD. Evidence from post-mortem AD brains show a feasible con-
nection between vascular alterations and AD pathophysiology, which puts endothelial
dysfunctions under the AD field spotlight to search for new therapeutic targets and/or
disease-evolution biomarkers. Several biomarkers for vascular inflammation (e.g., OPN
and CAMs) and vascular damage (e.g., albumin and MMPs) are being deeply studied in
the AD field. Likewise, different growth factors (e.g., VEGF) and the analysis of cells and
microparticles are rising in the AD forefront; however, many cellular mechanisms are not
fully understood and, hence, more studies are still needed to elucidate the underlying
pathways.

Overall, and despite controversy, endothelial damage associated with AD is undeni-
able at the structural level; therefore, this is an emerging field that demands more research
to fully understand and decipher the mechanisms underlying the different connections
between vessels, endothelial cells, and AD. In the future, AD-associated vascular changes
have an enormous potential for revealing new therapeutic targets and/or biomarkers
allowing the early diagnosis of AD.
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