
Biomarkers for Early and Late Stage Chronic Allograft
Nephropathy by Proteogenomic Profiling of Peripheral
Blood
Sunil M. Kurian1, Raymond Heilman2, Tony S. Mondala3, Aleksey Nakorchevsky4, Johannes A. Hewel4,

Daniel Campbell3, Elizabeth H. Robison3, Lin Wang5, Wen Lin5, Lillian Gaber6, Kim Solez7, Hamid

Shidban8, Robert Mendez8, Randolph L. Schaffer9, Jonathan S. Fisher9, Stuart M. Flechner10, Steve R.

Head3, Steve Horvath5, John R. Yates III4, Christopher L. Marsh9, Daniel R. Salomon1,9*

1 Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California, United States of America, 2 Mayo Clinic, Scottsdale, Arizona,

United States of America, 3 DNA Microarray Core, The Scripps Research Institute, La Jolla, California, United States of America, 4 Department of Chemical Physiology, The

Scripps Research Institute, La Jolla, California, United States of America, 5 Department of Biostatistics, University of California, Los Angeles, California, United States of

America, 6 The Texas Medical Center, Houston, Texas, United States of America, 7 University of Alberta, Edmonton, Canada, 8 St. Vincent Medical Center, Los Angeles,

California, United States of America, 9 Scripps Center for Organ and Cell Transplantation, Scripps Health, La Jolla, California, United States of America, 10 Glickman

Urological Institute, The Cleveland Clinic, Cleveland, Ohio, United States of America

Abstract

Background: Despite significant improvements in life expectancy of kidney transplant patients due to advances in surgery
and immunosuppression, Chronic Allograft Nephropathy (CAN) remains a daunting problem. A complex network of cellular
mechanisms in both graft and peripheral immune compartments complicates the non-invasive diagnosis of CAN, which still
requires biopsy histology. This is compounded by non-immunological factors contributing to graft injury. There is a pressing
need to identify and validate minimally invasive biomarkers for CAN to serve as early predictors of graft loss and as metrics
for managing long-term immunosuppression.

Methods: We used DNA microarrays, tandem mass spectroscopy proteomics and bioinformatics to identify genomic and
proteomic markers of mild and moderate/severe CAN in peripheral blood of two distinct cohorts (n = 77 total) of kidney
transplant patients with biopsy-documented histology.

Findings: Gene expression profiles reveal over 2400 genes for mild CAN, and over 700 for moderate/severe CAN. A
consensus analysis reveals 393 (mild) and 63 (moderate/severe) final candidates as CAN markers with predictive accuracy of
80% (mild) and 92% (moderate/severe). Proteomic profiles show over 500 candidates each, for both stages of CAN including
302 proteins unique to mild and 509 unique to moderate/severe CAN.

Conclusions: This study identifies several unique signatures of transcript and protein biomarkers with high predictive
accuracies for mild and moderate/severe CAN, the most common cause of late allograft failure. These biomarkers are the
necessary first step to a proteogenomic classification of CAN based on peripheral blood profiling and will be the targets of a
prospective clinical validation study.
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Introduction

Kidney transplantation offers a significant improvement in life

expectancy and quality of life for patients with end stage renal

disease[1]. Unfortunately, a chronic, progressive allograft dys-

function of uncertain etiology continues to be a primary cause of

graft loss[2,3]. There has been some evolution of terminology to

better describe the histological basis of this chronic, progressive

nephropathy, commonly referred to as chronic allograft nephrop-

athy (CAN) and more recently as interstitial fibrosis and tubular

atrophy (IF/TA)[4–6]. Immunologic factors linked to IF/TA are

acute, sub-clinical and chronic rejection, HLA mismatching and

circulating donor-specific anti-HLA antibodies[7,8]. Non-immu-

nologic factors include hypertension, chronic toxicity of calci-

neurin inhibitors, hyperfiltration and diabetes mellitus[9–12]. The

unifying mechanism is thought to be a progressive cycle of vascular

and tissue injury, incomplete repair, compensatory hypertrophy,

progressive interstitial fibrosis and nephron loss[13]. In the present
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paper, we will use the term CAN to refer to biopsy-documented

and graded IF/TA in the absence of any other known cause[14].

As early as two years post kidney transplant, protocol biopsies

have shown that more than 50% of recipients have mild

CAN[2,15,16] and by 10 years over 50% of kidney transplant

recipients have severe CAN that is associated with diminishing

graft function[2]. Traditional kidney function measurements like

serum creatinine and glomerular filtration rates used to predict

CAN have poor predictive values[17] and a diagnosis requires a

transplant biopsy[18,19]. While critical to examine structural

changes prior to graft loss, predicting graft outcomes strictly based

on the kidney biopsy is difficult and this invasive procedure has

significant costs and risks for patients. Thus, there is a pressing

medical need to identify minimally invasive biomarkers that are

able to identify early stages of CAN at a time that changes in

therapy may alter outcomes.

Rapidly evolving technologies for genomics have created new

opportunities to develop minimally invasive biomarkers. Recent

studies, including our own, have identified genes that are

differentially expressed at the mRNA level in kidney biopsies in

the presence of CAN[16,20,21]. The limitation of these studies is

that they require an invasive transplant biopsy. Others have

successfully sampled urine and peripheral blood using RT-qPCR

or proteomics to identify small numbers of potential biomarkers

for CAN, though none are validated for clinical use[22,23]. Here

we report a set of unique gene and protein expression-based

signatures for CAN measured in the peripheral blood that directly

addresses the critical medical need for a set of minimally invasive

biomarkers for this devastating and common complication of

kidney transplantation. These signatures have a predictive

accuracy of 80% for mild CAN and 92% for moderate/severe

CAN. This is the first study using whole genome DNA

microarrays and tandem mass spectrometry proteomics to

successfully apply proteogenomics of peripheral blood to clinical

transplantation.

Materials and Methods

Patient Populations
Test Set 1 comprised 42 kidney transplant patients randomized

to either cyclosporine or de novo rapamycin at the Cleveland

Clinic, whose clinical courses have been previously, described

[15,16,24]. Density gradient-purified peripheral blood lympho-

cytes (PBL) were collected at the time of protocol two-year

biopsies. Test Set 2 comprised 35 patients from 3 clinical centers

(St. Vincent’s Medical Center, Scripps Clinic, and Cleveland

Clinic). All patients were on FK506. Whole blood was collected

directly into PaxGene Tubes (PreAnalytix) at the time of biopsies

for suspected CAN or protocol one-year biopsies. All the studies in

this manuscript were covered by Human Subjects Research

Protocols approved by each Center’s Institutional Review Board

and by the IRB of The Scripps Research Institute as the parent

institution. Informed consent was obtained from all study subjects

in the study.

Pathology
Banff IF/TA grades based on tubulointerstitial features were

determined for all patients by kidney biopsies: grade 0 (no

evidence CAN), 1 (mild CAN), and 2 (moderate CAN) and 3

(severe CAN). We merged patients with Banff 2 and Banff 3 IF/

TA to increase numbers. Diagnosis was done first by local

pathologists and reviewed in a blinded fashion by Drs. Kim Solez

(Set 1) and Lillian Gaber (Set 2). C4d staining was only available in

the more recently acquired Test Set 2.

Gene expression profiling and analysis
RNA was extracted from Test Set 1 using Trizol (Invitrogen)

and in Test Set 2 using Paxgene Blood RNA system (PreAnalytix)

and globin transcripts were reduced using GlobinClear (Ambion).

Biotinylated cRNA was prepared using Ambion MessageAmp

Biotin II (Ambion) and hybridized to Affymetrix Human Genome

U133 Plus 2.0 GeneChips. Normalized signals that were generated

using a quantile normalization strategy (RMAExpress[25]) were

used for class comparisons (ANOVA) and class predictions (BRB

Array Tools; http://linus.nci.nih.gov/BRB-ArrayTools.html). We

chose the Diagonal Linear Discriminant Analysis (DLDA) method

for class predictions, which is based on maximum likelihood

discriminant rules that give consistently good results with our data

set and others[26]. Receiver Operating Characteristics (ROC)

analysis was done using JROCFIT (http://www.rad.jhmi.edu/

jeng/javarad/roc/JROCFITi.html). Heatmaps were generated

using Cluster and Treeview[27] and functional analysis was

performed using Gene Ontology (GO) (http://www.geneontology.

org/) and Ingenuity Pathway Analysis (IPA). Consensus analysis

was designed to identify true classifiers in the two independently

collected data sets. Variability between the two test sets within

each class (i.e. Banff 1/Test Set 1 vs. Banff 1/Test Set 2) was

eliminated by removing all genes with a Student’s t-test p-value of

,0.05 after which the remaining genes were used to identify

consensus candidates by class comparisons. All differentially

expressed gene lists are shown in Supplementary Data Tables

S1, S2, S3, S4, S5, S6. All the microarray data for this study is

available for review at the private GEO accession site http://

www.ncbi.nlm.nih.gov/geo/query/acc.cgi?token = vbgvzkwugg-

qiqpy&acc = GSE12187.

Shotgun LC/MS/MS proteomics
All protein samples were prepared from density gradient-

purified PBL. Individual patient samples were pooled within each

Test Set (3 samples/pool) based on Banff classifications and pools

were run in triplicates. Total protein was proteolytically digested

with trypsin and samples run using Multidimensional Protein

Identification Tool (MudPIT) protocol as previously described[28]

using an LTQ XL mass spectrometer (ThermoFisher). Raw data

were searched against the EBI-IPI_human_12_01_2006 database

supplemented with a decoy database where each entry of the

original protein contains its reversed sequence. Database searching

used SEQUEST (v27)[29] and outcomes were filtered using

DTASelect[30]. Relative quantifications were done using spectral

counts normalized to the median of the total spectral counts[31].

Pair-wise comparisons between CAN biopsy classes were done by

differentially expressed proteins (Student’s t-test, p#0.05) and as

all-or-none/unique events.

Results

Study Population
Recipients in both Test Sets were sex and age matched (Table 1).

The only significant differences in Test Set 1 were Donor age

between Banff 0 and Banff 1 groups. In Test Set 2 there were

significant differences in induction therapy between Banff 0 and

Banff 1 and between Banff 0 and the Banff 2,3; time to biopsy

between Banff 0 and Banff 1 and between Banff 0 and the Banff

2,3; and steroid use between Banff 0 and Banff 1 and between

Banff 0 and Banff 2,3. Only the Banff 2,3 group in Test Set 2 had

a significantly higher serum creatinine compared to the Banff 0,

thus, renal function levels per se were not a major determinant of

the gene profiles. The higher creatinine levels in the Banff 2,3

group of Test Set 2 most likely reflect the fact that this group was
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‘‘biopsy for cause’’, while Test Set 1 were all protocol biopsies

done regardless of any renal function change. However, by design,

the two Test Sets differed significantly in recipient age, HLA

mismatch, induction therapy, clinical center, immunosuppression,

serum creatinines, and time to biopsy.

Gene expression profiling of mild CAN
We performed ANOVA-based class comparisons between

Banff 0 (no histological evidence of CAN) and Banff 1 (mild

CAN). At p-values ,0.005, 1066 genes (1307 probe sets) were

differentially expressed. Annotation of function by Gene

Ontology (GO) shows 8 categories comprised of .25 genes

each (Figure 1A) including 58 genes linked to immunity and

inflammation. IPA shows that these 1066 genes fall into 27

networks with .15 genes per network (Supplementary Data

Table S7). The top network was immune response and two

additional networks in the top 10 were also immune response

with 27 and 22 focus genes, respectively. The top canonical

pathway was Toll-like Receptor Signaling followed by SAPK/

JNK, Apoptosis, Notch and Death Receptor and Interferon

Signaling. Finding 1066 significantly differentially expressed

genes is a first indication that PBL transcript profiling is

capable of classifying subjects defined by CAN biopsy

histology. Class prediction using DLDA demonstrates 90%

mean correct classification[32,33]. Supervised hierarchical

clustering shows misclassification of only 2 samples (Supple-

mentary Figure S1).

Based on gene expression profiles of the whole blood samples in

Test Set 2, there were 1429 genes (1591 probe sets) differentially

expressed at p-values ,0.005. GO annotation of gene functions

revealed the same groups as PBL including 50 immune response

genes (Figure 1B). IPA reveals 30 networks with $15 genes per

network (Supplementary Data Table S8). The top canonical

pathways were: B Cell Receptor, Toll-like Receptor, Death

Receptor, Chemokine, Glucocorticoid Receptor, and IL-4 Sig-

naling. DLDA demonstrates 88% mean correct classification.

Supervised hierarchical clustering shows misclassification of only 1

sample (Supplementary Figure S2).

A consensus analysis for Banff 0 vs. Banff 1 was performed with

these two independently collected data sets by a class comparison

at p-values ,0.005 and identified 393 genes (424 probe sets)

significantly differentially expressed in both data sets. This

‘‘consensus’’ gene list represents the intersection of these two

significantly different test sets classifying mild CAN by blood

transcription profiling. We then combined all the samples of both

Test Sets (n = 55) and performed class predictions using the top 50

differentially expressed, consensus genes ranked by p values to

obtain a class prediction accuracy of 80% depicted as a ROC

curve (Figure 2A). Figure 2B shows the heat map classifying Banff

0 vs. Banff 1 using the 50 genes. The importance of the heat map

display is that it provides the reader a clear look at the consistency

of gene expression changes in all the samples studied for both test

sets. It is clear that there are large ‘‘blocks’’ of up- or down-

regulated genes that classify the Banff 0 vs. Banff 1 (mild CAN).

However, it is also evident why signatures of multiple genes are

necessary to achieve high class predictive accuracies in heterog-

enous clinical populations that are the reality of transplantation

medicine. A logical question is how many genes are actually

necessary for a robust diagnostic? We took the top 10 and top 3

genes from our consensus set for mild CAN and performed class

prediction using the DLDA method. The top 10 had a predictive

accuracy of 80%, sensitivity of 85% and specificity of 77%,

whereas the top 3 genes had a predictive accuracy of 80%,

sensitivity of 74% and specificity of 86%.

Gene expression profiling of moderate/severe CAN
Class comparisons between Banff 0 and Banff 2,3 identified

genes differentially expressed between patients without CAN and

those with moderate to severe CAN. In Test Set 1, 172 genes were

differentially expressed (p,0.005) and classified the samples by

DLDA with 78% accuracy. In Test Set 2 there were 545

differentially expressed genes. DLDA classified 95% of the samples

accurately. Functional annotation by Gene Ontology (GO) is

shown in Figure 3. A consensus analysis was done as already

described to yield 62 differentially expressed genes (p,0.005)

shared for both Test Sets of moderate/severe CAN (n = 49). The

ROC curve for the top 50 genes from this consensus gene set

shows a class prediction accuracy of 92% (Figure 4A). Figure 4B

shows the Banff 0 vs. Banff 2,3 heat map using these 50 consensus

genes. An attempt to make the same predictions with only the top

10 or top 3 ranked genes was not possible using DLDA for

moderate/severe CAN.

Proteomic expression of mild and moderate/severe CAN
To investigate using proteomics to define blood cell biomarkers

for CAN, we performed shotgun tandem mass spectrometry. All

samples represented purified PBL obtained at the same time as

biopsies. We did not use the whole blood samples from Test Set 2

because high quality protein preparations cannot be obtained from

PaxGene tubes. Differential protein expression was performed

using a relative quantification strategy based on normalized

spectral counts[31].

We identified 206 differentially expressed proteins (p,0.05) for

Banff 0 vs. Banff 1 (mild CAN). In addition, we identified 135

proteins unique to Banff 0 and 167 proteins unique to Banff 1.

Class comparisons for Banff 0 vs. Banff 2,3 (moderate/severe

CAN) yielded 282 differentially expressed proteins (p,0.05) and

509 proteins unique to Banff 2,3. We found 95 proteins

differentially expressed in mild and moderate/severe CAN as

compared to Banff 0, representing candidate protein markers for

any stage of CAN. In parallel, 94 proteins were differentially

expressed only in mild CAN and these were linked to cell death,

cell signaling, and post-translational protein modifications. The

168 proteins differentially expressed only in moderate/severe

CAN were linked to cellular morphology, growth and proliferation

and signaling via ERK/MAPK, acute phase responses, IGF1 and

PPARa/RXRa.

There were 135 proteins unique to mild CAN and 322 proteins

unique to moderate/severe CAN. Both mild and moderate/severe

CAN had immune and inflammation related proteins (20 and 37,

respectively) but many of these proteins are not mapped to the

same functional pathways (e.g. calcium signaling in mild CAN and

apoptosis, NK cell and PTEN signaling for moderate/severe

CAN). In other cases, such as signaling via T and B cell receptors,

IL4 and JAK/STAT, the same canonical pathways were found

but different unique proteins were identified.

Using only the differentially expressed proteins, DLDA

obtained a 64% mean correct classification of mild CAN and an

83% correct classification for moderate/severe CAN. In contrast,

the unique proteins identified only in the blood of patients with

biopsy-documented mild (n = 135) or moderate/severe CAN

(n = 322), represent candidate biomarkers with a 100% class

prediction value in this data set.

We compiled the matches between proteins identified by mass

spectrometry and mRNA transcripts identified using microarrays.

The premise is that protein/transcript matches are a form of

candidate biomarker validation based on two independent

technologies. There were 11 matches for the 393 consensus genes

for mild CAN, 32 matches for the 1066 genes for mild CAN in

Blood Biomarkers for CAN/IFTA
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Figure 1. Pie charts showing the Gene Ontology annotations for both Test Sets for Banff 0 vs. Banff 1 (mild CAN). Each slice of the pie
chart represents the percentage of genes represented by that functional class. A) Test Set 1 (PBL) for Banff 0 vs. Banff 1; B) Test Set 2 (Whole Blood) for
Banff 0 vs. Banff 1. The first key point is that there is no difference in the general groups of differentially expressed, functional genes assigned in an
unbiased fashion by analysis using Gene Ontology whether we are interrogating the profiles of PBL or whole blood. The second key point is that
there are a number of genes representing different pathways connected to immune/inflammatory and tissue injury mechanisms.
doi:10.1371/journal.pone.0006212.g001
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Figure 2. Class prediction analysis of Banff 0 vs. Banff 1 (mild CAN) based on Diagonal Linear Discriminant Analysis for the top 50
Banff 0 vs. Banff 1 consensus genes ranked by p values. A) depicts the Receiver Operating Characteristic (ROC) curves and provides the
Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV); B) depicts the heat map classifying Banff 0 vs. Banff 1 using
the top 50 consensus genes where (red) is up-regulated and (green) is down-regulated.
doi:10.1371/journal.pone.0006212.g002

Blood Biomarkers for CAN/IFTA

PLoS ONE | www.plosone.org 6 July 2009 | Volume 4 | Issue 7 | e6212



Test Set 1 and 40 matches for the 1429 genes for mild CAN in

Test Set 2. There were no matches for the 62 consensus genes for

moderate/severe CAN but 9 matches in the 172 genes for

moderate/severe CAN in Test Set 1 and 9 matches in the 545

genes for moderate/severe CAN in Test Set 2. All protein/

transcript matches are listed in Supplementary Data Table S9.

Figure 3. Pie charts showing the Gene Ontology annotations for both Test Sets for Banff 0 vs. Banff 2,3 (moderate to severe CAN).
Each slice of the pie chart represents the percentage of genes represented by that functional class. A) Test Set 1 (PBL) for Banff 0 vs. Banff 2,3; B) Test
Set 2 (Whole Blood) for Banff 0 vs. Banff 2,3. The first key point is that there is no difference in the general groups of differentially expressed,
functional genes assigned in an unbiased fashion by analysis using Gene Ontology whether we are interrogating the profiles of PBL or whole blood
(as was true for the Banff 0 vs. Banff 1 comparisons shown in Figure 1). The second key point is that the number of differentially expressed immune/
inflammatory genes is significantly less than observed in mild CAN with many more genes linked to metabolic and other pathways consistent with
the hypothesis that early stages of CAN are driven by immune/inflammatory mechanisms and tissue injury but later stages reflect slowly progressive
renal dysfunction and fibrosis.
doi:10.1371/journal.pone.0006212.g003
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Figure 4. Class prediction analysis of Banff 0 vs. Banff 2,3 (moderate to severe CAN) based on Diagonal Linear Discriminant
Analysis for the top 50 Banff 0 vs. Banff 2,3 consensus genes ranked by p values. A) depicts the Receiver Operating Characteristic (ROC)
curves and provides the Sensitivity, Specificity, Positive Predictive Value (PPV) and Negative Predictive Value (NPV); B) depicts the heat map classifying
Banff 0 vs. Banff 2,3 using the top 50 consensus genes where (red) is up-regulated and (green) is down-regulated.
doi:10.1371/journal.pone.0006212.g004
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Discussion

The primary objective of this study was the discovery of

biomarkers in the peripheral blood of kidney transplant patients

with biopsy-documented interstitial fibrosis and tubular atrophy

(IF/TA) and no known cause, which we refer to here as Chronic

Allograft Nephropathy (CAN)[14]. To this end, we purposely

integrated the results of two, independently collected sets of patient

samples that were significantly different in multiple clinical

elements. Thus, the selection of biomarker candidates is not

significantly influenced by the time of biopsy (ranging from 1 to 6

years post-transplant), the specific immunosuppressive protocols

(use of different calcineurin inhibitors vs. sirolimus) or the

technology used to purify the mRNA transcripts (density

gradient-separated cells vs. whole blood). This experimental

design was chosen for its advantages in defining a consensus set

of robust candidate biomarkers for CAN suitable for clinical use.

We acknowledge that it is likely that using more closely matched

sets of patient samples, for example, patients only 2 years post-

transplant or only one source of blood cell RNA such as the

PaxGene tubes, would result in higher total numbers of

differentially expressed candidate mRNA transcripts and proteins.

We remind the reader again that our use of PBL-derived RNA in

Test Set 1 reflected the best approach possible at a time before

whole blood RNA analysis using the PaxGene technology was

possible. However, despite these limitations, our predictions of

correct classifications for CAN based on the consensus mRNA

candidates described here for these otherwise very heterogeneous

clinical data sets are 80% for mild CAN and 92% for moderate/

severe CAN. In this context, the widely used prostate specific

antigen (PSA) biomarker, tested in an equally heterogenous

human population, was originally introduced with a predictive

value of 28–35%[34] based on the rationale that there was no

other minimally invasive option for early detection of prostate

cancer at that time, which is true for CAN today.

There are two critical questions for the design of the next study

as a prospective serial blood monitoring trial. First, we are almost

certain that restricting the analysis to whole blood samples

obtained using the PaxGene system will significantly increase the

number of consensus genes in any two test set comparison that is

done. However, while some will demand that the next study use

more standardized selection criteria for subjects (for example,

identical immunosuppressive therapy), for detailed biopsy histol-

ogy (for example, identical grades of IFTA based on the Banff

schema) and a single time point post transplant for the biopsy

evaluations, our view is that the reality of current clinical practice

is remarkably diverse and that is not going to change. In a clinical

situation, the best biomarker signature is the one least dependent

for classification accuracy on any kind of homogenous selection

criteria. What would be the general value of a set of biomarkers

that were only useful at exactly two years post-transplant or only

applicable to patients with a single grade of IFTA on the biopsy?

In that context, we believe that the current experimental design,

encompassing so much of the diversity currently present in clinical

transplantation practice in the US, is actually the best design for

biomarker discovery.

A question that cannot be answered yet is how many

biomarkers are necessary to insure a robust diagnostic test. Our

results here indicate that whole genome profiling is certainly not

necessary as we obtain very reasonable predictive accuracy,

sensitivity and specificity with 150, 100 and 50 total genes per

signature. There are now several technology platforms perfectly

suitable for point of clinical service implementation that can

measure 100 genes or more cost effectively and within hours. It

may also be possible to do such testing with even fewer genes but

we suspect that the complexity of transplant populations and

clinical phenotypes will frustrate efforts to reduce the testing

signature to such a minimal set. As for application to clinical

practice, we propose that the model will be serial, prospective

measurements of the signature at regular intervals for the life of the

kidney transplant. The absence of a positive CAN/IFTA signature

at any point in time will indicate adequate immunosuppression or

over-immunosuppression. Careful reductions in immunosuppres-

sive drug doses could then be used with repeat monitoring of the

signature to establish the optimal drug combination and level for

each patient to prevent CAN/IFTA and insure the long term

safety of the therapy.

Biomarker discovery has been done successfully using

peripheral blood profiling for acute rejection in heart transplan-

tation[35,36]. Peripheral blood studies of kidney transplant

patients with ‘‘operational tolerance’’ included 22 patients with

biopsy-documented chronic rejection[37]. Two of the genes

(DPYD, IRS2) reported to distinguish ‘‘operational tolerance’’

are identified in our consensus sets. Our earlier study of 42

kidney biopsies showed that gene expression profiles of CAN

had significant up-regulation of immune/inflammation, fibrosis

and tissue remodeling genes[16]. However, only 5 genes from

these CAN biopsies were identified in the current peripheral

blood consensus sets. A study of 11 CAN biopsies identified 3

genes linked to immunity and fibrosis that were tested by

quantitative PCR in urine and peripheral blood with good

correlations in urine but none in peripheral blood[38]. In our

study of acute rejection, candidate mRNA transcripts were

identified in both biopsies and peripheral blood, but with no

overlap[24]. Therefore, candidate gene biomarkers identified in

peripheral blood appear to be distinct from those identified in

tissue. It is not our position that gene expression profiling of the

biopsy is not useful but rather that the biopsy and the peripheral

blood are very different compartments and simple comparisons

of the two are not informative.

Urine based proteomics have been used to identify biomarkers

for acute rejection using SELDI-TOF mass spectroscopy[23,39]

but to our knowledge this is the first study to identify blood cell-

based proteomic markers for transplantation using tandem mass

spectroscopy. We have identified several hundred proteins that are

significantly differentially expressed in peripheral blood of patients

with CAN as a function of histology grade, mild to moderate/

severe. However, the group of uniquely identified proteins

potentially represents the highest value biomarker candidates

though this will require validation in another independent set of

samples. Integrating proteomics with gene expression, we

identified over 80 protein/transcript matches for CAN providing

candidate validation based on two independent technologies. On

the other hand, using the differentially expressed protein and

transcript matches did not significantly improve the classifications

obtained with the consensus gene expression set alone (data not

shown). It is important to note that in such complex clinical

samples that we can interrogate greater than 80% of the cell’s

transcriptome but only about 10% of the proteome. However,

technologies to increase the capability of tandem mass spectrom-

etry proteomics to identify and quantify candidates are rapidly

evolving and other technologies such as antibody arrays and

fluorescent bead assays are also potential platforms for clinical

implementations. Moreover, as already noted, the potential of the

uniquely expressed proteins identified for mild CAN (n = 135) and

moderate/severe CAN (n = 322) are to be 100% diagnostic of the

graft histology. Testing these predictions in the next study will be

of critical importance.
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We purposefully did not make any effort in this study to

compare the results of the gene expression profiles of the

transplant biopsies that were all done in parallel with the

peripheral blood gene expression profiling. The objective of this

work was to prove the hypothesis that proteogenomic profiling of

peripheral blood could yield a set of minimally invasive biomarkers

capable of diagnosing the presence and severity of CAN with high

confidence and without the necessity of an invasive kidney biopsy.

While we understand the mechanistic importance of understand-

ing the gene and protein changes in the kidney that occur with

progression of CAN, this is an entirely separate question and will

be the subject of another manuscript. The central challenge

addressed in the present study was the fidelity of proteogenomic

profiling of the blood compartment. In fact, we propose that the

peripheral blood represents a fully functional and distinct

compartment of the immune system that actively serves to traffic

and modulate all the components of effector immunity. While

clearly the tissue injury that causes the progression of CAN is

occurring in the kidney, we believe that a significant determinant

of the phenotype of the host immune response, either acceptance

of the graft or chronic rejection, is actually established and

subsequently regulated within the peripheral blood compartment,

lymph nodes and spleen.

Finally, it is important to emphasize that it was not evident to

anyone in transplantation at the beginning of our study that there

would be a molecular signature in peripheral blood cell mRNA or

cellular proteins for the chronically progressive kidney transplant

dysfunction referred to by the term CAN/IFTA. We recognized

the complications in the genetic and clinical diversity of transplant

patients, multiple clinical centers, the cellular complexity of

peripheral blood, and the impact of factors such as immunosup-

pression, environment and time post-transplant. Nonetheless, we

have discovered several hundred mRNA and proteomic biomark-

ers in peripheral blood defining unique proteogenomic signatures

and demonstrated correlations with histologically mild (80% class

prediction accuracy for top 50 gene candidates) and moderate/

severe CAN (92% class prediction accuracy for top 50 gene

candidates). Thus, this study represents a clear proof of concept for

the use of peripheral blood biomarkers as diagnostic tools for

clinical transplantation and specifically, for CAN.

We are not concluding that our current gene sets are the

optimal final candidates for clinical implementation, due to the

technical limitations discussed above created by using PBL vs.

whole blood assays. However, we do conclude that our results are

the basis for the next critical step, a prospective clinical trial in

kidney transplantation with serial blood monitoring and genome-

wide gene expression and proteomic profiling. Another key point

is that the design of the present study was all based on profiling

subjects with biopsy-proven CAN and that was the correct design

for a biomarker discovery program and an initial validation. Thus,

the evidence presented supports the conclusion that these

candidate genes are diagnostic. On the other hand, the point of

doing the serial monitoring study next with clinical and biopsy-

confirmed transplant outcomes will be to test the hypothesis that

peripheral blood gene expression profiling is also capable of

predicting the development of CAN. The importance of this next

step is that if these biomarker panels are proven to be as predictive

as they are now diagnostic, then the logical next question will be

whether we can use these gene expression signatures to manage

and optimize the efficacy and safety of immunosuppression for

patients on an individual basis. This will introduce personalized

medicine to kidney transplantation.
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