
Hindawi Publishing Corporation
Disease Markers
Volume 35 (2013), Issue 1, Pages 43–54
http://dx.doi.org/10.1155/2013/835876

Review Article

Biomarkers in Posttraumatic Stress Disorder: Overview and
Implications for Future Research

Ulrike Schmidt, Sebastian F. Kaltwasser, and Carsten T. Wotjak

Max Planck Institute of Psychiatry, Kraepelinstrasse 10, 80804 Munich, Germany

Correspondence should be addressed to Ulrike Schmidt; uschmidt@mpipsykl.mpg.de

Received 10 March 2013; Accepted 15 April 2013

Academic Editor: Daniel Martins-de-Souza

Copyright © 2013 Ulrike Schmidt et al.�is is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

PTSD can develop in the a�ermath of traumatic incidents like combat, sexual abuse, or life threatening accidents. Unfortunately,
there are still no biomarkers for this debilitating anxiety disorder in clinical use. Anyhow, there are numerous studies describing
potential PTSD biomarkers, some of whichmight progress to the point of practical use in the future. Here, we outline and comment
on some of the most prominent ndings on potential imaging, psychological, endocrine, and molecular PTSD biomarkers and
classify them into risk, disease, and therapy markers. Since for most of these potential PTSD markers a causal role in PTSD has
been demonstrated or at least postulated, this review also gives an overview on the current state of research on PTSD pathobiology.

1. Introduction

Traumatic stressors are existence threatening events like
accidents, combat, or sexual abuse which may lead to PTSD,
an incapacitating anxiety disease with the core symptoms
nervous hyperarousal, distressing recalls of traumatic memo-
ries, and avoidance of trauma-related cues [1].�e likelihood
of developing PTSD depends inter alia on the population
studied. For example, Kessler and colleagues reported a PTSD
lifetime prevalence of 6.8% for the United States (USA)
[2] while Maercker and coworkers found Germany’s PTSD
lifetime prevalence to bemuch lower (i.e., 2.3% [3]). Amongst
other factors, varying occurrence rates of traumatic events
and employment of di�erent diagnostic instruments con-
tribute to these international di�erences in PTSD prevalence.
In any case, most individuals do not develop PTSD or
any other trauma spectrum disorder a�er trauma exposure.
�e probability to develop PTSD depends on individual
risk and resilience factors and increases with the number
of traumatic events experienced [4] as well as with the
stress intensity of the traumatic incidents [5]. �ere is much
evidence that social factors like the extent of familiar support
[6], psychological factors such as cognitive reappraisal and
optimism [7], and biological factors like epigenetic markers
[8], single nucleotide polymorphisms (SNPs) [9], endocrine

factors [10], and neurotransmitter systems [11] modulate
PTSD susceptibility, progression of PTSD, and probably also
the response to PTSD treatment.

PTSD susceptibility biomarkers would be especially use-
ful for prevention in professions at high risk for trauma
exposure like combat soldiers and reghters. Ideally, PTSD
susceptibility markers should identify individuals at high risk
for PTSD in order to prevent them from being exposed
(primary prevention) or, if exposure already happened, to
care for a timely initiation of a preventive therapy before
manifestation of PTSD symptoms (secondary prevention).

A biomarker is dened as a process, substance, or struc-
ture that can be measured in the body or its products in
order to analyze the risk to develop a certain disease, to
diagnose a disease, to assess disease progress and prognosis,
to predict the outcome of various treatment options before
their application, or to determine treatment e�cacy [12]. Like
any biomarker, also PTSD biomarkers should fulll certain
requirements in terms of reliability (i.e., they have to be
robust enough to be inert to repetitive testing and slight
variations in analysis procedures), speci�city (i.e., they have
to have discriminatory power among di�erent disorders),
and cost e�cacy (e.g., particular imaging tools are too cost
intensive to be employed for high throughput identication
of susceptibility markers). An overview of the di�erent
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Figure 1: Schematic overview of PTSD biomarkers. Note that none of them is in clinical use.�emost promising candidates are summarized
in the Conclusion section.

categories of PTSD biomarkers is given in Figure 1. �e term
biomarker, as used in this paper, is neutral in that it neither
indicates nor precludes a causal involvement in disease and
therapy processes. If causality has been established, we talk
about factors (e.g., arteriosclerosis represents a risk factor for
stroke).

PTSD biomarkers outlined in this review comprise imag-
ing, psychological, endocrine, and molecular biomarkers.
�e latter can be assessed on di�erent molecular levels,
namely, on the genetic level (DNA/SNP biomarkers), the
gene expression level (RNA biomarkers), the level of pro-
teins (peptide and protein biomarkers), and the level of
the epigenome which programs the activity of our genome
by several mechanisms, namely, DNA methylation, histone
modications, and RNA interference (epigenetic biomark-
ers). Imaging biomarkers are in general assessed by structural
(i.e., magnetic resonance imaging, (MRI)), functional (i.e.,
functional MRI (fMRI)), single photon emission computed
tomography (SPECT) or positron emission tomography
(PET)), or metabolic (i.e., magnetic resonance spectroscopy
(MRS)) methods.

PTSD therapy could be considerably improved: rst, by
the use of PTSD disease markers accelerating the diagnostic
procedure, second, by biomarkers predicting the success of
di�erent therapeutic strategies before their application, and
third, by markers allowing to monitor the course of therapy
(Figure 1). Unfortunately, to date, there are still no generally
accepted PTSD biomarkers in clinical use. �e same applies
to any other psychiatric disorder except for dementia for
which several markers are in routine diagnostic use. Hence,

all the PTSD biomarkers outlined in this review are potential
PTSD biomarkers. With the aim of supporting the develop-
ment of PTSD biomarkers, this review outlines the current
state of research on biomarkers for PTSD susceptibility, PTSD
diagnosis, and PTSD therapy by summarizing some of the
most important ndings.

Besides facilitating the diagnostic, therapeutic, and risk
evaluation procedure, the identication of PTSD biomarkers
promotes the elucidation of PTSD pathobiology and thereby
possibly also the development of novel PTSD treatment
options. �ere is currently no psychodrug that tackles PTSD
core symptoms. PTSD patients would inter alia prot from
a drug enhancing the e�ect of the stressful but essential
exposure phase of PTSD psychotherapy. Currently, serotonin
reuptake inhibitor (SSRI) antidepressants are considered as
the gold standard of PTSD drug therapy. However, treatment
results are disappointing since only 20–30% of SSRI-treated
PTSD patients reach full remission [13].

While searching for PTSD biomarkers, we should rec-
ognize the fact that the majority of people confronted with
a traumatic event does not develop PTSD. Hence it might
be similarly important to identify resilience markers [11,
14, 15], especially since resilience and vulnerability may
represent extremes of the same dimension (e.g., low versus
high expression levels of a distinct gene product). However,
biomarkers of vulnerability and resilience may also originate
from di�erent dimensions with possible mutual interactions.

Most importantly, as PTSD is a heterogeneous diagnostic
construct, a pathobiological feature common to all its di�er-
ent symptoms must not necessarily exist. Hence, searching
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for biomarkers for each of the three di�erent PTSD symptom
clusters would probably be a more reasonable and promising
endeavor than searching for biomarkers re�ecting the entire
PTSD syndrome.

2. Biomarkers of PTSD Susceptibility

Susceptibility biomarkers, also termed as vulnerability
biomarkers, comprise primary risk (and resilience) markers
(Figure 1). Ideally, to search for PTSD susceptibility markers,
pre/post assessments of individuals at high risk for trauma
exposure, like for instance combat soldiers, should be
implemented. Within the Dutch Armed Forces, a research
group working with the University Medical Center Utrecht
used such a longitudinal approach and searched for PTSD
risk and resilience markers by comparing trauma-exposed
Dutch soldiers with PTSD to those without PTSD and to
healthy individuals without prior trauma exposure. �eir
analyses revealed that an elevated sensitivity of leukocytes
for glucocorticoids and a high number of glucocorticoid
receptors (GR) in peripheral blood monocytes prior to
deployment predicted PTSD development [16, 17]. Moreover,
low mRNA levels of the GR-inhibitor FK506 binding
protein 5 (FKBP51) and high glucocorticoid-induced leucine
zipper (GILZ) mRNA expression levels were independently
associated with an increased risk for a high expression
of postdeployment PTSD symptoms [18]. In addition,
predeployment GR number predicted the increase in
amygdala activity of healthy soldiers a�er deployment [19].
Hence, molecular regulators of the hypothalamus-pituitary
adrenal (HPA)-axis activity, especially the GR and associated
molecules, seem to predict individual PTSD susceptibility,
at least in military cohorts. �is conclusion is in line, rst,
with a trial showing that corticotropin-releasing hormone
type 1 receptor gene (CRHR1) variants predict onset and
course of PTSD in pediatric injury patients [20] and, second,
with the results of a cross-sectional genetic candidate gene
study in a US civilian cohort that revealed four SNPs of the
FKBP5 gene to interact with the severity of child abuse as a
predictor of adult PTSD symptoms [21]. Interestingly, it was
recently discovered that one of the SNPs in FKBP5 increases
the risk of developing stress-related psychiatric disorders in
adulthood by allele-specic, childhood trauma-dependent
DNA demethylation in functional glucocorticoid response
elements of FKBP5 [22]. �is demethylation was found
to be linked to increased stress-dependent FKBP5 gene
transcription associated with a long-term dysregulation
of the stress hormone system and an elevated risk for
developing stress-related psychiatric disorders like PTSD
[22]. �us, molecular constellations underlying gene x
environment interactions indicate (as risk markers), if not
contribute to (as risk factors), PTSD susceptibility in humans.
Additional support for this well-grounded supposition arises
from studies reporting that the low expression variant of the
serotonin transporter gene increases the risk to developPTSD
under conditions of high stress (hurricane exposure) and low
social support but not under low stress conditions [23, 24].
�at DNA methylation marks convey PTSD susceptibility
is also alluded by a pre/post deployment study in a cohort

of US military service members which revealed that the
genomic repetitive elements LINE-1 andAlu are di�erentially
methylated in predeployment samples of individualswith and
without postdeployment PTSD [25]. Genetic polymorphisms
associated with di�erences in PTSD susceptibility relate,
besides FKBP5, inter alia to the catechol-O-methyltransferase
(COMT) gene, the dopamine transporter and the dopamine
receptor genes (for review see [11]).

Besides these molecular PTSD susceptibility markers,
nonmolecular PTSD susceptibility markers have been postu-
lated. For instance, in Dutch combat soldiers, predeployment
nightmares were found to be associated with elevated PTSD
susceptibility [26]. �e authors suggest that nightmares are
related to hampered fear extinction memory consolidation,
which has been associated with REM sleep. Moreover, poor
cognitive abilities have been o�en suggested as an impor-
tant risk marker for PTSD development [27–30]. �e same
applies to the extent of pretrauma arousal which can be
measured inter alia by fear-potentiated startle responses [31].
However, there is no general consensus in the literature
about the validity of startle/arousal responses to sudden loud
tones as risk markers of PTSD [32]. �e situation might
be di�erent for other triggers of fear responses, as alluded
by a trial using inhalation of CO2 provocation stimulus
[33]. We suppose that the validity of fear responses as risk
markers of PTSD seems to critically depend on the mode
of provocation. Moreover, increased vulnerability to PTSD
was repeatedly observed in individuals with a history of
other mental disorders or previous trauma exposure [34].
Furthermore, the extent of the hippocampal volume prior
to trauma exposure seems to negatively correlate with PTSD
severity [35]. Furthermore, it is well accepted that gender
a�ects PTSD susceptibility. Women have an almost twice
as high prevalence for developing PTSD as men [36]. A
recent clinical study revealed that there might be a gender-
specic association between a genetic polymorphism (SNP)
of the gene coding for the neuropeptide PAC1 (a receptor
of the neuropeptide pituitary adenylate cyclase-activating
peptide (PACAP)) and individual PTSD susceptibility [37].
Intriguingly, the PAC1 polymorphism resides in a putative
estrogen response element, which may explain why this risk
marker was valid only in women. Finally, heritability has
been discussed as a PTSD vulnerability marker by some
authors [38, 39]. In fact, a recent twin study found that
heritable in�uences accounted for 46% of the variance in
PTSD [40]. Besides heritability, an elevated prevalence of
traumatic incidents may also contribute the higher PTSD
prevalence in the o�spring of PTSD patients [41].

Assessment of the individual susceptibility for developing
PTSD can be accomplished not only before (risk marker for
primary prevention or primary risk marker), but also in the
early a�ermath of the trauma (risk marker for secondary
prevention or secondary risk marker; Figure 1). Shalev and
colleagues identied a secondary risk marker for PTSD; they
found increased heart rates [42–44] to predict PTSD suscep-
tibility in the early a�ermath of a traumatic event. Analyses in
monozygotic twins discordant for combat exposure support
the applicability of heart rate changes as secondary but not as
primary risk markers [32].
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Apart from these cardiovascular parameters, there were
no other secondary risk markers reported so far, likely
because searching for such biomarkers requires a large sample
size and a prospective design. Studies aiming to identify sec-
ondary risk markers are further complicated by the existence
of di�erent subtypes of PTSD [45], especially by the delayed
onset PTSD subtype which is characterized by an above-
average length of the symptom free episode before onset of
PTSD symptoms [46].

3. PTSD Disease Markers

Disease markers comprise prognosis and diagnosis markers.
�ere are numerous studies reporting on PTSD diagnosis
markers which were identied upon analysis of themolecular
and neural underpinnings of PTSD. In this chapter, we will
brie�y introduce some of the most prominent ones.

3.1. HPA-Axis Dysregulation. �e already stated fact that
HPA-axis regulators emerged, at least in certain populations,
as PTSD susceptibility markers emphasizes the central role of
the HPA-axis in PTSD. Some studies detected elevated levels
of corticotropin-releasing hormone (CRH) in cerebrospinal
�uid (CSF) of PTSD patients [47, 48] and another study
reported that CSF CRH concentrations declined during
exposure to a trauma-related audiovisual stimulus [49].
Findings regarding cortisol levels in PTSD patients are also
inconsistent: while some authors found reduced cortisol
levels in PTSD patients [50–52], others did not conrm
these results and some of them even reported PTSD to be
associated with hypercortisolemia [47, 53, 54]. To investigate
HPA-axis responsivity in PTSD, clinical nonpharmacological
and pharmacological stress tests were conducted. Some of
these trials demonstrate that PTSD patients exhibit elevated
salivary cortisol levels in response to laboratory stressors
[55–57] while others found an enhanced plasma cortisol
suppression a�er application of low dose dexamethasone [10,
58, 59].

Overall however, the majority of studies support the
attenuation hypothesis of HPA-axis functioning in PTSD
[24, 60, 61]. Possibly, the contrasting ndings regardingHPA-
axis activity in PTSD patients result from di�erent specic
psychiatric comorbidities (such as major depression and
substance dependence disorder) and gender e�ects [24] and
might also relate to the existence of di�erent PTSD subtypes
[45]. For instance, HPA axis regulation of patients su�ering
from the dissociative subtype of PTSD [62]might be di�erent
from other PTSD subtypes. �is speculation is motivated by
an analysis of a cohort of patients su�ering from borderline
personality disorder, a psychiatric disease resembling com-
plex PTSD, which revealed that HPA-axis activity di�ered
between patients with high and low frequency of dissociative
symptoms [63]. Taken together, there is a strong need for
systematic analyses of HPA-axis function and reactivity in
large cohorts of PTSD patients to clarify the remaining
inconsistencies.

As stated in the previous chapter, HPA-axis regulating
cochaperone FKBP5 emerged as putative PTSD suscepti-
bility marker. In a small study comparing individuals with

and without PTSD in a group of Caucasians who all had
been exposed to the 9/11 attack on New York City, several
genes involved in glucocorticoid signaling were di�erentially
expressed among individuals with current PTSD: mRNA
levels of FKBP5 and the GR-inhibitor STAT5B were found to
be reduced in PTSD patients [64]. Another study, performed
in an African-American population, with baseline and post-
dexamethasone suppression cortisol levels and microarray-
assessed gene expression levels as main outcome measures,
showed that functional variants of FKBP5 polymorphisms are
associated with biologically distinct subtypes of PTSD. [65].
In summary, there is evidence for FKBP5 to constitute both
a potential PTSD susceptibility and a potential PTSD disease
marker. To test the diagnostic applicability of FKBP5 as PTSD
diseasemarker, future research needs to clarify whether alter-
ations in FKBP5 mRNA levels and/or methylation patterns
correlate with PTSD syndrome severity and whether they are
specic for PTSD patients.

3.2. Hyperdrive of the Sympathetic Adrenomedullary Sys-
tem. Numerous studies have provided convincing evidence
for the presence of sympathetic adrenomedullary system
(SAM) hyperreactivity in PTSD [24, 66] that is re�ected
inter alia in elevated urine noradrenaline levels [67] and,
at least in a PTSD subgroup without comorbid depression,
in elevated noradrenaline plasma levels [68]. It has been
hypothesized that an excessively strong adrenergic response
to the traumatic event might mediate the formation of
pathologically long-lasting traumatic memories in PTSD
[69]. Accordingly, adrenoreceptor blockers were reported
to tackle PTSD symptoms, but not all studies were able
to conrm this nding. Noradrenergic hyperdrive has been
associated with several symptoms of PTSD, inter alia with
nightmares and hyperarousal [70] and also with the PTSD-
associated enhanced startle response that is widely accepted
to mirror hyperarousal [71, 72]. While hyperarousal in the
absence of trauma-related stimuli and anxiety may re�ect a
general sensitization of the nervous system, reexperiencing
symptoms like �ashbacks and intrusions “maybe conceptual-
ized within a fear conditioning framework” [24].

3.3. Enhanced Startle Response. �e intensity of the startle
response, amotor re�ex, is probably themost robust potential
PTSD disease marker to date. As mentioned above, the sig-
nicance of startle and fear responses as PTSD risk markers
is less clear. It was shown repeatedly that elevated startle
occurs in both human PTSD patients [73–76] and rodents
su�ering from a PTSD-like syndrome [71, 77–80]. It can be
measured noninvasively, usually by assessment of the time
till onset of a re�ex motor reaction and the intensity of this
reaction in response to a loud noise, unexpected touch, or
air pu�. Besides the already mentioned causal link to SAM
hyperdrive, a larger startle response was found to be posi-
tively associated with cortisol levels and negatively associated
with the steroid hormone dehydroepiandrosterone (DHEA-
S) [81]. Interestingly, cortisol suppression by dexametha-
sone reduces exaggerated startle responses in PTSD patients
[82].
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3.4. Impairments of Cognitive Functions. A number of stud-
ies report cognitive impairments in PTSD patients which
become apparent in alterations in learning and memory
[83–85]. �ese cognitive impairments have been assigned to
frontotemporal areas exhibiting altered activity during both
the encoding and retrieval phases ofmemory processing [86].
Moreover, it was hypothesized that PTSD-associatedmemory
decits result from excessive cortisol blood levels which
probably lead to atrophy of the hippocampus [87, 88], an area
known to play a pivotal role in learning and memory [89].
Numerous studies state that PTSD patients exhibit poorer
attention andmnestic capabilities than trauma-exposed indi-
viduals without PTSD. To examine the long-term e�ects of
PTSDon cognition, additional longitudinal follow-up studies
in the elderly population are needed [90]. Taken together,
PTSDpatients exhibit several alterations in cognitive abilities,
but so far no specic “PTSD cognition biomarker” can be
extracted from the literature.

3.5. Hippocampal Volume Loss and Other Alterations of Brain
Morphology and Function. �ere are many reports on brain
region specic structural and functional alterations in PTSD
patients and PTSD animal models. In PTSD patients, a
volume reduction of the amygdala, the anterior cingulate
cortex, the prefrontal cortex, and, most prominently, the
hippocampus was described [91]. However, whereas some
studies report a decreased hippocampal volume in PTSD
patients [92–94] other studies did not replicate these ndings
[95–97]. In addition, reports on PTSD-associated lateral-
ization of hippocampal volume loss are also controversial:
while one meta-analysis reports such lateralization e�ects
[98], others found none [99, 100].�emeta-analysis byWoon
and colleagues o�ers an explanation for this controversy since
it reveals that hippocampal volume reduction seems to be
more associated with the fact of trauma exposure than with
the presence or intensity of PTSD [98]. A study comparing
hippocampal volumes of twin pairs of which only one of the
two siblings was exposed to combat and developed PTSD
alludes that hippocampal volume loss is a risk marker for
PTSD [35]. Further studies are clearly needed to clarify
whether hippocampal volume loss is a PTSD susceptibility
marker or PTSD disease marker or both.

�e molecular underpinnings of the trauma-related hip-
pocampal volume loss are still not fully understood [101].
Recent animal studies on consequences of chronic stress
imply a prominent involvement of grey matter changes
(e.g., dendritic atrophy and axon retraction; [102]). Accord-
ingly, we recently observed a reduction of both presynaptic
[103] and postsynaptic [79] proteins in the hippocampus of
traumatized mice. We found that these changes could be
prevented by chronic treatment with the SSRI-antidepressant
�uoxetine [103]. It is tempting to assume that the biochemical
and ultrastructural alterations underlying trauma-induced
hippocampal volume loss can also be assessed in vivo using
magnetic resonance spectroscopy (MRS). �is approach is
used to quantify N-acetylaspartate (NAA), a marker of
neuronal density. In line with the MRS studies, which have
consistently reported lower NAA levels in the hippocam-
pus of patients with PTSD [24, 104, 105], our imaging

studies performed in mice indicate that low NAA levels in
the hippocampus before trauma predispose the animals to
develop sustained PTSD-like symptoms [106]. �is nding
nourishes the speculation that reduction in hippocampal
NAA levels might serve not only as PTSD disease but also as
PTSD susceptibilitymarker for primary prevention in human
patients.

�e amygdala plays a crucial role in the detection of
threat, fear learning, and fear expression [24]. Meta-analyses
on the volume of the amygdala in PTSD patients revealed
inconsistent results: some authors report smaller amygdalae
volumes in PTSD patients [91] while others found no con-
sistent di�erences [107]. Functional neuroimaging studies
have reported exaggerated amygdala activation in response
to trauma-related cues [19, 24].

A recent meta-analysis of studies analyzing structural
di�erences in the brain of PTSD patients using voxel-
based morphometry, shows structural decits in gray matter
compartments overlapping with brain networks of emotion
processing, fear extinction, and emotional regulation [108].

4. Biomarkers of PTSD Therapy

PTSD therapy markers can be subdivided into stratication
and progress markers (Figure 1). Ideally, therapy stratica-
tion markers should allow prediction of response of PTSD
patients to certain therapeutic strategies thereby stratifying
the PTSD patient population into di�erent therapy responder
types [109, 110]. In contrast, therapy progress markers are
useful for monitoring the therapy response. Studies aiming
to identify PTSD therapy markers are relatively rare so far.

4.1. PTSD�erapy Progress Markers. We found three studies
which identied putative PTSD therapy progress markers.
Successful cognitive behavioral therapy was found to reduce
the activity of the right amygdala and lead to an increase
in the activity of the right anterior cingulate cortex in
PTSD patients [111]. Moreover, Pagani and colleagues found
99mTc-HMPAO uptake di�erences (indicative of alterations
in cerebral blood �ow) between responders and patients
not responding to EMDR treatment (eye movement desen-
sitization and reprocessing therapy, a trauma-focused cog-
nitive behavioral psychotherapeutic strategy). �e authors
described a trend towards normalization of tracer distribu-
tion a�er successful therapy [112]. In another study, PTSD
symptom reduction was associated with larger rostral ante-
rior cingulate (rACC volume; [113]).

4.2. PTSD �erapy Strati�cation/Prediction Markers. In the
same study, responders to cognitive behavioral therapy were
found to exhibit a larger rACC volume than nonresponders
[113]. �e same research group demonstrated that amygdala
and ventral anterior cingulate activation predicts treatment
response to cognitive behavior therapy in PTSD patients
[113]. Besides these studies which analyzed the response to
di�erent psychotherapeutical strategies, there are a few trials
searching for markers which allow for prediction of the
response of PTSD patients to drug treatment. Di�erential
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conditioned fear response was found to predict outcome of
treatment with the SNRI (serotonin noradrenalin reuptake
inhibitor) antidepressant duloxetine in male veterans suf-
fering from PTSD [114]. Recently, an association between a
serotonin transporter gene promoter-region polymorphism
and treatment response to the SSRI-antidepressant sertraline
in PTSD was reported. �e authors found the LL 5HTTLPR
(serotonin-transporter-linked polymorphic region) genotype
to be associated with greater responsiveness of PTSD to
sertraline and with lower drop out due to adverse events,
while the S allele was associated with a striking specicity
for treatment nonresponse [115]. Moreover, in chronic PTSD
patients, treatment response to escitalopram, another SSRI
antidepressant, was demonstrated to be predicted by brain
derived neurotrophic factor (BDNF) levels. Lower mean
BDNF serum levels were associated with a greater decrease
in PTSD symptoms over the course of the trial [116].
Synapsins, which we found to play a role in trauma-elicited
hippocampal volume loss in mice, as detailed above, are
known as mediators of BDNF-enhanced neurotransmitter
release [117].

Besides molecular and imaging PTSD therapy stratica-
tion/prediction markers, performance of verbal memory and
mixed-handedness were postulated to be suitable as putative
PTSD treatment response markers [118, 119].

5. Discussion

Comparison of and principal conclusions from the so far
performed studies on PTSD biomarkers are limited by di�er-
ent study designs, by varying diagnostic procedures, by the
heterogeneity of the di�erent types of traumatic events that
PTSD patients were exposed to, and by the type of controls
included. Some studies compare PTSD patients to healthy
control individuals who had never been exposed to traumatic
incidents before, others to PTSD-free but previously trauma-
exposed controls. �at choosing between these two types
of controls matters is inter alia shown by the review of
Qureshi and colleagues who reported that the strength of
the association of PTSD with cognitive impairment varied
signicantly with the control groups included in statistical
analysis [90]. Studies comparing PTSD patients to nonex-
posed healthy controls do not enable di�erentiation between
PTSD-associated biomarkers and biomarkers mirroring the
response to the traumatic experience. On the other hand,
comparisons of PTSD patients to trauma-exposed PTSD-free
controls render it di�cult to distinguish between disease-
versus resilience-related changes.

PTSD was found to be strongly associated with cardio-
vascular and pulmonary diseases [120, 121]. Confounding
factors like these comorbid internal diseases, comorbid psy-
chiatric disorders, medication, and consumption of illicit
drugs are o�en di�cult to control for—not only in PTSD
biomarker studies but in almost every clinical trial. Ideally,
for identication of PTSD biomarkers, a large group of
PTSD patients should be compared to a large group of age-
and sex-matched healthy controls who were exposed to the
same (or at least to a similar) traumatic event as the PTSD
patient cohort as well as to a matched non-exposed control

group. �ese ideal conditions are hard to achieve and are
usually approximated only by studies in military cohorts.
Since, especially for clinical routine use, biomarkers should
be applicable to thewhole population andnot only to a special
subpopulation, studies searching for PTSD biomarkers in
heterogenic civilian cohorts are strongly needed. C-reactive
protein (CRP), which is globally used as infection marker in
internal and general medicine, is an example for an almost
ideal biomarker since its elevation robustly indicates acute
systemic in�ammation and is largely independent of gender,
age, body mass index, and other individual variables [122].

So far, the search for biomarkers in PTSD and other
psychiatric diseases was performed almost exclusively by
comparison of a group of patients su�ering from the disease
studied to a healthy control group but not to groups of
patients su�ering from other psychiatric disorders. �is type
of analysis resulted inter alia in the identication of the
putative PTSD susceptibility and disease marker FKBP5 [21,
22, 64]. Besides PTSD, FKBP5 has also been reported as a
putative biomarker in mood disorders like major depression
[123–125] as well as a biomarker of nonpsychiatric disorders
like cancer [126–128]. Further studies comparing cohorts of
patients su�ering from di�erent psychiatric disorders have
to clarify whether FKBP5 is suitable as PTSD susceptibility
and/or disease biomarker or whether it is a marker for a
group of diseases associated with dysregulation of the HPA-
axis or the GR pathway.�e same specicity problem applies
to the alterations in brain region activities and brain struc-
tures which have been associated with PTSD. For instance,
hippocampal volume loss has not only been detected in PTSD
patients but also in patients su�ering from major depression
[101, 129].�is problem of biomarker specicity in the eld of
psychiatric disorders was addressed in amost recent genome-
wide association study inwhich over 30.000 patients su�ering
from ve di�erent major psychiatric disorders (i.e., atten-
tion decit-hyperactivity disorder, schizophrenia, bipolar
disorder, major depression, and autism spectrum disorder)
were analyzed in comparison to about 28.000 controls. �is
huge trial revealed that SNPs in the genes of two calcium
channel subunits, CACNA1C and CACNB2, associated not
only with one but with a range of psychiatric disorders
[130].Hence, for identication of disorder-specic and robust
PTSD susceptibility, disease, and therapy biomarkers, cohorts
of patients su�ering from di�erent psychiatric diseases have
to be included in comparative analyses.

A�ective disorder-associated hippocampal volume loss
has been causally related to changes in HPA-axis activity
[129]. As mentioned, there is a growing body of evidence for
HPA-axis hypoactivity in PTSD [24]. Future studies analyzing
signicantly larger cohorts of PTSDpatients and healthy con-
trols, under basal as well as under stress challenge conditions,
are clearly needed to prove this hypothesis and to identify
robust HPA-axis associated PTSD biomarkers. Undoubtedly,
the two central stress axes, the HPA- and the SAM-axes, both
play a major role in PTSD pathology. Elevated SAM activity
has been postulated to promote the elevated startle response
in PTSD. In fact, increased startle responses and/or the fear-
potentiated startle re�ex constitute the most robust putative
PTSD biomarker to date with good reliability and specicity.
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First, numerous studies reported elevated startle responses
in PTSD both in human patients [73–75, 131] and in animal
models [77–80, 103], with only very few contradicting results
[132, 133]. Second, impaired fear inhibition assessed by fear-
potentiated startle was found to be a biomarker of PTSD, but
not of depression [134]. Since startle responses have so far
been mainly analyzed in military cohorts of PTSD patients,
studies analyzing startle responses in large cohorts of civilian
PTSD patients are needed for validation.

Reports on PTSD therapy biomarkers are rare and cer-
tainly will have to be extended to allow general conclusions.
However, some of them, especially those demonstrating that
molecularmarkers predict response to SSRI and SNRI antide-
pressants, constitute promising starting points for future
analyses.

Regulation and function of putative PTSD biomarkers
identied in clinical studies can be analyzed in animal and cell
culture models, as we demonstrated, for example, by showing
that the putative PTSD biomarker FKBP5 signicantly alters
stress coping behavior and HPA-axis reactivity in mice [135].
Vice versa, studies in animalmodels can reveal novel putative
PTSD biomarkers, like for instance our recent studies with
which we identied a gross reduction in the expression levels
of pre- and postsynaptic proteins like synapsin and GAP43
to be associated with hippocampal volume loss in mice
su�ering from a PTSD-like syndrome [79, 103]. In particular
the studies on the consequences of single prolonged stress
[136] or predator scent exposure [77] have pioneered the
eld of PTSD animal models. Of high value is the distinction
between responders and nonresponders in these models [77,
137, 138] which not only allow to test novel pharmacological
compounds, but also to search for biomarkers of PTSD
vulnerability versus resilience in rats and mice. Interestingly,
in our PTSD mouse model, the putative human PTSD
susceptibility marker CRHR1 [20] was found to enhance
the consolidation of remote fear memories in limbic brain
structures of mice a�er their exposure to a traumatic foot
shock. �is enhancement was prevented by treatment with
a CRHR1 antagonist in the rst week a�er trauma [139].
Whether such potential novel PTSD drugs or novel putative
PTSD biomarker candidate molecules identied by animal
studies can be translated into the clinic should subsequently
be analyzed in clinical trials.

�e mentioned examples underscore that employing
translational research approaches in PTSD biomarker
research is a very promising endeavor that should be taken
forward since, in contrast to biomarkers for example for
internal disorders, no putative biomarker for PTSD or for
any other psychiatric disorder except for dementia has yet
progressed to the point of practical use [24].

6. Conclusion

�e startle response is one of the most robust PTSD disease
markers to date. Numerous studies have proven that the
HPA-axis and the SAM axis are involved in PTSD, but
reports on HPA activity in PTSD patients are inconsis-
tent and require additional trials to determine whether
PTSD patients exhibit an HPA-axis hypo- or overactivity or

whether the HPA-axis is di�erentially regulated in distinct
subpopulations of PTSD patients. �e HPA-axis regulator
FKBP5 emerged as primary PTSD risk and disease marker
in several studies. Since this cochaperone was also described
as biomarker of other a�ective disorders, further clinical
trials have to clarify whether FKBP5 is a marker for PTSD
or for a�ective disorders in general or whether FKBP5 is
di�erentially regulated in di�erent psychiatric diseases. �e
fact that none of the putative PTSD biomarkers reported
so far is in clinical use stresses the urgent need for further
PTSD biomarker studies with large sample sizes and for
translational research approaches aiming to elucidate the
molecular underpinnings of PTSD by combining clinical and
animal studies.
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