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Canine leishmaniosis (CanL) is a vector-borne disease caused by the protozoan

Leishmania (Leishmania) infantum species [syn. L. (L.) infantum chagasi species in

the Americas] which is transmitted by the bite of a female phlebotomine sand fly.

This parasitosis is endemic and affect millions of dogs in Asia, the Americas and the

Mediterranean basin. Domestic dogs are the main hosts and the main reservoir hosts for

human zoonotic leishmaniosis. The outcome of infection is a consequence of intricate

interactions between the protozoan and the immunological and genetic background

of the host. Clinical manifestations can range from subclinical infection to very severe

disease. Early detection of infected dogs, their close surveillance and treatment are

essential to control the dissemination of the parasite among other dogs, being also a

pivotal element for the control of human zoonotic leishmaniosis. Hence, the identification

of biomarkers for the confirmation of Leishmania infection, disease and determination

of an appropriate treatment would represent an important tool to assist clinicians in

diagnosis, monitoring and in giving a realistic prognosis to subclinical infected and sick

dogs. Here, we review the recent advances in the identification of Leishmania infantum

biomarkers, focusing on those related to parasite exposure, susceptibility to infection

and disease development. Markers related to the pathogenesis of the disease and to

monitoring the evolution of leishmaniosis and treatment outcome are also summarized.

Data emphasizes the complexity of parasite-host interactions and that a single biomarker

cannot be used alone for CanL diagnosis or prognosis. Nevertheless, results are

encouraging and future research to explore the potential clinical application of biomarkers

is warranted.
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CANINE LEISHMANIOSIS

Canine leishmaniosis (CanL) is a vector-borne zoonotic protozoan disease caused by Leishmania
(Leishmania) infantum species [syn. L. (L.) infantum chagasi species in the Americas; (Mauricio,
2018)] which is transmitted by the bite of a female phlebotomine sand fly. CanL is endemic
in approximately 50 countries and affects millions of dogs in Asia, the Americas, and the
Mediterranean basin (WHO, 2010; Campino and Maia, 2018).

The outcome of infection in dogs is a consequence of intricate interactions
between the protozoan L. infantum and the genetic background of the host (Baneth et al.,
2008; Solano-Gallego et al., 2011; Campino and Maia, 2018). In addition, several non-genetic
factors of the host, such as age, breed, gender, concomitant infections, immunological, and
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nutritional status as well as parasite virulence and previous
exposure to Leishmania parasites can also affect infection
outcome (Miró et al., 2008; Saridomichelakis, 2009; Hosein et al.,
2017; Campino and Maia, 2018). The presence of L. infantum
parasites in dogs can manifest as chronic infection without
clinical signs lasting several years, self-limiting or severe illness
that can rapidly progress to death (Solano-Gallego et al., 2009;
Paltrinieri et al., 2010). In fact, not all dogs exposed to the
parasite develop clinical signs and asymptomatic infections are
much more frequent than clinical disease. On the other hand, a
subclinical infection is not necessarily permanent and the break
of parasite-host equilibrium can lead to the development of
patent disease (Solano-Gallego et al., 2011). The progression of
disease in susceptible dogs is characterized by an exacerbated
humoral immune response, a depression of cellular immune
response against the parasite, and the appearance of a panoply of
clinical signs and/or physiopathological alterations. On the other
hand, dogs considered resistant do not present clinical signs,
have low levels of specific antibodies and low parasite levels, and
present a robust cell-mediated immune response (Solano-Gallego
et al., 2009; Paltrinieri et al., 2010; Maia and Campino, 2012;
Hosein et al., 2017).

The commonest clinical signs in dogs with CanL are
atrophic myositis of masticatory muscles, cutaneous alterations,
lymphadenomegaly, onychogryphosis, and lesions derived from
immune-complexes deposition such as glomerulonephritis,
polyarthritis, or uveitis (Ciaramella et al., 1997; Maia and
Campino, 2008; Paltrinieri et al., 2010; Solano-Gallego et al.,
2011; Koutinas and Koutinas, 2014; Noli and Saridomichelakis,
2014; Meléndez-Lazo et al., 2018).

According to the Biomarkers Definition Working Group
(2001), biomarkers are “biological parameters that can be
objectively measured and evaluated as indicators of physiological
or pathological processes, or a response to a therapeutic
intervention,” and have been widely used in understanding
several aspects of non-infectious and infectious diseases, such as
exposure and susceptibility to infection (Carretón et al., 2014;
Bryan, 2016). Despite clinical staging systems of CanL based
on physiopathological abnormalities, clinical signs, serological
alterations and/or direct detection of the parasite have been
proposed (Solano-Gallego et al., 2009; Paltrinieri et al., 2010;
Foglia Manzillo et al., 2013), the specific diagnosis of L. infantum
is still a challenge (Maia and Campino, 2008). Apart from the
confirmation of disease, other reasons for attempting laboratory
diagnosis are the confirmation of Leishmania infection (in
epidemiological surveys, to prevent infected dogs to be blood
donors or be imported to non-endemic countries), and the
monitoring of the response to treatment (Solano-Gallego et al.,
2017; Campino and Maia, 2018). Therefore, the identification
of reliable predictors for each purpose would represent an
important tool to assist clinicians in follow-up monitoring, in
determining an appropriate treatment and in giving a realistic
prognosis to apparently healthy and sick dogs.

Here, we review recent research regarding the identification of
biomarkers associated with L. infantum exposure, infection and
disease in dogs and biomarkers useful to follow-up CanL and
treatment efficacy.

BIOMARKERS OF EXPOSURE TO
Leishmania infantum OR L. (L.) infantum
chagasi VECTORS

Leishmania protozoa are transmitted by the bites of infected
phlebotomine sand flies; thus, as the insect takes a blood meal
its saliva is injected into the vertebrate host. Sand fly salivary
glands secrete a complex array of active compounds that facilitate
blood feeding and modulate host immune response having
important consequences on the establishment or abrogation of
infection (Lestinova et al., 2017). In addition, several components
present in phlebotomine sand fly saliva are immunogenic
to vertebrate hosts leading to development of saliva-reactive
antibodies (Collin et al., 2009; Teixeira et al., 2010; Martín-
Martín et al., 2014). A positive correlation between the level of
specific antibodies to Phlebotomus perniciosus and Lutzomyia
longipalpis saliva and the number of phlebotomine sand flies
blood-fed have experimentally been demonstrated (Hostomska
et al., 2008; Vlkova et al., 2011). Data from dogs living in
endemic areas of leishmaniosis suggest the use of antibody
response to saliva compounds as epidemiological biomarkers for
monitoring vector exposure (Teixeira et al., 2010; Solcà et al.,
2016; Kostalova et al., 2017; Quinnell et al., 2018). Moreover,
the intensity of vector-exposure can be monitored throughout
phlebotomine sand fly season as the host anti-saliva antibody
response rapidly decreases in canine sera within 1 week after the
last P. perniciosus exposure (Vlkova et al., 2011). Nevertheless,
whether the antigenic response to phlebotomine sand fly saliva,
which is developed whether the sand fly is infected or not, could
be used as a risk marker for Leishmania infection in dogs remains
controversial, as positive (Kostalova et al., 2015, 2017), negative
(Vlkova et al., 2011) or no (Kostalova et al., 2017) correlation
between the levels of anti-P. perniciosus saliva and antibodies
against the parasite have been reported. Similar results were
obtained with L. longipalpis; while Solcà et al. (2016) observed
an increase in the number of dogs displaying antibodies to
L. longipalpis saliva along with high parasite load, and therefore
with disease severity, in the work performed by Quinnell et al.
(2018) no association was observed between exposure to sand fly
bites and disease progression. One reason for these contradictory
results could be the fact that, with the exception of the work
performed by Kostalova et al. (2017), anti-saliva antibodies have
been detected using the whole content of the salivary glands
reducing the specificity of detection due to a higher likelihood
of cross-reactivity with saliva components from other sympatric
non-vector phlebotomine sand fly species (Andrade and Teixeira,
2012; Lestinova et al., 2017).

GENETIC BIOMARKERS OF
SUSCEPTIBILITY TO Leishmania infantum

INFECTION AND DISEASE

Genetic markers can be the responsible for the phenotypic
variance of susceptibility of dogs to L. infantum as they control
both pro- and anti-inflammatory cytokines as well as the cellular

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2 September 2018 | Volume 8 | Article 302

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Maia and Campino Canine Leishmaniosis Biomarkers

immune response to the presence of the parasite (de Vaconcelos
et al., 2017).

Mutations and polymorphisms of the natural resistance-
associated macrophage protein 1, NRAMP1 gene (synonym of
the solute carrier family 11 member 1, Slc11a1) have been
associated with susceptibility to disease (Altet et al., 2002;
Sanchez-Robert et al., 2005, 2008). Slc11a1 gene encodes an
ion transporter protein involved in the control of multiplication
of Leishmania amastigotes and in macrophage activation. A
predisposition to CanL has been associated with the haplotype
of T antigen epitope TAG-8-141 and with two single nucleotide
polymorphisms (SNPs) (A4549G in intron 6 and C4859T in exon
8) located in the Slc11a1 gene in Boxer breed (Sanchez-Robert
et al., 2005) and in different dog breeds (Sanchez-Robert et al.,
2008), respectively. However, no significant differences in the
expression of Slc11a1 gene between phenotypically resistant and
susceptible dogs or between primary canine monocyte-derived
macrophages from Leishmania-free dogs with higher or lower
resistance to intracellular survival of the parasites were found
in the studies performed by Bueno et al. (2009) and Turchetti
et al. (2015). The presence of the beta chain allele of the dog
leukocyte antigen DLA–DRB1∗01502 has been associated with
susceptibility to CanL (Quinnell et al., 2003b) while the detection
of SNPs 3, 4, 7 and 8 in the canine β-defensin-1 gene has been
associated with susceptibility to L. infantum or L. (L.) infantum
chagasi infection (da Silva et al., 2017).

A genome-wide analysis using a dataset of 115 infected and
104 sick Boxers was assessed, as it is believed that multiple loci
are responsible for the progression of Leishmania infection to
clinical disease (Quilez et al., 2012). More than 170,000 single
SNPs distributed throughout the genome were identified and,
according to the authors, the significant predictive value of this
genomic information may predict with an accuracy of ∼0.29 the
resistant and susceptible phenotype. Utsunomiya et al., 2015)
identified two candidate loci in chromosome 1 and 2 involved in
Leishmania infection using a panel of 145,000 SNPs distributed
throughout the canine genome of 48 mixed-breed dogs (20
animals with PCR and ELISA positive to Leishmania and 28
negative controls). Candidatemarker on chromosome 1 is related
with notch signaling, which is key for macrophage activity and
for T cell cluster of differentiation 4 (CD4+), while the candidate
marker of chromosome 2 is related with the expression of
interleukin 2 (IL-2) and IL-15, two cytokines with a pivotal role in
the control and resolution of Leishmania infection (Utsunomiya
et al., 2015).

HEMATOLOGIC AND BIOCHEMICAL
BIOMARKERS OF CANL

In infected dogs without or with light localized clinical signs,
in which Leishmania presence was confirmed through direct
methods and which have negative or low-titer anti-Leishmania
antibodies, hematological and biochemical parameters are not
usually changed (Solano-Gallego et al., 2009; Paltrinieri et al.,
2010). On the other hand, laboratorial abnormalities are common
in dogs with CanL (Table 1).

Diagnostic Markers
In dogs with clinical leishmaniosis, mild to moderate normocytic
and normochromic non-regenerative anemia, typical of a chronic
inflammatory disease, is the most common hematological
abnormality (Reis et al., 2006b; Paltrinieri et al., 2016)
and may be caused by decreased erythropoiesis due to
disorders in the erythroid bone marrow compartment, or
a decreased eryhopoietin production due to chronic renal
failure. Although not so common, if anemia is due to an
increased hemolysis (demonstrated by a positive Coombs
test), macrocytic hypochromic regenerative anemia can be
present.

Neutrophilia is also common in dogs with CanL (Ciaramella
et al., 1997; Koutinas et al., 1999; Reis et al., 2006a; Paltrinieri
et al., 2010; Nicolato et al., 2013; Meléndez-Lazo et al., 2018),
and may be due to the inflammatory response resulting
from the presence of parasites in multiple organs (Torrecilha
et al., 2016). Leishmania infantum infection causes oxidative
stress [i.e., a disruption in the normal balance between the
production of reactive oxygen species (ROS) and antioxidant
defenses] of canine neutrophils. The release of ROS from
phagocytes present in inflammatory sites, leads to the
consumption of antioxidant compounds (Torrecilha et al.,
2016), representing a mechanism use by the parasite to
evade the immune system. In fact, dogs presenting clinical
signs have reduced antioxidant levels and increased levels
of oxidants with enhanced lipid peroxidation (Heidarpour
et al., 2012; Almeida et al., 2017). Other less common changes
observed in leukocyte populations include monocytosis,
lymphopenia, eosinopenia, or leukopenia (Ciaramella et al.,
1997; Koutinas et al., 1999; Reis et al., 2006a; Paltrinieri
et al., 2010; Nicolato et al., 2013; Meléndez-Lazo et al., 2018).
Thrombocytopenia is also a common finding in dogs with
leishmaniosis (Koutinas and Koutinas, 2014; Paltrinieri et al.,
2016). Other coagulation disorders such as serum hyperviscosity,
thrombocytopathy, impaired secondary hemostasis and
fibrinolysis, hyperfibrinogenemia, increase in prothrombin
and activated partial thromboplastin times have also been
documented (Ciaramella et al., 2005; Petanides et al., 2008;
Paltrinieri et al., 2010).

Protein alterations such as serum polyclonal α- β- and γ-
hyperglobulinemia, hyperproteinemia, hypoalbuminemia and
decreased albumin/globulin (A/G) ratio have been associated
with disease progression (Ciaramella et al., 1997; Koutinas et al.,
1999; Giunchetti et al., 2008b; Meléndez-Lazo et al., 2018). In
fact, hyperglobulinemia in CanL is harmful, via the production
of autoantibodies (e.g., immune-mediated thrombocytopenia),
and/or circulating immune complexes generated in profuse
amounts (Koutinas and Koutinas, 2014).

Elevation of hepatic and renal biochemical parameters are
also commonly associated with the progression of the disease
(Ciaramella et al., 1997; Koutinas et al., 1999; Giunchetti
et al., 2008b; Meléndez-Lazo et al., 2018). Increase of acute
phase proteins-APPs (e.g., C-reactive protein-CRP, ferritin,
haptoglobin, serum amyloid A) are also common laboratorial
findings associated with CanL (Martinez-Subiela et al., 2014;
Paltrinieri et al., 2016).
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An increase of the activity of skeletal muscle enzymes
(e.g., creatine kinase-CK, lactate dehydrogenase-LDH) has also
been documented in diseased dogs (Vamvakidis et al., 2000).
Reduced serum activity of some inflammatory markers such as
adenosine deaminase and butyrylcholinesterase in infected dogs
have recently been reported (Tonin et al., 2016). An increased
expression or activity of other molecules, such as leptin (Di
Loria et al., 2014), matrix metalloproteinases (Melo et al., 2011)
or paraoxonase-1 (Martinez-Subiela et al., 2014), has also been
reported in blood samples of dogs with CanL.

Prognostic Markers
The presence of lymphopenia in diseased dogs is a marker of
poor prognosis (Geisweid et al., 2012). In addition, as disease
progresses increased apoptosis and reduced oxidation status
and reactivity of neutrophils occurs (Gomez-Ochoa et al., 2010;
Almeida et al., 2013a,b), which seems to be a critical mechanism
of CanL pathogenesis (Almeida et al., 2017).

Regarding protein alterations, the severity of clinical score has
been correlated with an increase of total proteins and a decrease
in albumin concentration and therefore, hypoalbuminemia and
hyperproteinemia are negative prognosis markers of CanL
(Geisweid et al., 2012; Paltrinieri et al., 2016).

Severe (Paltrinieri et al., 2010) and very severe (Solano-
Gallego et al., 2009) CanL with renal involvement should be
suspected in the presence of proteinuria (i.e., when urinary
protein creatinine ratio-UPC is equal or higher than 0.5) or renal
azotemia (International Renal Interest Society; http://www.iris-
kidney.com/guidelines/index.html)1. Proteinuria without renal
azotemia seems to be secondary to immune complexes
deposition at the glomerular level (Zatelli et al., 2003). Azotemia
only becomes evident in an advance stage of disease and may
be associated with systemic hypertension (Baneth et al., 2008;
Paltrinieri et al., 2016). However, and according to the results
recently obtained by Meléndez-Lazo et al. (2018), azotemia is not
a common finding in dogs, as this biochemical alteration was
only present in 6% of the 51 diseased dogs. Gamma-glutamyl
transferase (GGT) and N-acetyl-b-N-glucosaminidase are the
most popular urinary enzymes to measure tubular injury, which
may be present secondarily to glomerular damage (Paltrinieri
et al., 2016).

Treatment and Post-treatment Monitoring
Markers
A decrease in globulin concentrations is expected in response
to leishmanial treatment, however, A/G ratio will remain low
in dogs with persistent glomerular damage and proteinuria as
the concentration of albumin will remain low. Serum protein
electrophoresis is more advisable to assess the efficacy of
treatment and should not be run before 1 month of treatment
initiation. A progressive decrease of globulins start to become
evident after 2–6 weeks following treatment with antimonials
(Rossi et al., 2014; Paltrinieri et al., 2016), and within 3

1International Renal Interest Society (IRIS): Guidelines for Staging Chronic
Kidney Disease (CKD). Available online at: http://www.iris-kidney.com (Accessed
March, 2018)

months following treatment with marbofloxacin (Rougier et al.,
2012). However, the complete regression of electrophoretogram
alterations requires at least 3–4 months (Torres et al., 2011).

Monitoring the concentration of APPs 1–2 weeks after the first
administration of drugs provides earlier information regarding
the success of treatment when other clinicopathological
parameters are still abnormal (Paltrinieri et al., 2016). CRP and
serum amyloid A values start to decrease within 2 weeks after
treatment with meglumine antimoniate and return to previous
values around 1 month (Martínez-Subiela et al., 2003; Rossi et al.,
2014). Long-term treatment with allopurinol also significantly
decreased the values of haptoglobin and CRP (Sasanelli et al.,
2007).

Proteinuria tends to decrease in 4–8 weeks after treatment
with allopurinol and meglumine antimoniate (Pierantozzi et al.,
2013), but restore of renal function after leishmanicidal treatment
depends on the severity of renal damage at the time of diagnosis.
According to IRIS Glomerular Disease Study Group et al.
(2013) and Roura et al. (2013), “serum creatinine and proteinuria
of dogs in IRIS stages 3 or 4 should be frequently tested during
the treatment period, while those in IRIS stages 1 or 2 should
be tested at the end of the first treatment cycle. Post-treatment
evaluation of dogs in IRIS stage 1 should be done after one year,
in IRIS stage 2 every 6 months, in IRIS stage 3 every 3 months
and in IRIS stage 4 every 6 weeks.”

IMMUNOLOGICAL BIOMARKERS OF
SUSCEPTIBILITY AND RESISTANCE TO
CANL

The course of L. infantum infection in dogs is tied-up to complex
interactions of the host innate and adaptive components of the
immune response, which dictates the clearance or persistence
and multiplication of the parasite. The innate immune response
has an important role in protection against the parasite, besides
instructing the development of long lasting adaptive response
(Moreno and Alvar, 2002; Reis et al., 2010; Hosein et al., 2017).
The ability of the host to control Leishmania infection requires a
strong cellular immune response, associated with the activation
of T helper (Th)-1 cells producing interferon-gamma (IFN-
γ ), tumor necrosis factor alpha (TNF-α), and IL-2. Th1 is
responsible for the activation of macrophages and concomitant
intracellular killing of the parasites (Barbiéri, 2006; Carrillo and
Moreno, 2009; Reis et al., 2010; Maia and Campino, 2012; Hosein
et al., 2017) while active disease is associated with a mixed
Th1/Th2 response (Carrillo and Moreno, 2009). Nevertheless,
the immune response to the parasite is organ/tissue-specific as in
different organs Th1, Th2 or mixed Th1/Th2 immune responses
were observed and correlated with the absence or presence of
clinical signs and with local parasite load (Reis et al., 2009; Maia
and Campino, 2012; Hosein et al., 2017).

Bone Marrow
The absence of a specific immune response against Leishmania
in bone marrow cells has been suggested as the expression of
IFN-γ and IL-2, IL-4, IL-12 of asymptomatic and symptomatic
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dogs was similar to those of healthy animals (Barbosa et al.,
2011). Nevertheless, the progression of Leishmania infection has
been mainly associated with a pro-inflammatory environment,
characterized by an elevated expression of TNF-α and IFN-γ
by bone marrow cells (Quinnell et al., 2001b; Foglia Manzillo
et al., 2006; Rodríguez-Cortés et al., 2016) together with a
significant positive correlation between IL-4 levels and disease
severity (Quinnell et al., 2001b). The absence of clinical signs in
experimentally infected dogs was related with the no detection
of this cytokine, together with the expression of inducible nitric
oxide synthetase (iNOS) and of pro-inflammatory (TNF-α)
and regulatory/anti-inflammatory [transforming growth factor-
beta (TGF-β) and IL-10] cytokines (Maia and Campino,
2012). As IL-12 is involved in the inflammatory process
that activates macrophages and enhances their microbicidal
activity, it is not surprisingly the significant increased of its
expression by bone marrow cells following treatment of dogs
with meglumine antimoniate and allopurinol (Barbosa et al.,
2011). The expression of the major histocompatibility complex
(MHCII+) by bone marrow monocytes was also significantly
increased after treatment, probably reflecting a rise in the
presentation of Leishmania antigens (Alexandre-Pires et al.,
2010).

Liver
According to Michelin et al. (2011), liver is the main cytokine-
producing organ during infection as IL-4, IL-10 and TNF-α
production from liver extracts was higher than in spleen extracts
both in infected asymptomatic and symptomatic dogs. In the
work performed by Correa et al. (2007) the production of IL-10
and TGF-β1 by liver cells of infected dogs was lower in those with
clinical signs. Similar results were obtained in experimentally
infected dogs, as these cytokines were expressed by the liver cells
in addition to IFN-γ and iNOS (Maia and Campino, 2012). The
authors suggested that a high level of parasitism might have
been associated with the absence of TNF-α. In fact, the down
regulation of IFN-γ, TNF-α, IL-10, IL-17 cytokines, and iNOS by
hepatocytes with disease progression in naturally infected dogs
was reported (Nascimento et al., 2015). According to Rodríguez-
Cortés et al. (2016), the anti-inflammatory/regulatory immune
response observed in the liver at 6 months after experimental
infection might be responsible for the absence of clinical signs
even in the presence of a high parasite load. The down regulation
of IL-22 transcription in liver samples was significantly associated
with clinical disease in experimental infected dogs (Hosein et al.,
2015). Nascimento M. et al. (2013) observed that the impairment
of the expression of chemokines ligands-CCL (CCL1, CCL17,
CCL26) and chemokine receptors-CCR (CCR3, CCR4, CCR5,
CCR6, and CCR8) by liver cells in animals with clinical signs
might result in deficient leukocyte migration and concomitant
hampering of the immune response and disease development.
In the study recently performed by Rodrigues et al. (2017) it
was shown that L. infantum interacts with Kupffer cells inducing
an anergic state that promotes immune tolerance and parasite
survival. The silence imposed by the parasite was reverted by the
presence of meglumine antimoniate.

Lymph Node
In lymph nodes, a balance between the expression of pro-
inflammatory and anti-inflammatory cytokines expression seems
to determine parasite load and clinical presentation (Alves et al.,
2009; Barbosa et al., 2011; Maia and Campino, 2012). A high
expression of IL-2, IL-12 (Barbosa et al., 2011), TNF-α, and IFN-
γ has been reported in the lymph nodes of naturally (Alves
et al., 2009; de Vasconcelos et al., 2016) and experimentally (Maia
and Campino, 2012) infected asymptomatic dogs. Contrarily, IL-
10 and TGF-β expressions were significantly increased in dogs
presenting clinical signs, suggesting a role of these cytokines in
disease evolution (Alves et al., 2009; de Vasconcelos et al., 2016;
Rodríguez-Cortés et al., 2016). These results diverge from the
ones obtained by Barbosa et al. (2011) where the expression of
IFN-γ and IL-2 was higher in the lymph nodes of symptomatic
dogs. Disease progression has also be linked to down regulation
of IL-17, IL-22, and forkhead box P3 protein (FoxP3) in the
lymph nodes of experimental infected dogs (Hosein et al., 2015).
An association of high levels of IL-6 in lymph nodes of sick dogs
with disorganization of the corticomedullar region, suggest this
cytokine as good marker of active disease (de Vasconcelos et al.,
2016).

In popliteal lymph nodes from natural infected dogs, a
significant increased number of cytotoxic T cells (CD8+ T cells),
together with decreased level of the cluster of differentiation
(CD) CD21+ B cells and upregulation of MHCII+ molecules was
observed (Giunchetti et al., 2008a). The levels of MHCII+ cells in
lymph node lymphocytes were also increased after treatment with
allopurinol and meglumine antimoniate (Alexandre-Pires et al.,
2010). The CD4T lymphocytes (CD4+) and CD8+ T cells and
Foxp3+ regulatory T cells (Tregs) frequencies in mononuclear
cells of cervical and mesenteric lymph nodes of naturally infected
dogs have also been evaluated (Figueiredo et al., 2014). Infected
dogs had a higher expression of CD4+ and Foxp3+ cells than
that of controls, but no correlation of these molecules with
parasite load was found. The expression of Foxp3+ and CD4+ T
cells was significantly higher in mesenteric lymph nodes of both
asymptomatic and symptomatic dogs, respectively. Alexandre-
Pires et al. (2010) also observed an expansion of CD4+ T cells
subpopulations in popliteal and retropharyngeal lymph nodes of
both symptomatic and meglumine antimoniate plus allopurinol
treated dogs. The expansion of this cell subpopulation seems to
be essential for the development of an efficient local immune
response to Leishmania infection. In addition, the frequency of
CD8+ T cells was significantly lower in lymph nodes of treated
dogs than in asymptomatic dogs, suggesting that these cells might
contribute to the reduction of parasite load through cytotoxic
mechanisms (Giunchetti et al., 2008a).

Peripheral Blood
Despite not being the tissue of election for the multiplication
and persistence of the parasite, the spectrum of cytokines and
phenotypic cell profiles in peripheral blood have exhaustively
been evaluated in naturally and experimentally infected dogs.
However, results are often discrepant due to the use of
different parameters to stage disease in dogs (i.e., based on
the presence/absence of clinical signs and/or hematological and
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biochemical alterations) and with the different sensitivity and
specificity of methodologies to determine the presence of specific
antibodies and/or of the parasite (Maia and Campino, 2012).

IFN-γ expression/production by sera or by peripheral blood
mononuclear cell (PBMC) lymphocytes non-stimulated or
stimulated with soluble Leishmania antigen (SLA) from naturally
and experimentally infected dogs was correlated with resistance
to disease, asymptomatic status or mild disease (Santos-Gomes
et al., 2002; Manna et al., 2006; Carrillo et al., 2007; Aslan et al.,
2016; Abbehusen et al., 2017; Montserrrat-Sangrà et al., 2018)$.
The lack of its production was observed both in symptomatic
infected dogs (Carrillo et al., 2007) and in sick dogs with
strong humoral response, high parasitaemia, and severe clinical
disease (Solano-Gallego et al., 2016; Martínez-Orellana et al.,
2017). On the other hand, high levels of IFN-γ production
and expression was detected in naturally and experimentally
infected dogs classified as symptomatic, indicating that this
cytokine does not seem to be a good marker of resistance
as it was not enough to prevent disease (Travi et al., 2009;
Cortese et al., 2013). However, tracking IFN-γ concentration
could constitute an important prognostic tool for immune
monitoring in CanL, as its concentration increases with long-
term anti-Leishmania treatment with meglumine antimoniate
and allopurinol (Martínez-Orellana et al., 2017). Contradictory
results have also been observed regarding the detection of several
other cytokines. For instance, in the work performed by Pinelli
et al. (1999), IL-4 and IL-10 were only expressed by PBMC
stimulated with concanavalin A of dogs with clinical signs, while
in other studies (Manna et al., 2006; Carrillo et al., 2007) both
cytokines were detected in asymptomatic and symptomatic dogs.
In the same line of reason, increased IL-10 production by PBMC
stimulated with SLA was pointed as predictive marker of canine
infection evolution (Boggiatto et al., 2010) and with splenic
parasite load (Aslan et al., 2016), however, in other studies this
cytokine was not considered a marker of disease severity (Santos-
Gomes et al., 2002; Solano-Gallego et al., 2016). Similarly, IL-6
and IL-18 cytokines seem to have no role on infection outcome
(Pinelli et al., 1994; Manna et al., 2006; Carrillo et al., 2007;
Aslan et al., 2016) or to be markers of active disease (Lima et al.,
2007) or asymptomatic infection (Chamizo et al., 2005). IL-2
and TNF-α production by stimulated PBMC of symptomatic and
control uninfected dogs was significantly lower when compared
with those from infected dogs without clinical signs (Pinelli
et al., 1994), while IL-12 stimulated the production of IFN-γ
by PBMC from symptomatic dogs experimentally or naturally
infected (Strauss-Ayali et al., 2005). IL-2 levels were negatively
correlated with splenic parasite loads in experimentally infected
dogs, while no correlation between IL-12 and the number of
parasites in the spleen was observed (Aslan et al., 2016). Due to
the role of Tregs in the suppression of host immunity against
Leishmania, these cells have also been evaluated in the peripheral
blood of dogs naturally infected (Cortese et al., 2013). Results
revealed a reduced percentage of Tregs CD4+, CD3+and Foxp3+

subsets on both asymptomatic and symptomatic infected dogs in
comparison with non-infected controls.

Analyses of circulating leukocyte subpopulations pointed out
the involvement of CD8+ lymphocytes in resistance to CanL

(Pinelli et al., 1995; Reis et al., 2006b; Coura-Vital et al., 2011;
Cortese et al., 2013) as increased levels of these cells were
found in dogs with low parasitism. Further studies revealed an
increase of CD3+ lymphocytes in infected dogs (Miranda et al.,
2007), of CD5+ in symptomatic dogs (Reis et al., 2006b) and of
CD4+ cells in dogs with a low parasite load (Reis et al., 2006b;
Guerra et al., 2009). On the contrary, symptomatic dogs with
high levels of parasitism in bone marrow have a decrease in
CD21+ B cells and CD14+ monocytes and low levels of CD4+

and CD8+ T cells (Reis et al., 2006b). Low levels of circulating
CD4+ in naturally infected dogs have also been associated with
a higher infectivity to phlebotomine sand flies (Guarga et al.,
2000). CD4+/CD8+ lymphocyte ratio has been evaluated with
the rationale that development of clinical disease is accompanied
by a reduction of CD4+ T cells. In fact, there is a decrease of
CD4+ counts in the peripheral blood of sick animals, which
tends to return to normal values after treatment (Moreno et al.,
1999; Papadogiannakis et al., 2010). However, in some studies
it was found a similar number of CD4+ counts in healthy and
in infected dogs with no correlation between the clinical status
(Miranda et al., 2007) probably reflecting individual variability
(Paltrinieri et al., 2016). Therefore, and according to Paltrinieri
et al. (2016) “CD4+/CD8+ ratio seems to be more suitable
for monitoring the post-treatment follow-up rather than initial
staging of clinical suspected dogs.” Studies using the saponin
enriched-Leishmune R© vaccine as immunotherapy revealed a
sustained or increased proportions of CD4+ and CD21+ B
lymphocytes and an increase proportion of CD8+ T cells in
the peripheral blood of naturally and experimentally infected
dogs (Borja-Cabrera et al., 2004, 2010; Santos et al., 2007).
According to the studies performed by Araújo et al. (2008, 2009)
Leishmune R© promotes an increase of CD8+ T-cells activation,
and induces a selective pro-inflammatory pattern with the
production of IFN-γ and NO by peripheral blood lymphocytes
and monocytes, respectively.

The analysis of the expression of the MHCII+ in peripheral
blood lymphocytes has also lead to divergent results: up-
regulation of MHCII+ expression was observed in asymptomatic
(Reis et al., 2006b) and symptomatic dogs (Alexandre-Pires et al.,
2010). On the other hand, the expression of this molecule was
decreased in sick dogs with high parasite density in bone marrow
(Reis et al., 2006b). In a cross-sectional exploratory study disease
severity was characterized by an increase of the chemokine (C-X-
C motif) ligand 1 (CXCL1) and CCL2 serum levels (Solcà et al.,
2016). As the recruitment of neutrophils and monocytes is made
by CXCL1 and CCL2 respectively, the increase production of
these chemokines was probably related with enhanced parasite
density (Solcà et al., 2016).

Skin
After the inoculation of Leishmania parasites into the skin via
phlebotomine sand fly female bite, several cells are involved
in the activation of the innate immune system, with dendritic
cells and macrophages playing a main role (Papadogiannakis
and Koutinas, 2015). A Th2-biased immune response, with
an increased expression of IL-4 (Brachelente et al., 2005), IL-
10, and TGF-β (Rodríguez-Cortés et al., 2016) or overproduction

Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 8 September 2018 | Volume 8 | Article 302

https://www.frontiersin.org/journals/cellular-and-infection-microbiology
https://www.frontiersin.org
https://www.frontiersin.org/journals/cellular-and-infection-microbiology#articles


Maia and Campino Canine Leishmaniosis Biomarkers

of IL-4, IL-13, and TNF-α (Papadogiannakis and Koutinas,
2015) was associated with a high parasite burden and clinical
disease. An increased parasite load was also associated with
up upregulation of IL-10 and TNF-α in the skin of infected
dogs (Pereira-Fonseca et al., 2017). On the other hand, a mixed
Th1/Th2 cytokine profile and low levels of GATA-3 and Foxp3+

transcription factors in asymptomatic dogs indicates that in the
absence of clinical signs or in cases with low number of parasites
in the skin, a mixed inflammatory/regulatory immune response
may be crucial (Menezes-Souza et al., 2011).

Menezes-Souza et al. (2012) reported a positive association
between the CCL2, CCL4, CCL5, CCL21, and CXCL8 expression
by the skin cells of naturally infected dogs with high cutaneous
parasitism, while CCL24 expression was negatively correlated
with parasite load. The cellular immunophenotyping and skin
parasitism in symptomatic dogs has also been investigated
(Fondevila et al., 1997; Papadogiannakis et al., 2005). An
effective local immune response is associated to the activation of
epidermal Langerhans cells, to the infiltration of dermis by CD8+

cells, to the upregulation of MHCII+ on keratinocytes, and by
the absence or presence of few parasites. In contrast, the immune
response in skin of dogs with clinical disease is characterized by a
high number of plasma cells outnumbering T lymphocytes in the
dermal infiltrate and by a high parasite load (Papadogiannakis
et al., 2005).

Spleen
Splenic architecture disruption due to CanL is characterized by
the disorganization of lymphoid tissue with eventual atrophy
and loss of leukocyte diversity (Sanchez et al., 2004). As with
other tissues, contradictory results regarding the expression or
production of cytokines and chemokines by spleen cells have
been reported. On one hand, a positive correlation between
IL-10 expression by spleen cells and increased parasitism
and progression of the disease was found (Lage et al., 2007;
Nascimento P. et al., 2013). On the other hand, no significant
changes in the expression/production of this cytokine were
reported, regardless the parasite load or clinical status of the
dogs (Correa et al., 2007; Strauss-Ayali et al., 2007; Silva et al.,
2014; Rodríguez-Cortés et al., 2016). Increased expression of
TNF-α and IFN-γ by spleen cells was associated with reduced
Leishmania burden (Nascimento P. et al., 2013). However,
correlation between parasite load and the production of TNF-
α by spleen extracts of dogs naturally infected has been
documented, and according to the authors, it may represent
an important marker for infection evolution (Michelin et al.,
2011). Further, a worst disease prognostic was reported in dogs
with a high expression or production of IFN-γ and splenic
parasitism (Lage et al., 2007). In experimentally infected dogs,
this cytokine was only expressed by tissues with high parasitic
load (Maia and Campino, 2012), reinforcing its relation with
the increase of parasitism (Lage et al., 2007). Persistence of
parasites in the spleen has also been associated with early
elevation of IL-4 expression by spleen cells in the presence of
high levels of IFN-γ (Strauss-Ayali et al., 2007). Further, disease
progression has significantly been associated to down regulation
of IL-22 in the spleen of experimental infected dogs (Hosein

et al., 2015), and to the down regulation of IFN-γ, IL-10, IL-
17A, and iNOS in naturally infected dogs (Nascimento et al.,
2015). The production of TGF-β by Tregs in the spleen was also
evaluated but no correlation was found between the percentage of
spleen Tregs producing this cytokine and the parasite load (Silva
et al., 2014). An impairment of both pro-inflammatory and anti-
inflammatory cytokines induced by splenic architecture breakage
due to parasite presence has recently been reported (Cavalcanti
et al., 2015).

An increase of the expression levels of IP-10, MCP-1, MIP1-α,
and RANTES by spleen cells was observed during the follow-up
of dogs experimentally infected (Strauss-Ayali et al., 2007). The
increase of the chemokines was suggested to be associated with
an accumulation of monocytes attracted by MCP-1 and MIP1-α,
and with CD4+ Th1 and CD8+ cells recruited by IP-10 (Strauss-
Ayali et al., 2007). The levels of these chemokines as well of IFN-γ
significantly decreased after dogs were treated with allopurinol
(Strauss-Ayali et al., 2007). In infected dogs the splenic expression
levels of CCL1, CCL3, CCL17, CCL20, CCL26, CXCLl9, CCR3,
CCR34, CCR36, and CCR38 were found to be reduced relatively
to the expression levels in uninfected animals (Nascimento
M. et al., 2013). Animals with disorganized lymphoid tissue
presented lower CXCL13 expression and compared to those with
organized lymphoid tissue, and the expression of this chemokine
was associated with a higher frequency of severe disease (Silva
et al., 2012). On the other hand, an increased expression of CCL2,
CCL5, and CXCL10 by spleen cells was reported in symptomatic
dogs in comparison with infected animals not showing clinical
signs (Nascimento M. et al., 2013), and of CXCL12 in diseased
animals and in those with disruption of the white pulp
(Silva-O’Hare et al., 2016). All these data reinforces that the
impairment of cell migration and the induction of long-lived
plasma cells favors parasite replication and progression of the
disease.

CCL21 and CCL19 chemokines are expressed by endothelial
venules in lymphoid cells and organs (Ato et al., 2002). The
binding of these chemokines to the CCR7 receptor of mature
dendritic cells (DC) allows the migration of cells from the
marginal zone to the peri-arteriolar region of the spleen. In
mice chronically infected with Leishmania (L.) donovani it was
shown that cellular immunosuppression is mediated by failure
of DC migration due to the decreased chemokine secretion by
endothelium and to the reduced DCs CCR7 expression (Ato
et al., 2002). The immunotherapy with DC overexpressing CCR7
efficiently controlled infection in the spleen of infected mice (Ato
et al., 2002). Therefore, molecules that can prevent the inhibition
of this receptor would be of great interest for the control of
leishmaniosis. L. donovani nucleoside hydrolase NH36 and its
C-terminal domain, the F3 peptide have recently proven to be
prominent antigens in the generation of preventive immunity
to visceral leishmaniosis (Nico et al., 2018). Both antigens were
able to control parasite loads in the spleen and liver of mice
vaccinated with both antigens and then challenged with L. (L.)
infantum chagasi. The imunotherapy with F3 antigens prevented
the migrating defect of DCs by restoring the expression of CCR7
receptors (Nico et al., 2018). The ability of NH36, the main
antigen of Leishmune R©, to prevent or control leishmaniosis in
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dogs and mice by restoring a Th1 response was already be proven
(Aguilar-Be et al., 2005; Borja-Cabrera et al., 2012).

Other Tissues
Figueiredo et al. (2014) evaluated CD4+ and CD8+ T cells
and Foxp3+ Tregs frequencies and cytokine expression in
the mononuclear cells of the jejunum and colon of dogs
naturally infected with L. (L.) infantum chagasi. Frequencies
and expression of IL-10, IFN-γ, TGF-β, TNF-α, Foxp3+, CD4+,
and CD8+ were higher in jejunum, while IL-4 expression was
significantly higher in the colon. A positive correlation between
CD4+ in the colon and between CD4+ Foxp3+ Tregs in jejunum
and parasite load was found. Infected animals had reduced
CD8+ expression in both intestinal compartments compared to
controls.

In L. (L.) infantum chagasi infected dogs CD3+ T lymphocytes
were found to be the major components of the inflammatory
infiltrate at the choroid plexus and in the brain; according
to the authors during the advanced stages of leishmaniosis
leukocytes might participate in the pathogenesis of neurological
disorders (Melo et al., 2009). In fact, glial reactivity in dogs
with leishmaniosis was correlated with T lymphocyte infiltration
of the brain (Melo and Machado, 2011). Further, up-regulation
of CCL3, CCL4, and CCL5, coherent with T lymphocyte
accumulation, was observed in the brain of infected dogs
(Melo et al., 2015). Apparently, the presence of parasite’s DNA
rather itself is enough to promote the development of a local
immune response as no correlation between the downregulation
of expression of IL-10, IL-12p40, and TGF-β by brain cells or
the upregulation of IL-1-β, IFN-γ, and TNF-α and parasitism
was found (Melo et al., 2013). Nevertheless, Grano et al. (2018)
have recently found in the brain of infected dogs a moderate
negative correlation between the levels of IL-1β and TNF-α
and the number of parasites (Grano et al., 2018). Evidence of
blood-cerebrospinal fluid barrier breakdown with the passage of
T lymphocytes from the blood to the brain during CanL has
been reported and related with the origin and progression of the
neurological disorders (Grano et al., 2016).

Despite the recent advancesmade on the biomarkers related to
the pathogenesis of Leishmania infection in the different organs
and tissues, due to the invasive sampling and to the limited
access to the tools to evaluate the biological markers, most of
them cannot be used in a laboratory setting. Nonetheless, and
taking into account the results described above, the inclusion
in the laboratory diagnosis of the evaluation of the cytokines
and phenotypic cell profiles of non-invasive samples, such as
peripheral blood or lymph node aspirates, would probably
represent a step forward for the prognosis and for monitoring
the response to treatment.

SEROLOGICAL BIOMARKERS TO
Leishmania infantum INFECTION AND
DISEASE

CanL is often associated with a specific non-protective humoral
response (Alvar et al., 2004; Maia and Campino, 2008; Miró

et al., 2008; Solano-Gallego et al., 2009; Paltrinieri et al., 2016).
However, the presence of antibodies to Leishmania alone is
not conclusive of Leishmania infection, as it may simply reflect
exposure to the parasite (Campino and Maia, 2018). Further,
the production of specific antibodies is low on initial and late
phase of infection and in infected dogs without clinical signs.
Conversely, uncontrolled parasite dissemination is associated
with gradually increase of antibody titers over time (Oliva et al.,
2006), which will be high when the disease is evident (Campino,
2002; Solano-Gallego et al., 2009; Paltrinieri et al., 2016). While a
direct relationship between tissue parasite density, clinical status
and antibody titres is proven (Reis et al., 2006c; Dos-Santos et al.,
2008; de Almeida Leal et al., 2014; Proverbio et al., 2014) low-
to-medium antibody titres may also be detected in symptomatic
dogs (Solano-Gallego et al., 2009, 2011, 2017; Paltrinieri et al.,
2016).

Anti-Leishmania-specific canine IgG subclasses have
extensively been investigated (Pinelli et al., 1994; Leandro et al.,
2001; Iniesta et al., 2002, 2005; Cardoso et al., 2007) as an
attempt to correlate the type of Th response, the subclass level
and the clinical outcome of infection (Baneth et al., 2008; Maia
and Campino, 2008). The majority of studies have focused on
IgG1 and IgG2 responses and tried to link them with Th2-like
susceptibility and Th1-like protective responses, respectively
(Desplazes et al., 1995; Nieto et al., 1999; Iniesta et al., 2005;
Cardoso et al., 2007; Rodríguez-Cortés et al., 2007a). A significant
correlation between IgG, IgA, IgM (Rodríguez-Cortés et al.,
2007a,b), and IgE (Iniesta et al., 2005; Reis et al., 2006c) and
clinical signs have been found. After the launch of Leishmune R©

vaccine, which induce a strong humoral immune response, de
Oliveira Mendes et al. (2003) evaluated if the production of IgG1
and IgG2 subclasses was able to distinguish the vaccinated dogs
from those naturally infected. An association of IgG1 response
to natural infection and IgG2 to a humoral response subsequent
to the Leishmnune R© vaccination was found (de Oliveira Mendes
et al., 2003). In addition, IgG1/IgG2 ≥ 1 was associated to the
sera of infected animals that evolve toward the disease while
IgG1/IgG2 ≤1 was associated to the sera response of vaccinated
dogs. Due to the low specificity of the polyclonal antisera
commercially available to detect IgG subclasses results were
often contradictory (Day, 2007). Thus, monoclonal antibodies to
canine IgGs have been tested during natural and experimental
infection. Nevertheless, a stable increase in the production of the
four subclasses was observed with no indication of a practical
use (Quinnell et al., 2003a; Strauss-Ayali et al., 2007).

Various quantitative serological methods such as the
indirect immunofluorescence assay (IFAT) and enzyme-
linked immunosorbent assay (ELISA) or the qualitative rapid
immunochromatographic tests (ICT) are available for CanL
diagnosis (Maia and Campino, 2008; Paltrinieri et al., 2016).
Due to its high sensitivity and specificity (near 100% for both)
IFAT is considered the reference method for anti-Leishmania
serology in dogs (Gradoni and Gramiccia, 2008; EFSA AHAW
Panel (EFSA Panel on Animal Health and Welfare), 2015).
Sensitivity and specificity of ELISA is also quite high, especially
when recombinant proteins are used as antigen (Paltrinieri
et al., 2016). ICT are very attractive due to their single-test
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format, ease of use and quick response time (Maia and Campino,
2008). However, they only provide a qualitative result (i.e.,
presence/absence of specific reactive spots/bands) and their
sensitivity is variable (Maia and Campino, 2008; EFSA AHAW
Panel (EFSA Panel on Animal Health and Welfare), 2015;
Paltrinieri et al., 2016). Therefore, in case of a positive result, a
quantitative serology to obtain a titer for follow-up monitoring
should be performed. In addition, and given the moderate
sensitivity of most of the ICT, a negative result obtained with
these devices in a clinically suspect dog should be followed by a
quantitative test. According to Solano-Gallego et al. (2009, 2017)
and Paltrinieri et al. (2016), “quantitative results provide by IFAT
and ELISA reflect the final antibody titer (the last 2-fold serial
dilution of sample providing a positive result). For ELISA, optical
density values converted based on a reference titered sample
should also be used. A titer is considered high if it is 4-fold higher
than the threshold value of the laboratory (Solano-Gallego
et al., 2009, 2017; Paltrinieri et al., 2016). Similarly, 4-fold titer
variations in sequential samples of the same dog should be
expected with seroconversions.” In it important clinicians to
be aware that sequential samples should always be analyzed by
the same method and in the same laboratory (Paltrinieri et al.,
2016). Furthermore, it should be referred that serological titers
not always correlate with the severity of the clinical signs (Ferrer
et al., 1995; Manna et al., 2015) although asymptomatic dogs
usually have low titers (Paltrinieri et al., 2010).

According to Paltrinieri et al. (2016), “in case of successful
treatment, a decrease in antibody titers may be expected over
time reaching values consistent with simple exposure (<4-fold
the threshold value of the laboratory),” as in dogs living in
endemic areas a complete disappearance of anti-leishmanial
antibodies is unlikely. However, serology is not a reliable
parameter tomonitor treatment efficacy in the short-term (Ferrer
et al., 1995; Miró et al., 2009; Torres et al., 2011; Manna
et al., 2015). Albeit a significant reduction in titers can be
detected 1 month post-treatment, a distinguishable decrease
of titers is normally observed 6 months after initiation of
therapy (Torres et al., 2011; Paltrinieri et al., 2016). In clinical
relapses, a rise in antibody titers is observed (Manna et al.,
2015).

As mentioned before, the presence of low levels of
specific antibodies does not necessarily indicate an active
infection. Further, the clinical presentation might be due
to other pathologies. In these cases leishmaniosis diagnosis
needs to be confirmed by the presence of the parasite or
its components (direct methods) such as cytology, histology,
immunohistochemistry, PCR or real-time PCR (Maia and
Campino, 2008; Solano-Gallego et al., 2009; Paltrinieri et al.,
2016; Campino and Maia, 2018). In addition, the vaccines
available to prevent CanL have puzzled serological diagnosis, as
most of the widely used tests are not able to discriminate between
naturally infected and vaccinated dogs (Moreno et al., 2014;
Paltrinieri et al., 2016; Solano-Gallego et al., 2017). Serological
cross-reactivity with antibodies against other Leishmania species
and pathogens such as Trypanosoma cruzi, Ehrlichia canis, and
Leptospira interrogans (Ferreira et al., 2007; Porrozzi et al., 2007)
is possible with some tests, especially those based on whole

parasite antigens (Maia and Campino, 2008; EFSA AHAW Panel
(EFSA Panel on Animal Health and Welfare), 2015).

CELLULAR BIOMARKERS TO Leishmania

infantum INFECTION AND DISEASE

It is well established that susceptibility or resistance to
Leishmania infection is mediated by cellular immune responses
and several tools have been used to evaluate their role on
the immunology and immunopathology of CanL (Maia and
Campino, 2008; Paltrinieri et al., 2010; Reis et al., 2010).

Parasite-specific cellular immunity can be assessed by the
Montenegro or leishmanin skin test (LST), which induces
a delayed-type hypersensitivity response in dogs. Leishmania
antigen, which consists of a suspension of inactivated parasites,
is intradermal inoculated. A positive reading consists of an
induration of over 5mm in diameter obtained 48–72 h after
inoculation. LST is negative during active disease, while during
subclinical infection, early stage of clinical disease or after
successful treatment is positive (Pinelli et al., 1994; Cardoso et al.,
1998; Solano-Gallego et al., 2001; Fernández-Bellón et al., 2005).
A strong and long lasting cellular immune response against
the parasite has also been observed in Leishmune R© vaccinated
dogs, as a positive DTH response was present in immunized
animals up to 41 months after vaccination (da Silva et al., 2000;
Borja-Cabrera et al., 2002, 2008).

Ex vivo tests to assess Leishmania-specific cell-mediated
immunity include lymphocyte proliferation assay and assays
measuring IFN-γ in circulating lymphocytes (such as IFN-γ
cytophatic effect inhibition bioassay and IFN-γ release assay).
Lymphocyte proliferation assay consists on the stimulation of
PBMC with soluble Leishmania antigen (SLA) and a mitogen
with non-stimulated cells representing the negative control. Cell
proliferation is expressed as a stimulation index (SI), which
is obtained by the ratios of stimulated cells to non-stimulated
cells). SI ≥ 2 are considered positive (Cabral et al., 1992,
1998; Pinelli et al., 1994; Leandro et al., 2001; Quinnell et al.,
2001a; Fernández-Pérez et al., 2003; Santos-Gomes et al., 2003;
Fernández-Bellón et al., 2005). Asymptomatic and resistant
dogs present a strong proliferative response to leishmanial
antigens while susceptible and diseased animals fail to respond
respectively, to SLA and to mitogen (Abranches et al., 1991;
Pinelli et al., 1994; Rhalem et al., 1999; Quinnell et al., 2001a;
Strauss-Ayali et al., 2005). Lymphoproliferation is restored after
successful leishmanicidal treatment (Bourdoiseau et al., 1997;
Moreno et al., 1999; Rhalem et al., 1999; Fernández-Pérez et al.,
2003).

Assays measuring IFN-γ allow quantifying the level of
stimulation of a specific Th1-polarity immune memory response
to Leishmania antigen (Fernández-Bellón et al., 2005; Rodríguez-
Cortés et al., 2007a; Moreno et al., 2014; Zribi et al., 2017).
The IFN-γ cytophatic effect inhibition bioassay detects the
production of IFN-γ by circulating lymphocytes in cultured
supernatants incubated in the presence/absence of SLA followed
by incubation with canine kidney cells. IFN-γ production is
expressed as the ratio of the reciprocal of the maximum
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dilution that protects 50% of the cell monolayer against vesicular
stomatitis virus of stimulated vs. non-stimulated cells; values ≥
2 are considered positive. The evaluation of its usefulness is very
limited (Fernández-Bellón et al., 2005; Rodríguez-Cortés et al.,
2007a) due to its cumbersome nature and to the use of a virus
included in list A of the OIE.

The IFN-γ release assay (IGRA) allows rapid screening of
IFN-γ-secretion in whole blood challenged with SLA. It seems
to be a useful tool to assess exposure to Leishmania as positive
IGRA responses were seen in infected dogs without or with mild
clinical signs and in dogs without or with low parasite load,
whereas negative IGRAs were identified in dogs with the highest
parasitism (Zribi et al., 2017). The lack of IFN-γ production in
dogs with severe clinical disease and high number of parasites
on blood has also been reported (Solano-Gallego et al., 2016;
Martínez-Orellana et al., 2017).

Canine macrophage leishmanicidal assay is also used to
evaluate cell-mediated immune response via nitric oxide (NO)
analyses. NO production by macrophages is the principal
effector molecule mediating intracellular killing of Leishmania
amastigotes by apoptosis. Cytokines such as IFN-γ and TNF-α
secreted by activated T cells have been found to induce nitric
oxide synthase (iNOS) and NO production facilitating parasite
control (Green et al., 1990; Wanasen and Soong, 2008). The
role of NO against CanL has been demonstrated by inducing
antileishmanial activity in macrophages via the L-arginine NO
pathway (Vouldoukis et al., 1996). After successful antimonial
therapy canine macrophages regained the ability to control
the parasites via increased NO production (Vouldoukis et al.,
1996). Further, canine macrophages activated by a supernatant
contained IFN-γ, TNF-α, and IL-2 were able to increase NO
production and anti-leishmanial activity (Pinelli et al., 2000).
Similarly, canine macrophages infected in vitro by L. infantum
were able to produce NO after stimulation with cytokine-
enriched PBMC supernatants (Panaro et al., 1998) and after
stimulation with IFN-γ and bacterial lipopolysaccharide were
also able to express iNOS (Sisto et al., 2001). A correlation
between high iNOS expression by Leishmania infected canine
macrophages and a low intracellular amastigote burden has
also been reported (Zafra et al., 2008). The ability of canine
macrophages to kill parasites through NO production as a
measurement of long-term protection of dogs against Leishmania
infection and disease has also been evaluated. Panaro et al. (2008)
observed that in the first months after Leishmania diagnosis, the
levels of NOproduced by Leishmania-infectedmacrophages were
higher in symptomatic dogs than in those without clinical signs.
The role played by NO in leishmanicidal activity has also been
demonstrated in the context of vaccination studies showing that
immunized dogs develop long-lasting Th1cell-mediated immune

responses against L. infantum or L. (L.) infantum chagasi. NO
enhanced the anti-leishmanial activity of macrophages alone
or co-cultured with IFN-γ producing autologous lymphocytes
(Panaro et al., 2001; Lemesre et al., 2005; Rodrigues et al., 2007;
Moreno et al., 2012, 2014), and has also been shown to mediate
apoptosis of intracellular amastigotes (Holzmuller et al., 2005).

A practical and standardized assay to evaluate cellular
immunity to Leishmania infection in clinical settings should be
of practical use to help monitoring CanL and treatment outcome
(Maia and Campino, 2008).

CONCLUSION

The identification of biological parameters that can be indicators
of pathological processes related to L. infantum infection or
disease, or a response to Leishmania treatment or vaccination
would represent a major progress in the control of canine
leishmaniosis. Data gathered from several studies have identified
potential biomarkers but none of them provided a strong
evidence of their practical applicability on diagnosis. In addition,
no single marker seems sufficient to be a direct correlate of
resistance or susceptibility to disease, as a complex network of
regulatory and counter-regulatory interactions involving several
cytokines, chemokines and cell populations are involved in
mounting an effective immune response. Therefore, multiple
laboratorial, immunological and parasite-specific biomarkers
should be considered together to obtain a general view of
L. infantum infection and disease outcome. The visceral
tropism of the parasites makes sampling challenging, as well
as owner compliance, especially when invasive procedures need
to be repeated. Therefore, the identification of biomarkers
obtained from non-invasive samples is warranted. Finally,
the development of vaccines to prevent CanL represents an
important step forward to control the disease but it has
complicated its diagnosis, so, biomarkers able to discriminate
naturally infected from vaccinated dogs are urgent.
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