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Abstract

Acute lung injury (ALI) affects over 10% of patients hospitalised in critical care, with acute respiratory distress
syndrome (ARDS) being the most severe form of ALI and having a mortality rate in the region of 40%. There has
been slow but incremental progress in identification of biomarkers that contribute to the pathophysiology of ARDS,
have utility in diagnosis and monitoring, and that are potential therapeutic targets (Calfee CS, Delucchi K, Parsons
PE, Thompson BT, Ware LB, Matthay MA, Thompson T, Ware LB, Matthay MA, Lancet Respir Med 2014, 2:611–-620).
However, a major issue is that ARDS is such a heterogeneous, multi-factorial, end-stage condition that the strategies
for “lumping and splitting” are critical (Prescott HC, Calfee CS, Thompson BT, Angus DC, Liu VX, Am J Respir Crit
Care Med 2016, 194:147–-155). Nevertheless, sequencing of the human genome, the availability of improved
methods for analysis of transcription to mRNA (gene expression), and development of sensitive immunoassays has
allowed the application of network biology to ARDS, with these biomarkers offering potential for personalised or
precision medicine (Sweeney TE, Khatri P, Toward precision medicine Crit Care Med; 2017 45:934-939).
Biomarker panels have potential applications in molecular phenotyping for identifying patients at risk of developing
ARDS, diagnosis of ARDS, risk stratification and monitoring. Two subphenotypes of ARDS have been identified on
the basis of blood biomarkers: hypo-inflammatory and hyper-inflammatory. The hyper-inflammatory subphenotype
is associated with shock, metabolic acidosis and worst clinical outcomes. Biomarkers of particular interest have
included interleukins (IL-6 and IL-8), interferon gamma (IFN-γ), surfactant proteins (SPD and SPB), von Willebrand
factor antigen, angiopoietin 1/2 and plasminogen activator inhibitor-1 (PAI-1). In terms of gene expression (mRNA)
in blood there have been found to be increases in neutrophil-related genes in sepsis-induced and influenza-
induced ARDS, but whole blood expression does not give a robust diagnostic test for ARDS.
Despite improvements in management of ARDS on the critical care unit, this complex disease continues to be a
major life-threatening event. Clinical trials of β2-agonists, statins, surfactants and keratinocyte growth factor (KGF)
have been disappointing. In addition, monoclonal antibodies (anti-TNF) and TNFR fusion protein have also been
unconvincing. However, there have been major advances in methods of mechanical ventilation, a neuromuscular
blocker (cisatracurium besilate) has shown some benefit, and stem cell therapy is being developed. In the future, by
understanding the role of biomarkers in the pathophysiology of ARDS and lung injury, it is hoped that this will
provide rational therapeutic targets and ultimately improve clinical care (Seymour CW, Gomez H, Chang CH,
Clermont G, Kellum JA, Kennedy J, Yende S, Angus DC, Crit Care 2017, 21:257).
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Introduction
Definition of ARDS

The definition and the criteria for the diagnosis of ARDS

have changed many times during the years. The first de-

scription of an ARDS-like syndrome appeared in 1967

grouping together patients with acute respiratory failure as-

sociated with dyspnea, tachypnea, cyanosis that is refractory

to oxygen therapy, decreased lung compliance, and diffuse

alveolar infiltrates evident on the chest radiograph [1].

The 1994 American–European Consensus Conference

(AECC) defined ARDS according to the presence of all

the following clinical criteria: a) recent onset of symp-

toms after a known risk factor, b) severe hypoxemia de-

fined by a PaO2/FiO2 ratio less than 200 mmHg, c)

bilateral infiltrates on chest radiograph, d) absence of

cardiogenic pulmonary edema [2]. The AECC coined the

term Acute Lung Injury (ALI) to facilitate diagnosing pa-

tients earlier in the course of their ARDS and identify

patients who have a milder form of acute hypoxemic re-

spiratory failure than ARDS.

The Berlin Clinical Classification of ARDS was estab-

lished to classify patients according to their disease. The

current working definition of proposed three mutually

exclusive categories (mild, moderate, severe) of ARDS

severity (Table 1). These are based on degree of hypox-

emia [3]. In the revised Berlin definition, the term ARDS

was redefined as a broader concept including a milder

condition of lung injury; therefore, it became equivalent

to acute lung injury (ALI), which was the previous

AECC definition.

Epidemiology of ARDS

The acute respiratory distress syndrome (ARDS) repre-

sents a major cause of death in the critical care units

worldwide, with mortality rates around 40% [4] even

with the latest advances in its treatment [4, 5]. In recent

prospective study carried out in 459 ICUs in 50 coun-

tries in 5 continents, ARDS appeared to be underrecog-

nized and undertreated, with some geographic variation

and with confirmed high mortality [6]. In this multicen-

ter study ARDS has shown to represent 10.4% of total

ICU admission and 23.4% of all patients requiring mech-

anical ventilation. The prevalence of mild ARDS was

30.0%, moderate, 46.6% and severe, 23.4%. Overall, un-

adjusted ICU and hospital mortality was 35.3 and 40.0%,

respectively and both augmented with increased ARDS

severity [6].

Aetiology of ARDS

In the Berlin definition ARDS has been defined by ex-

posure to a known clinical insult or worsening of re-

spiratory symptoms within 7 days. Although the exact

cause of ARDS is not always determinable, it is import-

ant to identify the risk factors associated. Generally, risk

factors are divided into direct and indirect causes of lung

injury (Table 2). The most common causes of indirect

ARDS are pneumonia and sepsis. However, these are not

the only drivers that lead to the development of ARDS

but other unknown factors play a role in the pathogen-

esis. Among them genetic factors may be involved al-

though no single gene polymorphism has shown

significant predisposition to ARDS. Moreover, virulence

factors and environmental ones (such as exposition to

injurious mechanical ventilation) may contribute to the

progression of the disease to ARDS [7, 8]. An ideal bio-

marker should provide information for identification of

patients at risk for ARDS and with different ARDS phe-

notypes during the progression of lung injury. Indeed

several candidate biomarkers for ARDS that have been

investigated in blood, pulmonary edema fluid, and ex-

haled air, but currently they are not reliable enough for

clinical use. A combination of biomarkers could help

distinguish patients with direct lung injury from those

with an indirect mechanism of lung injury, thus helping

in the diagnosis and identification of patients that may

benefit from different therapeutic strategies (Table 3).

Pathology

The pathophysiology of ALI/ARDS is complex and re-

mains incompletely understood.

Interestingly all the above definitions of ARDS do not

include the presence of an inflammatory process of the

lower airways. Despite this, ARDS is currently consid-

ered to represent a stereotypic response to many differ-

ent injuries all evolving through a number of different

Table 1 Current definition of ARDS: the Berlin definition [3]

Timing Within 1 week of a known clinical insult or new or worsening respiratory symptoms

Chest imaging (chest radiograph or computed tomography scan) Bilateral opacities; not fully explained by effusions, lobar/lung collapse, or nodules

Origin of edema Respiratory failure not fully explained by cardiac failure or fluid overload
Need objective assessment (e.g., echocardiography) to exclude hydrostatic
edema if no risk factor present

Oxygenation Mild 200mmHg < PaO2/FIO2 ≤ 300mmHg with PEEP or CPAP ≥5 cmH2O

Moderate 100 mmHg < PaO2/FIO2 ≤ 200mmHg with PEEP ≥5 cmH2O

Severe PaO2/FIO2 ≤ 100mmHg with PEEP ≥5 cmH2O
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phases: alveolar and capillary damage to lung resolution

with or without a fibro-proliferative phase.

Furthermore, ARDS is not characterized by a specific

clinic-pathological disease but includes a heterogeneous

list of clinic-pathological entities, usually showing diffuse

alveolar damage (DAD) with severe widespread damage

to the alveolo-capillary unit [9].

Early and late phases of lung injury

Pathologically and clinically, ARDS can be divided into

early and late phases of lung injury, corresponding to ex-

udative and fibroproliferative phases [10] (Fig. 1). This

involves endothelial and epithelial damage, the inflam-

matory cascade, and increased vascular permeability.

There are associated alterations in lung matrix, activa-

tion of coagulation and fibrosis pathways, with cell pro-

liferation and apoptosis.

A. Early phase: In the early phase (first few hours or

days), there is widespread neutrophilic alveolitis

with disruption of the alveolar epithelial and

endothelial barriers, while leads to the formation of

protein-rich edema in the interstitium and alveolar

spaces [8]. Microscopically, lungs in the early stages

show diffuse alveolar damage (DAD) with alveolar

flooding by proteinaceous fluid, neutrophil influx into

the alveolar space, loss of alveolar epithelial cells, de-

position of hyaline membranes on the denuded base-

ment membrane and formation of microthrombi

[11]. Inflammatory cell infiltration of the lung inter-

stitium may also be seen. The alveolar flooding occurs

as a result of injury to the alveolar-capillary barrier

and is a major determinant of the hypoxemia and al-

tered lung mechanics that characterize early ALI/

ARDS. Injury to the alveolar epithelium is a promin-

ent feature histologically with loss of alveolar epithe-

lial barrier integrity and extensive necrosis of alveolar

epithelial type I cells. Endothelial injury allows leak-

age of plasma from the capillaries into the intersti-

tium and airspace. The mechanism by which the

microvascular endothelium and alveolar epithelium

are injured are probably multiple and may vary de-

pending on the inciting event.

B. Late Phase: Disordered healing and proliferation of

fibrous tissue dominate the late phase of ARDS. The

scenario evolves to a fibro-proliferative process that

fills the airspaces with granulation tissue containing

proliferating alveolar type II cells, as well as new

blood vessels and extracellular matrix rich in collagen

and fibrin. Type II alveolar cell, fibroblast and myofi-

broblasts proliferate in this phase, which can occur as

early as 7 to 10 days after initial injury. This stage has

traditionally been described as being followed by a fi-

brotic phase, essentially emphasizing the appearance

of pulmonary fibrosis in a subset of patients with irre-

versible lung fibrosis [11]. Recent observations have

suggested that the areas of fibrosis may develop

sooner than previously appreciated. Elevated levels of

N-terminal procollagen peptide III, thought to repre-

sent collagen synthesis, can be detected in bronchoal-

veolar lavage fluid of patients with ARDS as early as

24 h into the course of the illness [12]. This observa-

tion have led some investigators to hypothesize that

fibroproliferation may be initiated simultaneously

with inflammatory lung injury [12].

Biomarkers

In ARDS biomarkers have promise in diagnosis and

stratification, assessment of prognosis and to evaluate

response to therapy [13, 14] (Fig. 2). Sequencing of the

human genome, the availability of improved methods for

Table 2 Risk factors commonly associated with ARDS

Direct lung injury Indirect lung injury

Pneumonia Sepsis

Aspiration of gastric contents Multiple trauma

Pulmonary contusion Cardiopulmonary bypass

Near drowning Acute pancreatitis

Inhalation injury Drug overdose

Reperfusion pulmonary edema Transfusion of blood products

Table 3 Biomarkers of ARDS [13, 15, 92, 93]

Pathway Biomarkers

Epithelial RAGE

SP-D

KL-6

CC16

KGF

Endothelial Ang-1/2

vWF

VEGF

Inflammatory Pro-inflammatory IL-1β

IL-6

TNFα

IL-8

IL-18

Anti-inflammatory IL-1RA

sTNF-RI/II

IL-10

Coagulation and fibrinolysis PAI-1
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analysis of transcription to mRNA (gene expression),

and development of sensitive immunoassays has allowed

the application of network biology to ARDS, with these

biomarkers offering potential for personalised or preci-

sion medicine [15].

Epithelial markers

Respiratory epithelium markers include surfactant pro-

teins (SP); Krebs von den Lungen-6 (KL-6) protein, vas-

cular endothelial growth factor (VEGF) and soluble

receptor for advanced glycation end-products (sRAGE)

Fig. 1 Immunopathology and biomarkers of ARDS. Diagram illustrate the key cells and molecules involved in the pathophysiology of ARDS

Fig. 2 Diagram to illustrate the Key Cells and Molecules involved in the Immune. Pathophysiology of ARDS: with an emphasis on biomarkers that
have been measured in plasma (based on the work of the Carolyn Calfee group)
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� Surfactant proteins (SP) are generally increased in

ARDS, and SP-B can cross damaged alveolocapillary

membranes [16, 17]. Blood SP-D levels been shown

to correlate with ARDS mortality [18, 19].

� KL-6 levels have been correlated with ARDS

mortality as opposed to ARDS development [20]. In

2014 a meta-analysis of plasma biomarkers for

ARDS analysed 54 studies found KL-6, lactate de-

hydrogenase, sRAGE, and von Willebrand factor

were associated with ARDS diagnosis in at risk pop-

ulations [21].

� VEGF and keratinocyte growth factor were shown

to correlate with severity of illness and reflect

patient outcome [22, 23].

� RAGE is highly expressed in lung epithelium [24],

and especially expressed on alveolar type 1 epithelial

cells [25]. The use as a marker has been

questionable but some studies have shown higher

levels of RAGE were associated with impaired

alveolar fluid clearance in patients with ARDS hence

the severity of lung epithelial injury [26]. RAGE

plasma levels in patients with severe ARDS

correlated with mortality in patients ventilated with

high tidal volumes [27]. In a meta-analysis sRAGE

was found to be useful in ARDS diagnosis in a high

risk population, but not associated with mortality

[21], although other studies have shown no associ-

ation [28, 29].

Endothelial markers

Endothelial markers include angiopoietin-2 (Ang-2) and

markers of endothelial dysfunction [30]. Elevated levels

of Ang-2 in both ARDS and at risk patients are predict-

ive of mortality [29, 31, 32] and there is a correlation be-

tween Ang-2 levels and ARDS development in trauma

patients [33]. In addition, for VWF here seems to be a

correlation with mortality in ARDS [18, 34, 35].

Inflammatory cytokines

Levels of the inflammatory cytokines IL-1β and TNF-α

are more useful as markers of sepsis severity rather than

for ARDS [36]. Other pro-inflammatory cytokines in-

clude IL-8, which has been shown in predicting the out-

come of ARDS [18, 34]. IL-18 has been noted to be

increased in patients with ARDS, and been associated

with mortality [37]. An external validation of biomarkers

and a clinical prediction model for hospital mortality in

ARDS included SP-D and IL8 in various clinical settings,

and suggested that these biomarkers may be useful in

risk assessment for clinical trial enrolment [38].

Coagulation and fibrinolysis

Plasminogen activator inhibitor-1 (PAI-1) is an inhibitor

of fibrinolysis. Some studies have shown an increase in

serum levels in patient with ARDS [18, 39, 40], and there

is reported correlation with overall mortality in critically

ill patients [41].

Combinations of biomarkers

Several studies have looked into markers of epithelial

and endothelial injury, coagulation and inflammation

and have shown a combination of clinical predictors

with combination of biomarkers were better at predict-

ing mortality compared to either of the clinical or bio-

markers alone [18, 33, 34, 42]. A panel of biomarkers

was superior to clinical risk factors alone in predicting

mortality in ARDS [18], as well as being useful for the

diagnosis of ARDS [27]. A combination of RAGE and

Ang-2 were superior to clinical diagnosis for the diagno-

sis of ARDS in severe trauma [43]. In severe sepsis a

panel which included RAGE, SPD, Club Cell Protein 16

was useful in diagnosis of ARDS [42].

Blood biomarkers of ARDS: Calfee group, SF

In recent years the clinical research group of Carolyn

Calfee and colleagues have performed clinical studies

assessing panels of blood biomarkers in ARDS. In the era

of precision medicine and personalization, the Calfee

group studies proceed on a more detailed characterization

of the disease that may vary on individual level. They de-

scribe different ARDS subphenotypes and work on bio-

marker panels that may help clinicians to select patients

who may benefit from different therapeutic strategies.

Direct (epithelial)/Indirect (endothelial) Groups:

Molecular phenotyping was carried out to demonstrate

2 groups of ARDS patients: with direct (lung epithelial)

damage and indirect (vascular endothelium) damage.

Direct lung injury mainly caused by pneumonia and as-

piration is characterised by more severe lung epithelial

injury and less severe endothelial injury. For indirect

lung injury, the emphasis is on endothelial or vascular

injury, as opposed to epithelial damage. In direct ARDS,

there are higher levels of SP-D, a marker of lung epithe-

lial damage and there were lower levels of Ang-2, a

marker of endothelial injury compared to indirect ARDS.

There is evidence that lower levels of von Willebrand

factor (VWF) antigen, IL6 and IL8 are present in direct

lung injury [44]. With these distinct molecular pheno-

types, the epithelium could be a treatment target with

keratinocyte growth factor for direct ARDS, whereas the

endothelium could be targeted in indirect ARDS using

statins and recombinant angiopoietin 1 [44].

Hypo/Hyper Inflammatory Groups: Unbiased latent

class analysis of clinical and biomarkers characteristics

of ARDS patients demonstrated hypo-inflammatory and

hyper-inflammatory groups in ARDS. These have differ-

ent clinical and biological characteristics, and different

responses to therapy. In the hyperinflammatory group
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(one third of ARDS subjects), there is a higher plasma

level of inflammatory biomarkers, higher vasopressor use

and lower serum bicarbonate, and higher prevalence of

sepsis compared to the hypo-inflammatory group. The

hyper-inflammatory group had a higher mortality and

fewer ventilator-free and organ failure-free days. Eight

plasma biomarkers were included: surfactant protein-D

(SP-D), von Willebrand factor antigen, soluble intercellular

adhesion molecule 1 (sICAM-1), IL- 6 and IL-8, soluble

tumor necrosis factor receptor 1 (TNFR 1), plasminogen

activator inhibitor-1 (PAI-1) and protein C [13]. More re-

cently, it has been shown that a selection of 4 biomarkers:

IL-6, interferon gamma (IFN-γ), angiopoietin 1/2 and

PAI-1 could be used to cluster ARDS into two biological

phenotypes with different mortality rates [45]. The stability

of ARDS phenotypes has been shown over the first 3 days

of enrolment in 2 clinical trials [46], and they respond dif-

ferently to fluid management strategies [47].

Septic shock biomarkers: ProCESS study

A large biomarker study of 1341 individuals enrolled in

the Protocolized Care of Early Septic Shock (ProCESS)

trial found that proteins associated with endothelial cell

permeability and hemostasis were associated with in-

creased mortality [48]. Angiopoietin-2, soluble fms-like

tyrosine kinase 1 (sFLT-1), soluble vascular endothelial

growth factor receptor (s-VEGFR), thrombomodulin

(TM) and vWF were all higher in patients that died. In a

sub-study of 628 patients enrolled in ProCESS, higher

serum biomarkers were found in patients with adverse

outcomes: including biomarkers of inflammation (IL-6,

TNF, IL-10), coagulation (thrombin-antithrombin com-

plex, D-dimer), oxidative stress (urine isoprostane) and

tissue hypoxia (lactate) [49].

Influenza ARDS: MOSAIC

The H1N1 influenza A virus is known to be associated

to high morbidity and mortality. The infection can cause

a severe acute respiratory failure or ARDS with multior-

gan failure. The H1N1 pandemic of 2009 saw many

cases of severe ARDS with refractory hypoxemia that

needed the veno-venous extracorporeal membrane oxy-

genation as a rescue therapy [50, 51]. Recently, the

interferon-inducible transmembrane (IFITM3) protein

has shown in models to have a pivotal role in defending

the host from pathological virus such as influenza A. In

human individuals hospitalized for influenza H1N1/2009

virus it has been found elevated expression of a minor

IFITM3 allele and in vitro minor CC genotype IFITM3

has reduced influenza virus restriction [52].

Metabolomics

The analysis of lower molecular weight cell metabolites

is generally performed using nuclear magnetic resonance

(NMR) and mass spectrometry (MS). Metabolic changes

are highly dynamic and offer insight into chemical pro-

cesses occurring at any given time [53]. This makes

metabolomics a useful way to detect physiological

changes in real time allowing monitoring of potential

environmental insults, disease progression and drug re-

sponses. These metabolite changes occur in relation to

alterations in the gene and protein activity that are asso-

ciated with the disease [54]. In a single study there were

4513 metabolites identified in human blood but this is

an underestimate based on the individual analytical

method [55]. Although many studies have been per-

formed to assess the application of metabolomics to lung

disease, progress has been slow [54].

There have been several metabolomics studies in ex-

perimental models looking at a variety of samples from

exhaled breath, serum, bronchial alveolar lavage and

lung tissue which find that lung injury results in a per-

turbation of energy and oxidative stress metabolism [54].

In contrast, there have been few clinical metabolomics

studies in ARDS. Bos et al. looked into exhaled breath

and analysing volatile organic compounds (VOCs) using

gas-chromatography and mass spectrometry (GC-MS).

Most of the candidate markers are linked to lipid peroxi-

dation. Only octane – one of the end products of lipid

peroxidation – has been validated in a temporal external

validation cohort and is at the moment is most acknowl-

edged breath biomarker for ARDS [56]. Acetaldehyde

and 3-methylheptane have also been reported as predict-

ive of ARDS and diagnostic accuracy was improved with

the Lung Injury Prediction Score (LIPS) [56].

Metabolomic analysis of bronchoalveolar lavage (BAL)

has been carried out using untargeted liquid chromatog-

raphy mass spectrometry (LC-MS). Metabolites involved

with energy metabolism such as lactate, citrate, creatine

and creatinine have been shown to be associated to ARDS,

and have previously been shown to be increased in plasma

[57]. In addition, several guanosine network metabolites

have been found to be increased in ARDS BAL fluid [54].

Langley et al. looked at extensive targeted metabolo-

mics profiling of > 300 metabolites in two adult popula-

tions at high risk of death; patients in Community

Acquired Pneumonia and Sepsis Outcome Diagnostics

(CAPSOD) and patients in the Registry of Critical Illness

(RoCI) [58]. Despite the phenotypic differences, most

metabolites associated with mortality were upregulated.

The application of NMR-based metabolomic analysis

on urine sample of pneumonia patients demonstrated

the existence of different metabolomic profiles specific

for bacterial infections, particularly for Streptococcus

pneumoniae and Staphylococcus aureus. The results

highlight the potential of metabolomics for the diagnosis

and monitoring of the antibiotic therapy of pneumonia

both in community- and hospital-acquired ones [59].
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In ARDS patients higher urine H2O2 levels were asso-

ciated with worse clinical outcomes, perhaps reflecting

greater oxidative injury in these patients [60]; while

higher urine NO levels were associated with increased

survival [61]. Urinary indices of glycosaminoglycan

(GAG) fragmentation, a product of degradation of the

endothelial glycocalyx, individuated by mass spectrom-

etry on urine samples in patients with septic shock or

ARDS may predict acute kidney injury and in-hospital

mortality [62].

Transcriptomics – Gene expression mRNA

A recent multicohort analysis of whole blood gene ex-

pression data for ARDS by Sweeney et al. looked into 3

adult cohorts with sepsis, one paediatric cohort with

acute respiratory failure and 2 datasets form adults with

trauma and burns for a total of 148 cases of ARDS and

268 cases of critically ill controls. 30 genes were associ-

ated with ARDS – many of which have previously been

associated with sepsis but with adjustment for the clin-

ical severity score – none of these genes remained sig-

nificant indicating that the gene expression is one of

acute inflammation as opposed to lung injury [63].

Sweeney also looked separately into sepsis subtypes

using data pooled from 14 bacterial sepsis transcripto-

mics (n = 700). Using cluster analysis Sweeney showed

that there are 3 subtypes termed ‘inflammopathic, adap-

tive and coagulopathic’. Adaptive subtypes are associated

with lower clinical severity and lower mortality rate and

the coagulopathic subtypes are associated with higher

mortality and clinical coagulopathy [64].

MicroRNA (MiRNA)

MiRNA is a novel pathway for non-coding RNA

molecules that regulate gene expression at the

post-transcriptional level. It plays an important role in

inflammation or apoptosis which commonly manifests

in ARDS [65]. They are good candidates as disease bio-

markers due to numerous factors. They can be identified

in various body fluids, resistant to extreme environmen-

tal conditions, their expression changes in various dis-

ease states and change in early stages of gene expression.

MiRNA can be readily measured and hence are potential

therapeutic targets as each miRNA regulates the expres-

sion of many genes [66]. Most of the studies to date have

been on animal models but one of the first miRNA stud-

ied in patients was miRNA-150 which has been shown

to be in lower concentrations in the septic cohort; al-

though statistical significance was not achieved [67].

Plasma levels of miRNA – 146a and miRNA155 signifi-

cantly increased in patients with severe sepsis and sepsis

induced ALI compared to control [68] and may be help-

ful in predicting mortality. A more recent study by Zhu

et al. examined ARDS patients’ vs critically ill at-risk

controls and identified whole blood miRNA markers in

ARDS including miR-181a, miR92a. MiR-424 was shown

to be a protective biomarker. Zhu concluded stating in

addition to the miRNA, addition of the LIPS can im-

prove the risk estimate of ARDS [69].

Genetics (DNA)

Genomics in ARDS has offered relatively modest advances

in understating ARDS [53]. Candidate gene studies have

identified variants in more than 40 candidate genes associ-

ated with the development (or outcome) of ARDS [70].

This included genes for angiotensin-converting enzyme

(ACE), IL-10, TNF and vascular endothelial growth factor

(VEGF). In the first human genome-wide association

study (GWAS) for ARDS susceptibility, Christie et al.

identified a novel locus PPFIA1 as a replicable risk factor

for ALI following major trauma, but no polymorphism

had genome wide significance [71].

Therapies

Current therapies for ARDS are summarized in Table 4.

The reader is directed to excellent recent reviews that

refer to modern treatment for ARDS in detail [7, 72–74].

Most advances have been through changes in mechanical

ventilation methods, culminating in a 2017 International

Clinical Practice Guideline for mechanical ventilation on

adults with ARDS [75]. The guidelines address 6 interven-

tions: low tidal volume and inspiratory pressure ventila-

tion, prone positioning, high-frequency oscillatory

ventilation, higher versus lower positive end-expiratory

pressure, lung recruitment manoeuvres, and extracorpor-

eal membrane oxygenation. Otherwise treatment is sup-

portive and palliative, with no current disease-modifying

therapies available. Early goal-directed therapy (EGDT) in-

volving a 6 h resuscitation protocol of fluids, vasopressors,

inotropes and red cell transfusion for septic shock did not

result in better outcomes than usual care [76].

Glucocorticoids may improve oxygenation and airway

pressures in established ARDS, but have failed to

demonstrate a role in preventive therapy. In patients

with pneumonia, steroids may improve radiological

appearances, but again does not improve mortality [77].

Trials conducted on established ARDS investigated dif-

ferent doses and duration of treatment, preventing

generalization of the results, however analysis suggest

that if steroids are started 14 days or more after the

diagnosis of ARDS, they can be harmful. The combin-

ation of inhaled β2-agonists and glucocorticoid admin-

istered early in patients at risk of ARDS has recently

shown to prevent development of ARDS and improve

oxygenation but its effect on mortality has not been

demonstrated [78].

Pre-hospital aspirin has been shown to reduce the in-

cidence of ARDS, however results of ongoing trials
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investigating its preventive role are inconclusive and

more data are needed [79]. Inhaled NO transiently im-

proves oxygenation and long term lung function in pa-

tients who survive, but does not affect mortality and

may cause renal impairment, hence it is not recom-

mended [80]. A neuromuscular blocker, cisatracurium

besilate has shown some benefit when used for early

ARDS [81]. Statins [82], beta-agonists [83], non-steroidal

anti-inflammatory drugs (NSAIDs), and an antioxidant

(procysteine [L-2-oxo-thiazolidie-4-carboxylic acid])

have failed to show benefit for ARDS. Surfactant re-

placement [84], neutrophil elastase inhibitors and antic-

oagulation have also all failed in clinical trials.

Biologics directed against TNF have been highly suc-

cessful in rheumatoid arthritis, but no benefit has been

seen for the treatment of inflammatory lung diseases, in-

cluding ARDS [85, 86]. With a view to lung regener-

ation, cellular therapies and intravenous mesenchymal

stem cell therapy are in development for ARDS [87]

[88]. There is significant interest in the targeted use of

anti-inflammatory therapies in patients with ARDS de-

fined by blood biomarker levels [89]. It is logical to study

effects of anti-inflammatory agents in patients with

hyper-inflammatory ARDS, and to tailor use of specific

anti-inflammatory drugs to ARDS patients with particu-

lar biomarker profiles [90].

Despite intense investigation, no specific pharmaco-

logical treatment for ARDS has been shown to affect the

mortality, even though preclinical trials in animal

models have looked promising. Targeting a single patho-

genetic pathway is not unlikely to be advantageous due

to the complexity of the mechanisms involved.

However, the characterization of the ARDS subpheno-

type by blood biomarkers may help clinician to select

patients who may benefit from specific therapeutic strat-

egy and ultimately tailor the treatment on our single pa-

tient. In fact, it has been proved that a high PEEP

strategy in ARDS patients affected major outcome only

in the hyperinflammatory subphenotype [91]. Moreover

the restrictive fluid strategy was beneficial in the same

selected ARDS patients [47]. More studies are needed to

further explore the benefits of different therapies based

on particular ARDS biomarker profile.

Conclusions

ARDS is a syndrome still associated with high mortality.

The main treatment in order to reduce mortality relies

on the correct strategic use of mechanical ventilation

aimed to protect the lung by avoiding the

pro-inflammatory mechanisms triggered by mechanical

ventilation. The latter, however, does not represent the

real treatment of ARDS since it is aimed to preserve the

Table 4 Summary of therapies for acute respiratory distress syndrome

Supportive therapy Comment

Lung protective ventilation with low tidal volume (4–8 ml/kg predicted
body weight) and low inspiratory pressures (plateau pressure
< 30 cmH2O)

Strong recommendation [75]

Higher level of PEEP§ in patients with moderate or severe ARDS Conditional recommendation [75]

Lung recruitment maneuvers in patients with moderate or severe ARDS Conditional recommendation [75]

Prone positioning for more than 12 h/die in patients with severe ARDS Strong recommendation [75]

HFOV Strong recommendation against the routine use of HFOV [75]

ECMO Rescue therapy for refractory hypoxemia in severe ARDS. No
recommendation is made, additional studies are needed [75].

Conservative fluid management strategy It shortened the duration of assisted ventilation in large randomized
trial [94, 95]

Pharmacological therapy

Glucocorticoids Inconclusive results on doses and duration of treatment. May provide
some benefit on oxygenation, reduce inflammatory process and
ventilation days. They are harmful if started 14 days after ARDS
diagnosis [96].

Inhaled nitric oxide (NO) Improves transiently oxygenation. Does not affect mortality.
Higher grade of AKI [80].

Neuromuscolar blockade Improve outcomes in patients with moderate to-severe ARDS, ensures
patient–ventilator synchrony and reduces the risk of VILI [81].
Higher risk of diaphragm atrophy and ICU acquired weakness.
Ongoing trial (NCT02509078).

Mesenchimal stem cells Phase 2a clinical trials to establish safety in ARDS are in progress
and two phase 1 trials did not report any serious adverse events [81].

§
PEEP positive end-expiratory pressure, ARDS acute respiratory distress syndrome, HFOV high frequency oscillatory ventilation, ECMO extra-corporeal membrane

oxygenation, AKI acute kidney injury, VILI ventilator-induced lung injury, ICU intensive care unit
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respiratory exchange, preserving life and allowing physi-

cians to wait for the resolution of the underlying disease.

To further reduce mortality, the therapy of ARDS should

be based on the inflammatory mechanisms responsible

of the lung injury, possibly taking into account the gen-

etic difference among patients and the origin of ARDS,

such as the primary or the secondary ARDS.
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