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Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging
process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been
developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us
answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age
slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular,
organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological
features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging
biomarkers should qualify for being specific, systemic, and clinically relevant.
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Introduction

Do we truly know how old we are biologically, that is, more
accurately describing the status of our body than our
chronological ages? Are some people at higher risk of certain
types of age-related diseases, i.e., cardiovascular disorders or
neurodegenerative diseases, and how can they be identified?
Or how do we know if any of the claimed geroprotective
treatments are effective? To answer these questions, we need
to establish biomarkers for aging. In a broad aspect, these
biomarkers are defined as scientifically measured parameters
of the physiological aging process, to measure age-related
changes and to predict the transition into a pathological
status.
As a biological measurement to qualify aging, a biomarker

must be specific, systemic, and serviceable. (i) Specific:
aging is such a heterogeneous process that it proceeds at
different rates in different individuals and varies in different
organs, even in the same individual. Therefore, it is im-
possible to have one biomarker for the entire organism but
different ones or even different sets of biomarkers for dif-
ferent organs for evaluation; vice versa, each biomarker
should be able to capture a unique aging signal of the re-
levant organ. Moreover, aging biomarkers should be pre-
dictive of the risk of disease development, which requires a
specific threshold for the transition from physiological aging
to pathological disorder. (ii) Systemic: aging involves almost

every organ system, comprising numerous interconnected
biological processes. Moreover, changes in one organ may
elicit compensatory mechanisms or systemic feedback across
the body. Therefore, biomarkers should be able to reflect
such systemic changes with age, and a collection of bio-
markers from multiple dimensions is required for this aspect.
(iii) Serviceable: biomarkers collected through non-invasive
or minimally invasive methods are particularly suited for
translation into clinical practice. As aging is a gradually
deteriorating process over time, longitudinal studies are
needed, and again, non-invasive measurements are preferred.
In larger cohort studies, cost and convenience should be
considered when choosing biomarkers. In all, being specific,
systemic, and serviceable are as critical to the broad spec-
trum of aging biomarkers as the three primary colors.
Over the years, various data types and modeling techni-

ques have been used to develop a broad spectrum of aging
biomarkers. Based on the nature of these parameters used for
aging biomarkers, the collection of alterations with age can
be categorized into 6 classes, or 6 pillars, although bio-
markers in different categories are often interconnected with
each other. There are higher-order types of changes that re-
flect physiological and functional changes, such as physio-
logical characteristics, imaging traits, and histological
features. Additionally, there are more causal or mechanistic
driver types of biomarkers, such as cellular alterations and
molecular changes. Finally, there are biomarkers serving in
between, such as hormones and secretory factors that are
detectable in body fluids, such as blood, urine, saliva, and
cerebrospinal fluid (CSF), among which those act in a
paracrine manner are of particular interest. The latter three
types, as they may also serve as hallmarks or drivers of
aging, may be targeted to intervene in the aging process.
However, the predictions of biological ages based on dif-

ferent variables are often inconsistent. In certain cases, a
thoughtful set of aging biomarkers could be more reliable
and useful to solve this problem. To clarify these confusions,
we compile current knowledge of aging biomarkers to pro-
vide a comprehensive reference for researchers in academia
and industry and medical practitioners in geriatrics and
gerontology. We cover biomarkers across the dimensions of
cellular, organ, organismal and population aging, each or-
ganized according to the 6 pillars of classification. Ad-
ditionally, we demonstrate how this broad spectrum of
biomarkers is utilized in various prediction models, or aging
clocks, and applied in cohort studies. Finally, we discuss an
important aspect of aging studies, that is, the ethical and
social implications of aging biomarkers (Figure 1).

Biomarkers of cellular aging

At the foundation of the hierarchy of aging biomarkers are
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those for cellular aging. Cells are the building blocks of
organs and organisms, and cellular aging serves as the
driving force of organ and organismal aging. Thus, bio-
markers at this level not only monitor a basic cellular process
underlying the aging process, but may also exert impacts
higher up on the entire organ or organism. However, there
are only a few widely accepted biomarkers of cellular aging,
such as senescence-associated beta-galactosidase (SA-β-gal)
activity, although their functions are still not well under-
stood. We propose the following ten aspects of cellular aging
biomarkers: epigenetic changes, genetic instability, telomere
shortening, nuclear body disorders, cell cycle arrest, mi-
tochondrial malfunction, proteostatic stress, metabolic al-
terations, signaling pathway rerouting, and senescence-
associated secretory phenotype (SASP). We cover each as-
pect in a separate section. In particular, we will introduce
these biomarkers for how they reflect changes associated

with age and how they drive aging as well. Therefore, these
biomarkers will broaden our understanding of the basic
mechanism of aging and may serve as potential targets for
aging interventions.

Epigenetic alterations

Over the past decades, great efforts have been made to ca-
tegorize molecular hallmarks of aging, many of which also
qualify as aging biomarkers (López-Otín et al., 2013; López-
Otín et al., 2023). Epigenetics is defined as reversible heri-
table mechanisms that occur without alterations in the DNA
sequence (Jaenisch and Bird, 2003), and epigenetic altera-
tions have been reported to be crucial in aging and age-
related diseases. These aging-associated epigenetic bio-
markers include altered genomic DNA methylation, aberrant
histone modifications, loss of heterochromatin, reorganized

Figure 1 Aging biomarkers reflect biological ages at the cellular, organ, and organismal levels. Three criteria, i.e., being specific, systemic, and serviceable,
determine the spectrum of biomarkers as three primary colors. The complex collection of aging biomarkers is supported by six pillars: physiological
characteristics, imaging traits, histological features, cellular alterations, molecular changes, and secretory factors. Abbreviation: SASP, senescence-associated
secretory phenotype.

898 Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



three-dimensional (3D) genome architecture, and deregu-
lated RNA modifications. They lead to altered local acces-
sibility to genetic material, aberrant transcription such as
retrotransposon elements, and genomic instability, thereby
contributing to aging and age-related diseases (Li et al.,
2019d; Pal and Tyler, 2016; Wang et al., 2022a; Zhang et al.,
2020d) (Figure 2). Therefore, understanding epigenetic
biomarkers in aging will help to address the fundamental
questions—“how old are we?” and “why do we age?”, which
provides new avenues to develop strategies to delay aging.

Altered DNA methylation
Global and local DNA methylation changes in the genome
during aging are among the most extensively studied and
best characterized epigenetic biomarkers during aging (Field
et al., 2018; Horvath and Raj, 2018). Hypermethylation of
CpG islands within promoters leads to transcriptional re-
pression; conversely, hypomethylation allows gene expres-
sion (Horvath, 2013; Salameh et al., 2020). A global
decrease in DNA methylation is observed during aging in a
variety of species, which may be attributed to the progressive
decline in levels of the DNA methyltransferase 1 (DNMT1)
(Jung and Pfeifer, 2015). In contrast, de novo methylation
increases with age due to the upregulation of other DNMTs,
such as DNMT3A and DNMT3B (Yagi et al., 2020), sug-
gesting that changes in DNA methylation patterns during
aging can be a good indicator of aging. Using machine
learning methods and based on DNA methylation patterns at
certain CpG sites, Horvath (2013) and Hannum et al. (2013)
developed the first-generation epigenetic biomarker of
aging, DNAmAge, also known as the “epigenetic clock”,
which is able to estimate the age of most tissues and cell
types, and predict outcomes of aging, including mortality

risk and age-related diseases. Since then, multiple epigenetic
clocks have been reported with greater accuracy, precision,
and broader application prospects in aging research. For
example, by combining multiple clinical biomarkers, Phe-
noAge can predict a variety of aging outcomes, including all-
cause mortality, cancers, healthspan, physical functioning,
and Alzheimer’s disease (AD) (Levine et al., 2018).
GrimAge, a more predictive epigenetic clock for identifying
clinical phenotypes, is based on seven DNA methylation
surrogates and a DNA methylation-based estimator of
smoking pack-years (Lu et al., 2019; McCrory et al., 2021).
A single-cell age clock (scAge) has recently developed using
single-cell methylation data, which is able to discriminate the
age of cells in heterogeneous issues and recapitulate the
chronological age of tissues in mice (Trapp et al., 2021).
Consequently, the altered methylation pattern contributes to
the deregulation of aging-associated genes (Field et al.,
2018; Li et al., 2022h; Zhang et al., 2020d). Recently, Liu et
al. showed that reduced DNA methylation levels of human
endogenous retrovirus (HERV) elements are associated with
the resurrection of endogenous retroviruses during aging,
which acts as both biomarkers and drivers of aging in mul-
tiple aging cell models, as well as various organs and species
(Dasgupta and Adams, 2023; Liu et al., 2023b; Thuault,
2023; Zhou et al., 2023; Zlotorynski, 2023). In summary,
these epigenetic clocks are promising models using aging
biomarkers for predicting biological age and assessing the
efficacy of aging interventions.

Aberrant histone modifications
Changes in histone modifications such as methylation and
acetylation are widely studied during cellular senescence
(Pal and Tyler, 2016; Wang et al., 2022a; Zhang et al.,

Figure 2 Biomarkers of epigenetic aging. Epigenetic biomarkers include altered genomic DNA methylation, aberrant histone modifications, loss of
heterochromatin, reorganized 3D genome architecture, and deregulated RNA modifications. Abbreviations: LINE1, long interspersed nuclear element 1;
INM, inner nuclear membrane; LAD, lamina-associated domain; TAD, topologically associating domains; Me, methylation; Ac, acetylation; ERV, en-
dogenous retrovirus; HERVK, human endogenous retrovirus type K.
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2020d). H3K4me3, a marker associated with active tran-
scription, has also been shown to increase with age in yeast,
C. elegans, and a mouse model of AD but decrease in aged
human hematopoietic stem cells (HSCs) and neurons
(Adelman et al., 2019; Cao et al., 2020; Cheung et al., 2010;
Cruz et al., 2018; Pu et al., 2018). Reduced H3K27me3 was
observed in prematurely aged cells from Hutchinson-Gilford
progeria syndrome (HGPS, LMNAG608G/+) patients and in
aged C. elegans (Guillermo et al., 2021; McCord et al.,
2013). Global loss of H3K9me3 has been reported in aged
Drosophila intestinal stem cells (ISCs), in aged nematode
somatic tissues, as well as in various human mesenchymal
progenitor cells (hMPCs), including those with pathogenic
mutations of Werner syndrome (WS, WRN−/−) (Jeon et al.,
2018; Zhai et al., 2021; Zhang et al., 2015). Reduced ex-
pression of the H3K9me3 methyltransferase SUV39H1 was
observed in senescent cells, and inactivation of SUV39H1 in
wild-type hMPCs led to a reduction in overall H3K9me3 and
induction of cellular senescence (Zhang et al., 2015).
Similar to changes in histone methylations observed dur-

ing aging, decreased levels of H3K56ac and increased levels
of H4K16ac are also associated with replicative aging in
yeast and human fibroblasts (Dang et al., 2009; O’Sullivan et
al., 2010). Sirtuin family members, evolutionarily conserved
nicotinamide adenine dinucleotide (NAD+)-dependent his-
tone deacetylases, have been implicated in aging and age-
related diseases (Bi et al., 2020; Diao et al., 2021; Simon et
al., 2019; Sun et al., 2020a). Impaired deacetylation of
H3K56 upon Sirt6 deletion promoted HSC proliferation
through aberrant activation of Wnt signaling (Wang et al.,
2016a). Ectopic expression of Sirt7 alleviated prematurely
senescent phenotypes and extended the lifespan in a
Hutchinson-Gilford progeria mouse model (Sun et al.,
2020a). It has also been reported that global histone hypoa-
cetylation, particularly a decrease in H4K12ac, occurs in
repetitive DNA elements in aged mouse brains (Peleg et al.,
2010). Furthermore, via genome-wide CRISPR/Cas9-based
loss-of-function screens, Wang et al. (2021e) identified
KAT7, a histone acetyltransferase, as a senescence driver in
both HGPS andWS hMPCs. Inactivation of KAT7 decreased
H3K14ac levels in the promoter region of p15INK4b, a cyclin-
dependent kinase inhibitor that mediates cell cycle arrest,
leading to suppression of p15INK4b transcription and ulti-
mately alleviating cellular senescence. Thus, substantial
changes in histone modifications occur during aging and
age-related diseases, providing new insights into the devel-
opment of aging intervention strategies. In the future, more
research is needed to refine the regulatory mechanisms be-
tween these modifications and aging.

Loss of heterochromatin
Heterochromatin domains tightly pack DNA into an in-
accessible and transcriptionally inactivated structure (Dixon

et al., 2012). Heterochromatin is associated with specific
proteins, such as heterochromatin protein 1 (HP1), and
specific histone modifications, such as H3K9me3 (Becker et
al., 2016; Maison and Almouzni, 2004). Accompanied by
global reduction of H3K9me3, loss of heterochromatin has
been reported to be associated with cellular senescence from
yeast to humans and with the onset of age-related diseases
(Pal and Tyler, 2016; Tsurumi and Li, 2012; Villeponteau,
1997). Loss of heterochromatic mating-type loci or riboso-
mal DNA (rDNA) leads to genomic instability, sterility, and
aging in yeast (Kennedy et al., 1997; Kobayashi, 2011;
Sinclair and Guarente, 1997). Diminished heterochromatin-
associated inner nuclear membrane (INM) proteins LAP2
and LBR and reduced heterochromatin structure underneath
the nuclear envelope were also observed in HGPS patients,
stem cell models of Werner syndrome, and prematurely se-
nescent stem cells with deficiency of zinc finger protein with
KRAB and SCAN domains 3 (ZKSCAN3), Ddb1- and Cul4-
associated factor 11 (Dcaf11), DiGeorge syndrome critical
region gene (DGCR8, a protein critical for microRNA
(miRNA) biogenesis), SIRT3 and SIRT7, as well as circa-
dian locomotor output cycles protein kaput (CLOCK) and
brain and muscle arnt-like 1 (BMAL1, two core components
of the molecular circadian clock machinery) (Bi et al., 2020;
Deng et al., 2019; Diao et al., 2021; Goldman et al., 2004; Hu
et al., 2020; Le et al., 2021; Liang et al., 2022; Liang et al.,
2021; Scaffidi and Misteli, 2006; Zhang et al., 2015). Re-
cently, Zhao et al. (2022a) found that apolipoprotein E
(APOE), a component of lipoprotein particles that function
in the homeostasis of cholesterol and other lipids, partici-
pated in autophagy-lysosomal pathway-mediated degrada-
tion of nuclear lamina proteins and a heterochromatin-
associated protein KRAB-associated protein 1 (KAP1),
thereby destabilizing heterochromatin and driving senes-
cence. Knockdown of HP1 promoted cellular senescence,
whereas replenishment of HP1 rescued premature senescent
phenotypes (Bi et al., 2020; Deng et al., 2019; Diao et al.,
2021; Hu et al., 2020; Liang et al., 2022; Liang et al., 2021;
Zhang et al., 2015). As an intrinsic feature of cellular se-
nescence, heterochromatin erosion leads to the derepression
of repetitive sequences such as ERV, long interspersed nu-
clear element 1 (LINE1) and satellite repeats, and activation
of innate immune signaling via the cyclic guanosine mono
phosphate (GMP)-adenosine monophosphate (AMP) syn
thase (cGAS)-stimulator of interferon genes (STING) path-
way (Bi et al., 2020; De Cecco et al., 2019; Liang et al.,
2022; Liang et al., 2021; Simon et al., 2019; Zhang et al.,
2015). Treatment of senescent hMPCs with reverse tran-
scriptase inhibitors, vitamin C, gallic acid (GA), or low-dose
chloroquine (CQ) increased the levels of heterochromatin-
associated marks, including H3K9me3 and HP1, leading to
rejuvenation of cellular and tissue senescence (Bi et al.,
2020; De Cecco et al., 2019; Geng et al., 2019; Li et al.,
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2022e; Li et al., 2016a; Shan et al., 2022; Simon et al., 2019).
In addition, by probing chromatin accessibility at single-cell
resolution in the brains of young, middle-aged, and old mice,
Zhang et al. (2022e) revealed increased chromatin accessi-
bility within specific heterochromatin domains and activated
expression of LINE1 elements in excitatory neurons of old
mice. Taken together, the loss of constitutive hetero-
chromatin has frequently been recognized as a biomarker of
tissue and cellular aging.

Disorganized 3D genome architecture
Advances in various high-throughput sequencing technol-
ogies, such as high-throughput chromosome conformation
capture (Hi-C), DNA adenine methyltransferase identifi-
cation (DamID), and assay for transposase-accessible
chromatin with high-throughput sequencing (ATAC-seq),
enable mapping of epigenetic changes during senescence at
higher-order structural levels, such as 3D genome archi-
tecture and chromatin accessibility (Bonev and Cavalli,
2016; Dixon et al., 2012; Kempfer and Pombo, 2020).
Using prematurely senescent hMPC models, Liu et al. re-
vealed an overall increase in chromatin entropy and epi-
genetic instability with aging (Liu et al., 2022b; Liu et al.,
2022c; Zhao and Chen, 2022). Decompartmentalization,
which is characterized by decreased DamID signals in la-
mina-associated domains (LADs) but increased signals in
inter-LADs (iLADs) and the switch of topologically asso-
ciating domains (TADs) from compacted and tran-
scriptionally silenced (B) to open and transcriptionally
active (A) compartments, especially in boundary regions,
was observed in senescent hMPCs, which led to hetero-
chromatin loss and activation of repressive compartments
(Liu et al., 2022b; Liu et al., 2022c). In addition, a gain of
A-B interactions was also observed in replicatively senes-
cent human fibroblasts (Sati et al., 2020). Using a system
called “ICE” (inducible changes to the epigenome), Yang et
al. (2023) found that the act of faithful DNA repair led to
erosion of the epigenetic landscape, deregulation of cellular
function, and promotion of aging in mice, which can be
reversed by OSK-mediated epigenetic reprogramming.
Collectively, the reorganized 3D genome architecture is
manifested as an increase in entropy, of which the extent
may serve as a potential biomarker for aging, although there
is still a long way for such measurement to be employed in
clinical practice.

Deregulated RNA modifications
More than 170 types of RNA modifications have been
identified, among which N6-methyladenosine (m6A) mes-
senger RNA (mRNA) methylation is a well-known epi-
transcriptional regulatory mechanism that regulates mRNA
metabolism, thereby affecting central biological processes
(Deng et al., 2018; Huang et al., 2020b; Zhao et al., 2017).

The promoted translation of cyclin-dependent kinase in-
hibitor (CDKI) p21CDKN1A via the methyltransferases (known
as “writers”) METTL3/METTL14-mediated m6A methyla-
tion has been reported in H2O2-induced cellular senescence
of TP53-deficient human colon carcinoma cells (HCT116)
(Li et al., 2017b). A global reduction in RNA m6A abun-
dance was detected in sulforaphane (SFN)-induced senes-
cence of cancer cells, and human peripheral blood
mononuclear cells (PBMCs) from aged cohorts (Lewinska et
al., 2017; Min et al., 2018). Knockdown of METTL3 or
METTL14 accelerated cellular senescence by destabilizing
AGO2 mRNA in human fibroblasts and reduced the pro-
duction of miR-34a-5p in tumor necrosis factor-alpha
(TNFα) induced cellular senescence of human nucleus pul-
posus cells (NPCs) (Min et al., 2018; Zhu et al., 2021a). Wu
et al. demonstrated that METTL3 was reduced in prema-
turely senescent hMPCs, and knockout of METTL3 also
accelerated hMPC senescence, resulting from markedly re-
duced m6A modifications and destabilized MIS12 mRNA, a
key regulator of cell proliferation (Wu et al., 2020c; Wu et
al., 2022b). Another study showed that knockdown of
METTL3 led to accelerated senescence by upregulating the
expression of polo-like kinase 1 (PLK1), a critical cell cycle
modulator, in an m6A-dependent manner (Luo et al., 2021).
Moreover, knockout of obesity-associated protein (FTO),
one of the “erasers” of m6A, also accelerated hMPC senes-
cence, and downregulation of FTO led to increased overall
m6A levels during ovarian aging in mice (Jiang et al., 2021;
Sun et al., 2021; Zhang et al., 2022c). Taken together, these
studies demonstrate that deregulation of m6A modification
represents a novel epi-transcriptional biomarker in aging,
and more investigation of m6A dynamics at the genome-wide
scale is required to reveal its potential impact on aging.

Summary and perspectives
In summary, although great progress has been made in
identifying epigenetic biomarkers to predict biological age, it
is important to highlight that there is still prediction bias due
to the small number of sample sets. In the future, combining
multiple layers of epigenetic biomarkers using large-scale
datasets from different cells, tissues, populations, species,
and diseases will be demanded to provide a more precise
prediction of biological age and to evaluate the outcomes of
clinical aging interventions.

Genetic instability

Genetic instability is one of the fundamental biomarkers of
aging. DNA, as the carrier of genetic information, undergoes
various types of alterations with increasing age and further
negatively affects normal cellular activities and tissue
homeostasis, both of which are closely linked to biological
aging. Many aspects of DNA-associated alterations con-
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tribute to genetic instability, including but not limited to
changes in DNA damage, DNA damage response (DDR) and
repair, mutations, replication stress, transposition, chromo-
some aberrations, telomere shortening, micronuclei, and
DNA fragments. Many of the aforementioned aspects have
been demonstrated to serve as biomarkers of aging, which
can be employed to reflect or predict cellular biological
status. Here, we will briefly summarize the research progress
on the following biomarkers of genetic instability and their
relations with aging.

DNA damage and repair
According to the DNA damage theory of aging (Gensler and
Bernstein, 1981), DNA lesions are recognized as the primary
cause of aging. Supporting this idea, increased DNA damage
in senescent cells, progeria cells, and aged individuals have
been reported by a great number of studies (d’Adda di Fa-
gagna et al., 2003; Liu et al., 2005; Sedelnikova et al., 2008;
Sedelnikova et al., 2004; Wang et al., 2009; Zhang et al.,
2020b), making DNA damage a universal biomarker of
aging. The frequency of γH2AX foci, a well-known bio-
marker of double-strand breaks, is upregulated in senescent
mouse embryonic fibroblasts and multiple organs, including
liver, lung, dermis, crypt of the small intestine, and spleen
lymphocytes, in aged mice (Wang et al., 2009). γH2AX and
53BP1 foci, which commonly colocalize with each other, are
also found in replicative senescent cells (d’Adda di Fagagna
et al., 2003). The incidence of γH2AX foci increases with
age in human lymphocytes, and a higher level of γH2AX foci
is detected in fibroblasts derived from Werner syndrome
patients (Sedelnikova et al., 2008).
Impaired DNA repair is one of the causes of DNA damage

accumulation in aged cells, evidenced by reduced expression
(Chen et al., 2017; Chen et al., 2020b; Ju et al., 2006; Red-
wood et al., 2011; Zhang et al., 2020b) or delayed recruit-
ment kinetics of DNA repair factors (Liu et al., 2005;
Redwood et al., 2011; Sedelnikova et al., 2008; Zhang et al.,
2020b) and a decline in repair fidelity (Li et al., 2016b;
Vaidya et al., 2014). Normally, γH2AX foci are cleared upon
completion of the repair process. However, a study deli-
neated that senescence-associated γH2AX foci might re-
present unrepairable DNA lesions (Sedelnikova et al., 2004).
Moreover, a kind of large and persistent DNA damage foci
containing γH2AX, 53BP1, MDC1, NBS1, MRE11 and
phosphorylated ataxia telangiectasia-mutated (ATM) and
CHK2, namely, DNA segments with chromatin alterations
reinforcing senescence (DNA-SCARS), is observed in se-
nescent cells and irradiated mouse tissues and found to be
critical for maintaining senescence-associated phenotypes
(Rodier et al., 2011).
In addition to double-strand breaks, the levels of oxidative

DNA damage, measured by the amount of 8-hydroxy-2′-
deoxyguanosine (8-OHdG), also significantly increase with

age in the liver, kidney, intestine, brain, and testes of rats
(Fraga et al., 1990), in accordance with the oxidative stress
theory of aging (Harman, 1956). Moreover, the levels of
repair products of oxidative damage show an age-related
decline in urine, suggesting impaired excision repair in aged
rats (Fraga et al., 1990). Employing a plasmid reactivation
assay, the capacity of base excision repair, which is re-
sponsible for mending oxidative DNA damage, has also been
found to decline with increasing age in mesenchymal stem
cells and skin fibroblasts (Xu et al., 2015; Zhang et al.,
2020b). Intriguingly, the alteration of DNA repair during the
process of aging seems to be tissue type- and cell type-
specific, which has been discussed in another review article
(Chen et al., 2020c). Elucidating the age-related, context-
dependent regulatory mechanisms of DNA repair with the
aid of in vivo research models (Chen et al., 2022; Kass et al.,
2016; Vaidya et al., 2014; Wang et al., 2020a) is still an
important subject in the future.
The presence of large amounts of unrepaired or mis-

repaired DNA damage also contributes to other biomarkers
of aging. DNA damage has been reported to be one of the
major causes of apoptosis (Wang, 2001), which underlies the
age-related loss of tissue homeostasis (Park et al., 2008). In
addition, independent of the state of cell cycle arrest, per-
sistent DNA damage induces the secretion of inflammatory
factors, such as interleukin-6 (IL-6) (Rodier et al., 2009),
which is one of the components of the SASP, modulating the
microenvironment in aged individuals. Although DNA da-
mage and repair play a profound role in aging, whether tar-
geting DNA repair can prevent age-related diseases and
contribute to longevity requires further investigation.

DNA damage response
The DNA damage response is a molecular cascade mastering
the cellular responsive activities once DNA damage occurs.
The DNA damage response activates cell cycle checkpoints,
initiates DNA repair, and determines the fate of damaged
cells. Due to the failure to fix damaged DNA, factors in-
volved in the DNA damage response are often overactivated
in aged cells (Bartek et al., 2001; d’Adda di Fagagna et al.,
2003; Kang et al., 2017; Park et al., 2015; Park et al., 2017),
which can possibly be understood as a compensatory me-
chanism. DNA damage, particularly double-strand breaks,
causes the phosphorylation and activation of CHK2, even-
tually leading to checkpoint activation and cell cycle arrest
(Bartek et al., 2001). The phosphorylation of CHK2 and its
upstream kinase, ATM, increases in senescent cells (Kang et
al., 2017). Enhanced ATM and ATR activation have also
been reported in ISCs in the aged Drosophila (Park et al.,
2015). Moreover, increased DNA damage activates DNA-
PKcs in the aged skeletal muscle (Park et al., 2017). In ad-
dition, telomere uncapping, another senescence-associated
event, triggers the DNA damage response, including acti-
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vation of CHK1 and CHK2 (d’Adda di Fagagna et al., 2003).
Notably, CHK2 activation has also been found to play a role
in replicative senescence (Gire et al., 2004).
Apart from DNA repair regulation, several moonlighting

functions of DNA damage response factors have been re-
ported. ATM regulates V-ATPase assembly to control lyso-
somal pH and influences the normal function of the
lysosome/autophagy system, leading to impaired removal of
dysfunctional mitochondria, elevated reactive oxygen spe-
cies (ROS) levels and nuclear disorganization (Kang et al.,
2017). Inhibition of ATM alleviates senescence through re-
acidification of the lysosome/autophagy system and meta-
bolic reprogramming (Kang et al., 2017). DNA-PKcs
regulates the inflammatory responses in dendritic cells
(DCs), mediating the development of airway diseases
(Mishra et al., 2015a), and also regulates AMPK through
inhibiting the chaperone function of heat shock protein 90
(HSP90) alpha, ultimately driving the metabolic and fitness
decline in aged skeletal muscle (Park et al., 2017). Further
efforts are clearly required to better understand the role of the
overactivated DNA damage response, one of the important
biomarkers of aging, in the onset of organ dysfunction and
individual aging.

Mutations
Mutation is another broadly reported biomarker of aging.
The frequency of spontaneous mutation, which has been
determined with the LacZ transgenic mice, increases almost
linearly with age in the spleen (Ono et al., 1995). Another
independent study also reports that the spontaneous mutation
exhibits an age-related increase in the liver, while in the
brain, only an increase during early life is observed (Dollé et
al., 1997), which has also been confirmed by another study
(Stuart et al., 2000). In contrast to these two studies, another
group reported age-dependent accumulation of spontaneous
mutations in multiple tissues, including the brain, while the
rates of increase differ among tissues (Ono et al., 2000).
Age-related changes in mutations are tissue-type specific.

Mutation frequencies in the heart and small intestine both
increase with increasing age, while the mutation spectra
exhibit a striking difference between these two organs.
Moreover, the mutation frequency is significantly higher in
the small intestine than in the heart (Dollé et al., 2000).
Another study showed that approximately 40 novel muta-
tions per year are acquired in adult stem cells of the small
intestine, colon, and liver, although a tissue-specific muta-
tional signature was observed (Blokzijl et al., 2016). A study
in 2021 showed that, in contrast to the accumulated muta-
tions examined in the intestine, liver, and lung of naturally
aged mice, no age-related increase in mutations is evident in
the heart (De Majo et al., 2021), implicating an efficient
cardiac DNA repair system throughout life. Although the
tissue-specific mutational frequency and signature have been

reported, knowledge is lacking about whether there exists a
cell type-specific feature of mutations with age. Given that
the cellular composition varies among tissues, there is a
pressing need for uncovering age-related alterations in mu-
tations at single-cell resolution in the future with the aid of
single-cell omics technologies.
The difference in mutation between germline and soma is

another interesting topic. The mutation frequency in a mixed
population of seminiferous tubule cells derived from young
adult mice is significantly lower than that of somatic cells,
and there is a decrease in mutation frequency during sper-
matogenesis, both indicating a protected state of germ cells
in young mice (Walter et al., 1998). However, in old mice,
the mutation frequency significantly increases in spermato-
genic cells, and the mutation frequency has also been found
to be elevated during the process of spermatogenesis, sug-
gesting a deprotected state of the germ line in old mice
(Walter et al., 1998).
Impaired DNA repair is believed to cause mutations, and

genomic instability plays a vital role in the development of
premature aging. Nevertheless, accumulation of mutations
has not been reported in short-lived mice with defects in
transcription-related repair (Dollé et al., 2006), assayed with
a lacZ reporter system (Boerrigter et al., 1995). Although the
phenomenon may arise from the non-transcribed lacZ-
reporter gene being insensitive to impaired transcription-
related repair, there exists a possibility that DNA repair
deficiency may contribute to aging phenotypes in-
dependently of inducing deleterious mutations, at least in
some contexts.

Chromosome aberrations
Chromosome aberration, which refers to changes in the
number or structure of chromosomes, is another well-known
biomarker of aging and age-related diseases, such as cancer,
in both animal models and humans.
Translocations and insertions have been reported to be

increased with age in mouse peripheral blood lymphocytes,
while there is no significant change in the frequencies of
dicentrics and acentric fragments (Walter et al., 1998). In
human blood cells, both megabase-range and small-scale
structural variants display a positive correlation with age
(Forsberg et al., 2012). Moreover, the frequency of chro-
mosome nondisjunction increases with age in both sexes
(Wojda et al., 2007). A study demonstrated that the frequency
of mosaic chromosomal abnormalities, including aneuploidy
and copy-neutral loss of heterozygosity, shows an age-related
increase by approximately 8-fold, in human blood and buccal
samples collected from 75–79-year-old individuals com-
pared with that from individuals younger than 50 years old
(Jacobs et al., 2012). The frequencies of duplications, dele-
tions, and uniparental disomy have also been reported to
rapidly rise in the elderly (Laurie et al., 2012).
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Different chromosomes may exhibit different suscept-
ibilities to age-related chromosome aberrations. A long-
itudinal human study showed that both numerical and
structural chromosome aberrations exist in aged skin fibro-
blasts (Mukherjee and Thomas, 1997). Intriguingly, the an-
euploidy of chromosomes 1, 4, 6, 8, and 10, the majority of
which harbor senescence-associated genes, are more fre-
quently affected by age than the other chromosomes ana-
lyzed (Mukherjee and Thomas, 1997). The chromosome-
specific fashion of aneuploidy has also been reported by
another study, in which chromosomes 7, 18, and Y are the
most severely affected by age in non-neuronal nuclei of the
cortex in mice (Busuttil et al., 2004). Female mosaic X
events also increase with age (Machiela et al., 2016). Inter-
estingly, the frequency of chromosome nondisjunction in-
volving chromosome X or Y reaches a peak in male
centenarians, while the frequency of X-containing chromo-
some nondisjunction markedly decreases in female cen-
tenarians (Wojda et al., 2007), implicating a sex specificity in
chromosome aberrations during the process of aging.
Notably, compared with cancer-free individuals, clonal

mosaicism is at least 27 times more commonly detectable in
individuals whose DNA is collected at least one year prior to
being diagnosed with hematological cancers, indicating a
strong link between chromosome aberrations and increased
susceptibility to cancer in aged people (Jacobs et al., 2012).
Consistently, mosaic loss of chromosome Y is also linked
with higher cancer risk (Forsberg et al., 2014). Several stu-
dies have also uncovered that mosaic loss of the Y chro-
mosome in the blood contributes to cardiac failure (Sano et
al., 2022), solid tumors (Forsberg et al., 2014), and AD
(Dumanski et al., 2016), suggesting that chromosome aber-
rations in blood cells might serve as a profound biomarker of
multiple human age-related diseases.

Micronuclei
Micronuclei are small, membrane-bound, DNA-containing
compartments that originate due to errors during mitosis
(Ohsugi et al., 2008). Micronuclei have long been recognized
as biomarkers of a suite of human diseases (Fenech et al.,
2020). Given that the formation of micronuclei depends on
cell division (Ohsugi et al., 2008), whether and how micro-
nuclei are regulated during cellular aging requires further
investigation. It has been shown that the frequency of mi-
cronuclei increases with age from newborns to 40 years old
but decreases in older individuals in a Yugoslavian popula-
tion, possibly due to a gradually declining cellular pro-
liferating capacity with age (Milosevic-Djordjevic et al.,
2002). Micronuclei frequencies have also been reported by
two other studies to exhibit a biphasic character with in-
creasing age in humans (Orta and Günebakan, 2012; Wojda
et al., 2007), although one of the studies found no significant
change in proliferative indexes with age (Orta and Güne-

bakan, 2012).
As we reviewed above, the loss of sex chromosomes is

frequently reported as an age-related event of aneuploidy.
Interestingly, the sex chromosomes are documented to be
excluded from the nucleus and be incorporated into the mi-
cronuclei (Guttenbach et al., 1994; Hando et al., 1994). In
lymphocytes, the frequency of X-bearing or Y-bearing mi-
cronuclei in aged individuals is twice as high as that in young
individuals (Guttenbach et al., 1994). Another study also
found that the frequency of autosome-containing micro-
nuclei is not significantly changed in aged human males,
while the percentage of Y chromosome-containing micro-
nuclei is markedly increased in lymphocytes with age (Cat-
alán et al., 1998). The causes and biological consequences of
sex chromosome exclusion into micronuclei in aged in-
dividuals remain to be addressed.

DNA fragments
Senescent cells also extrude DNA fragments, which are la-
min A/C negative but strongly γH2AX positive and
H3K27me3 positive, into the cytoplasm (Ivanov et al.,
2013). This kind of cytosolic DNA, termed cytoplasmic
chromatin fragments (CCFs), is apparently different from
micronuclei, which are encapsulated by the nuclear envel-
ope. Lamin B depletion in senescent cells (Shimi et al., 2011)
is associated with nuclear-to-cytoplasm chromatin blebbing
and the formation of CCFs (Ivanov et al., 2013). Extra-
nuclear double-strand DNA accumulation has also been re-
ported in cells derived from patients with ataxia-
telangiectasia syndrome and Hutchinson-Gilford progeria
syndrome (Lan et al., 2019), both of which are severe pre-
mature aging disorders. CCFs can activate the cGAS-STING
pathway, mediating pro-inflammatory responses in senescent
cells (Dou et al., 2017; Han et al., 2020c; Yang et al., 2017)
and further promoting paracrine senescence (Glück et al.,
2017). Since increased cytoplasmic DNA burden leads to
senescence and inflammation, targeted removal of extra-
nuclear DNA holds great potential in alleviating innate im-
mune responses and senescence-associated phenotypes (Lan
et al., 2019). Interestingly, a defect in DNA-degrading ac-
tivity is partially responsible for DNA fragment-mediated
senescence, and activation of autophagy with metformin or
rapamycin reduces CCFs and represses senescence (Han et
al., 2020c).

Summary and perspectives
As we mentioned above, multiple cellular alterations asso-
ciated with genomic instability have been reported as bio-
markers of aging, although many of them are not absolutely
universal and are regulated in a cell type-, tissue type- or sex-
specific manner, of which the underlying mechanisms thus
far remain ambiguous. Most of the biomarkers we reviewed
here are related to changes in nuclear DNA. However, mi-
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tochondrial DNA alterations are also tightly connected to
aging (Kujoth et al., 2005; Ross et al., 2013; Sun et al.,
2016). A recent study also showed that mitochondrial DNA
replication defects have deleterious effects on nuclear
genomic stability (Hämäläinen et al., 2019), providing an
unexpected association between the nucleus and mitochon-
dria, which has been neglected for a long time. Moreover,
whether these genetic instability-related biomarkers men-
tioned above can be used for measuring the process of aging,
predicting disease susceptibility, and directing personalized
treatment for age-associated diseases warrants further study
(Figure 3).

Telomere attrition

Among many biological processes related to aging, telo-
meres stand out because they follow a simple and important
path: they shorten during aging. In eukaryotes, telomeres are
nucleoprotein complexes at the linear chromosome ends that
play a vital role in protecting the integrity of the genome
from nucleolytic degradation, DNA damage response, and
unnecessary DNA recombination. The basic composition of

telomeres is tens of kilobases of G-rich tandem repeat DNA
sequences ending with a 50- to 400-nt single-stranded 3′
overhang and organized in a peculiar chromatin structure. In
humans, the chromatin structure of telomeres involves the
shelterin protein complex and the noncoding RNA TERRA
(de Lange, 2005; Gilson and Géli, 2007). The shelterin
complex comprises six proteins, including telomeric repeat-
binding factor 1 (TRF1, encoded by the TERF1 gene),
telomeric repeat-binding factor 2 (TRF2), TPP1 (or ACD,
recruiting telomerase), protection of telomeres 1 (POT1,
encoded by POT1), TRF1 interacting nuclear factor 2 (TIN2,
encoded by TINF2), and TRF2 interacting protein (RAP1 or
TERF2IP). They carry out multiple functions, including
telomere replication regulation, telomere capping, and
higher-order structure determination of telomeric chromatin.
Uncapping shelterin complexes from telomeres leads to

the activation of the DNA damage response and unwanted
DNA repair at telomeres (Mendez-Bermudez et al., 2020; Ye
et al., 2014). Thus, shelterin deficiency leads to telomere
uncapping and even telomere collapse. TRF2 suppresses
ATM phosphorylation at telomeres (Denchi and de Lange,
2007) and allows replication through telomeric chromatin

Figure 3 Biomarkers of age-related genetic instability. Destabilization of the genome represents a universal biomarker of aging. Increased DNA damage,
mutations, and chromosome aberrations (both structural and numerical) are frequently reported in senescent cells and aged individuals, and impaired DNA
repair might be a possible causal factor. Accumulation of DNA lesions leads to persistent activation of the DNA damage response. Unrepaired damaged DNA
and activated damage response factors together constitute the damage-associated nuclear substructure, namely, DNA-SCARS. Damaged nuclear DNA is also
present in the cytoplasm in the form of micronuclei or cytoplasmic chromatin fragments, both of which are altered during the process of aging. Notably, many
of the biomarkers are regulated in a context-dependent way, and the underlying mechanisms thus far remain elusive. Abbreviations: DSBs, double-strand
breaks; DNA-SCARS, DNA segments with chromatin alterations reinforcing senescence.
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(Ye et al., 2010). Inactivation of TPP1/POT1 activates the
Ataxia telangiectasia and Rad3-related (ATR) signaling
pathway (Jones et al., 2014; Wang et al., 2011; Xin et al.,
2007). TRF1 removal activates ATR kinase (Zimmermann et
al., 2014). RAP1 and TRF2 form a heterodimer and repress
the homology-directed repair pathway and non-homologous
end joining (NHEJ) (Chen et al., 2007b; Ghilain et al., 2021;
Lototska et al., 2020; Rai et al., 2016; Zhang et al., 2019d).
TIN2 deletion produces a complex response that involves
ATM kinase signaling and c-NHEJ, which are partly due to
the loss of TRF2 from telomeres (Jones et al., 2014; Takai et
al., 2011; Wang et al., 2011; Xin et al., 2007). Several loss-
of-function models for shelterin components indicate a de-
cline in tissue regenerative capacity and accelerated aging
(Alder et al., 2015; Morgan et al., 2019; Uryga et al., 2021;
Ying et al., 2022).

Telomere DNA length
Human telomeres consist of short tandem repeats (5′-
TTAGGG-3′) that range from 8 to 15 kb at birth. Due to end
replication problems, telomeres shorten after each replica-
tion cycle. During early development, telomere DNA is
elongated by telomerase to counteract dramatic telomere
shortening by approximately 50–200 nucleotides after each
replication cycle due to high cellular proliferation (Anifandis
et al., 2021). However, the embryonic development stage
ended with telomerase inactivation in most somatic cells, and
telomere DNA length (TL) can be seen as a counting ma-
chine for the number of cellular divisions. When pro-
grammed telomere shortening leads to a critically short TL
stage (the Hayflick limit), it induces a permanent DDR,
triggering irreversible cell cycle arrest, known as replicative
senescence. Therefore, TL can be considered a biomarker to
gauge aging (Chakravarti et al., 2021).
Many studies indicate that the dynamics of TLs are not

only a mitotic clock at the cellular level but also at the level
of individual aging. As humans age, the average TL in most
tissues declines with age (Daniali et al., 2013). This occurs in
high-proliferative tissues such as the skin, gastrointestinal
tract, and hematopoietic system, as well as in low-pro-
liferative tissues such as the heart, brain, and fat (Blackburn
et al., 2015). Since telomere shortening is intrinsically linked
to cell division and non-proliferative tissues are mainly
composed of long-lived post-mitotic cells (LLPMC), the
mechanism of age-related telomere changes in non-pro-
liferative tissues is still elusive (Jacome Burbano and Gilson,
2020). Mitochondrial dysfunction and ROS accumulate in
these tissues. Due to its G-richness, telomeric DNA is par-
ticularly sensitive to oxidation by ROS, which incurs telo-
mere damage, possibly causing telomere attrition and
uncapping over decades (Robin et al., 2020; Wagner et al.,
2017). These data suggest that telomere structural changes
are associated with proliferative and non-proliferative tissue

aging.
Since the dynamics of TL are a potential marker of various

types of tissue aging, numerous clinical and epidemiological
studies have addressed the question of whether TL short-
ening in blood cells can reflect tissue aging or even in-
dividual aging. Indeed, TL shortening in peripheral
leukocytes or PBMCs reflects systemic influences on TL
distribution across human tissues (Demanelis et al., 2020).
The average TL loss in PBMCs ranges from approximately
1,000 bp per year during birth and 1 year of age to ap-
proximately 100 bp per year during childhood and approxi-
mately 50 bp per year in adulthood, suggesting that TLs in
PBMCs are an aging-predicting marker (Aubert et al., 2012).
At the organismal level, the dynamics of TL are influenced

by genetic variants and nongenetic parameters throughout
the human lifespan. Heritability contributes to human TL
variation ranging from 30% to 80%. TL homeostasis re-
sponds to lifestyle (Epel and Prather, 2018) and social factors
or environmental changes (Garrett-Bakelman et al., 2019).
Even pathogen infection, for example, by severe acute re-
spiratory syndrome coronavirus 2 (SARS-CoV-2), can cause
significant telomere shortening (Mongelli et al., 2021),
suggesting that the degree of telomere attrition is a sensitive
biomarker to account for the accumulation of stress ex-
posure. Therefore, TL as a general aging biomarker re-
presents an exciting opportunity to predict and track frailty,
loss of resilience and age-related diseases early. For instance,
regarding lifestyle, social and environmental stress are major
contributors to aging heterogeneity, and individual TL var-
iation may indicate a danger of aging acceleration. Recent
studies have compared TL variation and the methylation
clock in PBMCs to track chronological age. Interestingly,
they can be complementary in aging evaluation since they
appear to reflect different biological mechanisms determin-
ing the aging trajectory (Franzago et al., 2022; Pearce et al.,
2022) (Table S1 in Supporting Information).

The methods to detect telomere
The above examples support the use of TL as a relevant
biomarker for an early prediction of aging. A reproducible
TL measurement will be important for future clinical appli-
cations. Many methods exist, including quantitative poly-
merase chain reaction (Q-PCR), terminal restriction
fragment (TRF) analysis, a variety of quantitative fluores-
cence in situ hybridization (Q-FISH) methods, single telo-
mere length analysis (STELA), telomere shortest length
assay (TeSLA), peptide nucleic acid hybridization analysis
of single telomere (PHAST) assay and single-molecule real-
time (SMRT) sequencing. Although these methods have
been improved in recent decades, there are still major tech-
nical impediments in clinical settings, including accuracy,
reproducibility, timing and technical difficulty. Moreover, a
relevant biological assessment of telomere status requires
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information beyond the classical average TL to allow the
prediction and prognosis of age-related diseases. For ex-
ample, TL distribution is emerging as a more potent bio-
marker than just the median or average TL, since the shortest
TL at individual chromosome ends, not the average TL, can
trigger senescence (Abdallah et al., 2009; Kaul et al., 2011).
The longest telomeres are used as a signature of adult stem
cell compartments (Kim et al., 2013), but it remains difficult
to accurately detect telomeres longer than 20 kb. Metaphase
images with abnormal telomere phenotypes can provide
compelling evidence to reveal the status of telomere dys-
function, for example, telomere fusion with normal TL dis-
tribution.
A real-time Q-PCR-based TL measurement is a rapid

method with small amounts of sample (~20 ng), providing an
average of total TL normalized to a single copy gene, but it
does not provide information about the telomere length
distribution (Cawthon, 2002). Moreover, this method is
poorly standardized across laboratories due to the use of
various normalization methods. Q-PCR is also inaccurate for
quantifying TL in cancer studies because of the common
occurrence of aneuploidy and mutation of the gene used for
standardization. Several methods have been developed based
on Q-PCR, such as Ω-qPCR (Xiong and Frasch, 2021) and
the single telomere absolute-length rapid (STAR) assay (Luo
et al., 2020). These methods can determine the absolute TL.
Moreover, the STAR assay can quantify individual telomere
molecules at a relatively broad spectrum, from the shortest
telomere to longer ones of hundreds of kb in individual cells,
and can be applied for tumor TL detection. It is a promising
method of TL detection in the future both in the clinic and in
fundamental studies.
The TRF assay is considered the gold standard for telo-

mere analysis. The TRF assay requires a Southern blot
procedure to separate telomere fragments after restriction
enzyme digestion. As it is a laborious process and requires a
large amount of starting genomic DNA, this assay is not
suitable for clinical applications (Harley et al., 1990). STE-
LA and its modified approach (Universal STELA (U-STE-
LA) and TeSLA) were developed based on the TRF assay,
which combines Southern blot and PCR amplification after
adapter ligation to measure the TL of individual chromo-
some ends and provide valuable information about TL dis-
tribution (Baird et al., 2003; Bendix et al., 2010; Lai et al.,
2017). These approaches are capable of detecting the shortest
telomeres. As many studies on telomere biology have re-
vealed that critically short telomeres, rather than average
telomere lengths, are causative of age-related pathologies,
STELA or U-STELA and TeSLA are crucial for clinics to
predict pathological aging early. However, these assays are
too labor-consuming for routine clinical and large population
studies.
The Q-FISH method hybridizes the fluorescently labeled

(CCCTAA)3 peptide nucleic acid (PNA) probe to fixed in-
terphase cells or various tissue biopsies and quantifies TL by
counting the number and intensity of the fluorescence signals
to determine the TL (Lansdorp et al., 1996). The distinct
disadvantage of Q-FISH is that the fluorescence signals of
telomeres, also called “telomere spots”, are dependent on the
aggregation of higher-order telomere structures, which leads
to a reduction in the overall telomere count that could result
in the incorrect estimation of TL distribution. Metaphase Q-
FISH can detect TL distribution and the abnormal phenotype
of individual chromosome ends but can only be performed
on actively dividing cells (Lansdorp et al., 1996). Based on a
similar principle to Q-FISH but modified for the flow cyto-
metry technique, flow FISH measures the median TL in in-
dividual cells in suspension after hybridization with
telomeric PNA probes. Combined with different flow cyto-
metry methods, flow FISH can be adapted for higher
throughput and enhanced reproducibility, and it is the first
TL method to have been validated for clinical diagnostic
purposes (Baerlocher et al., 2006). Another advantage of
flow FISH is measuring the distinct cell populations by an-
tibody staining (specific cell populations can be cell sorted
prior to flow FISH); for example, flow FISH is currently the
fastest and most sensitive method available to measure the
average TL in subgroups of human blood cells. The dis-
advantage of this technique is that PNA probes may bind
non-specifically due to the fixation and hybridization effi-
ciency in various labs.
The PHAST assay is designed to pull down PNA probes

that are hybridized to the telomere sequence and pass
through a microfluidic channel for analysis by light-sheet
fluorescence (Luo et al., 2020). PHAST requires very spe-
cialized equipment and is not suitable for measuring telo-
mere lengths longer than 15 kb.
Recently, SMRT sequencing developed a high throughput

TL measurement at nucleotide resolution using the PacBio
high fidelity (HiFi) sequencing platform on purified genomic
DNA containing telomeric sequence after hybridizing and
ligating the telomeric single-stranded G-rich overhangs at
the 3′ ends of chromosomes (Tham et al., 2023). This assay
not only provides a high-throughput and accurate assay to
detect TL at a high resolution but also reveals the presence of
telomeric variant sequences (TVSs) interspersed within the
long tracts of canonical telomeric repeat regions, which will
provide more information for the clinic and research of tel-
omere biology.
To conclude, all the methods above for detecting TL

distribution have advantages and disadvantages. The
strengths and limitations of the major methods developed to
measure TL in cells and tissues are presented in Table S1 in
Supporting Information. With the development of the
technique for fundamental study and the requirement of
large clinical studies, a single-cell approach is highly pre-
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ferable to identify cells with aberrantly long or short telo-
meres in the future.

Telomere as an aging biomarker
Telomere shortening, being a marker of biological aging,
could be used as a sentinel to intercept individuals at risk of
developing age-related diseases. Indeed, the level of telo-
mere attrition is associated with the incidence and mortality
of diabetes, cardiovascular disease (CVD), depression, and
cognitive decline (Blackburn et al., 2015). Telomere short-
ening also has the potential to predict the prognosis of var-
ious cancers independent of chronological age (Hampton,
2011; Mender et al., 2020; Tamura et al., 2016; Tian et al.,
2019). The severity of telomere attrition is a risk factor for
age-related diseases. It predicts poor immune function and
fragility (Cohen et al., 2013). Patients within the higher
percentiles of short telomeres have a higher risk of devel-
oping severe COVID-19 pathologies (Sanchez-Vazquez et
al., 2021).
TINF2 mutations are the second most common genetic

cause of dyskeratosis congenita (DKC), a congenital disease
of human premature aging syndrome, and affect approxi-
mately 15% of DKC patients, suggesting that TIN2 function
is crucial to act against pathological aging. Although few
studies have detected shelterin levels during human aging,
published data have shown that TRF2 (telomeric repeat-
binding factor 2) declines with tissue aging in clinical
biopsies (Robin et al., 2020; Tian et al., 2019) and that TRF2
expression is abnormally elevated in cancer biopsies (Bir-
occio et al., 2013; Cherfils-Vicini et al., 2019). All these
results suggest that TRF2 is a potential marker for the aging
trajectory. Further studies are required to understand the
expression level of TRF2 as well as other shelterin members
in normal and pathological aging in a large epidemiological
cohort or clinical samples from patients with age-related
diseases.
A telomere dysfunction assay that is useful for DNA da-

mage studies is TIF analysis (telomere dysfunctional induced
foci). This method is based on PNA-telomere probe Q-FISH
generally conducted on interphase cells in vitro or in tissue
sections and involves an antibody that recognizes the DNA
damage response, such as γH2AX or 53BP1. The co-loca-
lization of telomeres with DDR antibody signals suggests
damage at many telomeres. Although this assay does not
provide information about TL, it is useful as a biomarker to
detect the number of cells with telomere dysfunction (short
or uncapped) that appear damaged, which is a crucial marker
to predict the tendency to cause cell senescence or malignant
proliferation. An increase in TIF, dissociated from TL var-
iation, is characteristic of early stages of B-cell chronic
lymphocytic leukemia (B-CLL) (Augereau et al., 2011), in-
dicating that TIFs can be interesting TL-independent bio-
markers of some age-related diseases.

Summary and perspectives
Here, we have summarized the possible telomere-related
biomarkers related to the aging trajectory and age-related
diseases. We highlighted the underlying cause of telomere
dysfunction, either in the form of telomere shortening, tel-
omere DNA damage, or telomere-specific protein depletion,
to characterize the aging trajectory. This provides the
groundwork to develop important biomarkers for aging in-
terventions not only for predicting the early risk of devel-
oping age-related diseases but also to promote healthy aging.
Carefully designed clinical studies should be conducted in
the future to test and validate telomere biomarkers and tar-
gets as useful tools in the fight against the adverse con-
sequences of aging.

Nuclear body disorders

Nuclear bodies are macromolecular condensates within the
nucleus of eukaryotic cells. These dot-like structures further
compartmentalize the nuclear space and perform specialized
functions similar to organelles (Sabari et al., 2020). How-
ever, unlike membranous organelles such as the Golgi ap-
paratus and lysosomes, nuclear bodies are usually formed
through liquid-liquid phase separation (LLPS) of their pro-
tein or nucleic acid components without lipid membranes via
a nucleation mechanism (Brangwynne et al., 2009; Shimo-
bayashi et al., 2021; Wang et al., 2021a). Thus, nuclear
bodies are also considered membraneless organelles (MLOs)
with the nucleus (Lyon et al., 2021). To date, at least 18
nuclear bodies have been documented in human cells, in-
cluding nucleoli, Cajal bodies, promyelocytic leukemia
(PML) bodies, nuclear speckles, paraspeckles, nuclear gems
(Sabari et al., 2020). Nuclear bodies show diverse functions
but cooperate in a series of biological processes, such as gene
expression regulation, RNA processing, and maturation
(Hirose et al., 2022). Similar to the alteration of nuclear
architecture during normal aging (Haithcock et al., 2005),
some nuclear bodies, such as the nucleolus, have been im-
plicated in the aging process and become potential bio-
markers of aging (Buchwalter and Hetzer, 2017; Kasselimi et
al., 2022; Papandreou et al., 2022; Ren et al., 2017; Ren et
al., 2019; Tiku et al., 2017).

Architecture of nuclear bodies
Nuclear bodies are usually composed of proteins and nucleic
acids represented by various RNAs (Hirose et al., 2022).
Many proteins in nuclear bodies contain intrinsically dis-
ordered regions (IDRs), such as RNA-binding proteins,
which enrich charged and aromatic amino acid residues to
interact with other proteins or RNAs (Shin and Brangwynne,
2017). In addition, some folded domains, such as small
ubiquitin-like modifier (SUMO) and SUMO interacting
motif (SIM), also contribute to multivalent interactions for

908 Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



the formation of LLPS (Shen et al., 2006), suggesting that
nuclear bodies can be organized by multiple mechanisms.
Compartmentalization is the main function of nuclear

bodies. To further separate distinct biological processes or
reactions, most nuclear bodies contain substructures. The
“scaffold and client theory” is now widely accepted as a
model for the organization of a nuclear body (Banani et al.,
2016). Scaffold proteins are prone to undergo LLPS and are
essential for nuclear body formation, while client proteins
cannot undergo LLPS and are usually adaptor proteins or
enzymes for the specific functions of nuclear bodies (Banani
et al., 2017).
The nucleolus is the first discovered nuclear body and acts

as a central hub for nuclear functions, including ribosome
biogenesis, genome organization, stress response, and telo-
mere maintenance (Brown and Gurdon, 1964; Iarovaia et al.,
2019). As the largest condensate in the nucleus, the nucleolus
shows a three-layer substructure from core to shell: a fibrillar
center (FC) containing rDNA genes, a dense fibrillar com-
partment (DFC) for pre-rRNA processing after rDNA tran-
scription at the FC-DFC border (Yao et al., 2019), and a
granular compartment (GC) for late pre-rRNA processing
and ribosomal protein assembly (Lafontaine et al., 2021).
Recent studies suggest that the nucleolus also functions as a
quality control compartment for misfolded proteins (Frottin
et al., 2019). Given that the loss of proteostasis is one hall-
mark of aging (López-Otín et al., 2013), the role of the nu-
cleolus in the aging process can also be linked from the
perspective of proteostasis.

PML body (also known as ND10) is named after its con-
centrated PML protein (Ishov et al., 1999). SUMOylated
PML interacts with its associated proteins that have SIM
through SUMO-SIM multivalent interactions (Shen et al.,
2006). PML and its direct interactors constitute the outer
cage-like structure, which surrounds an inner core with
various client proteins (Lallemand-Breitenbach and de Thé,
2018). The core region of the PML body concentrates pro-
teins including enzymes for biochemical processes such as
SUMOylation and chromatin regulation (Lallemand-Brei-
tenbach and de Thé, 2018). Cells utilizing alternative
lengthening of telomeres (ALT) have a special PML nuclear
body (ALT-associated PML body, APB) containing PML
protein, telomere DNA and some telomere binding proteins
(Yeager et al., 1999). Since telomere attrition is another
hallmark of aging (López-Otín et al., 2013), the PML nuclear
body might be associated with the aging process by reg-
ulating telomere stability.
Senescent cells often undergo dramatic alterations to

chromatin organization (Criscione et al., 2016b). Senes-
cence-associated heterochromatin foci (SAHF) were first
discovered in oncogene-induced senescence (OIS) of human
fibroblasts (Narita et al., 2003) (Figure 4). These hetero-
chromatic domains contain chromatin-repressive proteins,
such as HP1, high-mobility group A (HMGA) proteins
(Narita et al., 2006), the histone variant macroH2A (Zhang et
al., 2005b) and trimethylated histone H3 Lys9 (H3K9me3)
(Zhang et al., 2007). Senescence-specific spatial clustering
of heterochromatin contributes to the formation of SAHF

Figure 4 Changes in nuclear bodies as biomarkers of aging. Some nuclear bodies are changed during cell senescence. The nucleolus is the largest nuclear
body and has a three-layer structure including the FC, DFC and GC. The nucleoli become larger in the fibroblasts from HGPS patients and healthy old
individuals. In oncogene-induced senescenc of human fibroblasts, both the number per cell and the size of PML nuclear bodies are increased. Some of the
classical dot-like PML nuclear bodies also changed into thread-like structures in the fibroblasts from HGPS patients. The PML nuclear body is also required
for p53-PML-p300 complex formation, which promotes the induction of replicative cell senescence. In some senescent cells, such as oncogene-induced
senescence of human fibroblasts, heterochromatin is detached from the nuclear membrane and organized into SAHF. Telomeres are also regarded as nuclear
bodies. Telomere attrition is a hallmark of cell senescence and aging.
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(Chandra et al., 2015). However, SAHF is not a universal
biomarker for all types of senescent cells (Di Micco et al.,
2021).

Morphology of nuclear bodies
As a subcellular structure mainly formed by the mechanism
of LLPS, nuclear bodies often show a round or dot-like
morphology (Brangwynne et al., 2009). However, this is not
always the case. For example, nuclear speckles and para-
speckles have irregular shapes, such as small granules or
distorted spheres (Galganski et al., 2017; Wang and Chen,
2020), which are consistent with their names as speckles.
The size of nuclear bodies also varies within a range from
0.2–2 μm for diameters (Hirose et al., 2022). The nucleolus
is the largest round nuclear body, ranging from 1–10 μm in
different cell types and growth states (Lafontaine et al.,
2021). Cajal bodies, nuclear gems, PML nuclear bodies, and
histone locus bodies are quite similar round structures, all
approximately 0.2–1 μm in size (Hirose et al., 2022).
The nucleolus undergoes morphological changes with the

senescence onset (Kasselimi et al., 2022). And its size in-
versely correlates with longevity in animals, including ne-
matodes, fruit flies and mice (Tiku et al., 2017). Primary
fibroblasts from pre-maturely aged patients with HGPS
(Eriksson et al., 2003), as well as from old healthy in-
dividuals, have expanded nucleoli, indicating that nucleolar
size is an aging biomarker (Buchwalter and Hetzer, 2017). In
the fibroblasts from HGPS patients, the classical dot-like
PML nuclear bodies are reorganized into thread-like struc-
tures, suggesting that the morphological alteration of PML
nuclear bodies might be a biomarker for late senescence
(Wang et al., 2020c) (Figure 4).

Function of nuclear bodies
The core function of nuclear bodies is compartmentalization.
By sequestrating or excluding specific factors, nuclear bod-
ies cooperate to realize the flow of genetic information based
on Central Dogma. Because the nucleus is vital for the bio-
genesis of various RNAs, most nuclear bodies are associated
with chromatin and function in gene transcription as well as
RNA maturation (Hirose et al., 2022). For example, the
nucleolus transcribed pre-rRNA from rDNA loci within its
FC-DFC interface and further processing for mature rRNA
occurs in DFCs (Yao et al., 2019). The Cajal body associates
with U snRNA gene loci (Smith et al., 1995) with the as-
sistance of nascent snRNA (Frey and Matera, 2001), thus
reinforcing snRNA transcription and producing small nu-
clear ribonucleoproteins (snRNP) for the spliceosome (Wang
et al., 2016b). In addition, Cajal bodies also have a role in
snoRNA (Meier, 2017) and histone gene expression (Wang
et al., 2016b). The histone locus body associates with the
replication-dependent histone gene and recruits factors for
efficient histone mRNA biogenesis (Tatomer et al., 2016).

The PML nuclear body interacts with specific chromatin
regions, such as telomeres, and contains chromatin reg-
ulators, thereby affecting gene transcription via chromatin
remodeling (Corpet et al., 2020). Nuclear speckle plays im-
portant roles in both gene transcription and pre-mRNA
processing by accumulating transcription regulators and
splicing factors (Galganski et al., 2017).
Dysregulation of nuclear bodies has been implicated in

aging. In the nucleolus, CpG hypermethylation of ribosomal
DNA is an evolutionarily conserved marker of aging across
mammalian species from humans to dogs, providing a useful
concept of the “rDNA clock” to gauge individual age (Wang
and Lemos, 2019). Oncogenic and replicative stress lead to
defects in ribosome biogenesis in nucleoli, which induces
RPL11-mediated p53 activation and cellular senescence
(Nishimura et al., 2015). Oncogene-induced stable p53-
PML-p300 complex formation depends on the PML nuclear
body, which mediates p53 acetylation and promotes the in-
duction of replicative senescence (Pearson et al., 2000)
(Figure 4).

Numbers of nuclear bodies
To date, at least 18 nuclear condensates have been docu-
mented, some of which are common among cell types, in-
cluding the nucleolus, Cajal body, PML body, nuclear
speckle (Sabari et al., 2020). Some nuclear bodies are cell-
type specific, such as paraspeckles, which are common in
cancer cells but absent in embryonic stem cells (Chen and
Carmichael, 2009).
The number of each nuclear body varies greatly among cell

types and under specific stress conditions. For example, there
are an average of 3 nucleoli in each nucleus of HeLa,
MCF10A, and CHO cells (Farley et al., 2015). Usually, 10–20
paraspeckles are detected in human cells (Fox et al., 2002). In
hyperproliferating cells such as cancer cells, RNA biogenesis
and processing are very vigorous. Therefore, the number and
size of nuclear bodies in cancer cells are usually greater than
those in normal somatic cells. In addition, because of the
dynamic nature of LLPS, nuclear bodies are prone to be af-
fected by environmental stimuli, such as osmosis and heat
shock (Mähl et al., 1989). During cell senescence, the number
of some nuclear bodies is altered. Overexpression of the on-
cogene RasV12 in human fibroblast WI38 cells increases both
the number and size of PML nuclear bodies from 12.1±3.6
bodies per nucleus of (229±50.9) nm diameter to 30±10
bodies per nucleus of (601.7±124.4) nm diameter (Pearson et
al., 2000). Therefore, the number of certain nuclear bodies in
the cell might be an ideal biomarker for cell senescence
(Figure 4).

Locations of nuclear bodies
As the largest membranous organelle, the nucleus can be
divided into several subdomains, including the nuclear en-
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velope, nuclear lamina, chromatin, and nucleoplasm. As the
largest nuclear body and easily seen in phase-contrast mi-
croscopy, the nucleolus is often considered a special sub-
region in the nucleus (Lafontaine et al., 2021). Most nuclear
bodies scatter in the nucleoplasm, and some of them, such as
the Cajal body, PML nuclear body, and histone locus body,
are associated with the chromatin (Banani et al., 2017). One
of the PML isoforms, PML-II, can localize to the nuclear
envelope, linking to the nuclear lipid droplet formation
(Ohsaki et al., 2016).

Nuclear body-related diseases
The PML body is involved in the ubiquitin-mediated pro-
teolytic system, and its dysfunction leads to acute promye-
locytic leukemia, neurodegenerative disease and antiviral
defects (Lallemand-Breitenbach and de Thé, 2018; Scherer
and Stamminger, 2016). Spinal muscular atrophy disease
gene product (SMN) is one of the key protein components of
nuclear Gems, which promote the maturation of snRNP (Liu
et al., 1997). Mutation of SMN causes a neurological disease
of spinal muscular atrophy (Lefebvre et al., 1995). Mal-
functions of other nuclear bodies, such as the Cajal body,
nucleolus, and paraspeckle, have been well documented in
cancer and neurogenerative diseases (Hirose et al., 2022).
Nevertheless, more pathological aging-related phenotypes of
nuclear bodies require further investigation.

Summary and perspectives
Although the study of nuclear bodies has made great pro-
gress in recent years, more types of nuclear bodies need to be
identified. In addition, the following questions need to be
answered in the future. Are there any new nuclear bodies
related to aging and diseases? How do these nuclear bodies
communicate in young and old cells? Is there any “nuclear
body grammar” that specific protein or nuclear acid sequence
is important for macromolecules targeting to a specific nu-
clear body? Can some nuclear bodies be used as biomarkers
or therapeutic targets? The answers to these questions will
benefit the study of cell senescence and healthy aging re-
search.

Cell cycle arrest

The cell cycle is the series of events that drive proliferation-
competent cells to divide into two new daughter cells. The
typical cell cycle is composed of G1, S, G2, and M phases
(Panagopoulos and Altmeyer, 2021). Cell cycle progression
is regulated by cyclins and CDKs, CDKIs, and retino-
blastoma tumor suppressor protein (RB). Three major cell
cycle checkpoints exist, including the G1/S and G2/M tran-
sition checkpoints and the spindle assembly checkpoint
(SAC), to ensure a proper cell cycle progression (Barnum
and O’Connell, 2014; Satyanarayana and Kaldis, 2009).

Cyclins (such as cyclins D and E) and CDKs (such as CDK2,
4 and 6) can form cyclin-CDK complexes and phosphorylate
RB, which leads to the release of transcription factor E2F
from the RB-E2F complex and subsequent translocation to
the nucleus, thereby transcriptionally activating downstream
target genes involved in DNA replication and thus positively
driving cell cycle progression from G1 to S phase transition.
In contrast, CDKIs such as p21CIP1 and p16INK4a can inhibit
CDK activity; therefore, RB cannot be phosphorylated and
remains in its hypophosphorylated state, which leads to se-
questration of E2F in the RB-E2F complex, thereby repres-
sing E2F target gene transcription, blocking the cell cycle in
G1 phase and inhibiting entry into S phase (Hume et al.,
2020). Hence, proper cell cycle progression requires precise
coordination between the cyclin-CDK complex and CDKI.
Regardless of diverse intracellular and extracellular se-

nescence stimuli, one of the most defining hallmarks of
cellular senescence is a stable cell cycle arrest in the G1 or
possibly G2 phase, which blocks the damaged cells from
proliferation (Gire and Dulić, 2015; Salama et al., 2014).
Cell cycle arrest in cellular senescence is mainly regulated by
the p53/p21CIP1 and p16INK4a/RB pathways (Beauséjour et al.,
2003; Shay et al., 1991). Under senescence stressors, p53 is
activated via DDR-dependent or DDR-independent path-
ways and then upregulates the expression of its downstream
target gene p21CIP1. As a CDKI, p21CIP1 suppresses the for-
mation of cyclin E-CDK2 and cyclin A-CDK2 complexes to
halt the cell cycle and initiate senescence. Then, p16INK4a is
induced to repress the formation of the cyclin D-CDK4/6
complex. When p21CIP1 and p16INK4a are chronically acti-
vated to coordinately inhibit CDK activity, E2F target gene
transcription is inhibited, and the cell cycle is blocked in G1
phase (Roger et al., 2021). Prolonged overexpression of p53,
p21CIP1, p16INK4a, or RB is sufficient to induce cellular se-
nescence (Coppé et al., 2011; Li et al., 2022f; McConnell et
al., 1998). In contrast, the inactivation or depletion of these
CDKIs can lead to the bypass of cellular senescence (Bond et
al., 2004; Brown et al., 1997; Noh et al., 2019; Reyes et al.,
2018). Evidence suggests that p21CIP1 is mainly activated
early during the induction of senescence, whereas p16INK4a is
induced later and maintains cellular senescence (Gil and
Peters, 2006). Both pathways also crosstalk (Yamakoshi et
al., 2009; Zhang et al., 2006).

p53/p21CIP1 pathway in cellular senescence
p53 plays a critical role in the modulation of cellular se-
nescence via multiple mechanisms (Kastenhuber and Lowe,
2017). Constitutive DDR signaling caused by telomere at-
trition and oxidative or oncogenic stress activates p53 and its
downstream effector p21CIP1, which induces cellular senes-
cence. Inactivation of p53-mediated signaling disrupts the
onset of cellular senescence (Beauséjour et al., 2003; Brown
et al., 1997; Reyes et al., 2018).
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The expression level and activity of p53 are tightly regu-
lated at different levels by different factors. At the post-
transcriptional level, noncoding RNAs, including miRNAs
and long noncoding RNAs (lncRNAs), can regulate p53
abundance and activity. For example, miR-504 reduces p53
mRNA stability, thereby decreasing its protein level and
activity (Hu et al., 2010). Inactivation of the Gld2/miR-122/
CPEB/Gld4 pathway enhances p53 mRNA translation and
promotes cellular senescence (Burns et al., 2011). In addi-
tion, various post-translational modifications, such as ubi-
quitination, phosphorylation, acetylation, sumoylation, and
neddylation, also play important roles in regulating p53 le-
vels and activity (Kruse and Gu, 2009). For example, the E3
ubiquitin ligase MDM2 regulates p53 ubiquitination and
promotes protein degradation in collaboration with murine
double minute X (MDMX) (Wade et al., 2010). Conversely,
miR-605 reduces MDM2 mRNA stability and its protein
level, thereby triggering p53-mediated senescence (Xiao et
al., 2011). p53 phosphorylation at serine-15 by ATM kinase
promotes its protein stability and is the common change
during replicative senescence or DNA damage-induced se-
nescence (Webley et al., 2000). Forkhead box O4 (FOXO4)
can maintain senescent cell viability by binding p53 and
inhibiting p53-mediated apoptosis in favor of p21CIP1-in-
duced cell cycle arrest, and disruption of the FOXO4-p53
interaction causes senescent cell-intrinsic apoptosis (Baar et
al., 2017).
p21CIP1 is the first identified transcriptional target of p53

(el-Deiry et al., 1993). p21CIP1 is encoded by the CDKN1A
gene and is required for p53-induced cell cycle arrest at ei-
ther G1/S or G2/M checkpoints (Al Bitar and Gali-Muhtasib,
2019; Rufini et al., 2013). p21CIP1 suppresses cyclin E-CDK2
and cyclin A-CDK2 complex formation, thereby inhibiting
RB phosphorylation and preventing subsequent E2F dis-
association and formation of the dimerization partner, RB-
like, E2F and multi-vulval class B (DREAM) complex,
which ultimately leads to cell cycle arrest in G1 phase
(Gomatou et al., 2021; McConnell et al., 1998). The p53-
dependent induction of p21CIP1 is crucial for the initiation of
cellular senescence (Hernandez-Segura et al., 2017). p21CIP1

can also be activated by transforming growth factor (TGF)-β/
SMAD and phosphatidylinositol 3-kinase (PI3K)/FOXO
signaling pathways in a p53-independent manner and plays a
key role in developmental senescence, a transient pro-
grammed cellular senescence that occurs during mammalian
embryonic development (Muñoz-Espín et al., 2013; Storer et
al., 2013).
The expression level of p21CIP1 is also regulated by di-

vergent mechanisms. The transcription factor Sp1 can acti-
vate p21CIP1 transcription (Huang et al., 2006), whereas c-
Myc, ID1, CTIP-2, CUT, and retinoid X receptor suppress
p21CIP1 transcription (Jung et al., 2010). miRNAs such as
miR-17-92, miR-106a-363, and miR-106b-25 or RNA-

binding proteins such as HuD, HuR, RBM28, Msi-1,
PCBP1/CP1/hnRNP E1, TAX, and AUF1 modulate p21CIP1

mRNA stability and protein levels at the post-transcriptional
level (Borgdorff et al., 2010). Diverse post-translational
modifications of the p21CIP1 protein, such as phosphorylation
by Akt1/PKB, PKA, PKC, PIM-1, and GSKβ and ubiquiti-
nation by E3 ubiquitin ligases, also modulate p21CIP1 ex-
pression levels (Al-Khalaf and Aboussekhra, 2013; Jung et
al., 2010).

p16INK4a/RB pathway in cellular senescence
The INK4a/ARF/INK4b gene cluster encodes p16INK4a,
p14ARF (or p19Arf in mice), and p15INK4b, respectively (Gil
and Peters, 2006). p16INK4a and p15INK4b are CDKIs and
block cell cycle progression by inhibiting CDK4/6 activity
(Gil and Peters, 2006; Kim and Sharpless, 2006; Kotake et
al., 2011). p16INK4a is often used as a unique and specific
biomarker for senescence in vitro and in vivo (Baker et al.,
2011; Burd et al., 2013).
In most primary cells, the INK4a/ARF/INK4b locus is

tightly regulated at multiple levels. At the transcriptional
level, transcription factors such as Sp1, Ets, AP1 (JunB
subunit), PPARγ, HBP-1, CTCF, and FOXA1 activate
p16INK4a expression (Gan et al., 2008; Li et al., 2013; Ohtani
et al., 2001; Passegué andWagner, 2000; Salama et al., 2014;
Wang et al., 2007), whereas ITSE (INK4a transcription si-
lence element), YB1, ID1, and AP-1 (c-Jun subunit) tran-
scriptionally repress p16INK4a expression in various stimuli-
induced cellular senescence (Huang et al., 2011; Kotake et
al., 2013; Li et al., 2011a). Additionally, in oxidative stress-
induced cellular senescence, the extracellular signal-regu-
lated kinases ERK1/2 and the stress-activated protein kinases
p38 also upregulate p16INK4a expression (Jenkins et al., 2011;
Shin et al., 2013). At the post-transcriptional level, the RNA-
binding proteins hnRNPA1 and A2 promote p16INK4a mRNA
stability (Zhu et al., 2002), while AUF1 enhances p16INK4a

mRNA turnover (Guo et al., 2010). The lncRNA VAD in-
hibits the incorporation of the repressive histone variant
H2A.Z at INK4 gene promoters to promote p16INK4a ex-
pression in RAF-induced senescence (Lazorthes et al., 2015).
The lncRNA UCA1 disrupts the hnRNPA1-p16INK4a mRNA
interaction, thereby promoting p16INK4a mRNA stability and
protein levels (Kumar et al., 2014). miR-24 suppresses
p16INK4a expression at the post-transcriptional level (Lal et
al., 2008). At the translational level, p16INK4a mRNA 5′-UTR
contains a cellular internal ribosome entry site (IRES) that
can enhance mRNA translation efficiency, in part through
YBX1 (Bisio et al., 2015). p16INK4a protein is also subjected
to various post-translational modifications; for example,
phosphorylation at serine-140 and methylation at arginine-
138 alter the affinity of p16INK4a for CDK4 (Lu et al., 2017),
and its N-terminal ubiquitination promotes p16INK4a protein
degradation (Ben-Saadon et al., 2004).

912 Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



The epigenetic regulation of INK4a/ARF/INK4b locus
transcription also plays a key role in the regulation of
p16INK4a expression. The p16INK4a promoter is methylated by
the methyl-transferase DNMT3b to silence its expression,
while DNMT1 maintains existing methylation (Velicescu et
al., 2002). DNMT1 inhibitors cause demethylation of the
p16INK4a promoter and a senescence-like phenotype (Pan et
al., 2013; Venturelli et al., 2013; Zhu et al., 2017). The re-
pressive histone variant macroH2A1 is enriched in the in-
active p16INK4a locus but replaced by H2A.Z in the active
p16INK4a locus (Barzily-Rokni et al., 2011). In most primary
cells, the INK4a/ARF/INK4b locus is tightly regulated by
Polycomb group (PcG) proteins that function as epigenetic
modifiers and transcriptional repressors (Li et al., 2011a).
PcG proteins form two distinct protein complexes called
Polycomb Repressive Complex 1 (PRC1) and 2 (PRC2).
During cellular senescence, many PcG proteins, such as
BMI1, MEL18, CBX4, CBX7, CBX8, EZH1/2, and SUZ12,
are down-regulated, leading to the loss of H3K27me3 at the
INK4a/ARF/INK4b locus, which results in the upregulation
of p16INK4a. On the other hand, ectopic expression of these
PcG proteins delays or bypasses the onset of cellular se-
nescence (Agherbi et al., 2009; Bracken et al., 2007; Dietrich
et al., 2007; Gil et al., 2004; Kotake et al., 2007; Luis et al.,
2011; Maertens et al., 2009). The antisense lncRNA for
p16INK4a, ANRIL, is required to recruit PRC1 and PRC2
complexes to the p16INK4a promoter to repress its transcrip-
tion (Yap et al., 2010). Histone H3K27me3 site-specific
demethylase JMJD3 has the opposite effect to PcG proteins,
which can bind to the INK4a/ARF/INK4b locus and speci-
fically catalyze H3K27me3 demethylation, thus releasing the
inhibition of PRC complexes on INK4a/ARF/INK4b gene
cluster transcription and promoting cellular senescence
(Agger et al., 2009; Barradas et al., 2009). Other epigenetic
regulators, such as ZRF and MLL1, also regulate INK4a/
ARF/INK4b locus expression at the epigenetic level (Kotake
et al., 2009; Ribeiro et al., 2013).
PcG proteins themselves are also subjected to diverse

regulation. At the post-transcriptional level, miRNAs, in-
cluding miR-26b, 181a, 210, and 424, downregulate the PcG
proteins CBX7, EED, EZH2, and SUZ12, leading to p16INK4a

upregulation and promotion of cellular senescence (Puvvula
et al., 2014). In proliferating cells, the lncRNA PANDA re-
cruits PRC complexes to repress p16INK4a transcription.
Conversely, the loss of PANDA promotes cellular senes-
cence (Puvvula et al., 2014). In addition, various post-
translational modifications of PcG proteins also affect PRC
complex function. For example, the ubiquitin-specific pro-
teases USP7 and USP11 de-ubiquitinate BMI1 and MEL18
to enhance their protein stability, thereby downregulating
p16INK4a transcription to delay cellular senescence (Maertens
et al., 2010). EZH2 can be phosphorylated by CDK1, Akt,
and AMP-activated protein kinase (AMPK), leading to al-

terations in PRC complex stability and enzymatic activity,
thereby affecting target gene transcription (Chen et al., 2010;
Kaneko et al., 2010; Liu et al., 2012b; Wan et al., 2018; Wei
et al., 2011). The phosphorylation of CBX2, CBX7, CBX8,
BMI1, and MEL18 by various protein kinases also affects
PRC complex function and p16INK4a transcription, thereby
playing an important role in regulating cellular senescence
(Elderkin et al., 2007; Kawaguchi et al., 2017; Voncken et al.,
2005; Wu et al., 2013; Zhan et al., 2018).

Summary and perspectives
In summary, stable cell cycle arrest mediated by p53/p21CIP1

and p16INK4a/RB pathways is one of the most defining hall-
marks of cellular senescence. Both pathways are complex, as
they involve many upstream regulators and downstream ef-
fectors (Figure 5). In humans, senescent cells accumulate in
multiple tissues during aging. And a widely accepted bio-
marker for cellular senescence, SA-β-gal activity has been
explored to monitor cellular aging in living mice (Sun et al.,
2022a). p16INK4a is also the most widely used biomarker of
cellular senescence in vivo (Idda et al., 2020). p21CIP1 can
also be useful in the detection of senescent cells in tissues.
However, p53 and RB activation also occur in other forms of
cell cycle arrest (Rodier and Campisi, 2011). p21CIP1 is not
usually maintained once the senescence program has been
established (Stein et al., 1999). Even p16INK4a is not ex-
pressed by all senescent cells (Hernandez-Segura et al.,
2018) and is also expressed in certain non-senescent cells
(Sharpless and Sherr, 2015). Therefore, multiple biomarkers
are required to precisely identify senescent cells in vitro and
in vivo, such as the cell cycle regulators p53/p21CIP1 and
p16INK4a/RB, DNA replication markers EdU or BrdU, cell
proliferation markers Ki-67 or PCNA, colony formation
assay or cell growth curve, SA-β-gal staining, DNA damage
marker γH2AX, Lamin B1, and/or the SASP (Gorgoulis et
al., 2019).

Mitochondrial malfunction

Mitochondria are important intracellular organelles that play
essential roles in multiple cellular activities, including en-
ergy supply, calcium homeostasis, cell signaling, apoptosis
regulation, and many biosynthetic pathways. Mitochondria
contain their own genome, termed mitochondrial DNA
(mtDNA), encoding 37 genes, including 13 genes coding for
proteins, 2 genes coding for ribosomal RNAs (16S and 12S
rRNAs), and 22 genes coding for transfer RNAs. ROS,
which are primarily generated at complexes I and III of the
mitochondrial respiratory chain, cause oxidative damage to
mtDNA. The resulting mtDNA mutations produce defective
respiratory chain components and thus generate more ROS,
which leads to the vicious cycle of ROS and the accumu-
lation of mtDNA mutations. The cell damage caused by
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ROS and mtDNA mutations finally accelerates the aging
process by compromising mitochondrial functions (Alex-
eyev, 2009), which is regarded as one of the hallmarks of
aging (Ross et al., 2013). Oxidative damage theory is one of
the main theories of the aging mechanism (Harman, 1972;
Miquel et al., 1980). In general, age-related abnormalities of
mitochondria, including increased ROS generation, accu-
mulated mtDNA mutations and content, altered mitochon-
drial dynamics, decreased mitochondrial unfolded protein
response (UPRmt), and reduced activity of the respiratory
chain, have been linked to aging (Li et al., 2022b).

ROS
Increased oxidative stress has been reported to be associated
with aging (Kokoszka et al., 2001; Kurosu et al., 2005) and
shown to reduce the lifespan of C. elegans (Dilberger et al.,
2019). Moreover, increased ROS production is regarded as a
biomarker of aging in monocytes (Jacinto et al., 2018).
Spontaneous bursts of mitochondrial flash (mitoflash) fre-
quency have been negatively correlated with and validated as
a powerful predictor of the lifespan of C. elegans (Shen et al.,
2014). Notably, the activated mitoflash can dramatically
enhance the reprogramming of these cells from old in-
dividuals (Ying et al., 2016).

mtDNA mutations
The accumulation of mtDNA mutations has been considered
to be an important contributor to aging and age-related dis-
eases (Kong et al., 2022; Larsson, 2010; Linnane et al., 1989;
Payne and Chinnery, 2015). mtDNA mutations have been
reported to induce the aging of multiple organs in mice, such
as the ovary, heart, and liver (Giorgi et al., 2018; Kauppila et
al., 2017; Kujoth et al., 2005; Niemann et al., 2017; Trifu-
novic et al., 2004; Yang et al., 2020; Zhang et al., 2018a).
Especially for some tissues with strong energy demand, in-
cluding heart, liver and skin tissues, excessive mtDNA mu-
tations result in mitochondrial dysfunction by compromising

oxidative phosphorylation and accelerating aging pheno-
types (Herbst et al., 2007). During the aging process, the
accumulation of mtDNA mutations has been observed in
aged rodent and human tissues (Baines et al., 2014; Corto-
passi and Arnheim, 1990; Greaves et al., 2012; Greaves et
al., 2006; Lob and Hugonnaud, 1978; Pikó et al., 1988;
Taylor et al., 2003). Moreover, a larger number and higher
frequency of mtDNA mutations, including point, deletion,
and insertion mutations, have been identified in aged tissues
(Corral-Debrinski et al., 1992; Fayet et al., 2002; Larsson,
2010; Yen et al., 1991). Notably, low-frequency (less than
0.5%) mtDNA point mutations accumulate in human oocytes
during aging, which is linked with impaired blastocyst for-
mation (Yang et al., 2020). The accumulation of mtDNA
mutations has been shown to decrease fertility by reducing
the amount of NADH in oocytes. Therefore, low-frequency
mtDNA point mutations may be used as a potential bio-
marker of oocyte aging. In addition to mtDNA mutations,
mitochondrial content (Tao et al., 2017; Vyas et al., 2020;
Welle et al., 2003) is also altered in aged individuals. Dif-
ferent mtDNA copy numbers have been observed in different
tissues during the aging process (Ding et al., 2015; He et al.,
2014b; Knez et al., 2016; Mengel-From et al., 2014; van
Leeuwen et al., 2014), implying that mtDNA copy number is
tissue-specific for aging.

Mitochondrial dynamics
Mitochondrial dynamics, including mitochondrial fission,
fusion, transport, biogenesis, and mitophagy, maintain the
metabolic function and mtDNA integrity as well as their
regulatory roles in mitochondrial turnover and many sig-
naling pathways. Several studies have shown that mi-
tochondrial dynamics are required for lifespan extension in
different long-lived conditions (Burkewitz et al., 2015; Weir
et al., 2017; Zhang et al., 2019e), demonstrating their im-
portant roles in the aging process. Indeed, altered mi-
tochondrial dynamics, such as defective mitochondrial
fission, have been linked with cellular senescence (Yu et al.,
2020a). Due to direct regulation by mitochondrial fusion-
fission dynamics, changes in mitochondrial morphology
have also been reported to be associated with aging. The
enlargement of mitochondria has been observed in aged
Drosophila heart muscle (Sohal, 1970). Abnormal, frag-
mented mitochondrial networks are implicated in age-related
diseases such as Parkinson’s disease (PD), AD, and Hun-
tington’s disease (HD) (Manczak and Reddy, 2012; Rappold
et al., 2014; Shirendeb et al., 2012), and are also observed in
healthy aged hearts (Stotland and Gottlieb, 2016). In addi-
tion, mitochondrial morphology differs across muscle fiber
types or tissues during aging (Mishra et al., 2015b; Navarro
and Boveris, 2004; Wyckelsma et al., 2017). For example,
the oxidative soleus muscle contains mitochondrial frag-
mentation, while the glycolytic white gastrocnemius is fea-

Figure 5 Cell cycle arrest as a biomarker of aging. Various internal or
external senescence stressors, such as telomere shortening, DNA damage,
oxidative stress, oncogene activation, tumor suppressor gene inactivation,
chemotherapeutic drugs, UV light, radiation, and viral infections, activate
the p53/p21CIP1 and/or p16INK4a/RB pathways to block the cell cycle in G1
phase and inhibit entry into S phase, therefore achieving senescence-as-
sociated stable cell cycle arrest. Abbreviations: SAGA, senescence-asso-
ciated growth arrest.
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tured by mitochondrial elongation in aged rats (Faitg et al.,
2019). In brief, the impact of aging on mitochondrial dy-
namics is tissue-specific.

Mitophagy
Mitophagy is a specific form of autophagy that regulates the
turnover of dysfunctional or damaged mitochondria, thus
maintaining a healthy mitochondrial population for produ-
cing energy. The compromise of mitophagy results in mi-
tochondrial dysfunction and proteostasis imbalance and thus
exacerbates aging (Babbar et al., 2020; Fang et al., 2019;
Fang et al., 2014; Fivenson et al., 2017; Onishi et al., 2021).
During the aging process, compromised mitophagy has been
observed in aged tissues such as the ovary and heart (Jin et
al., 2022; Stotland and Gottlieb, 2016). In C. elegans, the
inhibition of mitophagy leads to the accumulation of mi-
tochondria in neurons, muscles, and the small intestine
during aging (Palikaras et al., 2015). In addition, it has been
shown that mitophagy regulates the aging process of Dro-
sophila and mice via the modulation of the morphology and
quantity of the mitochondria (Koehler et al., 2017; Liu et al.,
2021a). As such, compromised mitophagy could also be
considered a biomarker for aging.

Mitochondrial unfolded protein response (UPRmt)
UPRmt is triggered by mitochondrial dysfunction. The acti-
vation of UPRmt has often been proposed as an important
pathway in lifespan extension induced by mitochondrial
disruption (Houtkooper et al., 2013). For instance, the mi-
tochondrial chaperone HSP60 and mitochondrial protease
lon peptidase 1 (LONP1), two components of the UPRmt,
have been found to be upregulated in long-lived mouse
models (Ozkurede and Miller, 2019), showing a correlation
between lifespan extension and UPRmt activation. During
physiological aging, UPRmt has been reported to decline
with age. Lower LONP1 activity has been shown in old rat
livers, demonstrating an impaired UPRmt during aging
(Bakala et al., 2003). LONP1 expression has also been re-
ported to decrease with age in mouse skeletal muscle (Bota
et al., 2002), which could be restored by caloric restriction
that extends mouse lifespan (Lee et al., 1999). Likewise, the
expression of the UPRmt genes Hsp60 and Hsp10 decreased
in muscle stem cells from old mice (Yokoyama et al., 2002).
These studies point to a causal effect of UPRmt decline on
aging, and UPRmt decline could thus be regarded as a bio-
marker for aging.

Mitochondrial respiratory function
Disorders of mitochondrial respiratory function, such as
defective electron transport chain and decreased mitochon-
drial membrane potential (∆ψm), have been associated with
aging (Conley et al., 2000; Migliavacca et al., 2019; Petersen
et al., 2003). The respiration rate declines with age in mouse

spleen lymphocytes (Rottenberg and Wu, 1997). Further-
more, the enzymatic activities of mitochondrial complexes
are also decreased in aging rats (Navarro and Boveris, 2004).
∆ψm is controlled by electron transport and proton leaks and
determines the synthesis rate of ATP and ROS. A lower level
of ∆ψm was observed in aged mouse lymphocytes (Rot-
tenberg and Wu, 1997) and p53-induced senescence (Sugrue
et al., 1999). In addition, higher heterogeneity of ∆ψm,
showing an increased ratio of cells with lower ∆ψm, has
been observed in hepatocytes of old rats (Hagen et al., 1997).
Therefore, a lower ∆ψm may be considered a biomarker for
aging. Due to the possible effect of accumulated oxidative
damage and mitochondrial dysfunction, alterations in mi-
tochondrial ultrastructure were observed in mice and Dro-
sophila during aging (Brandt et al., 2017). Mitochondrial
respiratory function decreases during the aging process,
providing another biomarker for aging.
Taken together, all of the above referred mitochondrial

biomarkers of aging and their corresponding test methods are
summarized in Figure 6 and Table S2 in Supporting In-
formation.

Loss of proteostasis

The maintenance of proteostasis is pivotal for the proper
function of cells and organisms (Costa-Mattioli and Walter,
2020). A progressive decline in proteostasis with aging in-
creases the risk of abnormal protein aggregate accumulation
(Sala and Morimoto, 2022). Loss of proteostasis is re-
cognized as a hallmark of aging and various age-related
diseases (López-Otín et al., 2013; López-Otín et al., 2023).
The proteostasis network, which includes the following core
members, contributes to proteostasis: (i) molecular chaper-
ones and cochaperones promote efficient protein folding and
assembly and prevent the aggregation of misfolded proteins;
and (ii) the autophagy-lysosomal system and the ubiquitin-
proteasome system are two major quality control pathways
that are critical to proteostasis (Dikic, 2017) and collaborate
to ensure protein homeostasis (Hipp et al., 2019). In general,
large aggregates can be degraded in the lysosome as medi-
ated through autophagy, and terminally misfolded substrates
can be degraded by the proteasome (Hartl et al., 2011). (iii)
Stress response pathways, such as the heat shock response
(HSR) and UPR of the endoplasmic reticulum (UPRER) and
mitochondria (UPRmito), are activated by protein misfolding
(Labbadia and Morimoto, 2015).
Recently increasing evidence indicates that proteostasis is

closely associated with aging and longevity. A single-nu-
cleus transcriptome atlas of primate hippocampal aging
shows that loss of proteostasis is an obvious characteristic of
aging (Zhang et al., 2021e). A severe proteome imbalance
develops during C. elegans aging, and in the long-lived daf-2
mutant, this proteome imbalance is reduced, whereas in the
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short-lived daf-16 mutant, this proteome imbalance is en-
hanced (Walther et al., 2015). The relative size of organismal
chaperone networks has been reported to be directly linked to
species longevity. The shortest-lived vertebrate (North-
obranchius furzeri) carries few chaperones and is therefore
widely used for establishing fragile protein homeostasis
models (Draceni and Pechmann, 2019). Moreover, the
longest-lived rodent (the naked mole-rat) is characterized by
an above-average number of chaperones and shows the
distinct ability to maintain proteostasis via proteasome-
mediated degradation and autophagy during aging (Draceni
and Pechmann, 2019; Rodriguez et al., 2016). In addition,
the UPRER rate is decreased in aged C. elegans (Ben-Zvi et
al., 2009), whereas an increased UPRmito rate extends worm
lifespan (Li et al., 2022g). All these results suggest that
chaperone status, the activities of the autophagy-lysosomal
system, the ubiquitin-proteasome system, and the function-
ality of UPRER and UPRmito can be used as biomarkers of
aging.

Regulation of proteostasis by PTMs
Post-translational protein modifications (PTMs) increase the
functional diversity of the proteome and are essential for all
eukaryotic organisms. Enzymatic and nonenzymatic PTMs
in aging are key regulatory mechanisms in the decline of
proteostasis; these PTMs are mainly phosphorylation, ubi-
quitination, SUMOylation, acetylation, carbonylation, and
oxidative posttranslational modifications (OxiPTMs) of cy-
steine residues. Examples of PTM targets involved in the
loss of proteostasis in aging or age-related diseases are listed
in Table S3 in Supporting Information.
(1) Protein phosphorylation. Protein phosphorylation af-

fects proteostasis in aging by activating or inactivating a
protein and/or the tendency of a protein to misfold and ag-
gregate. The study on osteoarthritis in young and old cyno-
molgus monkeys demonstrated that phosphorylated IRE1

alpha was increased due to the loss of molecular chaperone
expression with aging. Dephosphorylation at the Thr172
residue of AMPKα disrupted the maintenance of efficient
cellular homeostasis and accelerated the aging process
(Salminen et al., 2016). α-Synuclein is the key protein im-
plicated in PD and other synucleinopathies, and phosphor-
ylation at serine 129 (pS129) is a pathological hallmark of
PD and a principal component in Lewy bodies (Chen and
Feany, 2005). Acinus is a multifunctional nuclear protein that
plays a role in the regulation of basal, starvation-independent
autophagy. Phosphorylation of acinus at conserved serine
437 enhances protein stability, extending the lifespans of
flies by elevating levels of basal autophagy (Nandi and
Krämer, 2018).
(2) Protein ubiquitination and SUMOylation. Ubiquitina-

tion is the process of attaching ubiquitin (76-amino acid
protein), a small functional regulatory protein, to a targeted
molecule (Swatek and Komander, 2016). Ubiquitin ligase
CHIP is a key regulator of proteostasis. CHIP deficiency
leads to decreased ubiquitination levels of the insulin re-
ceptor (INSR) and a reduced lifespan of worms and flies
(Tawo et al., 2017). Enhancing K63-linked ubiquitination of
beclin 1 by small molecules restored proteostasis by acti-
vating autophagy in cells in which mutant tau, α-synuclein,
or huntingtin had accumulated (Xu et al., 2020).
Protein SUMOylation is a widespread posttranslational

modification by which a SUMO is covalently attached to
target proteins. Increasing the SUMOylation rate of the
germline protein CAR-1 disrupted proteostasis and shor-
tened the lifespan in C. elegans, indicating that CAR-1
SUMOylation may be used as an aging biomarker of the
germline (Moll et al., 2018). The disruption of lamin A
(LMNA) SUMOylation may be related to the loss of nuclear
proteostasis and may cause early aging in laminopathies
(Ghosh et al., 2022a).
(3) Protein acetylation. Lysine acetylation is a normal and

versatile protein posttranslational modification. Lysine
acetyltransferase and lysine deacetylase catalyze the addition
or removal of acetyl groups on histone and nonhistone tar-
gets, respectively (Shvedunova and Akhtar, 2022). HDAC6,
a cytosolic histone deacetylase, is a suppressor of age-de-
pendent ectopic fat accumulation (EFA). Loss of HDAC6 led
to EFA and reduced animal longevity on a high-fat diet (Yan
et al., 2017). Human positive cofactor 4 (PC4) accumulates
and is activated during aging and accelerates the aging pro-
cess by disrupting proteostasis, with PC4 interacting with the
Sin3-HDAC complex and inhibiting the deacetylation ac-
tivity of this complex to regulate the mTOR signaling
pathway (Chen et al., 2021b). Clinical research has revealed
significant acetylated tau pathology in the distribution pat-
tern of AD and other major tauopathies. The acetylation of
tau at lysine 280 may contribute to tau-mediated neurode-
generation (Irwin et al., 2012). Heat shock factor 1 (HSF1) is

Figure 6 Mitochondrial biomarkers of aging. Several mitochondrial
biomarkers are changed during aging. The red cross in the respiratory chain
indicates the disorder of the respiratory chain.
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central to heat shock regulation and plays a pivotal role in
guarding proteostasis. The HSF1 acetylation rate is increased
in aged mice and impairs the cellular stress response (Jur-
ivich et al., 2020).
(4) Protein carbonylation. Protein carbonylation is a major

hallmark of oxidative damage to proteins and an important
process in the context of proteostasis. Proteins are oxida-
tively modified by a large number of reactive species, in-
cluding reactive oxygen species, lipid peroxidation-derived
aldehydes, and reducing sugars (Fedorova et al., 2014).
Protein carbonylation is significantly increased in rat kidneys
with aging (Goto et al., 1999). Muscle stem cell replication
and differentiation are compromised with age due to the
accumulation of oxidized proteins, which contribute to sar-
copenia. A modified proteomic analysis showed that proteins
involved in protein quality control and glycolytic enzymes
are the main targets of carbonylation (Baraibar et al., 2016).

OxiPTMs
Common OxiPTMs of cysteine thiols (-SH) include S-nitros
(yl)ation (-SNO), S-glutathionylation (-SSG), S-sulfhydra-
tion (-SSH), S-sulfenylation (-SOH), S-sulfinylation (-SO2H)
and S-sulfonylation (-SO3H) (Shi and Carroll, 2020).
(1) S-Nitros(yl)ation. S-nitrosylation or S-nitrosation is a

reversible posttranslational modification of protein cysteine
thiols by nitric oxide (NO) or its derivatives (Zhang et al.,
2012). Many aspects of proteostasis are specifically regu-
lated by S-nitrosation. For instance, the increase in S-ni-
trosation of the pivotal ER sulfhydryl oxidase Ero1α leads to
decreased activity and accelerates senescence that is ac-
companied by disrupted proteostasis and a compromised
UPRER (Qiao et al., 2022). S-nitrosoglutathione reductase
(GSNOR) deficiency promotes excessive S-nitrosylation of
Drp1 and Parkin, thereby impairing mitochondrial dynamics
and mitophagy and driving cell senescence (Rizza et al.,
2018). hmtThrRS S-nitrosation decreases its aminoacylation
and editing activities, thereby regulating protein synthesis
(Zheng et al., 2020). S-nitrosation of ATG4B (a core au-
tophagy protein) resulted in attenuation of autophagy in the
hippocampus of diabetic Goto-Kakizaki (GK) rats and
caused neurotoxicity (Li et al., 2017c).
(2) S-sulfhydration. S-sulfhydration (protein persulfida-

tion) is a posttranslational modification of cysteine thiols
mediated by hydrogen sulfide (H2S), which is an essential
regulatory signaling molecule (Gupta et al., 2022; Zivanovic
et al., 2019). It has been reported that S-sulfhydration of the
HMG-CoA reductase degradation protein (Hrd1, an E3
ubiquitin ligase) played an important role in regulating lipid
droplet formation in the context of diabetes (Yu et al.,
2020b). S-Sulfhydration of ubiquitin-specific peptidase
(USP8) enhances the deubiquitination of Parkin and pro-
motes mitophagy (Sun et al., 2020b). Interventions based on
diet or pharmacology to increase persulfidation are linked

with increased longevity (Zivanovic et al., 2019).
In addition to PTMs, the cellular redox balance provides a

stable microenvironment for various intracellular bioma-
cromolecules to perform normal functions and is thus an-
other key factor in the regulation of proteostasis in aging and
age-related diseases. The accumulation of protein aggregates
in cells is considered a feature of cellular senescence that can
be induced by oxidative proteostasis (Höhn et al., 2017). It
has been reported that the decline in redox-stress response
capacity (RRC) is a dynamic characteristic of aging; i.e., it
affects the ability of cells to generate appropriate reactive
oxygen species and thus activate cell signaling pathways, to
maintain redox homeostasis, and to degrade damaged pro-
teins, i.e., to maintain proteostasis (Meng et al., 2017). In a
promising finding, increasing the redox-stress signaling
threshold (RST, identified as the maximum level below
which redox stress shows benefits) by starvation, exercise or
heat stress during development improved RRC to maintain
protein homeostasis and delay aging (Meng et al., 2022).
Another study showed that reduction stress in the ER is an
important driving force of cellular senescence, since under
reductive stress conditions, protein synthesis, protein fold-
ing, and UPRER activity are all disrupted. Specific elevation
in the degree of ER oxidation successfully delays cellular
aging (Qiao et al., 2022). Notably, it has been proposed that
precision redox is the key for antioxidant pharmacology, and
the avenue to precision redox medicine is opening (Meng et
al., 2021; Sies et al., 2022). Therefore, RRC, and RST and
precision redox status effectively reflect proteostatic status
and are therefore effective biomarkers of aging.

Summary and perspectives
Overwhelming evidence supports the loss of proteostasis as
one of the key characteristics in aging and as an effective
biomarker of aging, and proteostasis failure contributes to
the development of aging and age-related diseases. Protein
PTMs are involved in proteostasis in aging by regulating
protein activity, localization or interaction with other cellular
molecules and are also therefore necessary for cellular
homeostasis. oxiPTMs competing for specific protein thiol
groups are important to protein stability, and the roles of
oxiPTMs depend on the cellular redox state, which is either
optimal or stressful. Enlargement of RST is a way to main-
tain proteostasis by increasing the redox-stress signaling
threshold. The ability to maintain proteostasis in RRC is a
dynamic characteristic of aging. The methods and indices for
quantitatively assessing the relationship between biomarkers
of proteostasis (PTMs levels, RRC, and RST) and aging
progression need to be established in future studies.

Metabolic dysregulation

Cellular metabolism, a fundamental activity to sustain life, is

917Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



deeply intertwined with most, if not all, biological processes,
including aging and senescence (Amorim et al., 2022; Wang
et al., 2022g; Wei et al., 2023). Aging has been characterized
with a number of hallmarks, among which quite a few roots
from abnormal metabolic activities (López-Otín et al., 2023).
For example, while nutrient-sensing and mitochondrial
function are primarily an intrinsic part of cell metabolism,
others have a more complicated and close relationship with
cellular metabolism, such as the cause of DNA damage by
the imbalance of redox metabolism, alteration of mTORC
activity (a conserved signaling pathway in aging) with amino
acids and glucose (Liu and Sabatini, 2020), and most re-
cently, creation of aging intervention environment through
cell-cell metabolite exchange (Correia-Melo et al., 2023).
Since cellular metabolism elicits a profound influence on the
aging process, metabolites are naturally thought to be good
biomarkers for aging. Indeed, much effort has been paid to
measure the difference of metabolites between humans with
distinct ages, and a database named MetaboAge compiles
manually curated human aging-related metabolome studies
(Bucaciuc Mracica et al., 2020). At present, a handful of
metabolites have been consistently reported to change the
aging process (Table S4 in Supporting Information), thus
they are the promising biomarker candidates for aging. In the
following sections, we summarize the metabolic pathway,
aging-related functions, and potentials as aging biomarkers
of these metabolites.
The level of hundreds of metabolites have been docu-

mented to change with age (Bucaciuc Mracica et al., 2020;
López-Otín et al., 2016; Panyard et al., 2022), and dozens of
them are able to promote or resist the aging process (Amorim
et al., 2022; Finkel, 2015). However, due to the metabolic
heterogeneity of individuals and different metabolite assays
between studies, only a small number of metabolic features
has been consistently validated in multiple studies. Among
them, seven metabolites are strongly associated with age
and/or elicit the geroprotective effects across species,
therefore can be considered as the candidates of metabolic
biomarkers for aging.

NAD+

NAD+ is one of star molecules that strongly affect the aging
process in different model organisms. Besides the inter-
conversion with NADH, NAD+ is mainly synthesized from
precursors through the salvage pathway, the Preiss-Handler
pathway, and the de novo pathway in the mammalian cells,
and is catabolized through a number of NAD+-consuming
enzymes such as Poly (ADP-ribose) polymerase (PARP),
SIRT, and CD38 (Chini et al., 2021). NAD+ regulates the
aging process via several mechanisms (Covarrubias et al.,
2021). At first, as a core enzyme I, NAD+ is involved in more
than a hundred redox reactions and hence NAD+ deficiency
can lead to metabolic dysfunction and aging. Furthermore,

NAD+ plays an important role in macrophage activation and
neuronal survival, and NAD+ depletion promotes the func-
tional decline of innate immunity and causes neurodegen-
erative diseases, including AD and Parkinson’s disease. In
addition, replenishment of NAD+ in aging mice may improve
health by maintaining the homeostasis of stem cell pools
(Zhang et al., 2016). However, a study showed that an in-
crease of NAD+ level in oncogene-induced senescent cells
might enhance the senescence-associated secretory pheno-
type (Nacarelli et al., 2019). Thus, more effort should be
made to understand the function of NAD+ in cellular aging
(senescence) beyond organismal aging. NAD+ is compart-
mentalized in cells with a typical concentration of
50–300 μmol L−1 while its abundance in blood is much low.
A decrease in NAD+ is consistently associated with age (Zou
et al., 2020), thus making it a promising biomarker for aging.

Alpha-Ketoglutarate
Alpha-Ketoglutarate is a key intermediate metabolite of the
tricarboxylic acid cycle. It can be synthesized from gluta-
mate through reversible conversion in mitochondrial by
glutamate hydrogenase or transamination reactions in both
cytosol and mitochondria (Figure 7). Alpha-Ketoglutarate
can extend the health span in several model organisms in-
cluding worms (Chin et al., 2014), fruit flies (Su et al., 2019),
and mice (Asadi Shahmirzadi et al., 2020; Zhang et al.,
2021j). In worms, this metabolite can bind to the ATP syn-
thase, which is also known as the complex V of mitochon-
drial electron transport chain, and partial inhibition of
mitochondrial respiratory activity can decrease the aging
rate. In addition, the intervention geroprotective effect of α-
ketoglutarate may be mediated by TOR signaling (Chin et
al., 2014; Su et al., 2019). Although the geroprotective effect
of α-ketoglutarate is consistently observed, the level of α-
ketoglutarate during aging and cellular senescence appears to
be dependent on the biological contexts. Some studies in-
dicated that the α-ketoglutarate abundance increased in
chemical-induced senescence (Fernandez-Rebollo et al.,
2020; Wu et al., 2017), and others reported that it declined in
the blood and follicular fluid of aged mice (Wang et al.,
2020e; Zhang et al., 2021j).

Tryptophan
Tryptophan is one of the essential amino acids in human.
While a small fraction of free tryptophan is used for the
biosynthesis of proteins, such as the important neuro-
transmitter serotonin and neuromodulator tryptamine, the
majority is catabolized into kynurenine via indoleamine-2,3-
dioxygenase, tryptophan-2,3-dioxygenase, and a recently
identified enzyme, IL4I1 (Figure 7). Kynurenine and its
derivatives are key regulators of immune cells, such as
macrophages, dendritic cells, T cells, and innate lymphoid
cells, and they can be further catabolized into quinolinic acid,
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a precursor of NAD+. The immunological effect of kynur-
enine and its derivatives contributes to the decrease of im-
mune function and neurodegeneration with aging, but it
remains unknown if other underlying mechanisms link the
tryptophan metabolism with aging (Salminen, 2022; van der
Goot and Nollen, 2013). The tryptophan abundance de-
creases in the blood (Panyard et al., 2022; Yu et al., 2012).

Methionine
Methionine is an essential amino acid necessary for the in-
itiation of mRNA translation into proteins. As a common
sulfur-containing amino acid, methionine is interconverted
into homocysteine through the methionine cycle, and
homocysteine synthesizes cysteine via the transsulfuration
pathway (Figure 7). In addition, methionine is involved in
the biosynthesis of polyamines. Just as caloric restriction
being a promising approach to achieving longevity across
phylogenetically diverse species, methionine restriction can
also delay the progress of aging from yeast to mice (Bárcena
et al., 2019; Bárcena et al., 2018). Although the exact reason
is not yet fully understood, a few mechanisms have been
proposed, such as reduction of translation rate, modulation of
autophagy, and antioxidant defense (Bárcena et al., 2019;
Parkhitko et al., 2019). In aged mice, the methionine de-
creases in serum but increases in brain compared with young
mice (Ding et al., 2021a; Houtkooper et al., 2011).

Spermidine
Polyamines include three related metabolites, putrescine,
spermidine, and spermine, which contain two or more amine
groups. All of them are catabolic product of arginine (Figure
7). Polyamines have been known to exhibit a geroprotective

effect for a long time (Eisenberg et al., 2009). Nutritional
supplementation of spermidine brings about the protective
effect on cardiovascular and immune cells in mice and rats
(Eisenberg et al., 2016; Puleston et al., 2019; Zhang et al.,
2019a). Recent studies show that the polyamines levels de-
clined with age (Liu et al., 2022d; Panyard et al., 2022).

Triglycerides
Triglycerides are primary forms of fatty acid storage in or-
ganisms, mainly in adipocytes and hepatocytes. Triglycer-
ides are made by esterifying a glycerol with three fatty acids,
and under energy-demanding conditions, they are degraded
into fatty acids which are translocated into mitochondria to
be oxidized through the β-oxidation pathway and release
energy. The level of triglycerides is generally elevated with
age (Auro et al., 2014; Bucaciuc Mracica et al., 2020).
However, this elevation might not be specific to aging, be-
cause higher triglyceride level is often associated with obe-
sity, metabolic syndrome, and cardiovascular conditions
(Wishart et al., 2018).

Cholesterol
As fatty acids, cholesterol is taken from diet or synthesized
from acetyl coenzyme A with NADPH providing the redu-
cing power. Cholesterol is consumed as one of the major
constituents of the cell membrane and a precursor of steroid
hormones. The cholesterol concentration in blood often rai-
ses with age, but it is also strongly associated with other
factors such as exercise, nutrient conditions and genetic
polymorphisms, for example, cholesterol is more abundant
in serum of familial hypercholesterolemia patients (Bucaciuc
Mracica et al., 2020; Wishart et al., 2018).

Figure 7 Altered metabolic pathways as biomarkers of aging. Seven metabolites that have consistent effects on the aging process across species are colored
in red. They can be divided into four groups, including amino acids and derivatives, core coenzymes in central carbon metabolism, lipids, and intermediate
metabolites in tricarboxylic acid cycle. Abbreviation: QA, quinolinic acid; PA, picolinic acid; SAM, S-adenosyl-methionine; MTA, 5′-methyl-thioadenosine;
GSH, glutathione; NAD+, oxidative nicotinamide adenine dinucleotide; NADH, reduced nicotinamide adenine dinucleotide; PPP, pentose phosphate pathway;
TCA, tricarboxylic acid cycle.
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Aberrant signaling pathways

Cellular senescence is a cell fate program that limits the
proliferation of impaired cells by enforcing stable cell cycle
arrest (Tchkonia et al., 2013). Senescence can be triggered by
diverse forms of stress stimuli, including DNA damage
signals, chronic oxidative stress, and telomere dysfunction
(Correia-Melo et al., 2014; Herbig et al., 2004; Sahin et al.,
2011; von Zglinicki et al., 2005). Senescent cells can secrete
a wide range of cytokines and chemokines, known as the
SASP (Coppe et al., 2008; Freund et al., 2010; Kuilman et
al., 2008; Kuilman and Peeper, 2009). Cytokines, such as
TNFα, can in turn initiate, promote or sustain senescence
(Acosta et al., 2013; Acosta et al., 2008; Kandhaya-Pillai et
al., 2017; Kuilman et al., 2008; Li et al., 2017a; Orjalo et al.,
2009). Engagement of senescence requires integration of
multiple signaling pathways. To date, experimental evidence
collectively suggests that although many stimuli can induce
senescence response, they converge on two main pathways,
p53 pathway and pRb pathway (Campisi, 2005). However,
this could be just the tip of the iceberg. Gene expression
profile reveals that the characteristics of the replicative se-
nescence response are highly cell-type specific (Shelton et
al., 1999), suggesting multiple pathways to induce cellular
senescence. Among these pathways, TNFα signaling has
been strongly linked to senescence (Kandhaya-Pillai et al.,
2017; Li et al., 2017a). TNFα is a pleiotropic pro-in-
flammatory cytokine known to mediate a broad range of
biological functions. It stimulates the proliferation of normal
cells, exerts cytolytic activity against tumor cells, and causes
inflammatory and immunoregulatory effects (Aggarwal,
2003). TNFα acts as a potent inducer of inflammatory re-
sponses and plays a crucial role in the pathogenesis of nu-
merous chronic inflammatory diseases and age-related
diseases (Holtmann and Neurath, 2004). In addition, per-
sistent presence of low-level circulating TNFα can lead to
chronic activation of the immune system, called inflamma-
ging (Frasca and Blomberg, 2016). In this section, we will
discuss signaling pathways induced by TNFα as biomarkers
for cellular senescence.

TNFα signaling
The biological effects of TNFα are mediated by two distinct
cell surface receptors, TNFR1 and TNFR2 (Rothe et al.,
1992; Screaton and Xu, 2000; Vandenabeele et al., 1995).
Both receptors have significant homology in their extra-
cellular domains but differ structurally in their cytoplasmic
domains. TNFR1 contains a death domain (DD), whereas
TNFR2 lacks DD. The cytoplasmic DD of TNFR1 is critical
for signal transduction of TNFα, which can recruit other DD-
containing molecules. Upon ligation of TNFα, TNFR1 un-
dergoes trimerization and induces association of the re-
ceptors DD and subsequent recruitment of two DD-

containing proteins, TNF receptor-associated death domain
(TRADD) and receptor-interacting serine/threonine-protein
kinase 1 (RIPK1), to form a transient membrane signaling
complex named TNFR1 signaling complex (TNF-RSC) or
complex I (Micheau and Tschopp, 2003; Yang et al., 2022b)
(Figure 8). In TNF-RSC, TRADD recruits the E3 ubiquitin
ligases cIAPs via the adaptor protein TRAF2, which in turn
induces K63-linked ubiquitination on RIPK1 (Bertrand et al.,
2008; Hsu et al., 1996). The linear ubiquitination assembly
complex (LUBAC), which is recruited by binding with K63-
linked ubiquitin chains in TNF-RSC, leads to M1-linked
ubiquitination on RIPK1 (Gerlach et al., 2011; Ikeda et al.,
2011; Tokunaga et al., 2011). The K63-linked ubiquitin
chains on RIPK1 facilitate the recruitment of TAK1 complex
(TAB2/TAB3/TAK1) (Bertrand et al., 2008), while the M1-
linked ubiquitin chains on RIPK1 promote the recruitment of
IKK complex (NEMO/IKKα/IKKβ) (Ikeda et al., 2011).
Subsequently, activated TAK1 phosphorylates and activates
IKKα/IKKβ, which further phosphorylates IκB to induce its
proteasomal degradation and thus promotes the activation of
NF-κB signaling (Hayden and Ghosh, 2012). In addition,
activated TAK1 also phosphorylates mitogen-activated pro-
tein kinase kinases (MAPKKs) to mediate the activation of
MAPK signaling (Sabio and Davis, 2014) (Figure 8). The
M1-linked ubiquitin chains also recruit A20 to TNF-RSC,
which is a suppressor of NF-κB and MAPK activation by
deubiquitinating K63-linked ubiquitin chains on RIPK1 to
terminate the signaling (Wertz et al., 2004) (Figure 8).

Activation of NF-κB pathway
The senescence program involves a complex interplay be-
tween cell-intrinsic and cell-extrinsic processes that influ-
ence the senescence-associated cell cycle arrest, and the
surveillance of senescent cells by the immune system
(Kuilman and Peeper, 2009). Emerging evidence indicates
that the SASP can reinforce the senescence arrest and med-
iate cross-talk between senescent cells and immune cells
within their microenvironment (Acosta et al., 2008; Kriz-
hanovsky et al., 2008; Krtolica et al., 2001; Kuilman et al.,
2008). NF-κB activation has been proposed as a master
regulator in senescence that is required for SASP production
and contributes to cell cycle arrest (Chien et al., 2011;
Mongi-Bragato et al., 2020; Salminen et al., 2012b). NF-κB
transcription factors contain both the Rel family proteins
(RelA/p65, c-Rel and RelB) and NF-κB components (p50/
p105 and p52/p100), which are dimerized with each other in
the cytoplasm and inhibited by binding to IκB proteins
(Hoffmann and Baltimore, 2006). After activation, the NF-
κB complexes translocate into the nucleus and transactivate
the expression of special sets of target genes. p65 subunit of
NF-κB complex has been found more significantly enriched
into the chromatin of senescent fibroblasts as compared to
the young counterparts. Phosphorylation of p65 Ser536 re-
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sidue, a transactivating modification of p65, is correlated
with increased expression and secretion of SASP in senes-
cence (Chien et al., 2011). In cultured fibroblasts, NF-κB
suppression causes escape from immune recognition by
natural killer (NK) cells and cooperates with p53 inactivation
to bypass senescence. In a mouse lymphoma model, NF-κB
inhibition bypasses treatment-induced senescence (Chien et
al., 2011). Interestingly, inhibition of NF-κB signaling could
overcome the growth arrest induced by p53-p21CIP1 pathway
(Rovillain et al., 2011). Thus, NF-κB pathway has a causa-
tive role in the induction of SASP and its activation may
represent a biomarker of cellular senescence.
Evidence further supporting the role of NF-κB pathway in

senescence is that many TNF-RSC components are involved
in senescence. For example, A20 has been shown to play an
important role in TNFα-induced senescence, which is a
ubiquitin-editing enzyme that restricts NF-κB signaling
(Wertz et al., 2004). A20 prevents the occurrence of multiple
inflammatory diseases. Interestingly, A20 also has a self-
protective effect on the senescence of nucleus pulposus cells
induced by TNFα (Peng et al., 2020). Downregulation of
A20 in nucleus pulposus cells exacerbated the senescence
phenotype, including increased senescence-associated beta-
galactosidase activity, increased expression of senescence-

associated proteins, increased synthesis of extracellular
matrix (ECM), and G1 cycle arrest (Peng et al., 2020).
NEMO is a key activator of TNFα-induced NF-κB signaling
and apoptosis (Liu et al., 2017b). NEMO also plays an im-
portant role in radiation-induced senescence (Dong et al.,
2015). Irradiation caused vascular endothelial cells to gain a
senescence-like phenotype through the NEMO/NF-κB
pathway, suggesting that NEMOmay be a critical switch that
regulates cellular senescence and apoptosis caused by ex-
posure to radiation. TNF-RSC components may also regulate
senescence in a TNFα signaling-independent manner.
TRADD is a central adaptor in the TNF-RSC, which med-
iates both cell death and pro-inflammatory signals (Aggar-
wal, 2003). Although TRADD is usually considered a
cytoplasmic protein, it may also have a function in the nu-
cleus (Morgan et al., 2002; Wesemann et al., 2004). Indeed,
dynamic TRADD shuttling from the cytoplasm into the nu-
cleus regulates the interaction of p19Arf with the ubiquitin
ligase for ARF (Chio et al., 2012). p19Arf is an instrumental
mediator of cellular senescence (Yetil et al., 2015). Primary
cells lacking TRADD were less susceptible to HRas-induced
senescence and showed a reduced level of accumulation of
the p19Arf protein that is independent of TNFα signaling
(Chio et al., 2012).

Figure 8 Activation of TNFα signaling pathway as a biomarker of cellular senescence. TNFα can activate different pathways in cellular senescence,
including NF-κB activation by RIPK1, MAPKs-dependent kinase cascade, and PI3K-AKT kinase cascade. Together, these signaling events contribute to
cellular senescence and their activation may represent biomarkers of cellular senescence. Abbreviations: TNFR1, TNF receptor 1; TRADD, TNFR1-
associated death domain protein; RIPK1, receptor-interacting protein kinase 1; TRAF1/2/3, TNF receptor-associated factor 1/2/3; cIAP1/2, cellular inhibitors
of apoptosis 1 and 2; TAK1, transforming growth factor β-activated kinase 1; IKKα/β, IκB kinase α/β; IκB, inhibitor of NF-κB; NF-κB, nuclear factor-κB;
MAPKs, mitogen-activated protein kinases; AP-1, activator protein 1; PI3K, phosphoinositide 3-kinase; AKT, protein kinase B (PKB), also known as AKT;
p53, tumor protein p53.
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Activation of MAPK pathway
In addition to NF-κB pathway, activation of MAPK pathway
is another outcome of TNFα signaling. MAPKs are capable
of sensing changes in diverse cellular conditions, and in turn
elicit adaptive responses including senescence (Anerillas et
al., 2020). MAPKs modulate the levels and function of many
proteins in the senescence-regulatory axes, including factors
in the p21CIP1/p53 and p16INK4a/RB pathways (Anerillas et
al., 2020; Debacq-Chainiaux et al., 2010; Deschênes-Simard
et al., 2013; Freund et al., 2011; Sun et al., 2018a). Through
these actions, MAPKs implement key traits of senescence,
including growth arrest, cell survival, and SASP (Debacq-
Chainiaux et al., 2010; Deschênes-Simard et al., 2013;
Freund et al., 2011; Sun et al., 2018a). Although MAPKs
encompass a large number of kinases, the best-known
MAPKs that are mostly linked to cellular senescence are
ERKs (ERK1 and ERK2), p38s (p38α, p38β, p38γ, and
p38δ), and JNKs (JNK1, JNK2, and JNK3) (Debacq-Chai-
niaux et al., 2010; Deschênes-Simard et al., 2013; Freund et
al., 2011; Lee et al., 2010; Sun et al., 2018a; Vizioli et al.,
2020). In senescence, multiple MAPK pathways are acti-
vated by various stress signaling. MAPKs regulate senes-
cence by either regulating the transcription of senescence-
associated genes or controlling gene expression programs
post-transcriptionally by phosphorylation and thereby mod-
ulating the activity of RNA-binding proteins implicated in
senescence (Lafarga et al., 2009; Ziaei et al., 2012). In ad-
dition, the MAPK substrate MK2 is involved in the trans-
lation of SASP factors and links MAPK pathway with
mTOR pathway, which is also activated in senescent cells
(Herranz et al., 2015). MAPKs also cooperate with NF-κB
pathway to regulate senescence. It is well known that p38
MAPK activates MSK1/2, which can phosphorylate the p65
subunit of the NF-κB complex and thus potentiate NF-κB
signaling (Kefaloyianni et al., 2006; Vermeulen et al., 2003).
p38 MAPK has been shown to control SASP via the tran-
scriptional activation of NF-κB signaling. Depletion of p65
subunit of NF-κB complex significantly reduces the secre-
tion of pro-inflammatory cytokines induced by p38 MAPK
activity in senescence (Alimbetov et al., 2016; Freund et al.,
2011; Rodier et al., 2009). Thus, MAPK signaling governs
both transcriptional and translational programs in senescent
cells and activation of MAPKs may also represent an im-
portant biomarker of cellular senescence.

Activation of PI3K/AKT pathway
In addition to NF-κB activation, the interaction of TNFα with
TNFR2 also activates the reciprocal PI3K/AKT signaling
pathway (Fu et al., 2021; Takahashi et al., 2022) (Figure 8).
The PI3K/AKT oncogenic signaling modules are frequently
mutated in sporadic human cancer. Although this pathway
has been shown to play critical roles in driving tumor growth
and proliferation, multiple lines of evidence indicate that its

activation in normal human cells can also promote cellular
senescence (Alimonti et al., 2010b; Astle et al., 2012; Jung et
al., 2019b). Loss of PTEN, the major negative regulator of
the PI3K/AKT pathway, induces senescence in mouse em-
bryonic fibroblasts and mouse prostate epithelium (Chen et
al., 2005; Jung et al., 2019b). Constitutively activation of
AKT induces senescence in human endothelial cells, mouse
embryonic fibroblasts, and mouse primary keratinocytes
(Alimonti et al., 2010a; Chen et al., 2005; Nogueira et al.,
2008). PI3K/AKT pathway activation-induced senescence
requires mTORC1-dependent accumulation of p53, which
involves increased p53 synthesis and stabilization mediated
by inactivation of MDM2 (Astle et al., 2012). Tran-
scriptomic and metabolomic profilings revealed that there
were numerous escape routes beyond p53 pathway in AKT-
induced senescence. NF1-mediated suppression of RAS-
ERK signaling maintains AKT-induced senescence, which is
a unique hallmark for AKT-induced senescence (Chan et al.,
2020). Thus, activation of PI3K/AKT activity induces se-
nescence in both p53-dependent and independent manners,
which may represent a biomarker of cellular senescence.

Activation of cGAS-STNG pathway
Studies on cellular senescence have revealed that although
the causes of and phenotypes generated by cellular senes-
cence were manifold, persistent genotoxic stress, particularly
DNA damage was thought to be the common mechanism
critical for the establishment and maintenance of senescence
phenotypes (d’Adda di Fagagna, 2008). DNA damage can
trigger the activation of NF-κB, MAPK, and PI3K-AKT
pathways during senescence. However, the link between
DNA and these pathways was not clear. cGAS is a DNA
sensor that triggers innate immune responses through the
production of the second messenger cyclic GMP-AMP
(cGAMP), which binds and activates the adaptor protein
STING. Several studies have provided strong evidence that
cGAS-STING pathway also has an essential role in pro-
moting cellular senescence (Bi et al., 2020; Dou et al., 2017;
Glück et al., 2017; Liu et al., 2023b; Yang et al., 2017).
Mechanistically, cGAS senses micronuclei as the result of
genomic DNA damage to promote senescent phenotypes by
producing a range of cytokines and chemokines, such as
IFN-β, IL-1β, IL-6, and IL-8, which are known to feedback
to the secreting cells to reinforce senescence signaling. Gi-
ven that the cGAS-STING pathway provides a critical
paracrine signal that is necessary for sustaining cellular se-
nescence, activation of this pathway may also represent a
biomarker of cellular senescence.

Summary and perspectives
Emerging studies indicate that activation of TNFα signaling,
including NF-κB pathway, MAPK pathway, and PI3K-AKT
pathway, controls the cellular phenotypes of senescence,
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including generation of SASP, cell cycle arrest, and mitotic
bypass (Figure 8). In response to stimuli capable of trig-
gering cellular senescence, NF-κB, MAPKs, and PI3K-AKT
pathways function as sensors to identify the extent of da-
mage, and help to determine whether the response ought to
be cell proliferation, apoptosis, senescence, or others. If cells
adopt a senescence response, these pathways participate di-
rectly in the various traits of cellular senescence by either
contributing to implementing the gene expression programs
that enable growth arrest and production and secretion of
SASP factors transcriptionally and post-transcriptionally, or
counteracting the apoptotic phenotype to ensure the long-
term survival of senescent cells.

SASP

Cellular senescence represents a special cell state implicated
in a number of pathophysiological processes and an array of
age-related disorders. Due to the discovery of contribution of
senescent cells to human morbidity, clinical interest in
therapeutically targeting senescence to achieve healthy aging
and prevent or ameliorate age-related diseases, including but
not limited to senotherapy, continues to grow. Appropriate
identification and accurate detection of senescent cells, both
in vitro and in vivo, is theoretically essential, albeit techni-
cally challenging. Several biomarkers of cellular senescence
have been identified, including SA-β-gal, p16INK4a, and
p21CIP1, but very few markers have high sensitivity and
specificity (Huang et al., 2022c).

The SASP and its intracellular regulation
Senescent cells actively synthesize and secrete a plethora of
soluble factors, including pro-inflammatory cytokines,
chemokines, angiogenic factors, growth modulators, and
matrix metalloproteinases (MMPs), collectively termed the
SASP, or alternatively, senescence messaging secretome
(SMS) (Figure 9) (Acosta et al., 2008; Cai et al., 2022d;
Coppe et al., 2008; Kuilman and Peeper, 2009). To date, it is
well established that the SASP constitutes a typical hallmark
of senescent cells and mediates the vast majority of their in
vivo effects, particularly in mammalians. The SASP can
reinforce senescence in autocrine and paracrine manners
(Acosta et al., 2013), and trigger immune responses to
eliminate senescent cells in tissue microenvironments
(Krizhanovsky et al., 2008; Muñoz-Espín and Serrano,
2014). Although SASP factors are physiologically essential
in mediating developmental senescence, wound healing,
cellular reprogramming, and tissue plasticity (Demaria et
al., 2014; Mosteiro et al., 2016; Muñoz-Espín et al., 2013;
Storer et al., 2013), they cause persistent and chronic in-
flammation in diverse tissues and organs, a phenomenon
known as inflammaging (Franceschi and Campisi, 2014),
explaining an array of senescence-caused deleterious and

pro-aging consequences.
Interestingly, the SASP composition and strength can vary

substantially, with the overall profile depending on the
duration of senescence, nature of the senescence stimulus,
specific cell type and duration after senescence initiation
(Hernandez-Segura et al., 2017). Although senescence-as-
sociated markers result from altered transcription of cells
exposed to stress, the senescence phenotype is variable and
dynamic, changing at varying intervals after senescence in-
duction, with methodologies for readily identifying senes-
cent cells largely lacking. The heterogeneity of the SASP, or
even the senescence program, can be technically exemplified
by characterizing numerous whole-transcriptome datasets
that are publicly available, while transcriptomic signatures
associated with specific senescence-inducing stresses or se-
nescent cell types have been identified. Identification of
novel transcriptomic signatures to detect specific subtypes of
senescent cells or to discriminate among diverse senescence-
driving programs represents an attractive strategy to de-
termine the individual biological roles of senescent cells and
to develop optimal drug targets for interventions in transla-
tional and clinical medicine.
The complexity of the SASP, typically appraised by a list

of secreted proteins, has been largely underestimated, as a
small handful of factors cannot explain this varying pheno-
type. In fact, many studies reported that expression of the
SASP is subject to regulation by an intricate but well-ordered
signaling network, which comprises but is not limited to
ATM, γH2AX, Zscan4, TAK1, p38, MAPK, mTOR, IL-1α,
NF-κB, c/EBPβ, JAK2/STAT3 and GATA4 (Borghesan et
al., 2020; Hernandez-Segura et al., 2018; Song et al., 2020a;
Song et al., 2020b; Sun et al., 2018b; Sun et al., 2022b).
Despite these advances, increasing lines of data suggest that
SASP regulation is indeed multilayered, including con-
tributions from pre-transcriptional signaling cascades such as
the cGAS-STING pathway, epigenetic factors governing
DNA and histone modifications as well as the super-en-
hancer landscape in senescent cells (Criscione et al., 2016a;
Glück et al., 2017; Sati et al., 2020; Tasdemir et al., 2016;
Yang et al., 2017; Zhang et al., 2021a). Continued inputs into
the SASP biology are being generated, such as those con-
tributed by the SASP Atlas, a comprehensive proteomic
database of soluble factors and exosome-delivered SASP
cargoes derived from multiple cell types exposed to various
senescence inducers (Basisty et al., 2020). Some candidate
biomarkers that coincidently overlap with aging markers in
human plasma, including growth differentiation factor 15
(GDF15), stanniocalcin 1 (STC1), and serine protease in-
hibitors (SERPINs), which largely correlate with age, were
identified in a human cohort of the Baltimore Longitudinal
Study of Aging (BLSA) (Basisty et al., 2020). Furthermore,
pathogen-related factors, such as lipopolysaccharide (LPS)
or SARS-CoV-2 S1 antigen, can remarkably amplify the
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SASP cascade of senescent cells, thus increasing risks of the
cytokine storm and enhancing clinical mortality in the el-
derly and those with chronic or fundamental pathologies
associated with a high burden of senescent cells in the case of
COVID-19, a pandemic currently causing unprecedented
public health concerns worldwide (Camell et al., 2021;
O’Driscoll et al., 2021).

Understanding of the distinctive heterogeneity of the SASP
Appropriate understanding of the temporal and spatial reg-
ulation of the SASP allows further insights into the me-
chanisms supporting SASP heterogeneity and exploration of
targets that may be exploited to modulate the SASP com-
position. A recent study, which took advantage of single-cell
isolation and a nanofluidic PCR platform to determine the
contributions of single individual cells to the overall ex-
pression profile of senescent human fibroblast populations,
disclosed substantial intercellular variability of SASP ex-
pression (Wiley et al., 2017). Many genes encoding SASP

factors show remarkable variability, despite the presence of a
subset of highly induced genes that account for the increased
expression observed at the population level. Of note, in-
flammatory genes in clustered genomic loci display a higher
correlation with senescence compared to non-clustered loci,
suggesting co-regulation of these genes by genomic location
(Wiley et al., 2017). Thus, the data provide several lines of
new clues regarding how genes are regulated in senescent
cells and imply that single markers are insufficient to identify
senescent cells, especially in vivo.
Alternatively, another study demonstrated that the transi-

tion from the early transforming TGF-β-dependent secre-
tome to a pro-inflammatory secretome is subject to
modulation by Notch1 activity fluctuations, while the
changing composition of the SASP can determine the ben-
eficial and/or detrimental properties of senescence programs,
tipping the balance toward either an immunosuppressive
environment or a pro-inflammatory state (Ito et al., 2017).
Moreover, the interferon type 1 (IFN-I) response arises as a

Figure 9 The SASP as a biomarker of aging. Cellular senescence is a cell state triggered by stressful insults and certain physiological signals, usually
characterized by a prolonged and irreversible cell cycle arrest with a highly secretory capacity, macromolecular damage (DNAs, proteins and lipids) and an
altered metabolic landscape. In the full-spectrum of the SASP, a few secreted factors function in a cell-autonomous manner, such as IGFBP7, IL-6, and PAI1,
which maintain and reinforce the senescent state through a positive feedback loop sustaining the DDR, while others (TGF-β, VEGF, CCL2, CCL20) cause
paracrine senescence of neighboring cells. Once released into the tissue microenvironment, a handful of SASP components can mediate loss of tissue
homeostasis and organ dysfunction, thus accelerating organismal aging and contributing to incidence of age-related pathologies. As a technical challenge,
detecting a senescence-associated cell-cycle arrest and the SASP requires quantification of multiple factors and special features. Abbreviations: BCL2, B-cell
leukemia/lymphoma-2; IGFBP7, insulin-like growth factor binding protein 7; PAI1, plasminogen activator inhibitor-1; TNF-β, tumor necrosis factor β;
VEGF, vascular endothelial growth factor; CCL2, C-C motif chemokine ligand 2; IL-1β, interleukin-1β; ATM, the ataxia telangiectasia mutated; mTOR,
mammalian target of rapamycin; NEMO, NF-κB essential modulator; MMP3, matrix metalloproteinases; MCP2, monocyte chemotactic protein 2; SPINK1,
serine peptidase inhibitor kazal type 1.
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relatively late event and is driven partially by the de-re-
pression of LINE-1 (abbreviated as L1) retrotransposable
elements (De Cecco et al., 2019). Triggered by cytoplasmic
L1 cDNA but subject to downregulation by inhibitors of the
L1 reverse transcriptase, the IFN-I response is a phenotype
of late senescence and contributes to the long-term main-
tenance of the SASP (De Cecco et al., 2019). The authors
further proposed that activation of retrotransposons was an
important contributor to sterile inflammation, a hallmark of
aging, and that L1 reverse transcriptase was a relevant target
for future intervention of age-related diseases. In addition,
senescent cells communicate with their surrounding micro-
environment via juxtacrine NOTCH/JAG1 signaling, release
of ROS, cytoplasmic bridges, and extracellular vesicles
(EVs) (Biran et al., 2017; Han et al., 2020b; Ito et al., 2017;
Kuilman et al., 2010; Takasugi et al., 2017), supporting that a
thorough characterization of the senescent secretome in di-
verse biological contexts may help identify senescence, more
specifically, the SASP-associated molecular signatures.

Factors that hold the potential to serve as biomarkers of the
SASP
Identifying secreted factors produced by senescent cells with
the potential to be developed as biomarkers indicative of the
SASP appears to be a challenging task, since the profile of
secreted factors is usually determined by a number of ele-
ments. The comprehensive soluble SASP atlases of human
senescent fibroblasts induced by ionizing radiation, onco-
genic HRAS or Atazanavir, a protease inhibitor of HIV, and
radiation-induced renal senescent epithelial cells suggested
that total 17 soluble SASP factors were commonly shared by
these senescent cells, whereas a few other factors varied
depending on the tissue type and insult nature (Basisty et al.,
2020). An unbiased analysis based on liquid chromato-
graphy-tandem mass spectrometry (LC-MS/MS) proteome
assessment and Gene Ontology (GO) evaluated the secre-
tomes of senescent bone marrow and adipose mesenchymal
stromal cells (MSC) exposed to different stimuli and found
that they exhibited uniform senescent phenotypes featured
by four subcategories of SASP components: ECM and cy-
toskeleton and/or cell junctions, metabolic activities, redox
factors as well as gene expression regulators (Özcan et al.,
2016). Together with seven proteins exclusively expressed in
all the analyzed senescent phenotypes, three key signaling
paths including MMP2/TIMP2, IGFBP3/PAI-1 and Perox-
iredoxin 6/ERP46/PARK7/Cathepsin D, were identified,
while these paths were likely involved in the paracrine circuit
inducing senescence of adjacent cells and might confer
apoptosis resistance on senescent cells. A recent study based
on stable isotope labeling with amino acids (SILACs) dis-
closed 343 SASP factors secreted by senescent human fi-
broblasts at two-fold or higher levels compared with their
quiescent counterparts, with 44 of these proteins involved in

hemostasis, a process rarely linked with senescence (Wiley et
al., 2019).
Though the SASP components fulfill diverse in vivo

functions, many of them are indeed associated with the
chronic inflammation, a phenomenon frequently observed in
the course of organismal aging (Guerrero et al., 2021;
Tchkonia et al., 2021). Several constituents of the SASP are
immunomodulatory, such as IL-1α, IL-1β, IL-6, IL-7, IL-8,
macrophage colony stimulating factor (M-CSF), granulocyte
colony stimulating factor (G-CSF), granulocyte-macrophage
colony stimulating factor (GM-CSF) and TNFα, which, once
released into the extracellular space, will actively recruit
various immune cells including macrophages, granulocyte,
neutrophils, and T lymphocytes (Kale et al., 2020) (Table S5
in Supporting Information). Several SASP factors can
modulate the cellular response to therapies. The SASP
components C-X-C motif chemokine ligand 1 (CXCL1),
CXCL2, IL-1α, IL-6, and TGF-β, released by human fibro-
blasts upon OIS can reinforce senescence in an autocrine
manner and also induce senescence of neighboring cells via a
paracrine mechanism (Acosta et al., 2013; Acosta et al.,
2008; Faget et al., 2019). Of note, similar paracrine signaling
pathways can be mediated by small EVs of the SASP (ev-
SASP) released by human fibroblasts displaying OIS, and in
MCF7 mammary cancer cells after treatment with the
CDK4/6 inhibitor palbociclib (Borghesan et al., 2019). The
single-cell RNA-seq (scRNA-seq) data presented at the
National Cancer Institute Workshop on Radiation, Senes-
cence, and Cancer (August 10–11, 2020, National Cancer
Institute, Bethesda, MD) demonstrated that cells in the case
of therapy-induced senescence (TIS) in culture and those
isolated from kidneys of aged mice can display different
characteristics, and only a small number of p16INK4a+ se-
nescent cells in the kidney are responsible for the production
of SASP factors of profibrotic activities (Prasanna et al.,
2021).

Summary and perspectives
Identifying novel and distinct transcriptomic signatures to
detect specific types of senescent cells is an attractive strat-
egy for the evaluation of diverse biological roles of senescent
cells and the development of effective drug targets. At the
core of senescence and SASP heterogeneity, the character-
ization of whole-transcriptome datasets has rendered a fin-
gerprint of 55 senescence-associated gene transcriptomes in
human fibroblasts, allowing specific targeting of senescent
cells that are either tumorigenic, immune-suppressive, or
potentially implicated in other age-related conditions (Her-
nandez-Segura et al., 2017). However, limitations still re-
main, particularly for studies involving biospecimens,
mainly due to the absence of specific markers. To this end, a
multi-marker approach was recently proposed (Gorgoulis et
al., 2019), which may be employed to assess the efficacy of
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senolysis, an emerging and promising therapeutic approach
currently entering clinical trials for the intervention of var-
ious age-related pathologies.
Given the distinct heterogeneity of SASP, the National

Institutes of Health has recently identified five broad areas to
advance senescence-related studies, including identification
and characterization of senescent cells, establishment of se-
nescence atlases, development of biomarkers, optimization of
model systems, and design of imaging tools (Roy et al.,
2020). However, there remain several open questions, which
together pose a major challenge in this field. Biomarkers,
model systems, and imaging techniques all need validation
projects, in which pathways of cellular homeostasis are per-
turbed to induce, modulate and fine-tune senescence, while
assessment of the impact of those perturbations on SASP
development and on the physiological integrity of diverse
tissues and organs is essential to address the pathological
factors responsible for chronological aging. Advances in
these aspects may help discover more accurate senescence-
associated signatures to address key questions: what initiates
and regulates the SASP? What phenotypes do deep senescent
cells acquire? What is the best timepoint to target the SASP
during cellular senescence? Answers to these intriguing
questions will help develop new panels of markers for sub-
types of both senescence and the SASP and guide the evol-
ving field of senotherapy, thus allowing to surf in the next
wave of tides in the current epoch of precision medicine.

Biomarkers of organ aging

Aging comprises many biological processes that may not
change in concert. This is the case at the cellular level, as
described in the previous chapter, and likely also be true
higher up in the hierarchy of aging dimensions, i.e., at the
organ level. In this chapter, we dive into individual organs
with their own aging biomarkers (Figure 10), with each or-
ganized in a framework highlighting the six pillars of aging
biomarkers: physiological characteristics, imaging traits,
histological features, cellular alterations, molecular changes,
and secretory factors. In addition to being specific to the
organ of interest, some of these biomarkers are commonly
shared by several organs or interconnected via compensatory
mechanisms, system feedbacks, and peripheral immune
functions involving the gut and circulating immune cells.
Ideally, the aging biomarkers should be accessible for mea-
surement over the entire lifespan. Therefore, we propose that
good organ aging biomarkers should be specific, systemic,
and serviceable.

Brain aging

The human brain, a three-pound organ, contains the most

recently evolved structure, the neocortex, which greatly en-
hances cognitive function and separates homo sapiens from
the rest of the animal kingdom. Through sensory, motor, and
autonomic nervous systems, the brain serves as a supreme
commanding center of the human body. The central nervous
system (CNS), through the peripheral nervous system, tracks
blood vessels and innervates all organs. Therefore, like blood
supplies, neural control is also everywhere. The brain is an
organ prone to aging, which increases the risks of a range of
neurodegenerative diseases. During the aging process, the
brain changes at biochemical, cellular, structural, and func-
tional levels, and some of the characteristic changes can be
used as biomarkers to reflect and evaluate the aging process
of the brain. This section focuses on those markers (Table S6
in Supporting Information).

Physiological characteristics
Along the aging trajectory, progressive functional decline
occurs in multiple organs including the brain. At the cellular
and molecular level, ten hallmarks of brain aging have been
postulated (Mattson and Arumugam, 2018): mitochondrial
dysfunction, intracellular accumulation of oxidatively da-
maged molecules, dysregulated energy metabolism, im-
paired cellular “waste disposal” mechanisms, impaired
adaptive stress response signaling, compromised DNA re-
pair, aberrant neuronal network activity, dysregulated neu-
ronal calcium homeostasis, stem cell exhaustion, and
inflammation. In recent years, several promising molecular
biomarkers indicative of brain aging have been identified,
e.g., DNA and histone methylation markers, proteomic
markers, which will be discussed below. Moreover, these
hallmarks of brain aging are interconnected, causing altera-
tions of brain structures and functions. Clinically, brain aging
is manifested by changes in brain morphology, pathological
accumulation of abnormal proteins, and altered physiologi-
cal functions, which display enormous changes in human
lifespan and could be used as better indicators for future risk
assessment of experience-based age-associated health issues,
e.g., neurodegeneration, disability, and poor quality of life.
Brain morphological changes during aging demonstrated by
neuroimaging, primarily consisting of loss in brain volume,
gray and white matter degradation, enlargement of cerebral
ventricles, or cortical thinning due to shrinking of neuronal
cells, dendritic degeneration, demyelination, metabolic def-
icit, microglial activation, and formation of white matter
lesions, resulting from small vessel diseases (Blinkouskaya
et al., 2021). Although accumulation of pathological de-
position of Amyloid-beta (Aβ), tau, and α-synuclein in the
brain has been considered as markers of neurodegenerative
diseases including Alzheimer’s and Parkinson’s diseases, as
well as physiological markers of brain aging (Sengupta and
Kayed, 2022; Zhang et al., 2021k). At the phenotypical and
functional levels, brain aging is characterized by a decline in
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learning and memory, decision-making speed, sensory
functions, and motor coordinations. All of these aging-as-
sociated changes have a huge impact on the basic activities
of individuals’ daily life and contribute to geriatric syn-
dromes such as frailty (Xue, 2011). A recently introduced
concept of “intrinsic capacity” by the World Health Orga-
nization (WHO) (Chhetri et al., 2021), considers individual’s
capacities in locomotion, cognition, sensory, psychology, as
well as vitality, and could be utilized to measure chron-
ological aging as well as brain aging at functional levels.
Whilst signs of age-related neurodegeneration may appear

beyond the fifth decade of life, the rate of brain aging like
any other organs varies among individuals. Environmental
factors (e.g., stress, diet, socioeconomic status, smoking, and
alcohol intake) an individual experienced throughout earlier
life can impact cognitive function later in life. People with
genetic risk factors (e.g., APOE4) or environmental risk
exposures may have a higher rate of brain aging than others.
Similarly, exposure to severe trauma or acute infection may
also accelerate the process of brain aging. The aging process,

including brain aging, involves a vicious chain of events
(concomitantly influenced by environmental factors), from
molecular to cellular and physiological levels, ultimately
impacting the function of an individual. These changes could
be largely indistinguishable initially, due to homeostatic or
compensatory mechanisms of the resilient central nervous
system. Ultimately, the system’s ability to maintain home-
ostasis reaches the threshold, signs of brain aging would
manifest. Nonetheless, some of the biological changes are
detectable early and may serve as reliable markers to predict
brain aging (Figure 11).
Similar to generic aging biomarkers, brain aging bio-

markers should be able to predict the rate of brain aging
(should provide information on the brain age status at any
given time), monitor the aging process, and also distinguish
between physiological and pathological brain aging. Those
markers should allow for repeated testings without causing
harm, and ideally work both in humans and animals (for prior
validation). Moreover, these markers should be compatible
for clinical practice to screen people with high risks for

Figure 10 Biomarkers of organ aging. On the rim of the circle, aging of the 15 organs or organ systems across the body reviewed here is presented; while in
the center, aging biomarkers are depicted as biological measurements that can evaluate the aging of these organs, and they should fulfill the three criteria:
being specific, systemic, and pragmetic.
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timely interventions. Besides, it should also be noted that a
group of biomarkers, in combination, may be needed to
capture brain aging more effectively, as there is a hetero-
geneity in the aging process, thus, a single biomarker may
not have high enough sensitivity or specificity to predict
brain aging. Relevant clinical data from the central nervous
system and the periphery- due to interactions between organ
systems, regulated by the blood-brain-barrier (e.g., proteins,
metabolites, and cells from blood or CSF) has been sug-
gested to successfully capture brain aging (Higgins-Chen et
al., 2021). Such composite biomarkers will enable us to
understand the mechanism and markers of the brain from a
holistic, systemic, and multidimensional perspective.
In the following sections, we will discuss potential bio-

markers for brain aging, with a focus on neuroimaging,
histological features, cellular alterations, molecular changes,
and secretory factors.

Imaging traits
(1) Structural MRI. Magnetic resonance imaging (MRI) has

been widely used to show age-related structural changes of
the brain in vivo. Accumulating evidence indicated that the
combination of several structural imaging markers, including
brain atrophy, microvascular alterations, microbleeds, white
matter lesions (WMLs), and impaired white matter integrity,
can predict brain aging and neurodegenerative diseases
(Beaman et al., 2022; Erten-Lyons et al., 2013; Grajauskas et
al., 2019; Jung et al., 2021; Kavcic et al., 2008).
Brain atrophy is one of the most common changes in aged

brain, which affects both grey and white matter. Atrophy can
be seen across the entire brain, with the greatest decline in
frontal lobe volumes during normal aging (DeCarli et al.,
2005; Fox and Schott, 2004). While shrinkage is often lo-
calized, with differential atrophy patterns occurring in dif-
ferent neurodegenerative diseases, e.g., medial temporal lobe
atrophy onMRI is a hallmark for AD (Scheltens et al., 2021).
MRI-based microbleeds are estimated to range from 8.8% to
35%, with prevalence rate increasing with age (Barnaure et
al., 2017; Poels et al., 2010; Romero et al., 2014). Micro-
bleeds caused by hypertensive angiopathy is usually seen in

Figure 11 Biomarkers of brain aging at the level of physiological characteristics. Brain aging is not only exacerbated by the hallmark changes, but it is also
influenced by a combination of genetics, environment, lifestyle, trauma, and diseases. The decline in homeostasis, compensatory mechanisms, and resilience
can result in various pathophysiological, functional, and morphological changes in the brain, which can serve as potential biomarkers for brain aging. Frailty,
cognitive decline, reduced intrinsic capacity, or limitations in activities of daily living and instrumental activities of daily living are some conditions
associated with brain aging and the aging process as a whole, as they are the result of the interplay among multiple organ systems, including the brain.
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basal ganglia, thalamus, brainstem and cerebellum. Micro-
bleeds caused by cerebral amyloid angiopathy (CAA) is
distributed in the cerebral cortex (Ding et al., 2017; Haller et
al., 2018; Park et al., 2013). Increasing loads of microbleeds
might predict further cognitive decline due to disruptions of
connections between different brain regions (Heringa et al.,
2014; Werring et al., 2004).
WMLs refer to patches of hyperintensity on T2-weighted

imaging (T2WI) in the white matter, linking to microvascular
alterations and ischemia in aged brain. WHLs commonly
occur in the aging population, and increase with age (Habes
et al., 2018; Sundaresan et al., 2019). WHLs have been
stratified into two forms, i.e., periventricular white matter
lesions (distributed around the ventricles) and deep white
matter lesions (first in the frontal lobe, then in other cortical
regions), with different underlying pathogenesis (Jung et al.,
2021; Zeng et al., 2020). For the role of white matter in-
tegrity in aging, decreased fornix fractional anisotropy (FA)
derived from diffusion tensor imaging (DTI) is one of the
earliest MRI abnormalities, which predicted the decline in
memory function, observed in elderly individuals with in-
creased risks for AD (Kantarci et al., 2014).
(2) Functional MRI. Functional MRI (fMRI) can provide

information on neuronal activity and vascular physiology,
which is well suited for in vivo observations of brain pa-
thophysiology at an early stage. Large amounts of studies
showed decreased cerebral blood flow (CBF) with age in
elderly, both regionally and globally, which is relevant to the
cognitive decline, and declined in cerebrovascular health
(Chen et al., 2011; De Vis et al., 2018; Tarumi et al., 2014).
The spatial-temporal pattern of CBF decreased from the
precuneus, posterior cingulate and temporal-parietal regions
to broader areas with progression from health control to mild
cognitive impairment (MCI) to AD, supporting the in-
corporation of CBF into the AD research framework (Zhang
et al., 2021f). Oxygen extraction fraction (OEF) and cerebral
metabolic rate of oxygen (CMRO2) are markers of cerebral
oxygen homeostasis and metabolism that may offer insights
into abnormal changes in brain aging (Lin et al., 2019; Peng
et al., 2014). Resting CMRO2 based on blood oxygen level-
dependent (BOLD) is found to be decreased in the par-
ietotemporal and precuneus regions in elderly with AD
(Lajoie et al., 2017).
In addition to well-documented changes in brain structure

and function, normal aging and age-related neurodegenera-
tive diseases are related to alterations of functional brain
networks. Functional brain networks are commonly mea-
sured from resting state fMRI. Using a graph theoretical
approach, decreased connectivity within and increased con-
nectivity between functional brain systems were prominent
in the elderly (Chan et al., 2014). Most studies show de-
creased functional connectivity between regions of the de-
fault mode network (DMN) in the elderly with memory

decline, specifically between posterior cingulate cortex and
parietal areas, compared with non-decliners, indicating that
functional networks could be as an early marker of cognitive
decline during aging and to guide early interventions of AD
(Bernard et al., 2015; Sperling et al., 2009). Task state fMRI
is needed to concurrently measure cognitive function in the
elderly, through which changes may be much more easily
detected than resting state MRI to distinguish normal elderly
from MCI. Emerging studies showed decreased anterior-to-
posterior functional connectivities and increased local effi-
ciency in the cognitive task state between normal elderly and
MCI, with no significant difference in the resting state (Wang
et al., 2013a). This indicates task can amplify the sensitivity
of detection, which could be an early biomarker to assess the
risk of AD.
(3) PET. Positron emission tomography (PET) with mul-

tiple radiotracers can help to deeply understand age-related
pathophysiological changes, especially abnormal neural ac-
tivity, synaptic loss, Aβ deposition and tau accumulation, as
well as the relationship between these changes and age-re-
lated cognitive decline.

18F-fluorodeoxyglucose (FDG) PET imaging measures
cerebral glucose metabolism, which is sensitive to neural
activity alteration and synaptic dysfunction. Decreased 18F-
FDG uptake has been predominately reported in frontal,
cingulate, and temporal lobes during normal aging, which
suggests that these brain regions are vulnerable to aging
(Bonte et al., 2017; Yoshizawa et al., 2014). Compared with
normal elderly individuals, those with cognitive decline
showed greater hypometabolism in these brain aging, in-
dicating 18F-FDG PET imaging could predict cognition
progression during aging and risks to convert into AD
(Apostolova et al., 2010). Posterior cingulate and tempor-
oparietal hypometabolism on 18F-FDG PET is a hallmark for
AD (Frisoni et al., 2017; Scheltens et al., 2021). Moreover,
18F-FDG PET imaging can identify the involvement of spe-
cific brain regions in various cognitive domains to help
clarify the neural mechanisms of the age-related cognitive
changes in brain aging study (Brugnolo et al., 2014).
Aβ amyloid plaque and neurofibrillary tangles composed

of hyperphosphorylated tau are considered as neuropatho-
logical hallmarks of AD, leading to cognitive impairment in
AD. These two proteins also appear in brains of the elderly
with normal cognition, indicating a latent period of
10–25 years for AD (Masters et al., 2015). Aβ and Tau PET
imaging can help to clarify the role of these aggregated
proteins in age-related cognitive decline as well as AD onset
and progression. Large prospective studies could provide
answers regarding the clinical impact and utility of Aβ and
tau imaging. Studies indicate that Aβ deposition occurs be-
fore the onset of cognitive impairment and reaches a plateau
in the symptomatic stage of dementia (Hanseeuw et al.,
2019; Jack et al., 2013). Aβ PET imaging in the elderly with
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normal cognition revealed a significant association between
Aβ and cognitive functions, especially in episodic memory
(Vogel et al., 2017). Aβ deposition in normal elderly can lead
to cognitive impairment, which is related to reduced cortical
thickness (Vemuri et al., 2019), altered white matter integrity
(Caballero et al., 2020) and decreased DMN functional
connectivity (Lim et al., 2014).
Tau-PET imaging has characterized tau tracer retention in

vivo, in keeping with Braak stages (Cho et al., 2016; Pascoal
et al., 2021; Schwarz et al., 2016). Tau-PET imaging has
revealed that tau pathology begins focally at the perirhinal
cortex in cognitively unimpaired elderly, which influences
memory performance by disrupting medial temporal lobe-
cortical functional connectivity, independent of Aβ (Berron
et al., 2020; Berron et al., 2021; Sanchez et al., 2021). When
tau interacts with Aβ directly at the inferior temporal gyrus,
tau deposits spreads catastrophically into neocortical regions
(Lee et al., 2022c). Longitudinal tau-PET studies could track
the progression of AD, which correlates with cognitive
deficits and best predicts cognitive decline (Bucci et al.,
2021; Harrison et al., 2019).
(4) Other imaging modalities. Developments in PET tra-

cers for synaptic density, neuroinflammation, and α-synu-
clein have opened new ways to explore brain aging (Chen et
al., 2018a; Meyer et al., 2020; Seibyl, 2022). Future long-
itudinal studies using multi-radiotracer PET imaging com-
bined with other neuroimaging modalities, such as MRI
morphometry, task-based fMRI, functional near-infrared
spectroscopy (fNIRS), and magnetoencephalography, are
essential to elucidate the neuropathological underpinnings
and interactions in brain aging. In the near future, develop-
ment of automated image analysis, multimodal analysis, and
hybrid PET-MR imaging, as well as artificial intelligence
into brain aging study will be highly demanded.

Histologic features
The histological architecture of the brain is complex but
generally can be classified into two structures: grey matter
and white matter. The grey matter consists of neuronal cell
bodies, dendrites, unmyelinated axons, various glial cells,
and some blood capillaries as well as microglia. The white
matter is mainly composed of myelinated axons that form
nerve fibers and oligodendrocytes that form myelin, as well
as astrocytes and microglia. During aging, the brain is sub-
jected to alternations at multiple levels. Primary morpholo-
gical changes with aging include brain volume loss, gray and
white matter atrophy, cortical thinning, gyrification loss, and
ventricular enlargement (Blinkouskaya et al., 2021; Blin-
kouskaya and Weickenmeier, 2021). Herein, we briefly
summarize histological changes in the brain during normal
aging.
(1) Whole brain weight loss and atrophy. In early studies

by measuring brain weight, it is found that the human brain

weight increases mostly during the first 3 years of life, re-
mains relatively stable at adolescent and young adult age,
and then starts to decline at about 45–50 years of age (De-
kaban, 1978). Some later studies suggest that brain weight
decline accelerates after the age of 70, with an annual rate of
weight loss between 2% and 5% (Ho et al., 1980; Svenner-
holm et al., 1997; Teissier et al., 2020).
The brain volume loss with aging has been determined by

multiple neuroimaging studies. Hedman et al. (2012) com-
pared 56 longitudinal MRI work and suggested that after
35 years of age, the brain volume started to lose at an annual
rate 0.2%, which accelerated and increased to 0.5% by the
age of 60, and kept a steady loss of more than 0.5% after that
age. Although different studies report the change rates with
substantial deviations, they consistently suggest that the
brain volume declines with aging and brain atrophy accel-
erates along with advanced aging (Blinkouskaya et al., 2021;
Resnick et al., 2003).
Initial studies by Brody concluded that about 50% of

neurons are lost with aging and thus suggested that the
progressive brain atrophy with aging was attributed to neu-
ronal loss (Brody, 1955). However, Haug suggested that
there was no significant loss of neurons in the human brain
during aging (Haug et al., 1984). Indeed, later studies have
also shown that neuron numbers in multiple brain regions are
relatively stable over the entire human life span (Gómez-Isla
et al., 1997; Peters, 1993; West et al., 1994). Now a decline
of neuronal volumes (rather than their number or density)
and a decrease in neuronal dendritic and axonal arborizations
have been proposed as a major reason for brain atrophy with
aging (Dickstein et al., 2007; Teissier et al., 2020).
(2) Grey matter atrophy. The global grey matter volume

also decreases during aging (Good et al., 2001; Hedman et
al., 2012; Resnick et al., 2003; Taki et al., 2011). One
longitudinal MRI study estimated the annual rate of gray
matter volume decline to be 0.424% in males and 0.298% in
females (Taki et al., 2011).
Human brain surface folds to form multiple gyri. This

gyrification increases human brain surface areas. A major
part of gray matter distributes near the surface area of the
brain and forms the cortex. Therefore, whole brain and grey
matter atrophy would affect cortical thickness and gyrifica-
tion. Indeed, multiple studies have shown global cortical
thinning and decreased in degrees of gyrification during
aging (Fjell et al., 2014; Lamballais et al., 2020; Lemaitre et
al., 2012; Madan, 2021; Storsve et al., 2014). For example,
Storsve et al. (2014) reported a mean cortical thickness de-
crease at a rate of 0.35 mm/year during aging. Madan (2021)
determined a gyrification decreasing slope of 0.04291 per
decade.
Same to global brain atrophy, grey matter atrophy during

aging is likely caused by neuronal shrinkage and extensive
dendritic regression rather than cell loss (Dickstein et al.,
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2007; Fjell and Walhovd, 2010).
(3) White matter atrophy. The white matter volume also

decreases during aging but has a late onset compared to that
of gray matter (Blinkouskaya et al., 2021; Liu et al., 2017a;
Resnick et al., 2003). The white matter volume keeps in-
creasing in early and middle adulthood but then starts to
decrease more rapidly than grey matter volume loss in later
stages of life, with an estimated annual rate of 0.77% per year
in the chronological age of 70s (Blinkouskaya et al., 2021;
Driscoll et al., 2009; Salat et al., 2005). Moreover, multiple
studies using DTI have demonstrated age-related decline in
the composition of integrity of white matter (Bennett and
Madden, 2014).
Myelinated nerve fibers in the white matter are also af-

fected by normal aging but demonstrate complicated chan-
ges. Many myelinated nerve fibers are lost and thus causes
disconnections of some parts of the brain. On the other hand,
after losing the myelin sheath, some axons can be re-
myelinated (though incompletely) by oligodendrocytes,
whose number increases during aging (Peters et al., 2008).
Nevertheless, remyelinated nerve fibers may have shorter
internodes segment as well as reduced conduction velocity,
thereby compromising the integrity and function of neural
circuits. Moreover, the sheath thickness of some intact nerve
fibers is even increased with aging, probably due to sustained
oligodendrocyte activity (Peters, 2009).
(4) Ventricle. The brain ventricular system is essential for

the circulation of cerebrospinal fluid to supply nutrients to
and drain wastes out of the brain. Multiple MRI-based stu-
dies have identified ventricle expansion with aging (Fjell and
Walhovd, 2010; Resnick et al., 2003; Shook et al., 2014); and
the increase of ventricular volume is believed to result from
the shrinkage of the brain and grey matter (Pfefferbaum et
al., 1994). By using both longitudinal and cross-sectional
analyses, Resnick et al. (2000) find that the ventricular vo-
lume increases at a rate of 1.3–1.5 cm3/year.
(5) Cerebrovascular changes. An arterial network covers

the brain surface and penetrates into the brain parenchyma in
the form of capillaries. This cerebrovascular system is af-
fected by aging: a majority of studies in humans and rats
show that the vascular density declines with age (Brown and
Thore, 2011; Riddle et al., 2003). Moreover, the arterioles
supplying the deep white matter have the longest course
throughout the brain and often become tortuous during
aging, though the biological meaning of these tortuous ar-
terioles is unknown (Brown and Thore, 2011).
(6) Neurogenesis. Neurogenesis is a process of generation

of new neurons from neural stem cells (Isaev et al., 2019).
Proper neurogenesis requires support from all cells in the
neurogenesis niches. Neurogenesis has been identified in the
olfactory bulb, the hippocampus, and the sub-ventricular
zone in the mammalian brain; and can partially compensate
neuronal death in these regions (Galvan and Jin, 2007; Isaev

et al., 2019). Neurogenesis is significantly impaired with
aging, due to age-dependent stem cell exhaustion, though the
detailed biological significance of this decline has yet to be
specified (Ahlenius et al., 2009; Enwere et al., 2004; Zhang
et al., 2021e).

Cellular alterations
Neurons, glial cells and endothelial cells are the basic
building blocks of brain. Physiological brain aging is asso-
ciated with changes in brain size, vasculature, neuronal
connections and networks. It is well established that neuronal
functions decline with aging. At cellular level, hallmarks of
brain aging include loss of synapses, mitochondrial dys-
function, increased oxidative stress and damage, metabolic
alterations, autophagy dysfunction, and dysregulated stress
and inflammatory responses (Mattson and Arumugam,
2018). Senescence is a central hallmark of aging, a process in
which cells cease to divide and undergo distinct phenotypic
alterations, including profound chromatin and secretome
changes, as well as tumor-suppressor activation (van Deur-
sen, 2014). When senescence is triggered, cells increase in
size and granularity. The levels of cell cycle inhibitors
p21CIP1 and p16INK4a, are increased. The SA-β-gal, a lyso-
somal enzyme, becomes more active, serving as a marker for
senescence characterization (Beauséjour et al., 2003; Dimri
et al., 1995; Sikora et al., 2021). Neurons are post-mitotic
cells. Neuronal senescence is likely regulated in a different
manner from that of proliferating cells. Nevertheless, in-
creased detection of SA-β-gal is also found in aged mouse,
hippocampus and monkey, as well as in long-term cultured
neurons, suggesting that neurons undergo senescence by
increasing levels of SA-β-gal. Aging also changes neuronal
morphology, particularly synaptic structures. In general,
synaptic numbers are reduced in aged brains compared to
young brains (Peters, 2006). The aged prefrontal cortex tends
to lose more thin spines that confer neural plasticity. In
contrast, the aging hippocampus tends to lose large, complex
(perforated mushroom) synapses that help control estab-
lished memories and learning circuits. Again, this suggests
that there could be some differences in line of maturing thin
versus mushroom spines with different classes of neurons.
Alterations in mitochondrial morphology and mitochondrial
function have long been considered hallmarks and potential
drivers of aging. During the process of neuronal aging, mi-
tochondrial function is reduced with the accumulation of
damaged mitochondria and ROS in neurons (Chakrabarti et
al., 2011). Meanwhile, the load of mtDNA mutations is in-
creased. All these results in mitochondrial dysfunction, re-
duced ATP supply and increased ROS production, eventually
leading to functional impairment of neurons and further
damage of the brain. Mitochondrial dynamic proteins are
regulated in an age-dependent manner. Phosphorylation of
Drp1S616 is downregulated in aged brains (Han et al., 2020a).
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Brain aging is also correlated with increased neuroin-
flammation (Lynch, 2010). Inflammatory cytokine IL-6 le-
vels are increased in brain of healthy aged animals. IL-6 in
the brain has been suggested to reduce food intake, inhibit
memory and learning, and cause neurodegeneration. Re-
markably, increased expression of IL-6 correlated with
neuron-specific upregulation of neuronal senescence marker
REST protein (Sunderland et al., 2020), implying a role of
IL-6 in brain aging.
In the past, most research into age-related alterations in the

brain focused on neurons. Nonetheless, non-neuronal glial
cells are the first cells responding to “stress” in the CNS. The
major types of glial cells in the CNS are astrocytes, micro-
glia, and oligodendrocytes. The diverse and important
functions of different types of glial cells situate them in a
position to be affected by brain aging. Indeed, a transcrip-
tional study from human aged brain showed that glial cells,
but not neurons, displayed robust changes in gene expression
during aging. Studies showed that cellular senescence in glia
cells (such as telomere shortening), might also interfere with
their physiological function. Microglia, constituting 10% of
brain cells, are actually immune cells of the brain (Crotti and
Ransohoff, 2016). Microglia alterations under different brain
conditions were more dramatic than those observed in other
glial cells. In the process of aging, microglia are uniformly
enlarged, accumulating non-degraded inclusion materials
and with cytoplasmic disruptions (Streit and Xue, 2010).
Aged human microglia become dystrophic manifested by
abnormal cytoplasmic structures with beaded and frag-
mented processes (Streit, 2006; Streit et al., 2004). Conse-
quently, these morphological changes are accompanied with
alterations in their physiological functions, including en-
hanced pro-inflammatory responses, impaired motility, and
compromised immune responses. Intrinsic and extrinsic
aging risk factors can induce aberrant microglia activation.
This activation results in increased neuroinflammation and
synaptic pruning, leading to eventual neural circuit impair-
ment and neurodegeneration. Therefore, aberrant microglia
activation is associated with aging at certain conditions.
Enlargement and accumulation of lysosomes are character-
istic of aberrant microglia activation. Astrocytes, like neu-
rons, are present in the brain throughout life. They are not
replenished, nor do they divide except in the case of injury.
Thus, they are particularly susceptible to age associated
disturbances such as accumulation of a lifetime of stress.
Glial fibrillary acidic protein (GFAP) is a biomarker for as-
trocyte reactivation. Levels of GFAP mRNA and protein
were increased with age in hippocampus of human, rhesus
monkey, rat, and mouse (David et al., 1997; Diniz et al.,
2010; Nichols et al., 1993; Rodríguez et al., 2014). Tran-
scriptomic profiles of astrocytes show increased expression
of complement pathway and neuroinflammatory genes in all
brain regions of mice (Boisvert et al., 2018; Clarke et al.,

2018). In human, astrocyte gene expression profiles change
across different ages and brain regions, particularly hippo-
campus and substantial nigra (Soreq et al., 2017). Re-
markably, these two regions are predominantly affected by
AD and PD, the top two most studied neurodegenerative
diseases of the CNS. Single cell sequencing revealed the
presence of an AD-associated astrocyte cluster in hippo-
campal astrocytes of aging mouse and human (Habib et al.,
2020). Roles of oligodendrocytes are not well defined. In
aged brains, myelination is decreased. Shorter internodes are
formed. Myelin debris are aberrantly released. Results sug-
gest a functional abnormality of oligodendrocyte.
In summary, characterization of cellular changes in aged

brain is rather complex. Cell morphology and changes of cell
organelles may vary in different brain regions. A combina-
tion of cellular and molecular analyses may prove to be
eminent.

Molecular changes
As with other organs, brain also ages, and quantifying brain
aging is critical to understand the mechanisms of brain aging
and related diseases. Over the past decades, many molecular
features have been identified and used as molecular bio-
markers associated with or indicative of brain aging. Here,
we provide an overview of those measurements that have
been studied the most in the context of brain aging: DNA
methylation marks, histone marks, non-coding RNAs
(ncRNAs), as well as proteomic markers, and present how
these biomarkers are related to the underlying brain aging
processes. The mechanistic understanding of these bio-
markers may help us to effectively intervene brain aging
process or treat age-related diseases.
(1) DNA Methylation. The methylation of 5-position of

cytosine base (5mC) is one of the most studied epigenetic
marks. Global 5mC level shows an age-dependent increase
in mouse brains (Chouliaras et al., 2012). DNA hydro-
xymethylation (5-hmC), a more recently discovered DNA
modification and highly enriched in the brain (Li and Liu,
2011), also shows an increase with age in the hippocampus
of mouse brains (Chouliaras et al., 2012). Methylation of
cytosine is catalyzed by DNMTs, including DNMT1,
DNMT3a, and DNMT3b. DNMT3a shows an age-related
increase in the hippocampus of the mouse brain (Chouliaras
et al., 2012). These findings suggest that global DNA me-
thylation is increased with age in the brain and DNA me-
thylation measurements are shown to be an age prediction
tool.
Alterations of DNA methylation have been proposed as

risk markers for age-related diseases, such as AD (Herdy et
al., 2022; Kim-Ha and Kim, 2016). Increased methylation of
senescence gene promoters is observed in neurons derived
from AD patients (Herdy et al., 2022). The findings of these
studies suggest that DNA methylation could serve as a new
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diagnostic biomarker for brain aging and age-related dis-
eases.
(2) Histone modification. Histone modifications are in-

volved in brain aging by regulating chromatin plasticity
(Peleg et al., 2010). An increase in repressive histone marks
of H3K9me2, H3K9me3 and H3K27me3 and a decrease in
activating histone marks of H3K36me3 and H3K27ac have
been reported in cerebral cortex and hippocampus of aged
mice (Akbarian et al., 2013). Aged mice display a specific
deregulation of H4K12ac, thus fail to initiate gene expres-
sion program associated with memory consolidation, sug-
gesting that reduction in H4K12ac may serve as an early
biomarker of brain aging (Peleg et al., 2010). In addition to
histone acetylation, changes in histone methylation marks
were reported in the brain of aged mice, including decreased
methylation in H3K27me3, H3R2me2, H3K79me3, and
H4K20me2 (Gong et al., 2015). These findings support that
both types of histone marks are deeply involved in brain
aging and age-related cognitive functions (Geng et al., 2021).
It should be emphasized that two recent separate studies
demonstrated that downregulation of H3K9me3 and tran-
scriptional de-repression of LINE1 are important features of
brain aging in mice and monkeys (Zhang et al., 2021e; Zhang
et al., 2022e). This may constitute one of the drivers for the
upregulation of neuroinflammation associated with aging.
(3) ncRNAs. ncRNAs, comprising lncRNAs, miRNAs,

transfer RNA-derived small RNAs (tsRNAs), and piwi-in-
teracting RNAs (piRNAs), are highly expressed in the brain
and play a regulatory role in brain aging (Danka Mohammed
et al., 2017; Mao et al., 2019; Marttila et al., 2020; Yuan et
al., 2021). Recent studies identify 336 differentially ex-
pressed lncRNAs in aged human brains, 80 differentially
expressed miRNAs in mouse brains, and 8 differentially
expressed tsRNAs in senescence-accelerated mouse models
(Danka Mohammed et al., 2017; Marttila et al., 2020; Zhang
et al., 2019c). Transcriptome-wide piRNA profiling identi-
fies a total of 9,453 piRNAs, that are differentially expressed
in the prefrontal cortex of human brains. Among them, seven
intergenic and one intronic piRNAs are positively associated
with brain aging, and two intronic piRNAs are negatively
associated with brain aging (Mao et al., 2019). These find-
ings suggest that dysregulated ncRNAs contribute to brain
aging and could serve as potential diagnostic biomarkers for
brain aging, although their regulatory functions in brain
aging remain largely elusive.
(4) Proteomics. Large-scale proteomic analysis of human

brains identifies 579 proteins associated with brain aging
(Wingo et al., 2019). Similarly, proteomic analysis on mouse
brain also identifies 390 proteins associated with hippo-
campal aging and 258 proteins associated with cortical aging
in mouse brains (Li et al., 2020d). Bioinformatic analysis
indicates that these dysregulated proteins are highly involved
in a diverse range of functions, including synapses (SYT12,

GLUR2), mitochondrial functions (FIS1, DRP1), oxidative
stress (PRDX6, GSTP1, and GSTM1), transcriptional reg-
ulation, ribosome (RPL4, RPS3), cytoskeletal integrity, and
GTPase function (Li et al., 2020d). Such changes predictably
lead to functional decline of brain by decreasing ATP con-
tent, increasing DNA oxidative damage, and deteriorating
synaptic function. Taken together, these systemic changes in
protein levels are associated with brain aging, suggesting that
proteomic markers could serve as molecular biomarkers for
brain aging.
As we discussed above, epigenetic factors and proteomic

markers are deeply involved in brain aging. An in-depth and
mechanistic understanding toward these age-related changes
is required in order to take advantage of these systemic
changes to effectively intervene brain aging process and treat
age-related diseases.

Secretory factors detectable in biofluids
Humoral biomarkers present in biological fluids such as
plasma, urine, and cerebrospinal fluid, could be used as
clinical indicators to reflect physiological and/or pathogenic
processes including brain aging. Due to their natures of being
non- or minimal-invasive, highly sensitive, and easily mea-
surable with accuracy, measurement of secretory factors in
the realm of IVD (in vitro diagnosis) is also an indispensable
means for quantitatively detecting the aging process. Chan-
ges in brain homeostasis could be reflected in circulating
fluids in a timely manner, because of the highly active
communications between the CNS and the periphery. Bio-
markers in body fluid have been actively pursued in the field
of early detection of neurodegenerative diseases. Interest-
ingly, although highly correlated with age, dementia is not
necessarily an inevitable consequence of old age (Arosio et
al., 2017), making normal brain aging markers still distin-
guishable from markers for neurodegeneration such as in the
case of AD or PD. In this section, we briefly discuss how
humoral markers can be used to monitor physiological and
pathological brain aging.
(1) Hormonal homeostasis. At the early stage of human life

cycle, growth hormone (GH) and insulin-like growth factor 1
(IGF-1) gradually increase their levels in the plasma, which
are crucial for development and growth of the body. GH and
IGF-1 began to decline with age, yet surprisingly, when
people get older, plasma levels of GH and IGF-1 became
positively correlated with brain aging (Duran-Ortiz et al.,
2021). High plasma IGF-1 levels in elderly populations have
been linked to dementia (Coschigano et al., 2000; Zhang et
al., 2020f). In a study of centenarians, it was found that high
plasma concentrations of the IGF-1 receptors, IGFBP2 and
IGFBP6, perhaps reflecting low concentrations of the ligand,
were related to longevity (Sebastiani et al., 2021). In addi-
tion, GH inhibition was also found to improve insulin sen-
sitivity (Vijayakumar et al., 2010). Various experimental
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models have confirmed that insulin has a positive effect on
balancing brain energy supplies. Therefore, heightened in-
sulin resistance could be viewed as an indicator for brain
aging. Other hormones, including gastrin, prolactin, leptin,
starch cellulose and adiponectin, regulate appetite and en-
ergy homeostasis, and are also potential markers of brain
aging (Cunnane et al., 2020).
(2) Metabolic homeostasis. NAD+ is a coenzyme used for

redox reaction and is the core of energy metabolism. The
aging process of the body is accompanied by a decrease of
blood NAD+ levels or NAD+/NADH ratio. More and more
evidence demonstrated that NAD+ was the main metabolite
for maintaining a healthy nervous system (Covarrubias et al.,
2021). Chronic low-grade inflammation has been considered
a key driver of brain aging and related diseases, and those
inflammatory processes are NAD+-dependent. Abnormal
and continuously activated innate immunity as well as re-
duced adaptive immune responses consume a large amount
of NAD+. Increased levels of CD38 in circulating immune
cells are indicative of large consumptions of NAD+ (Chat-
terjee et al., 2018; Covarrubias et al., 2020), and are some-
how also closely related to brain aging. Not surprisingly,
SASP also depends on the level of NAD+. Therefore, NAD+

as a brain aging marker needs to be considered in conjunc-
tion with inflammatory backgrounds.
(3) Protein factors and lipid markers. Through the para-

biosis experiment, it is observed that young blood can elicit
an aging-reversal process, while aged blood can accelerate
aging. Under this condition, several humoral markers related
to brain aging were also discovered. High levels of CCL11
and β2-microglobulin in blood and CSF are associated with
decreased levels of neurogenesis (Shi et al., 2018; Smith et
al., 2015; Villeda et al., 2011). Metallopeptidase inhibitor
TIMP2 is related to the recovery of hippocampal neural ac-
tivities (Castellano et al., 2017). Cytokine GDF11 is also
associated with brain aging, and high expression of which
can enhance brain vitality as well as adult neurogenesis of
the ependymal/subependymal zones surrounding the lateral
ventricles (Frohlich and Vinciguerra, 2020; Katsimpardi et
al., 2014). Protein composition in human CSF changes dur-
ing the aging process. Protein levels of a immune signal hub
gene TREM2 have been detected to increase gradually in the
CSF with increasing age, which reflects the function of mi-
croglia and is also related to AD (Deczkowska et al., 2020).
Moreover, Fgf17 in the CSF of young individuals can pro-
mote the rejuvenation of the nervous system of elderly in-
dividuals (Iram et al., 2022). Interestingly, people are
increasingly aware of the role of “exercise” as a “drug” to
promote brain rejuvenation. Tony Wyss-Coray group found
that the blood produced anti-inflammatory factors as well as
complement signal inhibitory factors such as Clusterin
(CLU), factor H (FH), glycoprotein pigment epithelium-de-
rived factor (PEDF), and leukemia inhibitory factor receptor

(LIFE), all increase their levels in the plasma after exercise
(De Miguel et al., 2021), which could be beneficial against
brain aging. And the effect of long-term exercise on the brain
itself is demonstrated by another study as evidenced by the
increased thickness of the cortex and reduced inflammation
in the entire CNS in aged mice (Sun et al., 2023).
With recent advancement in research, it is gradually re-

cognized that elimination of aged cells may be crucial to
anti-tissue aging process, whereas accumulation of aged cells
is related to brain aging. The biomarkers released from the
lysis of aged cells into the body fluids may also become
specific biomarkers for brain aging. Aged cells can synthe-
size a large amount of oxidized lipids, which are bioactive
metabolites produced by the oxidation of polyunsaturated
fatty acids, e.g., Dihomo-15d-PGJ2 is found to be unique to
aged cells. This molecule accumulates in aged cells and is
released when cells die, which can be detected in both the
blood and the urine (Wiley et al., 2021).
(4) Markers found in neurodegenerative diseases. By

studying 391 cognitively normal subjects aged between 23
and 91 years from many countries, Lue et al. (2019) de-
scribed the relationship between age and three plasma and
CSF core biomarkers of AD (Aβ40, Aβ42 and t-Tau), pro-
vided the normal range of Aβ and t-Tau in plasma, and
clarified the dynamic changes of these biomarkers during
normal development. In addition, research showed that uric
acid (UA) played an antioxidant role in oxidative stress, and
the dynamic decline in serum is positively correlated with
cognitive impairment. In populations with high level of sUA,
Aβ42 no longer correlates with tau pathology and the link
between Aβ42-Tau and cognitive impairment is also dis-
rupted (Butterfield and Halliwell, 2019; Huang et al.,
2022b), suggesting sUA might be neuroprotective. In an-
other study, Cofilin 2, a serummarker was found to be able to
distinguish AD from healthy subjects, as well as AD from
vascular dementia (Sun et al., 2019).

Summary and perspectives
It is well known that brain aging is the biggest risk factor for
various neurodegenerative diseases including AD and PD,
which brings tremendous burden to families and society, and
also represents a huge public health challenge. It is worth
mentioning that even in the case of familial AD or PD, where
individuals do carry disease-causing genetic mutations, and
the mutant genes are expressed in the brain, people usually
do not manifest pathology at young age, suggesting that in
order for the disease gene to elicit obvious pathological
changes, something else age-related need to corroborate with
the disease gene. Therefore, perhaps a major common
strategy for disease prevention or delaying disease onset is to
intervene in brain aging. To achieve this goal, it is necessary
to discover biomarkers for brain aging, which is specific,
systemic, and pragmatic. Humoral biomarkers, physiological
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and medical imaging biomarkers are particularly easily ap-
plicable for longitudinal studies with large populations. From
the above review, it is obvious that cellular, molecular and
histological biomarkers may be reflected at humoral, phy-
siological and medical imaging levels. According to the
Chinese Taoism script, Tao-Te-Ching, it is said that “tao
generates one, one generates two, two generates three, and
three generates all things”, we therefore propose the “Three-
Elements” for brain aging biomarkers, coming from Phy-
siological, Medical Imaging, and Humoral measurements, to
monitor brain aging and also serve as reliable outcome
measures for future anti-brain aging interventions.

Cardiac aging

Age is widely accepted as an independent risk factor for
CVD (Obas and Vasan, 2018). It is critical to understand the
normal structural remodeling and functional changes that
accompany cardiac aging in the atria, ventricles, valves,
pericardium, the cardiac conduction system, and vasculature
(Tracy et al., 2020) (Figure 12A; Table S7 in Supporting
Information).

Physiological characteristics
With regard to the vasculature, aging is associated with a
decrease in elastic fibers, an increase in fractured fibers
(Komutrattananont et al., 2019), collagen deposition (Klee-
feldt et al., 2019), and the calcification and thickening of the
arterial wall (Jakovljevic, 2018). These changes are linked to
impairment of atrial conduction and function, such as atrial
compliance and active atrial contraction, which are asso-
ciated with hypertension and increased mortality risk.
Due to increased oxidative stress, the number of cardio-

myocytes would decrease and the fibroblasts would senesce
with age in the left ventricle (LV). Hence, the remaining cells
undergo compensatory hypertrophy, and the wall thickens.
The major age-associated structural change in the LV is con-
centric hypertrophy, including increased wall thickness and
LVmass and decreased LV cavity size (Nakayama et al., 2016;
Yoneyama et al., 2017). These changes lead to a less compliant
ventricle, resulting in ventricular diastolic dysfunction with
age, both of which are age-associated contributors to heart
failure with preserved ejection fraction (Pagel et al., 2021).
LV systolic dysfunction is not affected by age, at least in

rest situations. However, ventricular contractile function
declines in older participants when faced with a high demand
of cardiac output or when using more sensitive indicators of
cardiac function, such as LV longitudinal strain and strain
rate (Støylen et al., 2020). The major age-related morpho-
logical changes in cardiac valves are stenosis and regur-
gitation. Older valves have increased deposits of calcium and
connective component and declining sulfated glycosami-
noglycan content, which contribute to valvular stiffness,

progressing into valve stenosis (Coffey et al., 2021). The
age-associated changes in the pericardium include increased
fibrosis and deposition of pericardial adipose tissue (AT).
The adipose tissue synthesizes and secrets proinflammatory
adipokines which may be related to atrial fibrosis and con-
duction abnormalities in the old people (Bernasochi et al.,
2017). As age progresses, the release of noradrenaline and
adrenaline from tissues into the circulation system increases,
while the clearance rate of catecholamines decreases. The
sympathetic nervous system is activated during senescence.
This activation is enlarged in the heart failure situation, with
a nearly 50-fold increase of noradrenaline releasing in the
sinus node and LV, which may be associated to the ar-
rhythmia and cardiac structural remodeling (Toledo et al.,
2019). Due to the dysfunction of the sinoatrial (SA) node,
atrioventricular node, and the his-purkinje system, the pre-
valence of cardiac conduction system related diseases in-
creases with age, resulting in bradycardia, palpitations,
dizziness, syncope, fatigue, and sudden cardiac death.

Imaging traits
With the advancement of age, echocardiographic indicators
of atrial function, such as the left atrial expansion index, peak
systolic strain, strain rate, and left atrial emptying fraction
(LAEF) decrease and left atrial stiffness index and atrial
conduction time (PA-TDI) increase (Abou et al., 2017; Olsen
et al., 2021). Color Doppler imaging studies have determined
that the average early-diastolic velocity (EDV) decreases and
the late-diastolic velocity (LDV) increases as age progresses,
leading to the decline of EDV/LDV ratio, an indicator of
cardiac diastolic function (Seo et al., 2020). Cardiac mag-
netic resonance (CMR) is a specialized application of MRI
which produces high-quality images of cardiovascular sys-
tem to assess cardiac function and structure. The T2 re-
laxation time of a quantitative MRI-based T2-mapping
decreases significantly in aged hearts (Lee et al., 2022b). As
LV compliance reduces with aging, the early radial dis-
placement, radial velocity, and circumferential strain rate
decrease, while the late circumferential strain rate increases
(Lin et al., 2021).

Histologic features
A key feature of aged hearts is histological alternation, which
also serves as the structural basis of deregulated heart
function homeostasis and as the obstructive factor for post-
injury myocardial repair. As previously mentioned, the aged
hearts show increased stiffness, loss of cardiomyocytes,
hypertrophic growth, chronic inflammation, and fibrosis
(Figure 12B), as well as valvular stiffening, which is the
most common age-related heart disease and is associated
with a decline in proliferation and extensibility and an in-
crease in collagen deposition, calcium deposition, and
stenosis. Besides, amyloid deposits and lipofuscin accumu-
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lation are also important features of cardiac aging. The direct
results of these pathological hallmarks of aged hearts are
impaired autonomic control and arrhythmias, the functional
hallmarks of cardiac aging.
The self-renewal rate of cardiomyocytes in adult hearts is

very low. When the cardiomyocytes undergo death (apop-
tosis, pyroptosis, necroptosis, ferroptosis) during aging, no
other newly generated cardiomyocytes can be added to take
over the functions of the lost ones. On one hand, the myo-
cardial tissues undergo hypertrophic growth to support heart
function, and on the other hand, fibroblasts and in-
flammatory cells proliferate to form scars for structure repair.
Thus, myocardial hypertrophy and fibrosis are two typical
features of aged hearts across species. In aged hearts, the
heart rate is influenced not only by the loss of cells in the
sinoatrial node but also by structural changes in the heart,

including fibrosis and hypertrophy. This functional decline
would slow the propagation of electric impulses throughout
the heart, and impairs the conduction (Curtis et al., 2018).
Additionally, the aged hearts also respond differently to
cardiac injury compared with the young ones. For instance,
aging reduces the clearance of dead cells and the in-
flammatory cells and fibroblasts are duller in response to
ischemic injury, which leads to the formation of weak/loose
scars and sensitivity to subsequent cardiac events, such as
heart failure (Tracy et al., 2020). The vascular vessels within
the myocardial tissue, namely coronary vessels, undergo
remodeling and dysfunction. Coronary dysfunction is a key
feature of aged hearts and is related to heart failure with
preserved ejection fraction (Mishra and Kass, 2021). The
deposition of lipids within the coronary vessels also leads to
atherosclerosis and myocardial infarction (Tracy et al.,

Figure 12 Biomarkers of cardiac aging. A, Aging-associated changes in structures of the heart. B, Functional, histological, and cellular biomarkers of
cardiac aging. Abbreviations: EC, endothelial cell.
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2020). Aging also reduces the angiogenesis capability of
vascular endothelial cells (Das et al., 2018), which is one of
the mechanisms underlying reduced myocardial repair post-
ischemia in aged hearts.

Cellular alterations
The cellular components or fractions in aged hearts are sig-
nificantly different compared with the young ones, which is
well elucidated by recent single-cell studies (Ma et al., 2021;
Schaum et al., 2020). In addition to the loss of cardiomyo-
cytes in the myocardial tissues of the aged hearts as dis-
cussed above, the enrichment of immune cells such as
macrophages, neutrophils, dendric cells, and T cells is also
influenced by aging. For instance, it has been reported the
crucial roles of dendritic cells and macrophages in aged
hearts in humans and rodents. These immune cells can se-
crete chemokines and cytokines, such as thymus and acti-
vation-regulated chemokine (TARC/CCL17) to facilitate
cardiac aging via regulating T helper cells (Zhang et al.,
2022f). Many cells within aged myocardial tissues show
senescent signatures. Fibroblasts and endothelial cells ex-
pressed and secreted typical SASP such as IL-6, plasmino-
gen activator inhibitor 1 (PAI-1), TNFα, CXCLs and MMPs
(Mehdizadeh et al., 2022). Senescent vascular endothelial
cells undergo an endothelial-to-mesenchymal transition
(EndoMT) and fibrogenesis of the aged hearts, which is
regulated by cytokines such as TGF-β, endothelin-1 (EDN1)
and IL-1 (Piera-Velazquez and Jimenez, 2019). Cardio-
myocytes also show senescence, but their hallmarks of se-
nescence are much different from those of proliferative cells
such as endothelial cells. In aged hearts, the senescent car-
diomyocytes show hallmarks of DNA damage, endoplasmic
reticulum (ER) stress, mitochondrial dysfunction, hyper-
trophic growth, and atypical SASP (e.g., TGF-β2, growth-
dependent factor 15 (GDF15) and EDN3), and contractile
dysfunction (Tang et al., 2020). Besides, the accumulation of
somatic mutations in cardiomyocytes during aging suggests
age-associated DNA damage and widespread oxidative
genotoxicity. This age-related accumulation of cardiac mu-
tations provides an explanation of the influence of aging on
cardiac dysfunction (Choudhury et al., 2022). Depletion of
senescent cells reduces aging features of the heart, such as
hypertrophy and fibrosis, and prolongs the lifespan of mice
(Baker et al., 2016).
The cell changes are largely regulated by the related or-

ganelles and the crosstalk among the organelles and nucleus.
Mitochondria are the key organelles for the homeostasis of
myocardial cells. Cardiomyocytes have a high demand for
energy, which evolutionarily results in a high number of
mitochondria within cardiomyocytes (Picca et al., 2018).
Although endothelial cells have low numbers of mitochon-
dria compared with cardiomyocytes, mitochondria in en-
dothelial cells also regulate endothelial functions such as

angiogenesis and paracrine (angiocrine) functions in a cru-
cial manner (Li et al., 2019e). Mitochondria regulate myo-
cardial function not only via supporting energy and
regulating oxidative stress but also modulate protein and
histone post-translational modifications by supporting do-
nors such as acyl-CoA. For instance, the deregulation of
mitochondrial crotonyl-CoA caused by the Enoyl-CoA hy-
dratase, short chain 1 (ECHS1) mutation is a key mechanism
underlying aging-related cardiac hypertrophy and fibrosis
(Cai et al., 2022b; Tang et al., 2021). The changes in mi-
tochondrial structure and function are observed in the cells
(cardiomyocyte, endothelial cell, fibroblast) of aged hearts.
In the cells of young hearts, the mitochondria undergo fusion
and fission to maintain homeostasis, which is important for
normal cell function. The imbalance of these mitochondrial
dynamics (fusion and fission) accelerates mitochondrial se-
nescence in cardiac cells and is an important biomarker of
cardiac aging and diseases (Picca et al., 2018; Song et al.,
2017).

Molecular changes
Elucidation of the molecular pathways involved in cardiac
aging helps understand the mechanism of cardiac aging and
facilitates the prognosis and diagnosis of aging-related car-
diovascular diseases. A variety of important molecular sig-
naling pathways change during heart aging, such as oxidative
stress and autophagy. In addition, several recent single-cell
transcriptome studies provide important references for re-
vealing the molecular mechanisms of cardiac aging
(Choudhury et al., 2022; Emechebe et al., 2021; Ma et al.,
2021; Zhang et al., 2022g).
ROS accumulates in the aged heart, leading to higher

mitochondrial protein carbonylation along with increased
mitochondrial DNA mutations and deletions, which is in-
dicative of mitochondrial oxidative damage in the heart with
age (Dai et al., 2012). In addition, as the elevation of ROS
can cause oxidative DNA damage, single-cardiomyocyte
sequencing has revealed the accumulation of somatic single-
nucleotide variants (sSNVs) in aged human hearts, with a
higher rate than those in neurons and lymphocytes, pointing
to a higher age-related somatic mutation load in the heart
(Choudhury et al., 2022). On the contrary, autophagy de-
creases with age in the heart (Taneike et al., 2010). As mTOR
is a key regulator of autophagy (Marín-Aguilar et al., 2020),
it is also considered as a critical driver of cardiac aging. For
instance, mTOR phosphorylation increases with age in
mouse hearts (Hua et al., 2011), whereas the inhibition of
mTOR extends lifespan and ameliorates age-related cardiac
diseases by promoting autophagy in mice (Dai et al., 2014;
Flynn et al., 2013; Harrison et al., 2009). Likewise, sirtuins, a
conserved family of NAD+-dependent deacetylases, have
been widely implicated in cardiac aging; the protein ex-
pression of multiple sirtuins, including SIRT1, SIRT2 and
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SIRT3, has been found to decrease in the heart with age (Li et
al., 2018b; Sakamoto et al., 2004; Tang et al., 2017).
In addition to the studies on individual molecular path-

ways, a variety of potential new biomarkers for cardiac aging
have been recently identified with the development and ap-
plication of single-cell or single-nucleus transcriptomic se-
quencing techniques. For instance, single-nucleus
transcriptomic sequencing of primate ventricles has revealed
that the inflammatory factor IL-7 increases during cardiac
aging (Ma et al., 2021). Besides, single-nucleus tran-
scriptomic sequencing analysis of primate hearts of different
ages has identified forkhead box protein 1 (FOXP1) and
forkhead box protein 2 (FOXP2) as key age-downregulated
transcriptional regulators whose target genes are associated
with various heart diseases (Ma et al., 2021; Zhang et al.,
2022g). Consistently, FOXP1-deficient cardiomyocytes de-
rived from human embryonic stem cells exhibit multiple
cardiac aging phenotypes, including cellular hypertrophy
and senescence (Zhang et al., 2022g). Furthermore, single-
cell transcriptome analysis of endothelial cells sorted from
mouse hearts at 3 months and 24 months of age has revealed
increased expression of spectrin repeat containing nuclear
envelope 2 (Syne2) and decreased expression of nestin (Nes)
with age (Emechebe et al., 2021).

Secretory factors detectable in biofluids
Aging is strongly associated with an increased risk of various
cardiac diseases. Secretory factors detectable in the biofluids
such as blood and urine are potentially powerful tools as
measurable and quantifiable biomarkers in the diagnosis,
prognosis, and surveillance of cardiac aging and related
diseases.
Several secretory factors detectable in the blood have been

linked with cardiac aging. For example, the level of serum B-
type natriuretic peptide (BNP) has been found to increase in
aged individuals, while age-related impairment of left atrial
strain positively correlates with even higher BNP levels as an
independent factor (Yoshida et al., 2019). Likewise, the level
of plasma high-sensitivity cardiac troponin T (hs-cTnT) also
increases with age, and is often higher in men than women
(de Lemos et al., 2010; Saunders et al., 2011). In addition, the
levels of serum IL6 and C-reactive protein (CRP) are higher
in elderly populations (Puzianowska-Kuźnicka et al., 2016).
Consistent with the notion that age is a major contributing
factor to the incidence of cardiovascular diseases, the eva-
luation of circulating secretory factors from individuals
without prevalent cardiovascular diseases has revealed that
all of the aforementioned biomarkers are positively corre-
lated with increased risks of aging-related cardiovascular
diseases (de Lemos et al., 2017; Kuh et al., 2019; Markousis-
Mavrogenis et al., 2019; Saeed et al., 2018). Besides, a co-
hort study revealed that the circulating ceramide- and
phospholipid-based risk score is positively correlated with

the incidence of cardiovascular diseases (Hilvo et al., 2020).
Compared with the other types of biofluids, urine is the

easiest to collect, the least invasive to the patients, and
generally more stable, making it highly feasible for bio-
marker identification and application. As tested in the blood,
increased urinary BNP is also associated with higher aging-
related CVD risks (Campbell et al., 2020). Increased urinary
fibrinopeptide A (FPA) is also associated with angina pec-
toris and myocardial ischemia (Sonel et al., 2000). In addi-
tion, hundreds of proteins and peptides have been identified
in urine samples from the patients as putative biomarkers of
coronary artery diseases, including CD14, alpha-1-anti-
trypsin (AAT), collagen types 1 and 3, granin-like neu-
roendocrine peptide precursor (ProSAAS), membrane-
associated progesterone receptor component 1 (PGRMC1),
sodium/potassium-transporting ATPase gamma chain
(FXYD2) and fibrinogen-alpha chain (FGA) (Delles et al.,
2010; Lee et al., 2015).

Summary and perspectives
The aging heart shows changes in function, structure, and
cellular/extracellular components. The typical biomarkers of
cardiac aging are summarized above and many molecular
pathways (Sirtuin, mTOR, AMPK, and FOXO) are involved
in cardiac aging. Some outstanding questions remain in the
field of cardiac aging. First, some potential hallmarks of
cardiomyocyte senescence have been summarized before
(Tang et al., 2020), but it is still hard to define and detect
cardiomyocyte senescence in vivo. Second, many biomarkers
of cardiac aging overlap with the pathological characteristics
of cardiac diseases in young adults. Further efforts are nee-
ded to define biomarkers of physiological aging of the heart
in humans. Recent studies have reported that the loss of
epigenetic information is a cause of the aging of mammalian
tissues, including the heart (Liu et al., 2023b; Yang et al.,
2023; Zhang et al., 2022g). It remains unknown what epi-
genetic marks contribute significantly to cardiac aging and
can be used as the biomarker of cardiac aging. Finally, many
strategies targeting aging biomarkers have been used to delay
aging and disease. Depletion of senescent cells has been used
to extend lifespan and reduce aging-related cardiac re-
modeling in mice (Baker et al., 2016). Further studies in
large animals such as monkeys and pigs may promote clin-
ical and translational science (Zou et al., 2022).

Vascular aging

Aging is the main risk factor for vascular disease and the
related cardiovascular and cerebrovascular complications,
which account for the majority of deaths worldwide
(Hamczyk et al., 2020). In a rapidly aging society, bio-
markers allowing early detection of individuals who are at
high risk of developing vascular disease need to be devel-
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oped to improve primary prevention and reduce the health
care and socioeconomic burdens associated with aging.
(Figure 13; Table S8 in Supporting Information)

Physiological characteristics
Functionally, aging blood vessels show increased stiffness,
decreased sensitivity to vasodilators and vasoconstrictors,
and decreased angiogenesis (Ding et al., 2022; Zhang and
Tao, 2018). The gold standard for measuring arterial stiffness
is the carotid-femoral pulse wave velocity (PWV), the ve-
locity at which the blood pressure wave moves from the
carotid to the femoral, whereas the brachial-ankle and heart-
ankle PWV are also popular in the clinic (Townsend et al.,
2015; Van Bortel et al., 2012). An increase in PWV corre-
lates with chronological age and is associated with an in-
creased risk of CVD and all-cause mortality (Laurent et al.,
2001; Mitchell et al., 2010). Elevated blood pressure is also a
common feature of aging and the leading contributor to
cardiovascular events and mortality (Poulter et al., 2015).
Hypertension is often preceded and aggravated by arterial
stiffening, whereas it also promotes arterial stiffening, in-
dicating the existence of a positive feedback loop between
them (Humphrey et al., 2016).
Vascular endothelial cells (VECs) sense and respond to

stimuli from the blood system and regulate vascular smooth
muscle cells (VSMCs), by producing NO (vasodilator) or
angiotensin II (Ang II, vasoconstrictor) (Tian and Li, 2014;
Ungvari et al., 2018). Endothelial health and function is a
central mechanism of vascular aging and pathologies. For
example, the age-related decrease in endothelium-dependent
dilator responses contributes to the decline in angiogenesis,
another main characteristic of vascular aging (Ungvari et al.,
2018). Endothelial dysfunction also increases susceptibility
to atherosclerosis, which is characterized by lipid-rich and
inflammatory plaques accumulating in the subintimal space
of medium and large arteries (Libby et al., 2019). Impaired
endothelial function and disrupted endothelial integrity are
considered as the major drivers and early events of athero-
sclerosis (Libby et al., 2019; Tian and Li, 2014). Endothelial
dysfunction can be measured non-invasively by ultrasound
using the flow-mediated dilation (FMD) technique (Cel-
ermajer et al., 1992; Thijssen et al., 2019). After transient
vasoocclusion, brachial artery flow changes after infusion of
vasoactive substances modulating nitric oxide release are
measured. Whereas FMD examines the macrovascular en-
dothelial function of the conduit brachial artery, peripheral
arterial tonometry (PAT) may represent a measure of the
function of the peripheral resistance of finger microvessels

Figure 13 Biomarkers of vascular aging. Abbreviations: SIRT, sirtuin. ACE-1, angiotensin-converting enzyme-1; CACS, Coronary artery calcium scores;
cIMT, carotid intima-media thickness; CRP, C-reactive protein; CT, computed tomography; eNOS, endothelial NO synthase; EPC, endothelial progenitor cell;
FGF21, fibroblast growth factor 21; FMD, flow-mediated dilation; HIF-1α, hypoxia-inducible factor-1α; ICAM-1, intercellular adhesion molecule-1; IL-1β,
interleukin-1β; IL-1Ra, IL-1 receptor antagonist; IL-6, interleukin-6; iNOS, inducible nitric oxide synthase; MFG-E8, milk fat globule epidermal growth
factor 8; MMP, matrix metalloproteinase; NO, nitric oxide; ox-LDL, oxidized low-density lipoprotein; PGC-1α, peroxisome proliferator-activated receptor-
gamma coactivator-1α; PWV, pulse wave velocity; RHI, reactive hyperemia index; SASP, senescence-associated secretory phenotype; SIRT, sirtuin; TNFα,
tumor necrosis factor-α; VCAM-1, vascular adhesion molecule-1; VEC, Vascular endothelial cells; VEGF, vascular endothelial growth factor; VSMC,
vascular smooth muscle cells.
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after the natural logarithmic transformation of the reactive
hyperemia index (RHI) (Kuvin et al., 2003; Thijssen et al.,
2019). Several prospective studies have demonstrated that
FMD and RHI are both independent predictors of future
cardiovascular events (Matsuzawa et al., 2015), but these
two methods are not closely related, suggesting that they
reflect distinct aspects of vascular function (Hamburg et al.,
2011). FMD decreases during aging and is an independent
predictor of CVD outcomes (Skaug et al., 2013; Thijssen et
al., 2019). RHI is associated with the coronary athero-
sclerotic burden (Heffernan et al., 2012), but may not reflect
age-associated reductions in large artery endothelial function
assessed via brachial artery FMD (Babcock et al., 2021).

Imaging traits
With age, carotid intima-media thickness (cIMT) increases
(Homma et al., 2001) and is associated with the prevalence,
morbidity, and mortality of CVD (Lorenz et al., 2007). It is
possible to use ultrasound to measure cIMT in the vascular
system as an estimate of the burden of subclinical athero-
sclerosis in major arteries (Bauer et al., 2012; de Groot et al.,
2004). Even measured once (at baseline), cIMT is predictive
of future CVD events in the general population after ad-
justing for a wide range of established CVD risk factors
(Lorenz et al., 2007). However, increased cIMT can also
reflect nonatherosclerotic processes (Homma et al., 2001;
Inaba et al., 2012). In clinical trials, cIMT has been fre-
quently used as a secondary outcome. In this context, abso-
lute or annual cIMT progression is used instead of measuring
cIMT on a single occasion based on at least two ultrasound
scans over a year (Lorenz et al., 2015). More advanced
atherosclerosis stages can be evaluated by quantifying var-
ious carotid plaque parameters, such as plaque presence,
number, thickness, area, and volume (Naqvi and Lee, 2014),
which outperform carotid IMT as a predictor of future CAD
events (Inaba et al., 2012).
Vascular aging is also often accompanied by the active

deposition of calcium phosphate crystals in both the intima
(also called atherosclerotic intima calcification) and the
media (also called Mönckeberg sclerosis) layers of blood
vessels (Lanzer et al., 2014). Calcifications of both types
often occur simultaneously, and imaging techniques some-
times have difficulty distinguishing between them (Kock-
elkoren et al., 2017). Coronary artery calcium scores (CACS)
can be determined using computed tomography (CT), which
is considered to be the gold standard technique (Wang et al.,
2018c). Despite the fact that CACS could be frequently af-
fected by medial calcification, it is often used for the as-
sessment of atherosclerosis due to its good correlation with
coronary plaque burden (Sangiorgi et al., 1998). CACS is
highly correlated with chronological age (McClelland et al.,
2006) and is the most important predictor of coronary heart
disease and all atherosclerotic CVD outcomes combined

(Ambale-Venkatesh et al., 2017; Raggi et al., 2008).
Fundoscopic examination is a physical examination tech-

nique that allows the visualization of the retina by using only
a fundoscope and the naked eye (Gupta et al., 2017). It is
recommended to detect diabetic retinopathy for the diagnosis
and prevention of visual impairment in diabetic patients
(Eppley et al., 2019; Song et al., 2022a). It also allows for the
non-invasive identification of increased ocular micro-
vascular abnormalities such as arterial and venous occlusive
disease, retinal arteriolar macroaneurysm formation, and
embolic events for the prevention and management of both
the ocular and systemic complications of hypertension
(DellaCroce and Vitale, 2008). In this context, fundoscopic
examination could potentially be used for enhanced prog-
nostication and risk reclassification of vascular aging
through the assessment of microvascular complications that
are tightly associated with vascular stiffness and athero-
sclerosis (Antonopoulos et al., 2021; Lovshin et al., 2018).
Age-related vasculature alteration is a prominent risk

factor for various vascular diseases, including abdominal
aortic aneurysm (AAA) and aortic dissection (Bossone and
Eagle, 2021). AAA is conventionally defined as the dilation
or widening of the aorta to greater than 3.0 cm, with most
AAAs being asymptomatic until rupture, which leads to
death in 65% of patients (Sakalihasan et al., 2005). The pa-
thophysiological development of AAA involves various
processes, including apoptosis and aging of VSMCs, in-
flammatory infiltration and oxidative stress in the vascular
wall, and proteolytic fragmentation of the cellular ECM
(Meng et al., 2023). Clinically, AAA is typically monitored
with imaging tests (ultrasound or CT scan) over time to en-
sure that the aneurysm is not growing (Baman and Eskan-
dari, 2022). Aortic dissection is a life-threatening event,
during which a primary tear propagates along the aorta,
causing catastrophic delamination of the inner (intima with
most of the media) from the outer layers (leftover media with
adventitia), with an increased susceptibility in elderly in-
dividuals (Bossone and Eagle, 2021; Horný et al., 2022). The
delamination strength of the human aorta significantly de-
creases with age (Horný et al., 2022). CT is the gold standard
for detecting aortic dissection and may show a dissection flap
or aortic dilation; MRI may also be used as an alternative;
transesophageal echocardiography (TEE) can be rapidly
performed in emergency situations (Shi and Babu, 2021).

Histologic features
Vascular aging can be defined as morphological and func-
tional alterations of the vasculature (Hamczyk et al., 2020;
Zhang and Tao, 2018). Morphologically, aging blood vessels
exhibit increased deposition of collagen fibers, increased and
disordered elastic fibers, disorganized arrangement of
VSMCs, enlarged lumens, increased intima, and eventually
progressive calcification of the medial layer of the vascular
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wall (Ding et al., 2022; Zhang and Tao, 2018).

Cellular alterations
Numerous senescence-associated morphological alterations
and functional adaptations occur in constituent cells of the
vasculature during aging. For example, most senescent
VECs and VSMCs exhibit reduced proliferative capacity,
become flattened and enlarged at cellular shape and size, and
exhibit increased polyploidy in the cell population and in-
creased SASP (Tian and Li, 2014; Yang et al., 2007). The
integrity and functionality of the endothelium are crucial for
vascular homeostasis; therefore, VEC senescence con-
tributes to the onset of aging in the vasculature. Both basal
and shear stress-stimulated NO production and endothelial
NO synthase (eNOS) activity are reduced in senescent VECs
(Sato et al., 1993). NO bioavailability is also reduced due to
oxidative stress in senescent VECs (Zhang and Gao, 2021).
NO can activate telomerase and delay the onset of senes-
cence (Vasa et al., 2000). Senescent VECs attract monocytes
to the endothelium and promote the proliferation and mi-
gration of VSMCs (Csiszar et al., 2012; Urbanek et al.,
2016).
The responses of VSMCs to contractile and relaxation

factors, including NO and β-adrenoreceptor agonists, are
also decreased in aging (Ding et al., 2022). Another main
characteristic of VSMC senescence is the phenotypic switch
from contractile to synthetic. Senescent VSMCs secrete
proinflammatory cytokines and MMPs. These SASP factors
promote the chemotaxis of monocytes/macrophages and
stimulate adjacent non-senescent VSMCs or VECs to release
cytokines and express adhesion molecules, thus participating
in or driving chronic vascular inflammation and diseases
(Gardner et al., 2015). Senescent VSMCs also increase cal-
cium deposition and promote the expression of calcification
regulatory factors, leading to the mineralization of VSMCs
and the calcification of blood vessels (Fakhry et al., 2017;
Nakano-Kurimoto et al., 2009). In addition, the production
of elastase in VSMCs and fibronectin in VECs contributes to
fibrosis in vascular aging (Johnson, 2007; Leon and Zuck-
erman, 2005). In atherosclerosis, VSMCs are more plastic
and can adopt alternative phenotypes, including phenotypes
resembling foam cells, macrophages, mesenchymal stem
cells, and osteochondrogenic cells, which could contribute
both positively and negatively to disease progression (Ba-
satemur et al., 2019).

Molecular changes
As aging includes various biological processes, it is difficult
to attribute vascular aging to one or a few molecules. Similar
to other types of cells, upregulation of the p53/p21CIP1 and
p16INK4a pathways, telomere attrition, and SA-β-gal activa-
tion are observed in VECs and VSMCs during aging (Her-
nandez-Segura et al., 2018; Minamino and Komuro, 2007;

Wang et al., 2021c). These are identified as classical bio-
markers of cellular senescence in the vasculature. Vascular
aging could be pre-determined genetically. For example, a
mutation at the LMNA or WRN locus could cause Hutch-
inson-Gilford progeria syndrome in children or Werner’s
syndrome in adults, respectively. Both syndromes are asso-
ciated with premature death due to accelerated vascular
aging and cardiovascular events (Burtner and Kennedy,
2010; Lebel and Monnat, 2018). Emerging evidence has also
demonstrated that epigenetic changes during aging, includ-
ing altered posttranslational acetylation and methylation of
histones, abnormal DNA methylation, and chromatin re-
modeling, are closely associated with vascular aging (Wang
et al., 2022a; Wang et al., 2021c; Wu et al., 2018; Zhang et
al., 2018b). In addition, oxidative stress, which induces DNA
damage and telomere shortening, is also a senescence bio-
marker (Kubben et al., 2016; Kurz et al., 2004). As a major
source of ROS, mitochondrial integrity and function decline
with aging, and several mitochondria-related molecules were
found to be potential biomarkers of vascular aging, including
peroxisome proliferator-activated receptor-gamma coacti-
vator (PGC)-1α, p66Shc and SIRT3 (Liberale et al., 2020;
Wang et al., 2021c).
Another process involved in vascular aging is inflamma-

ging. The NF-κB pathway and immune cells are major
players in this process. NF-κB activation upregulates the
expression of inflammatory cytokines and cellular adhesion
molecules, including IL-1β, TNFα, IL-6, vascular adhesion
molecule-1 (VCAM-1), intercellular adhesion molecule-1
(ICAM-1), inducible nitric oxide synthase (iNOS), monocyte
chemo-attractant protein-1 (MCP-1), and cyclooxygenase-2
(COX-2) (Wang et al., 2021c). Angiotensin II signaling,
which regulates many of the stimuli and signals that govern
vascular aging, activates the NF-κB and p53/p21CIP1 path-
ways (Kunieda et al., 2006; Miyauchi et al., 2004). The ac-
tivity and expression of angiotensin-converting enzyme-1
(ACE-1) are obviously increased during aging (Wang et al.,
2003). SIRTs constitute a class of proteins involved in vas-
cular aging, especially SIRT1, SIRT3, and SIRT6. Their
activity declines in VECs and VSMCs during aging, and
their overexpression counteracts vascular aging (Grootaert
and Bennett, 2022). Furthermore, with cutting-edge tech-
nologies, a series of molecules have been found to be asso-
ciated with or functionally contribute to vascular aging,
including hypoxia-inducible factor-1α (HIF-1α), vascular
endothelial growth factor (VEGF), Klotho, FOXO1A,
FOXO3A, adrenoceptor beta 2 (ADRB2), milk fat globule
epidermal growth factor 8 (MFG-E8), natriuretic peptide
receptor A (NPRA), and APOE (Cai et al., 2022d; Long et
al., 2022; Wang et al., 2021c; Zhang et al., 2020e).

Secretory factors detectable in biofluids
Aging affects the levels of proteins, metabolites, and other
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biomolecules in the blood. As inflammation is highly asso-
ciated with vascular aging, the protein levels of in-
flammatory factors in circulation, such as circulating CRP,
IL-6, IL-1 receptor antagonist (IL-1Ra), and oxidized low-
density lipoprotein (ox-LDL), are potential biomarkers of
vascular aging (Durham et al., 2018; Gopcevic et al., 2021;
Ishigaki et al., 2009). The circulating fibroblast growth factor
21 (cFGF21) concentration is positively correlated with age
(Yang et al., 2022a), and high levels of cFGF21 are closely
associated with an increased risk of CVDs (Zhang et al.,
2021h). Circulating fibulin-1 is positively correlated with
brachial-ankle PWV and is an independent risk factor for
arterial stiffness (Luo et al., 2022a). Other circulating factors,
including oxidative stress and miRNAs, have also been re-
ported as potential biomarkers of vascular aging (Du et al.,
2021; Gopcevic et al., 2021).
Aging also causes changes in the cells and in the blood.

One of the well-identified factors that indicates vascular
aging in the circulation is bone marrow-derived endothelial
progenitor cells (EPCs). EPCs are known to participate in
postnatal neovascularization and vascular repair. Aging
reduces the number and promotes the senescence of EPCs,
resulting in a decline in angiogenesis and vascular healing
(Buffa et al., 2019). Moreover, the senescence of macro-
phages, T cells, and B cells is also associated with vascular
aging. Downregulation of ATP-binding cassette transporter
A1 (ABCA1) and abnormal polarization are characteristics
of senescent macrophages (Sene et al., 2013). Senescent
macrophages impair cholesterol efflux, increase cytokine
expression and premature monocyte recruitment, and pro-
mote extracellular matrix degradation (Childs et al., 2016;
Sene et al., 2013). The increase in the CD8+CD28− T-cell
proportion within the circulating CD8 subset is one of the
most prominent changes during aging and T-cell senes-
cence in humans (Weng et al., 2009). Senescent T cells are
highly proinflammatory and release a large amount of in-
terferon-γ (Franceschi et al., 2000; Leon and Zuckerman,
2005). It also induces direct lysis of ECs and VSMCs by
releasing high levels of perforin and granzymes (Johnson,
2007). A major effect of aging on B cells is a significant
decrease in the percentage of switched memory B cells
(IgD+CD27+) and a significant increase in the percentage of
naïve (IgD+CD27−) and double-negative memory (IgD−

CD27−) B cells in the blood (Frasca et al., 2020). Senescent
B cells display an enhanced ability to take up, process, and
present antigens to T cells and contribute to local in-
flammation by secreting proinflammatory factors (Sage et
al., 2019). In addition, by identifying the specific CpG sites
undergoing age-related changes in methylation, the calcu-
lated DNA methylation age (DNAmAges, also called epi-
genetic clocks) of blood cells could be a good predictor of
all-cause and CVD mortality (Hamczyk et al., 2020; Mar-
ioni et al., 2015).

Lung aging

The main function of the lung, with the largest surface area,
is to exchange gas with the outside environment. And lung
tissue homeostasis is critical for life and health. Accumu-
lating evidence shows that lung function is facing pro-
gressive impairment with age, marked by physical,
mechanical and structural changes that hamper gas exchange
(Bowdish, 2019; Roman et al., 2016). The characteristics of
aging lung are weaking of respiratory muscles (particularly
the diaphragm), and stiffening of the chest wall (Schuliga et
al., 2021). With the outbreak and prevalence of COVID-19,
pneumonia-induced acute respiratory distress syndrome
(ARDS), particularly in elderly people, results in global
healthcare crises and severely strains health resources.
The lung is a complex and multicellular organ, including

alveolar epithelial cells, vascular endothelial cells, airway
epitheliums, fibroblasts, macrophages, platelets, neutrophils.
The cellular and molecular regulatory processes of lung
undergo changes over a lifetime. Gaining more insight into
the lung-intrinsic changes that occur with aging is crucial for
development of high effective clinical treatment.
Aging causes lung susceptibility to various respiratory

diseases, such as chronic obstructive pulmonary disease
(COPD), ARDS, interstitial pulmonary fibrosis (IPF), and
pneumonia (Crook et al., 2021).
Advanced age is the main risk factor for chronic re-

spiratory diseases. It is proved by the data that the mortality
rate caused by COVID-19 is 20 times higher for the elderly
people over 80 years old compared with people in their 50s
(Strangfeld et al., 2021; Williamson et al., 2020). However,
the fundamental mechanisms driving the aging process in the
lung remain poorly understood. Here we mainly discuss the
cellular alterations and molecular changes in the lung with
advancing age (Figure 14; Table S9 in Supporting Informa-
tion).

Physiological characteristics
On the whole, with the growth of age, lung function will
deteriorate significantly (Skloot, 2017; Vaz Fragoso and Lee,
2012). Due to the weakening of chest wall function and re-
spiratory muscle strength, the ability of aging lungs to clear
mucus and foreign matters is impaired, which causes the
elderly to be more susceptible to pneumonia. The ribs harden
with age, and the shape of the thorax changes accordingly,
affecting the normal implementation of lung function (Tolep
et al., 1995). The curvature of the spine can reduce the vo-
lume of the thoracic cavity in the elderly. Although the
elastic recoil force decreases with age due to the reduction of
respiratory intensity and chest wall compliance, the total
vital capacity does not change significantly with age (Enright
et al., 1994; Sharma and Goodwin, 2006). According to
statistics, lung function has declined since the age of 35.
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Forced expiratory volume (FEV1) decreases by 30 mL per
year and forced vital capacity (FVC) declines by about
20 mL per year (Stam et al., 1994; Verbeken et al., 1992; Xu
et al., 1995). Due to the heterogeneity and high variability of
the lung in the aging population, the current standard for lung
function in the elderly still needs to be further clarified.

Imaging traits
Recognition of the lung CT characteristics of “normal” aging
is more important to differentiate from clinically significant
disease. Compared with young people, the prevalence of
lung and airway cysts, reticular structures, air trapping,
bronchiectasis and bronchial wall thickening in the elderly
increased. The chest imaging features related to aging show
vascular curvature and calcification, mediastinal lipoma-
tosis, diaphragmatic bulge and protrusion, and musculoske-
letal features, such as chest osteophyte and costal cartilage
calcification (Copley, 2016; Ensor et al., 1983).

Histological features
Aging of lung is associated with mechanical, structural and
physiological alterations that compromise lung function. The
organization, concentration and form of ECM protein in the
lung will change with age. Disordered and excessive ECM
destroys the normal architecture of the lung. In the elderly
lung, the number of alveolar attachments does not change,
but the size of the alveoli and the surface of alveolar-capil-
lary marked increase. Changes in alveolar depth and acinar

airway lumen are related to advanced age (Quirk et al., 2016;
Schuliga and Bartlett, 2019).
The fundamental mechanisms driving the aging process in

the lung remains poorly understood. Here we mainly discuss
the cellular alteration and molecular changes in the lung with
advancing age.

Cellular alterations
Development of single-cell transcriptomic and in vivo line-
age tracing technology provides a more comprehensive
perspective for understanding the complexity of cellular in
the lung (Schupp et al., 2021; Travaglini et al., 2020; Wang et
al., 2021d). 144 cell subtypes have been identified during
lung development through the integrated analysis of multiple
omics (He et al., 2022). Although technological advances
have made some progression in the study of lung tissue, the
changes of cells in the process of aging are not completely
clear. Pulmonary function would decrease with age in the
absence of illness. So, it is fundamental to understand the
cellular alteration in the aging process of lung tissue.
Aging results in increased transcriptional noise, suggesting

deregulated epigenetic control. Single-cell transcriptional
analysis showed that chronological aging would increase the
gene characteristics related to cholesterol biosynthesis in
type 2 alveolar epithelial cells (AT2) cells and lipid fibro-
blasts, leading to the increase of neutral lipid content in
epithelium and fibroblasts with age (Angelidis et al., 2019).
Compared with young mouse lung, ciliated cell marker gene
signature is immensely upregulation in aged mouse. The
increase of ciliated cells leads to the altered frequency of
club to ciliated cells in aged mouse airways (Schneider et al.,
2021). One of the key features of aging is the exhaustion or
dysfunction of stem/progenitor cells. AT2 is the lung tissue
resident progenitor cell with the potential to differentiate into
AT1 after injury (Choi et al., 2020; Desai et al., 2014; Sal-
ahudeen et al., 2020). Some studies show the number of AT2
does not change with age, but the capacity of self-renew and
differentiation reduces (Watson et al., 2020b). The number of
basal cells and club cells decreases with age (Ortega-Mar-
tínez et al., 2016; Wansleeben et al., 2014). By clearing the
senescent cells in the tissue microenvironment, the lung
function of the aged mice can be improved to a certain extent
(Childs et al., 2015; Xu et al., 2018b).
The human respiratory system is a crucial immune inter-

face to respond to different stimuli from the outside en-
vironment. Chronic antigen stimulation and continuous
accumulation of oxidative free radicals can lead to the pro-
duction of pro-inflammatory cytokines during aging. Al-
veolar macrophages (AMs), the largest proportion of resident
immune cells in lung tissue, play a key role in recognition,
initiation and elimination of the host defense against external
microbes (Baasch et al., 2021; Gorki et al., 2022; Zhang et
al., 2021i). Single-cell transcriptome data and experimental

Figure 14 Biomarkers of lung aging. During the aging process of lung
tissue, the molecular level, cell level and tissue level have changed in
varying degrees. Understanding these alterations can help us to develop
more efficient treatment methods for elderly lung tissue.
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result demonstrate that the lung environment drives an age-
associated resistance of AMs to proliferation that persisted
during influenza A viral infection. This change is caused by
the increase of hyaluronan in the extracellular matrix in the
lung tissue of aged mice (McQuattie-Pimentel et al., 2021).
The phagocytic capacity of AMs is age-related, resulting in
impaired or delayed clearance of pulmonary pathogens (Li et
al., 2017d; Wong et al., 2017). Neutrophil extracellular traps
(NETs) play a fundamental role in immune regulation, pa-
thogen clearance and disease pathology (Castanheira and
Kubes, 2019; Hidalgo et al., 2022; Papayannopoulos, 2018).
NETs-mediated pathogen destruction and age-related chan-
ges further lead to impaired bacterial clearance and may
increase the susceptibility of the elderly to infection
(Brinkmann and Zychlinsky, 2007). In healthy elderly peo-
ple, the proportion of neutrophils in bronchoalveolar lavage
fluid (BAL) increased and the percentage of macrophages
decreased (Corberand et al., 1981). The reduction of CD4+

and CD8+ T cells in the elderly can damage the immunity to
influenza vaccination and the cytotoxicity to influenza virus
(Zhou and McElhaney, 2011).

Molecular changes
Moloney murine leukemia virus 1 (PIM1) and its target
nuclear factor of activated T cells-1 (NFATc1) is identified as
putative driving factors of sustained profibrotic gene sig-
natures in IPF damaged aging fibroblasts (Pham et al., 2022).
Microarray results demonstrate multiple genes undergo
changes during age, such as IGF and TGFβ signalling
pathways related to proliferation and differation (Watson et
al., 2020b). With the increase of age, the clearance rate of
mucociliary in respiratory system slows down, which de-
termined by ciliary beat frequency. Increased oxidative stress
activates protein kinase Cε (PKCε) signaling, thereby redu-
cing ciliary beat frequency (Bailey et al., 2018).
After injury, vascular endothelial cells (ECs) play an active

role in regulating lung stem cells by secreting angiocrine
factors. Aging leads to reprogram of transcriptional signature
in endothelial cells, which reduces the regeneration ability of
aging lung after same insult as young mouse. Endothelial
cells derived neuropilin-1 (NRP1)/hypoxia-inducible-factor
2α (HIF2α) suppresses anti-inflammatory and anti-throm-
botic endothelial protein C receptor (EPCR) pathway.
Blockade of NRP1 or HIF2α in ECs is able to restore re-
generative capacity of aging organs (Chen et al., 2021d).
Age-related alteration in endothelial vasodilation is attrib-
uted to diminishment of eNOS activity and NO production
(Cho and Stout-Delgado, 2020). Persistent injury of lung
results in suppression of CXCR7 expression and recruitment
of endothelial growth factor receptor 1 (VEGFR1)-expres-
sing macrophages. This recruitment activates Wnt/β-catenin-
dependent persistent upregulation of Notch ligand Jagged1
in pulmonary capillary endothelial cells (PCECs), which in

turn initiates exuberant Notch signaling in perivascular fi-
broblasts and aggravate fibrosis (Cao et al., 2016).

Secretory factors detectable in biofluids
Normal and accelerated aging would cause considerable
differences in the outcomes of some chronic diseases, the
later often represent higher mortality (Justice et al., 2018).
How the pathological process related to aging drives the
development of lung related diseases is not completely clear,
the correlation between age-related biomarkers and the se-
verity of IPF has been confirmed. The shorter length of
leukocyte telomere, the lower the survival rate of patients
with IPF (Stuart et al., 2014; Townsley et al., 2016). Some
studies access the relationship between aging biomarkers and
interstitial lung abnormalities (ILAs). The results show the
increasing plasma concentration of GDF15, IL-6, TNFα and
CRP is associated with increased odds of ILA presence
(Oldham, 2021; Sanders et al., 2021; Zhang et al., 2019d).
The concentration of Krebs von den lungen-6 (KL-6) pro-
duced by damaged or regenerating alveolar type Ⅱ pneu-
mocytes in serum is significantly related to the prognosis of
patients with COVID-19 (d’Alessandro et al., 2020). The
severity of COVID-19 is positively correlated with the
plasma myeloperoxidase (MPO)-DNA complexes con-
centration (Middleton et al., 2020).

Skeletal muscle aging

Skeletal muscle is the largest tissue by mass in the body and
has a pivotal role in regulating posture, movements, re-
spiration, and metabolism. Healthy muscle possesses the
unique ability to regenerate and can fully recover its func-
tions following routine damage or acute injuries, largely
owing to the existence of muscle stem cells (MuSCs, also
known as muscle satellite cells) (Sousa-Victor et al., 2022).
Peaking in early adulthood, muscle mass and strength gra-
dually decline after the age of 40 years, followed by a more
prominent decline afterward with a faster decrease in
strength (Dodds et al., 2014; Lang et al., 2010; McGregor et
al., 2014), largely due to more substantial muscle fiber
atrophy and loss (Wilkinson et al., 2018). Skeletal muscle
aging is characterized by the loss of not only muscle mass but
also muscle function, commonly referred to as age-related
sarcopenia (Cruz-Jentoft and Sayer, 2019; Dennison et al.,
2017). Sarcopenia leads to a variety of adverse outcomes that
are highly associated with morbidity and healthcare costs
(Dennison et al., 2017). It is anticipated that the prevalence
of sarcopenia will become a major public health problem in
the years to come. However, the progression of age-related
sarcopenia is influenced by complex interactions between
genetic and environmental lifestyle factors (Dennison et al.,
2017). The development of sensitive and specific biomarkers
for aging-related sarcopenia has been a daunting challenge
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(Calvani et al., 2015), given the poorly understood molecular
and cellular mechanisms that involve a myriad of intrinsic
and extrinsic factors in driving skeletal muscle aging (Tie-
land et al., 2018). Hence, it is of critical importance to un-
ravel the molecular and cellular biomarkers of skeletal
muscle aging for more accurately defining and monitoring
sarcopenic states, ultimately offering new opportunities to
translate our understanding of its pathophysiology into im-
proved diagnosis, effective treatment, and preventive stra-
tegies for healthy muscle aging (Figure 15; Table S10 in
Supporting Information).

Physiological characteristics
Advanced aging of skeletal muscle results in sarcopenia,
meaning “loss of flesh” in the Greek phrase, which was first
described as an age-associated decline in lean body mass
(Rosenberg, 1997). Despite the ongoing debate on the best
approach for defining sarcopenia, it is currently viewed as a
progressive skeletal muscle disorder with accelerated loss of

muscle mass and function (Cruz-Jentoft and Sayer, 2019;
Sayer and Cruz-Jentoft, 2022). The clinical criteria for the
diagnosis of sarcopenia follow the guidelines of the Asian
Working Group for Sarcopenia (AWGS), European Working
Group on Sarcopenia in Older People (EWGSOP2), Inter-
national Working Group on Sarcopenia, and the Society of
Sarcopenia, Cachexia andWasting Disorders (SSCWD). The
main features of sarcopenia include loss of muscle mass and
strength, alterations in cellular composition and innervation,
infiltration of ectopic fat (i.e., myosteatosis) with fibrotic
signatures, along with declining regenerative capacity aris-
ing from the degenerative aging of MuSCs (Sousa-Victor
and Muñoz-Cánoves, 2016). Consequently, sarcopenia is
associated with deterioration of muscle quality, impairment
of mobility, and poor physical performance (Correa-de-
Araujo et al., 2017), which leads to many adverse health
outcomes including falls, fractures, frailty, and even mor-
tality in the elderly (Cruz-Jentoft et al., 2019). Among these,
the physiological phenotypes of frailty in association with

Figure 15 Biomarkers of skeletal muscle aging. Functional decline of skeletal muscle in aging results from the synergistic derangement of myofiber,
MuSCs, fibroblasts and FAPs, vasculature, extramyofibril matrix (or ECM), as well as immune and neuron systems. Decreases of myofiber size and number
due to aberrant protein turnover, impairment of innervation of motor neurons to myofibers, and MuSC exhaustion- or senescence-dependent failure of
regeneration, are the main causal factors of aging-related muscle atrophy. MuSC senescence can be triggered by intrinsic molecular signaling dysregulations
and mitochondrial dysfunction as well as disruption of extrinsic cellular interactions involving myofibers, FAPs, macrophages, regulatory T cells, etc. Aged
skeletal muscle is also often accompanied by fibrosis and adipose deposition, mainly due to elevated matrix secretome and increased adipogenic conversion
of FAPs. Aging-related alterations in ECM can induce chronic inflammation featured by pro-inflammatory cytokines accumulation, which putatively stems
from recruitment of both tissue-resident immune cells and those infiltrated from circulation. In addition, aging-associated dynamic changes of various
secretory factors either from myofibers or from other types of cells, particularly those detectable in the biofluids, in sarcopenic patients and mouse models,
can be potentially employed for accurately monitoring aging-induced myopathies. Abbreviations: TNFSF12, TNF superfamily member 12; MMP9, matrix
metallopeptidase 9; IGF1, insulin like growth factor 1; FGF2, fibroblast growth factor 2; Spry1, sprouty RTK signaling antagonist 1; FOXO, forkhead box,
sub-group O; Notch, notch receptor; CD34, CD34 molecule; WISP1, WNT1 inducible signaling pathway protein 1; SMOC2, SPARC-related modular
calcium binding 2; ST2, suppression of tumorigenicity 2.
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muscle aging can be assessed based upon the following
parameters: weak grip strength, slow gait speed, low-level
physical activity, self-reported low energy level, and unin-
tentional body weight loss (Fried et al., 2001). Conceivably,
a combination of multiple biomarkers at molecular, cellular,
and tissue levels will be necessary to precisely and collec-
tively reflect the aging-dependent pathological changes of
muscle that underlie these functional declines in physical
performance.

Imaging traits
The diagnosis of muscle aging, or sarcopenia, requires
measurement of both muscle mass and muscle strength,
along with an evaluation of physical performance. Several
imaging techniques have been available for estimating
muscle mass and quality, including dual-energy X-ray ab-
sorptiometry (DXA), CT, MRI, and ultrasound (US) (Albano
et al., 2020; Boutin et al., 2022; Chianca et al., 2022). With
the advantage of being accurate, DXA is the only radi-
ological tool that is most commonly used in clinics with
accepted cutoff values for the diagnosis of sarcopenia (Cruz-
Jentoft et al., 2019). As the reference standards, CT and MRI
can be used for evaluating muscle quality and fatty infiltra-
tion, but the lack of consensus cutoff values for identifying
sarcopenia has limited their application merely to research
purposes (Csapo et al., 2014; Lenchik and Boutin, 2018).
While the current application of US in sarcopenia is limited,
all these imaging modalities can provide quantitative results
and are reproducible and comparable over time. However,
more advancements in imaging technologies based on new
biomarkers of muscle aging are needed to overcome the
major limitations of the current imaging approaches, e.g.,
variability in the results and inconsistent use of cutoff points,
particularly in the assessment of muscle quality and function
in relation to physical performance.

Histologic features
In parallel to the loss of muscle mass and function, the most
apparent histological feature of muscle aging is the gradual
decline of myofibers in both size and number, with type II
(fast-twitch and glycolytic) myofibers deteriorating utmost,
which has been considered as one of the prominent con-
tributors to aging-induced sarcopenia (Frontera et al., 2000;
Larsson et al., 1978; Lexell, 1995; Lexell et al., 1988). This is
perhaps due to both aberrant protein turnover (protein
synthesis, degradation, and sarcomere protein folding)
(Murgia et al., 2017) and selective reductions of MuSCs
(Verdijk et al., 2007) residing along type II myofibers. An-
other cause of muscle atrophy is the degeneration of the
motor unit governing muscle contraction. In homeostatic
young muscle, motor neurons directly interact with myofi-
bers at a specialized central region called the neuromuscular
junction (NMJ) (Li et al., 2018a; Pannérec et al., 2016;

Tintignac et al., 2015). With aging, this interface becomes
broken (Courtney and Steinbach, 1981; Jones et al., 2017;
Larsson et al., 2019). Investigations into muscle degradation
have provided clues suggesting that myofibers play directing
roles in maintaining NMJ physiology in aging (Carnio et al.,
2014; Li et al., 2011c; Masiero et al., 2009). However, it is as
yet unknown whether NMJ degeneration is a causal factor of
muscle aging or vice versa.
In the extramyofibril matrix, a robust aging-related al-

teration is the infiltration of adipose and connective tissue
(Delmonico et al., 2009; Kragstrup et al., 2011). Overt fi-
brogenic activation of fibro-adipogenic progenitors (FAPs)
(Brack et al., 2007; Brunet et al., 2023) and the failure of
immune defense and clearance towards fibrogenic activity
(Heredia et al., 2013) are the main causal factors, which
ultimately lead to fibrosis. Besides, the vascular system, the
intramuscular compartment in supporting and nourishing,
undergoes significant changes during aging. For instance,
microvasculature capillaries are in close proximity with
MuSCs (Christov et al., 2007), providing factors to maintain
MuSC stemness (Verma et al., 2018). While in aging, blood
vessels in cardiac vasculature suffer increased permeability,
tend to be stiff, and risk calcification and atherosclerosis
(Harvey et al., 2016; Lacolley et al., 2018; Lacolley et al.,
2017). It remains to be explored whether similar changes
occur in aging skeletal muscle.

Cellular alterations
Apart from the syncytial myofibers, skeletal muscle contains
various types of mononucleated cells. These populations
undergo distinct fate decisions that exacerbate muscle
weakness with aging (Almada and Wagers, 2016).
MuSCs are prerequisite precursors for muscle regenera-

tion. Aging is accompanied by a dramatic decline of MuSCs,
both in quantity and quality (Bengal et al., 2017; Sousa-
Victor et al., 2022). Studies based on human and mouse
models have revealed numerous hallmarks accompanying or
driving MuSC senescence. Intrinsically, increased p16INK4a

and deep quiescence (Sousa-Victor et al., 2014), increased
p38 MAPK and reduced self-renewal (Bernet et al., 2014),
decreased NAD+ (Zhang et al., 2016) and mitochondrial
fragmentation (Baker et al., 2022; Tezze et al., 2017), re-
duced autophagy (García-Prat et al., 2016) and functional
heterogeneity (Tierney et al., 2018), loss of ciliation (Palla et
al., 2022), decreased CD34 (García-Prat et al., 2020), FOXO
(García-Prat et al., 2020; Jing et al., 2022) and Notch
(Carlson et al., 2008; Conboy et al., 2003) signaling, elevated
activation of CD47 (Porpiglia et al., 2022) and JAK-STAT
signaling (Price et al., 2014; Tierney et al., 2014), have all
been proven to be the prominent detriments to MuSC
stemness and cause regenerative failure. Aging in the MuSC
niche contributes another core source releasing secreted
factors that drive MuSC senescence. Increased secretion of
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FGF2 (Chakkalakal et al., 2012) and TGF-β (Carlson et al.,
2008) from aged myofiber, together with loss of fibronectin
(Lukjanenko et al., 2016) and β1-integrin (Rozo et al., 2016)
in the niche, prohibits MuSC quiescence and leads to stem
cell pool exhaustion. Notably, many of the above-mentioned
regulators have been investigated as therapeutic targets in
treating aging- or pathogen-induced myopathy in mouse
models, and a few of them have been translated into human
clinical trials (Elhassan et al., 2019).
Similar to many other organs, aged muscle accumulates

increased adipose and connective tissue (Csapo et al., 2014;
Zoico et al., 2010), a final outcome of fibrosis (Mann et al.,
2011; Wynn, 2008). In young skeletal muscle, FAPs are in-
dispensable intermediates promoting MuSC differentiation
and muscle regeneration (Heredia et al., 2013; Joe et al.,
2010; Uezumi et al., 2010; Wosczyna et al., 2019). During
aging, however, FAPs become dysregulated, produce ele-
vated matrix proteins, and tend to be the major cell type
inducing fibrosis (Schüler et al., 2021). With the induction of
matrix alterations, MuSCs initiate fibrogenic conversion in
both morphology and the fibrotic gene program (Brack et al.,
2007; Stearns-Reider et al., 2017). Importantly, aged FAPs
gain increased adipogenic potential (Uezumi et al., 2011;
Wosczyna et al., 2021), serving as the main source of adipose
deposition, which hampers muscle regeneration and induces
prolonged inflammation.
Aging-related chronic inflammation is predominantly

driven by accumulated pro-inflammatory chemokines/cyto-
kines, as well as their activating regulators such as IL-6,
TNFα and NF-κB (Degens, 2010; Merritt et al., 2013; Peake
et al., 2010; Schaap et al., 2006). Notably, both innate and
adaptive immune cells are privileged in promoting muscle
regeneration after injury (Arnold et al., 2007; Burzyn et al.,
2013; Heredia et al., 2013; Ziemkiewicz et al., 2021). During
aging, however, due to adipose infiltration and fibrosis in the
extramyofibril matrix (Dennison et al., 2017; Kalinkovich
and Livshits, 2017), as well as muscle cell disturbance
(Wang et al., 2018d), myeloid cells (Wang et al., 2018d),
especially macrophages (Chazaud, 2020; Wynn and Barron,
2010) and T cells (Kuswanto et al., 2016), exhibit prolonged
and altered immune defense, ultimately leading to chronic
inflammation and muscle fibrosis.
While plenty of elaborate mechanisms have been revealed

towards understanding the cellular aging of muscle, it is still
a narrow horizon for capturing the overall hallmarks. In the
past ten years, the advanced single-cell transcriptomics
analyses have enabled systemically dissecting and monitor-
ing all cell type heterogeneity and their aging dynamics both
in human (Barruet et al., 2020; De Micheli et al., 2020; Perez
et al., 2022; Rubenstein et al., 2020) and model organisms
(Dos Santos et al., 2020; Jing et al., 2022; Kim et al., 2020b;
Petrany et al., 2020; Zhang et al., 2022d). With mammalian
aging, skeletal muscle exhibits decrease in MuSCs, Schwann

cells, and vascular cells but infiltration of various immune
cells and fibroblasts (Kedlian et al., 2022), in parallel with
physiological dysfunction and chronic inflammation. In ad-
dition, together with spatial transcriptomics (Wang et al.,
2022f), new hallmarks of muscle aging driven by pro-in-
flammatory cytokines such as CCL2 (Kedlian et al., 2022;
Moiseeva et al., 2023) may be defined.

Molecular changes
Numerous molecular changes have been uncovered during
skeletal muscle aging, gaining mechanistic insights into the
functional decline of MuSCs in their regenerative potential
and ability to give rise to differentiated myocytes, as well as
the decreased myofiber size resulting from the imbalance
between anabolism and catabolism of muscular proteins.
Elucidation of the molecular signatures of these dynamic
processes may provide representative molecular biomarkers
that can more accurately trace and monitor the progression of
muscle aging.
MuSCs comprise a heterogeneous population. Specific

subpopulations of MuSCs selectively decrease or increase
during aging. It was reported that the Pax7Hi subpopulation
of MuSCs is dramatically reduced in aged mice. Mechan-
istically, myofiber-secreted granulocyte colony-stimulating
factor (G-CSF) is decreased during aging, which in turn
compromises the asymmetric division of MuSCs and leads to
the loss of the Pax7Hi subpopulation (Li et al., 2019c). A
CD47Hi subpopulation of MuSCs has also been identified,
which is increased in aged mice and found to impair muscle
regeneration via thrombospondin-1/CD47 signaling (Kania
et al., 1995; Porpiglia et al., 2022). Except for the sub-
population changes, MuSC quiescence is generally dis-
rupted, and their self-renewal capabilities are remarkably
compromised during aging. Active p16INK4a/Rb axis in aging
switches MuSCs from a reversible quiescent state into an
irreversible cell cycle arrest (Sousa-Victor et al., 2014). The
increased epigenetic marker H3K27me3 in aging might
contribute to the disruption of MuSC quiescence (Liu et al.,
2013). The elevated level of FGF2 produced by aged myo-
fibers was shown to induce quiescent MuSCs into active cell
division, which is responsible for reducing MuSC quies-
cence in homeostatic conditions and results in a state of
persistent activation, leading to MuSC pool depletion
(Chakkalakal et al., 2012). Notch signaling downregulated in
aged MuSCs can stimulate their spontaneous differentiation
and result in the depletion of MuSCs from the stem cell pool
(Bjornson et al., 2012; Liu et al., 2018b).
Myofiber atrophy occurs during aging as a result of de-

creased anabolism and increased catabolism of proteins
(Fealy et al., 2021). The ubiquitin proteasome system is one
of the major pathways that regulate muscle protein degrada-
tion, and it plays a central role in controlling myofiber size by
elevating protein catabolism via induced expression of mus-
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cle specific E3 ubiquitin ligase TRIM63 (MuRF1) and F-box
protein 32 (Fbxo32) with advanced age (Gumucio and
Mendias, 2013). Dkk3 was reported to induce nuclear import
of β-catenin and enhance its interaction with FoxO3, which in
turn activates the transcription of E3 ubiquitin ligases Fbxo32
and Trim63, thereby driving muscle atrophy (Yin et al.,
2018). Muscle contraction-induced apelin, a so-called ex-
erkine, was shown to promote mitochondrial biogenesis and
protein synthesis via activating AMPK, AKT and p70S6K in
aged myofibers (Vinel et al., 2018). In addition, inhibition of
15-PGDH, a prostaglandin-degrading enzyme, leads to al-
terations in multiple pathways to improve aged muscle
functions, including decreased proteolysis (Palla et al., 2021).
Because skeletal muscle tissue comprises multiple cell

types and a complex extracellular matrix, many aging-related
changes have been found to impact the MuSC crosstalk with
the muscle niche. Among these, aging impairs the function of
FAPs in mice. Decreased WISPI secretion by FAPs sig-
nificantly affects MuSC expansion during muscle regenera-
tion (Lukjanenko et al., 2019). The reduced extracellular
matrix component fibronectin contributes to the loss of ad-
hesion with MuSCs during aging, eliciting detrimental con-
sequences for the function and maintenance of the MuSC
pool (Lukjanenko et al., 2016). Decreased Sprouty1 ex-
pression also disrupts MuSC quiescence (Chakkalakal et al.,
2012). Given the chronic inflammatory state of aging mus-
cle, it would be of great significance to unravel age-related
molecular signatures of intramuscular immune cells (Duggal
et al., 2019), providing novel immunosenescence biomarkers
for muscle aging. In addition, further in-depth investigations
of cellular organelle stress responses, such as the UPR, in the
regulation of age-dependent proteostasis and muscle re-
generation (Cai et al., 2022d; He et al., 2021; Kaushik and
Cuervo, 2015) may provide more valuable molecular bio-
markers of muscle aging.

Secretory factors detectable in biofluids
Skeletal muscle is a secretory organ that secretes various
hormone-like molecules called myokines (Whitham and
Febbraio, 2016). Myokines are important for skeletal muscle
health and can be potential biomarkers for muscle aging.
Apelin, an exercise-induced myokine that is a ligand of the
G-protein-coupled receptor APJ, has been observed to be
lower in the skeletal muscle of old mice and elderly human
serum (Alizadeh Pahlavani, 2022; Rai et al., 2017). Fur-
thermore, several other myokines have been found to be
decreased in the serum of elderly human subjects compared
to young adults, including Sestrin1/Sestrin2 (Kwon et al.,
2020; Rai et al., 2018), IGF-1 (Bando et al., 1991; Haden et
al., 2000), Irisin (Huh et al., 2014; Miyamoto-Mikami et al.,
2015) and VEGF (Ryan et al., 2006). Interestingly, higher
serum levels of IL-6 (Haden et al., 2000; Hager et al., 1994;
Palmeri et al., 2012; Wei et al., 1992) and Myostatin (Yar-

asheski et al., 2002) have been found in elderly human
subjects, while higher serum levels of leptin have been ob-
served in old rats (Mooradian and Chehade, 2000). All these
myokines might be potential biofluid markers for muscular
disorders associated with skeletal muscle aging.
Potential molecular biomarkers of sarcopenia have also

been identified in the blood of older adults and sarcopenic
patients. These include IL-15 (Yalcin et al., 2018), IL-6
(Rong et al., 2018; Rossi et al., 2019; Schaap et al., 2006;
Volpato et al., 2014), CRP (Schaap et al., 2006; Volpato et al.,
2014), Myostatin (Yarasheski et al., 2002), IL-10 (Rong et
al., 2018), IL-18 (Li et al., 2019a), TNF-a (Volpato et al.,
2014) and Leptin (Li et al., 2019a), which exhibit higher
serum levels. Conversely, lower serum levels of MMP9
(Suzan et al., 2021), Irisin (Chang et al., 2017), IGF-1
(Naranjo et al., 2017; Volpato et al., 2014) and FGF21 (Li et
al., 2019a) have been observed in sarcopenia patients.

Summary and perspectives
Prospectively, the integration of advanced single-cell geno-
mics with mechanistic studies would provide broader ave-
nues to identify molecular and cellular biomarkers in
studying muscle aging and related diseases, paving the way
to pre-clinical applications for healthy muscle aging. Fa-
cilitated by multi-omics approaches and lifestyle interven-
tions like exercise, more extensive and careful investigations
will be required to search for more aging-related biomarkers
in body fluids, including not only myokines/cytokines, but
also short peptides, small-molecule metabolites, or other
entities. Ultimately, this will enable us to pinpoint genuine
biomarkers from blood, urine, or muscle tissues, which can
be collectively employed to accurately monitor the aging
states of skeletal muscle for future translational applications.

Liver aging

Physiological characteristics
Similar to other organs, the liver undergoes a series of de-
generative changes, including morphological structure and
function, as the body ages (Maeso-Díaz and Gracia-Sancho,
2020; Sheedfar et al., 2013). The physiological features of
aging include reduced liver volume, decreased perfusion,
and functional atrophy (Wang, 2021). The relationship be-
tween the liver and aging was first explored by Popper in
1986, who reported that the typical features of the aged liver
are browning and atrophy, mainly due to lipofuscin accu-
mulation in hepatocytes (Popper, 1986). Wynne et al. (1989)
recruited 65 subjects between the ages of 24 and 91 years and
found that age was negatively correlated with liver volume,
apparent liver blood flow, and liver perfusion. Morphologi-
cally, the livers of older people are not smaller than those of
younger people. Instead, older people have fewer and larger
hepatocytes (Wakabayashi et al., 2002; Watanabe and Ta-
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naka, 1982). It has been reported that in healthy aged animal
livers, a slight alteration in the hepatic sinusoidal cell phe-
notype causes a moderate increase in hepatic vascular re-
sistance and thus reduces effective hepatic perfusion
(Wakabayashi et al., 2002). Although the liver in elderly
individuals exhibits some morphological changes, unlike
other organs that age, the liver still exhibits normal func-
tional reserve (Anantharaju et al., 2002; Kitani, 1992).
However, the liver’s regenerative capacity is significantly
reduced in elderly individuals compared to young in-
dividuals (Furrer et al., 2011; Liu et al., 2018a; Pibiri, 2018).
In addition, macrophage accumulation is reported in the
normally aging liver (Bloomer and Moyer, 2021; Mo-
hammed et al., 2021). Aging-related impairment of macro-
phage autophagy leads to proinflammatory cytokines,
especially IL-6, which may be associated with age-related
physiological dysfunction (Bloomer and Moyer, 2021). In
addition, the expression of necrosis markers in hepatocytes
and hepatic macrophages of senescent mice increases along
with elevated levels of proinflammatory factors, whereas
necrostatin-1s treatment decreases the expression of proin-
flammatory factors and slows cellular senescence in hepatic
macrophages of senescent mice (Mohammed et al., 2021).
Additionally, chronic liver inflammation drives liver fibrosis,
and total collagen content, a marker of fibrosis severity, is
significantly increased in the livers of aging mice relative to
young mice (Mohammed et al., 2021; Noureddin et al., 2013;
Shen et al., 2022). There is no doubt that aging not only
predisposes patients to the development of liver fibrosis but
also increases the risk of poor prognosis in various liver
diseases and leads to increased mortality (Floreani, 2007;
Mahrouf-Yorgov et al., 2011; Sheedfar et al., 2013) (Figure
16; Table S11 in Supporting Information).

Imaging traits
Autopsy studies show that aging is often accompanied by a
decrease in liver weight, and this is confirmed by in vivo
imaging studies (Meier et al., 2007; Tauchi et al., 1994;
Wakabayashi et al., 2002). As determined by an ultrasound
technique, compared to younger people, older adults have
approximately 20%–40% less liver volume and 35%–50%
less blood flow (Vollmar et al., 2002; Wynne et al., 1989).
Wynne et al. (1989) selected 65 healthy volunteers aged
24–91 years to study age-related changes in liver volume and
found a significant negative correlation between liver vo-
lume and age, with liver volumes of approximately
23.6 mm3 kg−1 body weight at age 24 years and approxi-
mately 14.0 mm3 kg−1 body weight at age 91 years. Pulsed
echo Doppler showed a significant decrease in portal blood
flow in elderly subjects (especially those ≥75 years old)
(Wang, 2021). Zoli et al. (1999) selected healthy subjects of
different ages to measure total hepatic flow (THF) and
functional hepatic flow (FHF) by Doppler ultrasound and

showed that THF and FHF were significantly negatively
correlated with age, especially after 75 years. In addition,
18F-FDG PET imaging has shown that liver FDG uptake
increases with aging (Cao et al., 2021b; Wang, 2021).
However, the reason for increased FDG uptake in the liver of
elderly individuals has not been fully elucidated, which may
be due to cumulative inflammatory changes in the liver
caused by the long-term handling of various toxins (Cao et
al., 2021b; Keramida and Peters, 2020; Wang, 2021). In both
men and women, MRI T2* imaging shows that age is also
associated with hepatic iron overload (Wang, 2021). Liver
iron levels continue to increase until the age of 40 compared
to adolescents, while from 40–70, liver iron levels remain
stable or increase mildly (Sheng et al., 2020; Wang, 2021;
Zacharski et al., 2000). However, the relationship between
lipid accumulation in hepatocytes and aging is controversial.
For instance, it has been reported that the lipid droplet con-
tent in hepatocytes is significantly higher in elderly in-
dividuals than in young individuals, leading to excessive
steatosis and fibrosis, which in turn inhibit liver function
(Chen et al., 2020a; Kuk et al., 2009). In contrast, Bedogni et
al. (2005) showed an inverse relationship between age and
fatty liver. Instead, liver fat accumulation appears to be more
associated with obesity than age (Bedogni et al., 2005; Fan et
al., 2005).

Histologic features
Although studies in general found preserved tissue archi-
tecture in aged livers (Jansen, 2002; Popper, 1986), features
suggesting mild hepatic injury were observed in aged rats,
including cytoplasmic vacuolation, nuclear pyknosis, cyto-
plasmic hypereosinophilia, diminished intercellular borders,
and increased lipid accumulation (Maeso-Díaz et al., 2018).
Importantly, ultrastructural analysis of aged livers has re-

vealed the most significant structural changes in the sinu-
soidal endothelium, which have been broadly documented in
mice, rats, nonhuman primates, and humans (Cogger et al.,
2014; Cogger et al., 2003; Ito et al., 2007; Le Couteur et al.,
2001; Maeso-Díaz et al., 2018; McLean et al., 2003; Warren
et al., 2005). The change in the sinusoidal endothelium is
generally referred to as “pseudocapillarized”, characterized
by a reduction in the number and porosity of fenestrations,
endothelium thickening, and deposition of perisinusoidal
basal lamina and collagen. Pseudocapillarization conse-
quently reduces the vasodilatory and angiocrine capacity of
the sinusoidal endothelium, leading to increased hepatic
vascular resistance and portal venous pressure. In addition,
both secretion of von Willebrand factor (vWF) and expres-
sion of ICAM-1 are elevated in sinusoidal cells, resulting in
the recruitment of more neutrophils and CD68+ macrophages
in the sinusoidal area (Ito et al., 2007; Licastro et al., 2005;
Maeso-Díaz et al., 2018; Miyachi et al., 2017).
Liver endothelium fenestrations are important portals for
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the uptake of lipoproteins, insulin, and carbohydrates. Loss
of fenestrations in the aged liver can cause hyperlipidemia (e.
g., increased plasma cholesterol and low-density lipoprotein
(LDL) cholesterol) and hepatic insulin resistance (Maeso-
Díaz et al., 2018; Mohamad et al., 2016), rendering a high
susceptibility to cardiometabolic disease. In addition, aged
hepatic endothelium is also the major reason for significantly
worse effects after acute liver damage in comparison to
young endothelium (Hide et al., 2020). These studies to-
gether highlight the vulnerability of liver sinusoidal cells to
aging.

Cellular alterations
Liver tissue comprises several cell types, including hepato-
cytes, liver sinusoidal endothelial cells (LSECs), hepatic
stellate cells (HSCs), and immune cells. The relative number

of hepatocytes is decreased in aged liver, whereas polyploidy
hepatocytes increase from less than 15% to approximately
42% (Kudryavtsev et al., 1993). Morphologically, in aged
hepatocytes, the surface area of the endoplasmic reticulum is
markedly reduced, which correlates with a decline in hepatic
microsomal protein synthesis activity (Schmucker et al.,
1990). In addition, mitochondria appear enlarged (“mega-
mitochondria”) with age-associated structural changes in the
cristae and inner membrane (Sastre et al., 1996), accom-
panied by a reduced number and decreased function of mi-
tochondria in hepatocytes (Daum et al., 2013; Hagen et al.,
1997; Navarro and Boveris, 2004). Autophagic activity is
also significantly impaired in aged hepatocytes (Uddin et al.,
2012; Xu et al., 2013), resulting in elevated levels of protein
misfolding, loss of proteostasis (Schneider et al., 2015;
Zhang and Cuervo, 2008), and consequently, the formation

Figure 16 Biomarkers of liver aging. Abbreviations: α-SMA, actin alpha 2, smooth muscle, aorta; CD32b, Fc gamma receptor IIb; CPT1a, carnitine
palmitoyltransferase 1A; H3K9me3, histone 3 Lys-9 trimethylation; H3K14ac, histone 3 lysine 14 acetylation; HDAC1, histone deacetylase 1; HO-1, heme
oxygenase 1; MCAD, cadherin 15; OPN, steopontin; PDGFRβ, platelet derived growth factor receptor beta; PPARα, peroxisome proliferator activated
receptor alpha; TIMP-2, TIMP metallopeptidase inhibitor 2; Twf1, Twinfilin-1; VEGF-R2, vascular endothelial growth factor receptor 2.
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of protein aggregates such as lipofuscins (Le Couteur et al.,
2001; Swanlund et al., 2008).
Aged hepatocytes also have reduced rates of DNA synth-

esis and repair, displaying higher genomic instability (Basso
et al., 1998). Consistently, senescent hepatocytes increase
with age (Aravinthan and Alexander, 2016) and have more
lipid accumulation and production of reactive oxygen spe-
cies (Basso et al., 1998; Ogrodnik et al., 2017). In addition,
senescent hepatocytes release cytokines such as IL-6, TNFα,
and IL-8, contributing to age-associated inflammation (Lasry
and Ben-Neriah, 2015).
As mentioned above, due to the pseudocapillarization of

the sinusoidal endothelium in aged livers, aged LSECs are
dedifferentiated with less vasodilatory and angiocrine capa-
city, as evidenced by reduced NO bioavailability; decreased
levels of cyclic guanosine monophosphate; and reduced
expression of endothelial NO synthase protein, heme oxy-
genase-1, and several angiocrine receptors (stabilin-2,
CD32b, and VEGF-R2) (Ito et al., 2007; Maeso-Díaz et al.,
2018). In addition, aged LSECs exhibit a moderately
proinflammatory state with increased CD68-positive cells
and secretion of vWF and ICAM-1 (Ito et al., 2007; Maeso-
Díaz et al., 2018). Some LSECs also become senescent with
upregulation of p16INK4a and downregulation of SIRT1
(Maeso-Díaz et al., 2018). Interestingly, as the main carriers
of the mannose receptor (MRC1) in the liver, the number of
Mrc1-expressing LSECs increases with age, suggesting age-
associated changes in the tissue immune response carried out
by LSECs (Tabula Muris, 2020).
The number of HSCs in the aged liver is increased, as

evidenced by enhanced desmin expression and a significant
increase in the proliferative HSC-related growth factor
PDGFRβ (Warren et al., 2011). In addition, aged HSCs
display a moderately activated status, with increases in the
expression of different activation markers, including α-
SMA, collagen1α1, collagen1α2, and p-moesin, as well as
changes in matrix remodeling genes, such as TIMP-2 and
MMP9 (Maeso-Díaz et al., 2018). In contrast to HSC acti-
vation in liver diseases, HSC activation in aged livers is
accompanied by an increased number and size of in-
tracellular lipid droplets (Warren et al., 2011). Moreover,
aged HSCs also have elevated patatin-like phospholipase
domain-containing protein 3 and decreased cellular retinol-
binding protein I expression, suggesting alterations in vita-
min A metabolism (Maeso-Díaz et al., 2018). Some HSCs
also become senescent, with telomere attrition in aged hu-
man liver tissues being reported (Verma et al., 2012).
Aging is also associated with significant alterations in

immune cells. The number of liver Kupffer cells (KCs) in-
creases with aging, and these cells display a basally activated
status (Hilmer et al., 2007). These aged KCs show deficits in
mitochondrial function (Salminen et al., 2012a), reduced
phagocytotic activity, and increased cytokine production

(Hilmer et al., 2007; Linehan et al., 2014; Partridge et al.,
2018). In addition, aged KCs in elderly rodent livers exhibit a
redistribution into the lymphoid collections (Singh et al.,
2008; Stahl et al., 2018). Interestingly, proinflammatory M1-
like macrophages accumulate in aged livers, together with
high expression of the NAD-consuming enzyme CD38,
which can be induced by the inflammatory cytokines se-
creted by senescent cells in aged tissues (Chini et al., 2020;
Covarrubias et al., 2020). Additionally, the number of neu-
trophils is increased in the aged liver, whereas the number of
dendritic cells is decreased (Mogilenko et al., 2021).
The abundance of naïve CD8+ T cells is decreased;

however, there exists a distinct age-associated PD1+TOX+

CD8+ T-cell subpopulation across multiple tissues in aging,
including the liver. These age-associated CD8+ T cells
constitute up to 60% of all CD8+ T cells in these tissues,
which exhibit a T-cell exhaustion phenotype (Blank et al.,
2019) and produce a distinct set of proinflammatory cyto-
kines upon TCR stimulation (Mogilenko et al., 2021). Ac-
tivated PD1+CD4+ T cells also accumulate in the aged liver.
However, both NK cells and group 1 innate lymphoid cells
(ILC1s) are reduced in abundance in the aged liver (Mo-
gilenko et al., 2021). Remarkably, communications between
endothelial cells and various immune cell types (e.g.,
macrophages and T cells) are significantly altered in the
aged liver (Ma et al., 2020), another indication of the im-
portance of endothelial cells in the age-associated immune
response.

Molecular changes
Hepatocytes are parenchymal cells that can comprise up to
70%–80% of the liver’s total mass and are responsible for the
majority of hepatic functions. With aging, there are various
molecular alterations that occur in hepatocytes. Increased
expression of markers commonly associated with cellular
senescence, such as SA-β-gal activity, and p21CIP1, p16INK4a,
and γ-H2AX, have been observed in aging hepatocytes (Ir-
vine et al., 2014; Wang et al., 2014b), accompanied with the
occurrence of SASP (Irvine et al., 2014). Studies of the aging
phenotype have revealed several significant epigenetic
changes involving liver pathophysiology. One such change is
the increased expression of chromatin remodeling proteins
Brm and HDAC1, which constitute the C/EBPα-Brm or
HDAC1-C/EBPα-Brm complex with C/EBPα. The complex
occupies and silences E2F-dependent promoters, leading to
an age-dependent loss of liver regenerative potential (Iakova
et al., 2003; Wang et al., 2008). In contrast with the upre-
gulation of Brm and HDAC1, SIRT1 is downregulated in
aging hepatocytes, potentially leading to aggravated alco-
holic liver injury in older mice (Gong et al., 2014; Ramirez et
al., 2017). A hepatic bivalent combination, marked as an
H3K9me3/H3K14ac modification, was also found to be
decreased in aging hepatocytes (Price et al., 2020). In addi-
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tion, high circadian global protein acetylation was found to
be lost in aged hepatocytes, while caloric restriction could
rescue this aging-dependent decline by upregulating the
NAD+-SIRT1-AceCS1 pathway (Sato et al., 2017). In addi-
tion to the molecular changes at the epigenetic level, aging is
generally accompanied by deregulated metabolic function,
such as hepatic steatosis. Aging induces an aberrant ad-
vanced glycation end product receptor (RAGE)/PPARα axis
in hepatocytes, which includes the upregulation of RAGE
and downregulation of the fatty acid β-oxidation genes
PPARα, carnitine palmitoyltransferase 1A (CPT1a), CPT1b,
and Medium chain acyl-CoA dehydrogenase (MCAD),
eventually leading to aging-associated hepatosteatosis (Wan
et al., 2020). Moreover, a recent study also identified me-
sencephalic-astrocyte-derived neurotrophic factor (MANF)
as experiencing aging correlated decline in flies, mice, and
humans, while reduced expression in hepatocytes is asso-
ciated with hepatosteatosis. Liver rejuvenation by hetero-
chronic parabiosis in mice is dependent on MANF, whereas
MANF supplementation ameliorates several hallmarks of
liver aging, prevents diet-induced hepatosteatosis, and im-
proves aging-related metabolic dysfunction (Sousa-Victor et
al., 2019).
Compared with studies involving molecular changes in

liver parenchymal cells, relatively little is known about the
aging-related molecular alterations in liver nonparenchymal
cells, such as LSECs, KCs, HSCs, and cholangiocytes.
Aging results in the downregulation of the eNOS-NO-cGMP
vasodilatory pathway, together with reduced angiocrine and
antioxidant molecules (Stabilin-2, CD32b, VEGF-R2, HGF,
Wnt2, and HO-1) in LSECs (Maeso-Díaz et al., 2018). A
recent study suggests that there is an increased population of
immune checkpoint protein programmed death-ligand 1
(PD-L1+) cells in LSECs from aged mice, and PD-L1 ex-
pression correlates with higher levels of SASP (Wang et al.,
2022d). Similarly, aging also affects HSCs in that increased
expression of HSC activation markers, such as α-SMA,
collagen1α1, collagen1α2, PDGFRβ, phosphorylated moe-
sin, desmin, TIMP-2 and MMP9, has been described in aged
rats (Maeso-Díaz et al., 2018). A study analyzing the lengths
of telomeres in human donors demonstrated that age-related
telomere length decrease is restricted to HSCs and KCs,
while aging cholangiocytes and hepatocytes are able to resist
telomere shortening (Verma et al., 2012). In addition to the
decreased expression of SIRT1 in aging hepatocytes, the
downregulation of SIRT1 is also present in the HSCs of older
livers, which contributes to age-related alcoholic liver injury
and fibrosis (Ramirez et al., 2017). Few studies have re-
ported aging-related molecular changes in KCs. In addition
to age-related telomere shortening in the KCs of the human
liver (Wan et al., 2020), a recent study revealed an increase in
the RNA expression of the inflammatory cytokine IL-6 in
KCs of older rats. However, there were no age-related

changes in the expression of other KC markers, including
TNFα, Mrc1, Arg1, and IL-10 (Wang et al., 2008). The aging
of cholangiocytes is generally seen in primary biliary cho-
langitis, primary sclerosing cholangitis, and other chronic
liver diseases (Ferreira-Gonzalez et al., 2021). Aging cho-
langiocytes are characterized by increased expression of
senescence markers (p16INK4a and γH2A.x), and SASP (IL6,
IL8, CCL2, and PAI-1 secretion) (Tabibian et al., 2014).
Twinfilin-1 (Twf1) is a cytosolic protein sequestering large
amounts of actin monomers, which has recently been iden-
tified as a target of age-related microRNAs (miR-1a, miR-
20a and miR30e) and is thus a mediator of the aging process
in cholangiocytes (Maroni et al., 2019).

Secretory factors detectable in biofluids
Aging, at the serum level, is associated with a slight decrease
in albumin and bilirubin concentrations and no or minimal
changes in aminotransferase levels. The metabolism of
cholesterol in the liver also decreases, leading to overall
increases in total blood cholesterol and LDL cholesterol le-
vels over time (Maeso-Díaz et al., 2018; Tietz et al., 1992).
Recent investigations have also suggested that serum levels
of osteopontin (OPN), a senescence-associated secretory
phenotype factor, are elevated while, in contrast, serum
MANF levels decline with liver aging (Gómez-Santos et al.,
2020; Sousa-Victor et al., 2019).

Kidney aging

Physiological characteristics
(1) Functional changes. Renal function, shown as glomerular
filtration rate (GFR), decreases progressively with age. A
systematic review of 9 cross-sectional studies and 3 cohort
studies found that in healthy individuals, the average annual
decrease in estimated glomerular filtration rate (eGFR) ran-
ged from 0.4 to 2.6 mL min−1 (Bolignano et al., 2014). After
age 35, GFR declines by approximately 5%–10% per decade
(Schmitt and Melk, 2017). Age-related decline in renal
function may result in impaired renal functional reserve in
the elderly, thereby increases susceptibility to acute kidney
injury (AKI) (James et al., 2010) and chronic kidney disease
(CKD) (Nitta et al., 2013).
In addition, the concentrating and diluting function of the

renal tubules decreases during renal aging (O’Sullivan et al.,
2017). It was found that the maximum urinary osmolality
decreased by approximately 20% in the 60–79 age group
compared to the 20–39 age group (Rowe et al., 1976). At the
same time, the ability of aging kidneys to reabsorb sodium
and excrete potassium is significantly reduced, leading to a
predisposition to water-electrolyte disorders in the elderly
(McGreevy et al., 2008; Mimran et al., 1992).
(2) Structural changes. On the macroscopic scale, renal

aging manifests as increased volume, surface roughness,
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focal scarring, and the appearance of simple renal cysts
(Hommos et al., 2017). A study that evaluated kidney vo-
lume by MRI in 1,852 adults prior to kidney donation found
that kidney volume decreased by approximately 16 cm3 per
decade after age 60 years (Roseman et al., 2017). In addi-
tion, Wang et al. (2014c) evaluated 1,344 potential kidney
donors by contrast-enhanced CT imaging and found that
cortical volume gradually decreased with age, while me-
dullary volume increased before age 50 and gradually de-
creased after age 50. It was also found that the decrease in
renal cortical volume was associated with an age-related
decrease in GFR.

Histologic features and cellular alterations
The most prominent histologic change in the aging kidney is
nephrosclerosis which is defined as the presence of two or
more of the following histologic changes: glomerulo-
sclerosis, tubular atrophy, interstitial fibrosis>5%, and ar-
teriosclerosis. The prevalence of nephrosclerosis increases
from 2.7% in patients aged 18–29 years to 73% in patients
aged 70–77 years (Rule et al., 2010).
(1) Glomerulosclerosis. Aging causes glomerulosclerosis,

which is often accompanied by enlargement of the sur-
rounding glomeruli. A study of healthy kidney donors
showed that the oldest age group, 70–75 years, had a 48%
decrease in the number of non-sclerotic glomeruli compared
to the youngest subgroup, 18–29 years (Denic et al., 2017).
Podocyte loss is a major determinant of glomerulo-

sclerosis. A study of 89 normal kidney samples found that
podocyte nuclear density decreased with age (Hodgin et al.,
2015). Podocytes are terminally differentiated cells and no
longer renewed during aging. Therefore, the loss of senes-
cent podocytes is often accompanied by hypertrophy of the
adjacent podocytes (Wang et al., 2014c). The hypertrophy of
the remaining glomeruli eventually causes podocyte de-
tachment, and overall glomerulosclerosis (Schmitt and Melk,
2017).
(2) Renal tubular atrophy and interstitial fibrosis. Studies

of age-related morphologic changes in renal tubules have
shown a decrease in the number of tubules, a decrease in
tubular volume, and an increase in tubular atrophy with in-
creasing age (Martin and Sheaff, 2007). The atrophy of renal
tubules is accompanied by a marked increase in interstitial
fibrosis. Proteomic analysis revealed age-related increases in
the structural components of the interstitium, such as col-
lagen VI, fibrillin-1 and fibronectin, and the matrix reg-
ulators TIMP3 and ADAMTS5. Moreover, alterations in
interstitial composition preceded the apparent structural
changes (Randles et al., 2021).
(3) Arteriosclerosis and sparse capillaries. Arterial changes

in the aging kidney include small arteriosclerosis, fibrous
intimal hyperplasia, and hyaline small arteriosclerosis
(Martin and Sheaff, 2007). 3D reconstruction techniques

reveal marked intimal thickening and narrowing of the in-
terlobular artery veins accompanied by sclerotic glomeruli in
aging kidneys (Uesugi et al., 2016). In addition, the number
of peritubular capillaries decreases during renal aging (Ue-
sugi et al., 2016), which may be due to a decrease in pericytes
(Stefanska et al., 2015). Studies related to CKD have found a
strong relationship between peritubular capillary thinning
and tubular atrophy and interstitial fibrosis (Kida et al.,
2014). However, a causal relationship between these two has
not been established.

Molecular changes
Overall, the biology of kidney aging is complex, involving
diverse changes to cells, tissues, organs, and the surrounding
microenvironment. We will focus on the molecular changes
of the cellular senescence, autophagy, and inflammation
during kidney aging, but the readers should appreciate that
this list is not exhaustive.
(1) Cellular senescence. Renal functional recovery after

AKI is significantly worse in elderly patients. This decreased
regenerative potential, which is a hallmark of the aging
process, may be caused by cellular senescence. Halloran et
al. (1999) hypothesize that the accumulation of senescent
cells may be responsible for the insufficient repair capacity
and functional loss in older kidneys. In support, recent study
showed that constant removal of senescent cells attenuated
age-related deterioration of renal function and glomerulo-
sclerosis (Baker et al., 2016). Accumulation of senescent
cells could also explain the increased prevalence of kidney
diseases with aging. As comprehensively reviewed by Huang
et al., the cellular senescence of virtually all renal cell types
is involved in the pathogenesis of AKI and CKD (Huang et
al., 2022c).
The common molecular changes of cellular senescence

have also been identified in aging kidney, including upre-
gulation of cell-cycle inhibitors (including p16INK4a, p21CIP1

and p53), SA-β-gal activity, telomere shortening, and SASP.
Klotho is an aging intervention protein that is highly ex-
pressed in kidney tubular epithelia, and plays a role in
phosphate hemostasis with implications for vascular calci-
fication, hypoxia, cellular regeneration, and senescence
(Mencke et al., 2017). Downregulation of α-Klotho is spe-
cific for kidney aging. Klotho knockout mice show arterio-
sclerosis and vascular changes as part of their aging
phenotype (Kuro-o et al., 1997). Thus, developing reliable
assays to monitor Klotho levels may help to predict the de-
cline of renal function and the progression of CKD.
(2) Autophagy. Autophagy has been intensively studied in

aging and in different disease models in the kidney (Lenoir et
al., 2016). It was suggested that because of their longevity,
podocytes, as well as tubular cells, might be particularly
dependent on autophagy for effective “self-cleaning” from
protein aggregates and defective organelles during the life-
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span. Indeed, podocytes show a high rate of baseline au-
tophagy; and podocyte-specific deletion of Atg5, a key
component of the autophagy machinery, triggered an aging
phenotype with accumulation of lipofuscin, oxidized pro-
teins, and sequestosome 1-positive protein aggregates (Har-
tleben et al., 2010). Similar observations have been made
when Atg5 was selectively ablated in tubular cells, resulting
in impaired kidney function with a pro-aging phenotype (Liu
et al., 2012a). Based on these data, age-associated dis-
turbance of normal autophagy in podocytes or tubular cells
would be expected to act as a pro-aging mechanism (Denic et
al., 2016).
(3) Inflammation. Aging is associated with a subclinical

systemic chronic inflammatory status called inflammaging
(Franceschi et al., 2018), one of the most important traits of
immunosenescence as reviewed everywhere (Sato and Ya-
nagita, 2019). Immunosenescence involves a series of aging-
induced alterations in the immune system and is character-
ized by two opposing hallmarks: defective immune re-
sponses and increased systemic inflammation. In the kidney,
resident macrophages and fibroblasts are continuously ex-
posed to components of the external environment, and the
effects of cellular reprogramming induced by local immune
responses, which accumulate with age, might have a role in
the increased susceptibility to kidney disease among elderly
individuals. Immunosenescence might be the mechanism of
increased susceptibility to various kidney diseases (Couser,
2017; Jennette and Nachman, 2017) in the elderly.

Secretory factors detectable in biofluids
For over 70 years, eGFR has remained the primary index for
detection and monitoring renal function. However, it does
not accurately reflect renal tubular and interstitial lesions (Ix
and Shlipak, 2021), and is not sensitive enough for identi-
fying early-stage injury (Yan et al., 2021). Therefore, re-
searchers have been working to find more early,
comprehensive, and non-invasive biomarkers to reflect the
extent of tubulointerstitial fibrosis and the progression of
renal dysfunction. The following discussion will describe
some of the biomarkers found so far.
(1) Tubule Injury and dysfunction markers. Tubular injury/

atrophy is a very important aspect in the aging process of the
kidney. Several biomarkers have been found to assess tubular
injury. Kidney injury molecule-1 (KIM-1), a transmembrane
glycoprotein released into the urine by injured proximal
tubular cells (Han et al., 2002). It was found that urinary
KIM-1 levels were positively correlated with decreased
eGFR and histological changes of interstitial fibrosis and
tubular atrophy (Malhotra et al., 2020). Studies in patients
with diabetes have found that plasma KIM-1 is associated
with progression of diabetic nephropathy and poor renal
outcomes (Coca et al., 2017; Gutiérrez et al., 2022). α-1
microglobulin (A1M) is a low molecular weight protein

freely filtered at the glomerulus and reabsorbed by proximal
tubular epithelial cells (Åkerström et al., 2000; Weber and
Verwiebe, 1992). Elevated urinary A1M was associated with
decreased eGFR, the degree of interstitial fibrosis and tub-
ular atrophy in patients with drug-induced interstitial ne-
phritis and renal transplant recipients (Amer et al., 2013; Wu
et al., 2010). In addition to proximal tubules, there are cor-
responding biomarkers for other types of renal tubules. Ur-
omodulin (UMOD), produced exclusively in the thick
ascending limb, is a biomarker of kidney tubular health. A
prospective study looking at 2,652 patients with CKD found
that lower serum urinary regulatory protein levels were in-
dependently associated with a higher risk of developing
ESKD, even after adjustment for baseline eGFR, which re-
mained significant (Lv et al., 2018). Meanwhile, urinary
UMOD levels were negatively associated with the rate of
decline in eGFR and the risk of eventual progression to CKD
in patients after AKI (Puthumana et al., 2021). A novel
marker of distal tubular function is epidermal growth factor
(EGF), which is selectively expressed in distal renal tubular
cells and critical for cell differentiation and regeneration in
the repair process after renal tubular injury (Gesualdo et al.,
1996; Lechner et al., 2007). The amount of EGF protein in
urine (uEGF) showed significant correlation with interstitial
fibrosis/tubular atrophy, eGFR, and rate of eGFR loss (Ju et
al., 2015; Torres et al., 2008; Wu et al., 2020a). Addition of
uEGF to standard clinical parameters improved the predic-
tion of disease events in diverse CKD populations (Ju et al.,
2015). Noteworthy, lower uEGF levels are associated with
increased risk of rapid eGFR loss and incident of CKD in the
general population (Norvik et al., 2021).
MMP-7, a secreted zinc- and calcium-dependent en-

dopeptidase (Tan and Liu, 2012), has been reported to be
involved in renal tubular injury as well as interstitial fibrosis
through the activation of β-catenin signaling. It was found
that urinary MMP-7 levels in CKD patients were strongly
correlated with renal fibrosis scores (Zhou et al., 2017). Also,
studies in patients with IgA nephropathy (IgAN) and diabetic
nephropathy have found that circulating MMP-7 levels are
strongly associated with GFR loss and renal interstitial fi-
brosis (Ihara et al., 2020; Zhang et al., 2017a). Additionally,
Wang et al. (2017a) have discovered that urinary fibrinogen
levels are significantly elevated in patients with proteinuric
nephropathy. Higher urinary fibrinogen levels are associated
with more severe interstitial fibrosis and renal tubular atro-
phy in patients. For the prediction of new-onset end-stage
renal disease (ESRD), the addition of urinary fibrinogen to
the traditional combination of urinary protein, blood pressure
and baseline eGFR increased the area under the receiver
operating curve from 0.73 to 0.76.
(2) Inflammatory biomarkers. Many inflammation-asso-

ciated biomarkers in the circulation are also strongly asso-
ciated with renal dysfunction and fibrosis. Tumor necrosis
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factor receptors (TNFRs) are activated by TNFα, which has a
significant role in inflammatory processes (Al-Lamki and
Mayadas, 2015). Upon activation, TNFRs are shed from the
cell surface into a soluble form (sTNFR) in the blood (Bell et
al., 2007). Plasma sTNFR-1 and sTNFR-2 have been reported
to be associated with decreased tubulointerstitial and glo-
merular lesions, and eGFR in patients with CKD and diabetic
nephropathy (Coca et al., 2017; Gutiérrez et al., 2022; Sri-
vastava et al., 2021). YKL-40, also known as chitinase 3-like
1 (CHI3L1), is a glycoprotein produced by macrophages,
neutrophils, and other locally inflammatory cells (Schmidt et
al., 2013). YKL-40 is an important mediator of inflammation
after ischemic or reperfusion injury and activates pro-fibrotic
signaling pathways in the context of ongoing injury and
maladaptive repair (Coca et al., 2017). Patients with diabetic
nephropathy who have higher plasma YKL-40 are at greater
risk for kidney disease progression and eventual development
of ESRD (Gutiérrez et al., 2022; Schrauben et al., 2021).
Meanwhile, higher plasma YKL-40 levels in patients with
CKD and ESRD are positively correlated with mortality
(Lorenz et al., 2018; Srivastava et al., 2021).
MCP-1, also called CCL2, is expressed by endothelial cells,

macrophages and fibroblasts and acts as a chemoattractant
protein in response to tissue injury (Chow et al., 2006; Ix et
al., 2017). In a multicenter, prospective cohort study includ-
ing 1,538 hospitalized CKD patients with a median follow-up
of 4.3 years, urinary MCP-1 levels at 3 months after hospi-
talization were associated with greater eGFR decline and
increased incidence of the composite renal outcome (Puthu-
mana et al., 2021). In a prospective, observational cohort
study including 523 patients with diverse kidney disease,
plasma MCP-1 levels were correlated with tubulointerstitial
and glomerular lesions. Each doubling of plasma MCP-1
concentration was associated with increased risks of kidney
disease progression and death (Srivastava et al., 2021).
Circulating soluble urokinase plasminogen activator re-

ceptor (suPAR), a soluble form of urokinase-type fibrinogen
activator receptor, is expressed primarily on immune cells
and endothelial cells and released into the circulation during
inflammation (Mahdi et al., 2001). In a prospective cohort of
adults with cardiovascular disease, higher levels of plasma
suPAR were found to be associated with lower basal eGFR
levels and subsequent decreases in eGFR (Hayek et al.,
2015).
Activation of complement system plays an important role

in the progression of renal disease (Thurman, 2015). Wendt
et al. (2021) detected complement fragments in urine to
observe their relationship with renal disease progression.
Twenty-three different urinary peptides derived from com-
plement proteins were identified, most of which C3-derived
peptides were negatively correlated with eGFR. Also, this
study revealed that using a combination of multiple com-
plement peptide fragments in urine to assess kidney function

was a better predictor than a single molecule.
(3) Other renal injury biomarkers. Besides various protein

molecules have been used as biomarkers, accumulating
studies show the power of metabolites in the plasma or urine
to predict the decline of renal function. In a study of 1,921
subjects without CKD with a median follow-up of
19.6 years, the serum concentration of two metabolites,
creatine and 3-indolyl sulfate, is significantly correlated with
the decline of eGFR. Meanwhile, higher levels of 5-ox-
oproline and 1,5-anhydroglucitol (1,5-AG) were sig-
nificantly associated with a lower risk of CKD (Yu et al.,
2014). Recent studies have found that exosomes play a very
important role in the development of renal fibrosis, and CKD
as messenger cargoes for intercellular communication
(Mahtal et al., 2022). Feng et al. (2018) reported a correlation
between exosomal CCL2 and tubulointerstitial inflamma-
tion, C3 deposition and eGFR in IgAN. High CCL2 levels at
the time of renal biopsy were associated with subsequent
deterioration in renal function. In addition, mRNA, miRNA
and protein in exosomes may be non-invasive biomarkers for
chronic kidney disease (Eissa et al., 2016; Feng et al., 2018;
Rossi et al., 2017). However, these findings need to be fur-
ther investigated by large-scale cohort studies and rando-
mized trials.

Summary and perspectives
So far, accumulating biomarkers have been identified to re-
flect various aspects of renal functional and structural
changes in kidney diseases. However, more multi-center
large-scale studies are needed to further verify their efficacy.
Secondly, accumulating studies indicate that single bio-
markers are hardly able to meet the criteria of comprehensive
risk identification or diagnostic utility. More studies are
needed to determine the optimal biomarkers combinations to
monitor renal function, improve risk assessment for kidney
outcomes, and reduce the burden of kidney disease (Figure
17; Table S12 in Supporting Information). Third, so far,
Klotho is the only well-proved specific biomarker for both
physiological and pathological kidney aging. Other com-
monly used biomarkers for aging, such as p16INK4a, p21CIP1,
telomere-related biomarkers, also reflect the kidney aging,
but not organ specific. CKD has been recognized as ac-
celerated aging caused by various etiologies, therefore,
biomarkers to predict renal dysfunction are different. Simi-
larly, various factors contribute to the progression of phy-
siological kidney aging by different mechanisms. The
biomarkers found for kidney diseases could improve our
understanding the etiology of nature kidney aging.

Skeletal aging

Physiological characteristics
Skeleton is involved in endocrine regulation and serves as an
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important repository for minerals, like 99% of total body
calcium, which flow to and from skeleton is neutral, about
five mmol is turned over a day (Song, 2017). Derangement
of calcium leads to hypercalcemia and hypocalcemia, as risk
factors for health (Song, 2017). Collagens can also be da-
maged by accumulation of advanced glycation end-products,
another general feature of the aging process, causing os-
teoarthritis (OA), a disease in articular cartilage (Daneault et
al., 2017; Rahmati et al., 2017). Skeleton material compo-
sition properties are monitored by parameters like mineral/
matrix ratio, mineral maturity/crystallinity (MMC), nano-
porosity, glycosaminoglycan (GAG) content, lipid content
and pyridinoline content (Paschalis et al., 2016). Among
these parameters, pyridinoline content shows the greatest
deviation between healthy aging and postmenopausal os-
teoporosis.
The endocrine activity of skeleton forms a central com-

ponent of a comprehensive biological system that mediates
calcium-phosphate balance, energy metabolism and bone
mineralization in response to dynamic and volatile physio-
logical requirements. Endocrinological regulation of bone
metabolism is highly influenced and tightly controlled by
sub-categories of growth, gonadal and calcitropic hormones
(Almeida et al., 2017; Brandhorst et al., 2015; Cho-
tiyarnwong and McCloskey, 2020; Gallagher and LeRoith,
2011; Lowery and Rosen, 2018; Mazziotti et al., 2022; Mills
et al., 2016; Quarles, 2012; Young et al., 2021) (Table S13 in
Supporting Information). Hormonal activity begins to de-
cline following the establishment of peak bone mass, as bone

formation and resorption shifts from net formation during
ontogeny, to equilibrium during early-to-middle adulthood,
and net resorption during advanced age.
Beside the changes of minerals, extracellular matrix and

hormones, aged bone marrow displays a signature of sup-
pressed fatty-acids oxidation, like accumulation of free fatty
acids (FFAs), polyunsaturated fatty-acids (PUFAs) and long-
chain fatty-acids (LCFAs), and reduced acyl-carnitines
(Connor et al., 2018). Elevated FFAs and decreased carni-
tine-conjugates are supposed to be resulted from suppressed
β-oxidation which might activate oxidative phosphorylation
pathway (Yu et al., 2017). The old bone marrow also shows a
significant reduction in amino acid and nucleic acid pool
(Connor et al., 2018; Navik et al., 2021). A diminished amino
acids pool in old bone marrow could be the result of reduced
synthesis of non-essential amino acids or from lowered au-
tophagy. And downregulated nucleic acids may be a result of
lipid peroxidation, which has been shown to generate hy-
droperoxides that undergo fragmentation to produce a broad
range of intermediates (Kujoth et al., 2005).

Imaging traits
With aging, bone resorption increases due to a higher bone
turnover rate, resulting in bone loss and decreased bone
mineral density (BMD) (JafariNasabian et al., 2017). In
Europe, it is estimated that 5.5 million men and 22 million
women are suffering from osteoporosis (Hernlund et al.,
2013). In the United States, an estimated 10 million people
have osteoporosis, and this number is continuing to increase
(Burge et al., 2007). At the same time, there are more than
8.9 million patients with osteoporotic fractures worldwide
each year (Kimmel et al., 2022). Osteoporosis is character-
ized by systemic damage to bone mass, microstructure and
strength, which increases fracture propensity and poses a
significant economic threat to medicine and society (NIH
Consensus Development Panel on Osteoporosis Prevention,
Diagnosis, and Therapy, 2001). Several risk factors should
be taken into account by screening, such as age, previous
fragility fractures, low body mass index (BMI), glucocorti-
coid use, family history of fractures, and active smoking
(Kanis, 2002). Measurement of BMD by double DXA is an
effective method to diagnose osteoporosis, with T-score-2.5
or more below the average for young adults. N-terminal
propeptide of type I procollagen (PINP) and C-telopeptide of
type I collagen (CTX-I) are clinically recommended bio-
markers of bone formation and bone resorption, which can
be measured multiple times in a single person with high
accuracy. In osteoporosis patients, PINP and CTX-I can be
used to assess anabolic response and indicate possible sec-
ondary osteoporosis (Eastell and Szulc, 2017).
Imaging such as CT, MRI, FTIR also plays a vital role in

the measurement of BMD and is also essential in the analysis
of osteoporosis and OA.

Figure 17 Biomarkers of kidney aging.

956 Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



Histologic features
Bone histomorphometry plays a vital role in studying the
microstructure, morphology, and lesion characteristics and
processes of the bone (Varela and Jolette, 2018). Histo-
morphometry has shown that bone formation rates decrease
significantly with age (Kiebzak, 1991), as observed in both
human and animal models. Age-related osteoporosis is
characterized by a decrease in bone trabeculae quantity,
average width, and their separation from each other. The
average bone wall thickness and the number of cells in the
bone marrow are also decreased, while the adipose tissue is
increased (Singh et al., 2016). The rates of bone mineral
deposition and osteoid deposition are consistent, and there
is no significant decrease in peri-osteoclastic minerals (Liao
and Cao, 2013). In a study of 43 healthy men between the
ages of 20–80 years, it was found that the static histomor-
phometric parameters, such as cancellous bone volume and
osteoblast-bone like interface, decreased by 40.0% and
19.2%, respectively, and the dynamic histomorphometric
parameters, double and single labeled osteoid also de-
creased by 18.6% and 18.0%, respectively (Clarke et al.,
1996). In addition, another histomorphometric analysis of
rats has shown that the number of osteoclasts, the activity
and number of osteoblasts that express type I collagen
mRNA, were reduced in older rats (Ikeda, 1995). In can-
cellous bone, aging altered the relationship between os-
teoclasts and osteoblasts, manifesting significantly
increased matrix/osteoblast-induced osteoclast formation
and expansion of the osteoblast precursor pool (Cao et al.,
2005). The periosteum contains undifferentiated mesench-
ymal stem cells with the potential for cartilage formation
during fracture healing and cartilage repair. Analysis of
rabbit animal model revealed that the chondrogenic po-
tential of the periosteum decreases apparently with in-
creasing age (O’Driscoll et al., 2001).
For OA, articular cartilage degeneration is the central pa-

thological change. In the early phase after injury, chon-
drocytes proliferate and form clusters, as well as produce
matrix remodeling enzymes (Varela-Eirin et al., 2018).
When OA progresses, osteoarthritic chondrocytes show lar-
ger cell morphology and decreased proliferative ability, with
reduced chondrogenic commitment (Singh et al., 2019).
Chondrocytes in OA exhibit high levels of cellular senes-
cence (Guo et al., 2021; Wang et al., 2022c). In aging car-
tilage, chondrocytes have a fibroblast-like shape, larger
diameter, larger spreading areas (Sasazaki et al., 2008), and
lower cytoskeletal protein renewal rate (Dominice et al.,
1986), which can lead to cartilage degeneration.

Cellular alterations
Some aspects of aging clearly root in cell-intrinsic altera-
tions, such as genomic instability, epigenetic alterations. All
normal skeletal cells have a limited lifespan, which is con-

trolled by the genomic stability and telomere length. Al-
terations in the methylation of DNA or acetylation and
methylation of histones, like loss of H3K9me and
H3K27me3, can induce epigenetic changes that contribute to
aging process. Recent study has found that Lysine (K)-spe-
cific demethylase 4B (KDM4B), a H3K9me3 demethylase,
whose ablation impaired skeletal stem/progenitor cell
(SSPC) self-renewal and promotes stem cell exhaustion by
inducing senescence-associated heterochromatin foci for-
mation (Deng et al., 2021).
By means of fluorescence activated cell separation (FACS)

and single-cell RNA sequencing multiple types of SSPCs
originating from different skeletal sites, such as bone mar-
row, growth plate or periosteum were identified (Ambrosi et
al., 2019). Although SSPCs from different sites have similar
features with respect to cell surface markers, they are not
identical, like differentiation capacity (Ambrosi et al., 2019).
Recent studies have identified a hSSPC (Feng et al., 2022;
Zhu et al., 2022b), and found that loss of SIRT1 expression
but reactivation by trans-resveratrol or a small molecule
compound restore the differentiation potential of aged hSSCs
in vitro (Ambrosi et al., 2020; Chan et al., 2018). In the
elderly, a progressive accumulation of senescent cells leads
to elevated levels of pro-inflammatory mediator, a process
known as “inflammaging”. A low-grade anti-inflammatory
drug can reverse a functional aging-associated decline of
SSPCs (Josephson et al., 2019). Moreover, immune cells,
including neutrophils and macrophages, secrete Grancalcin
(GCA) to drive aging-related bone degeneration (Li et al.,
2021a; Peng et al., 2022). In addition to aging environment
affected by immune cells, aging SSPCs have been found to
secrete colony stimulating factor 1 (CSF1) to promote the
formation of osteoclasts and generate an inflammatory de-
generative niche (Ambrosi et al., 2021).

Molecular changes
ROS is a typical aging hallmark of the skeletal system
(Chandra and Rajawat, 2021), which is responsible for the
elevated osteoclastic activity and reduced osteoblastic ac-
tivity (Zhou et al., 2016). In contrast, FoxO transcription
factors that promote ROS clearance show decreased ex-
pression with age (Alvarez-Garcia et al., 2017). Canonical
Wnt signaling is a critical regulator of bone formation, the
activity of which decreases in aged skeletal tissues (Almeida
et al., 2007). The shift of bone marrow stromal cells
(BMSCs) from osteogenic to adipogenic fate is also a
striking characteristic during skeletal aging (Sebo et al.,
2019). Expression of PPARγ, a transcription factor that is
essential for adipogenic differentiation, is upregulated in
BMSCs with age (Lecka-Czernik et al., 2010). PPARγ+/−

mice show increased bone mass, while PPARγ+/− BMSCs
show enhanced osteogenesis at the expense of adipogenesis
(Akune et al., 2004). PGC-1α, an adipogenic inhibitor, shows
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decreased expression with age in human and mouse skeletal
stem cells (Yu et al., 2018). Fibroblast activation protein
(Fap) is a serine protease whose activity significantly in-
creases during aging (Wei et al., 2020). Genetic or pharma-
cological inhibition of Fap promotes bone formation and
inhibits bone resorption by activating canonical Wnt sig-
naling and dampening NF-κB signaling, respectively (Wei et
al., 2020). Clec11a/Osteolectin (Oln) is a bone growth factor
that inhibits Fap activity (Wei et al., 2020; Yue et al., 2016).
In contrast to Fap, the plasma level of Oln significantly de-
creases with age, and Oln−/− mice show significantly de-
creased bone formation and premature osteoporosis (Wei et
al., 2020; Yue et al., 2016) (Figure 18). Interestingly, Fap is
also significantly increased in the synovium of knee joints
during aging, which contributes to OA progression by de-
grading type II collagen of the articular cartilage (Fan et al.,
2023). In contrast, Oln forms a protective layer in the su-
perficial zone of articular cartilage to inhibit Fap activity, and
significantly decreases during OA progression (Fan et al.,
2023).

Secretory factors detectable in biofluids
Bone is not only a structural scaffold to support the body, but
also an important endocrine organ (Guntur and Rosen,
2012). Senescent skeletal cells secret factors such as cyto-
kines, chemokines, growth factors and proteases, which are
known as SASPs (Pignolo et al., 2021). GH stimulates the
production of IGF-1 to promote bone growth and develop-
ment (Junnila et al., 2013). In humans, systemic and skeletal

IGF-1 decline substantially with age (Bennett et al., 1984;
Boonen et al., 1997). Systemic IGF-1 is also decreased in
aged mice (Young et al., 2021). Conditional deletion of Igf1
from BMSCs or megakaryocytes/platelets causes bone loss
and defective fracture repair in the adult skeleton (Wang et
al., 2023). Osteoclasts are responsible for resorbing the bone
matrix and play important roles in bone remodeling. Mac-
rophage-colony stimulating factor (M-CSF) secreted by
BMSCs/osteoblasts promotes the proliferation of osteoclast
precursors (macrophages). Differentiation of osteoclasts
also requires the engagement of osteoblast-derived RANKL
with its cognate receptor RANK (Boyle et al., 2003). Os-
teoprotegerin (OPG) is also secreted by osteoblasts, which
functions as a decoy receptor of RANKL to negatively
regulate its activity (Lacey et al., 1998). Aged skeletons
show increased expression of M-CSF, RANKL and de-
creased expression of OPG, leading to enhanced osteoclast-
mediated bone resorption (Chung et al., 2014). Decreased of
bone formation markers such as Procollagen type I N-
terminal propeptide (P1NP) and Osteocalcins (OCN), and
increase of bone resorption marker, such as carboxy-term-
inal collagen cross-links (CTx), amino-terminal cross-link-
ing telopeptide of type I collagen (NTx), deoxypyridinoline
(DPD) and Tartrate-resistant acid phosphatase 5b
(TRAcP5b) are typical hallmarks of skeletal aging (Kikuchi
et al., 2021; Ryan and Elahi, 1998; Shahnazari et al., 2012;
Takahashi et al., 1999; Tokida et al., 2021). Sclerostin
(SOST) and Dickkopf-related protein 1 (DKK1) are secreted
by osteocytes, both of which show increased expression
with age and impair osteoblast formation by inhibiting Wnt
signaling (Shahnazari et al., 2012). Aging and bone re-
modeling are also associated with dynamic change of cir-
culating cytokines and proinflammatory factors (Michaud et
al., 2013). For example, elevated levels of CRP, IL-1, IL-6,
and TNFα can be detected in osteoporotic women (Koh et
al., 2005; Zheng et al., 1997) (Table S13 in Supporting In-
formation).

Summary and perspectives
The skeleton plays an important role in providing mechan-
ical support and maintaining calcium ion homeostasis. New
insights of the regulators controlling skeletal aging, like
findings of cell-extrinsic and cell-intrinsic factors, pinpoint
the pathways that could be targeted to reverse these aging-
dependent changes. Additionally, large-scale omics profil-
ing, particularly at the single-cell level, is uncovering
clinically actionable conditions and novel molecular path-
ways for treating aging-related skeletal diseases. At the
same time, it can be more easily to detect and identify more
precise biomarkers of bone aging as technology evolves,
facilitating an improved understanding of age-related ske-
letal changes and suggesting more effective targets for
prevention.

Figure 18 Biomarkers of skeletal aging. In aged skeletons, PPARγ, ROS
and Fap are significantly increased, while canonical Wnt signaling, PGC-
1α, FoxOs and Oln are decreased. Abbreviations: PPARγ, peroxisome
proliferator-activated receptor γ.
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Adipose tissue aging

Physiological characteristics
AT, commonly refers to as fat, are a highly flexible and
heterogeneous organ composed of mature adipocytes, pre-
adipocytes, progenitor cells, vascular endothelial cells and
immune cells (Sakers et al., 2022). Though originally con-
sidered as an inert energy repository, AT is now well re-
cognized as a metabolically active endocrine organ vital for
whole-body energy balance, food intake, lipid and glycemic
homeostasis, thermogenesis and immune responses.
There are three types of AT characterized of distinct ana-

tomic location, morphology and function. In mice, the major
function of white adipose tissues (WAT) is to store energy as
triglyceride. The interscapular brown adipose tissues (BAT)
and the subcutaneous WAT (sWAT)-dispersing beige fat
dissipate energy as heat (Cohen and Kajimura, 2021). Adult
humans possess various WAT depots, as well as functional
BAT and beige fat in areas including ventral neck and su-
praclavicular area (Nedergaard et al., 2007; van Marken
Lichtenbelt et al., 2009; Virtanen et al., 2009; Zwick et al.,
2018). White adipocytes feature single lipid droplets and low
mitochondria numbers, while brown adipocytes contain
multilocular lipid droplets, high mitochondria content that
endow its brownish color, and express high levels of heat-
producing uncoupling protein 1 (UCP-1). Beige adipocytes,
which reside in dispersed fashion in sWAT and are indis-
tinguishable with white adipocytes in basal state, adopt
brown adipocyte-like features via a process called “brown-
ing” under stimulation conditions such as cold exposure, β3-
adnergic signal input, mild hyperthermia, and exercise. This
inducible thermogenic capacity of beige adipocytes bestows
a great potential in increasing energy expenditure, thus
emerging as a valuable therapeutic target for metabolic dis-
eases (Harms and Seale, 2013).

Imaging traits
In clinic, BMI, skinfold anthropometry and bioelectrical
impedance are used as indirect methods for assessing body
fat content. To understand the characteristics and hetero-
geneity of fat depots, medical imaging to visualize body fat
has been actively developed. Dual-energy DXA has weak
ionizing radiation and measures whole-body or regional
body composition in both rodents and humans, but cannot
detect overlapping fat compartments or ectopic fat in organs
like liver or muscle (Wang et al., 2014a). CT is a volumetric
technique that is excellent for measuring regional adiposity,
i.e., visceral AT and fat content in liver and muscles
(Goodpaster et al., 2000; Kramer et al., 2017; Wang et al.,
2014a). However, this technique has a drawback in potential
exposure of significant radiation (Brenner and Hall, 2007).
MRI and magnetic resonance spectroscopy (MRS) exploit
the difference in the magnetic properties of hydrogen nuclei

in water and fat to quantify the signal fat-fraction and/or the
proton density fat-fraction in tissues (Reeder et al., 2011; Wu
et al., 2020b). MRI/MRS can detect visceral fat and sub-
cutaneous fat, as well as intramyocellular and intrahepatic
lipids noninvasively with excellent reproducibility and better
visibility of anatomical details without overt radioactivity
(Addison et al., 2014; Sivam et al., 2012). However, com-
plicated data analysis and high cost limit the routine use of
this equipment in clinic (Ponti et al., 2019). Whilst CT and
MRI/MRS are extremely informative in quantifying fat in
depots and within organs, PET/CT provides vital information
on metabolic activity of fat depots. Notably, 18F-FDG PET/
CT, which could reveal the existence of functional, aging-
associated, and cold-activated BAT in adult human (Yone-
shiro et al., 2011), is the current gold standard for BAT
imaging study (Chen et al., 2016b). The downside of the 18F-
FDG PET/CT usage is its relatively complicated procedure
and large dose of radiation due to 18F-FDG intake (Law et al.,
2018). Infrared thermography (IRT) collects thermal radia-
tion from infrared radiation and converts it into false-color
thermal images. Utilizing the heat-generating properties of
thermogenic fat, IRT, i.e., infrared camera, has been wildly
used for its non-invasive and low-cost feature to assess
thermogenesis under different stimulations including cold,
hyperthermia, glucocorticoids or caffeine exposure (Li et al.,
2022i; Ramage et al., 2016; Symonds et al., 2012; Velickovic
et al., 2019; Xu et al., 2022). Though controversy remains, a
close correlation between IRT measurement and the accu-
mulation of 18F-FDG in mice and humans has been con-
firmed (Carter et al., 2011; Law et al., 2018), suggesting that
IRT may be an easy and promising method for detecting
brown and beige fat activation.

Histologic features
Fat mass increases with age but declines after approximately
60 years of age (Raguso et al., 2006). Fat redistributes from
sWAT depots to intra-abdominal visceral WAT (vWAT) de-
pots during and after middle age (DeNino et al., 2001;
Hughes et al., 2004), while the quantity and functionality of
brown and beige fat decline with age (Gohlke et al., 2019;
Sellayah and Sikder, 2014). sWAT is associated with many of
the metabolic benefits and vWAT adiposity leads to chronic
inflammation and higher risks of various comorbidities
(Mtintsilana et al., 2019; Siervo et al., 2016). Meanwhile,
dysfunctional thermogenic AT may lead to impaired energy
expenditure and energy substrates (glucose and free fatty
acids) clearance. These histological changes of fat depots
may contribute to the age-related metabolic diseases and
underlie the deteriorating metabolic status and aggravating
thermal dysregulation in the elderly, thus highlighting the
importance of AT homeostasis in metabolic health and
longevity (Berry et al., 2017; Cypess et al., 2009).
The abundant loose connective tissues around adipocytes

959Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



called stromal vascular fraction (SVF) harbor heterogeneous
cell populations including adipose stem and progenitor cells
(ASPCs), preadipocytes (PreAs) and adipogenesis-reg-
ulatory cells (Aregs). ASPCs is multipotent for adipogenic
differentiation and cell renewal (Zuk et al., 2001). Lineage
commitment of PreAs from ASPCs undergo growth arrest
and differentiation into mature adipocytes (Gupta et al.,
2010). Aregs regulate adipogenesis by blocking the adipo-
genic capacity of ASPCs (Schwalie et al., 2018). During
aging, the replication potential and the capacity to differ-
entiate into lipogenic lineages of ASPCs decrease gradually,
damaging AT homeostasis (Schipper et al., 2008; Zhu et al.,
2009). SVF contains heterogeneous cell populations such as
mesenchymal progenitor/stem cells, endothelial cells, peri-
cytes, and immune cells such as T cells and macrophages,
which may produce inflammatory factors under pathophy-
siological conditions such as obesity and aging. Indeed,
aging is characterized of a persistent low-grade, sterile and
chronic pro-inflammatory status, a phenomenon refer to as
inflammaging (Campisi et al., 2019). Increased infiltration of
inflammatory immune cells is observed in WAT during
aging, which accumulates in crown-like clusters in perivas-
cular spaces and secrets pro-inflammatory cytokines and
chemokines, contributing to WAT inflammaging. Further-
more, aging is associated with excess release, accumulation
and modification of ECM components, including the pro-
duction and secretion of multiple MMP proteins and fi-
bronectin, which leads to AT fibrosis (De Luca et al., 2021).

Cellular alterations
Cell senescence is defined as an irreversible proliferative
arrest driven by various mechanisms, such as telomere
shortening, DNA damage and ROS, which cause cell cycle
inhibition via p16INK4 or cell cycle arrest via activation of
p53/p21CIP1. During aging, senescent cells accumulate in AT
and secrete SASP-related factors consisting of cytokines,
chemokines, proteases and growth factors, which impair AT
function and dysregulate adipogenesis, leading to in-
flammation, fibrosis and insulin resistance (Campisi et al.,
2019; Milanovic et al., 2018; Wiley et al., 2016).
Mitochondria are core to brown and beige adipocytes in

maintaining intracellular glucose and lipid metabolism and
heat generation. During aging, thermogenic fat exhibits mi-
tochondrial dysfunction that manifests as accumulation of
mtDNA mutations and deletion, oxidation of mitochondrial
proteins, instability of macromolecular organization of the
respiratory chain complex, changes in mitochondrial mem-
brane lipid composition, alterations in mitochondrial dy-
namics, and defective mitochondrial autophagy (López-Otín
et al., 2013), leading to a constitutive decline in mitochon-
drial oxidative phosphorylation (Hu et al., 2021). The mi-
tochondrial free radical theory of aging proposes that the
progressive mitochondrial dysfunction increases ROS pro-

duction, which in turn causes further mitochondrial dete-
rioration and global cellular damage.
The decline in tissue regenerative potential is pronounced

characteristic of aging. ATexpands to store excessive energy,
which relies on ASPCs proliferation and differentiation to
generate new adipocytes (Ghaben and Scherer, 2019).
ASPCs isolated from old individuals show cellular senes-
cence and loss of adipogenic potential due to telomere
shortening and DNA damages (López-Otín et al., 2013;
Palmer et al., 2019; Tchkonia et al., 2010). By scRNA-seq
analysis of changes in different SVF populations during
aging, an aging-dependent regulatory cell (ARC) population
controlled by transcription factor Pu.1. was detected speci-
fically in sWAT, which inhibited differentiation and pro-
liferation of neighboring adipogenic precursors by secreting
cytokines (Nguyen et al., 2021).
The crosstalk between immune cells and adipocytes is vital

for AT function and systemic metabolism. Macrophages are
the most abundant cell type in AT. Though total numbers of
proinflammatory M1 macrophages and anti-inflammatory
M2 macrophages in fat remains stable during aging, the ratio
between M1 and M2 macrophages increases modulated by
NF-κB, long-chain saturated fatty acids and hypoxia (Ou et
al., 2022). T and B lymphocytes constitute the second most
abundant immune cell population in AT. Aging induces a
significant increase in inflammatory CD4+ and CD8+ T cells
with enhanced pro-inflammatory cytokines such as IFN-γ,
TNFα and IL-17, contributing to increased inflammaging
(Lumeng et al., 2011). Furthermore, it is revealed that tran-
sition of CD73hiST2lo into CD73loST2hi fat-resident Treg
subsets (fTreg) and memory T cells (γδT) are increased
during aging (Carrasco et al., 2022). Besides, B cells also
increase in WAT with aging, which promoted antigen pre-
sentation and pro-inflammatory cytokines and pathogenic
antibody secretion, overall result in inflammaging and ag-
gravated insulin resistance (Zamboni et al., 2021).
AT fibrosis also underlies increased inflammation during

aging (Eckel-Mahan et al., 2020). Recent scRNA-seq studies
have identified a functionally distinct subpopulation of ASPCs,
PDGFRβ+LY6C+ in mouse vWAT that lacks inherent adipo-
genic capacity but exhibits fibrogenic and pro-inflammatory
characteristic, thus are potentially predisposed to drive fibrosis
and subsequent inflammaging (Hepler et al., 2018).

Molecular changes
Age-associated senescence of beige progenitor cells leads to
impaired beige adipocyte differentiation and reduced
browning upon cold stimulation. Targeting the p38/MAPK-
p16INK4a pathway rejuvenates beige progenitors and restores
browning (Berry et al., 2017), indicating anti-senescence
modalities as a promising strategy inducing beiging and
improving metabolic health in aging humans. Aside from
p16INK4a, SREBP1c may play a key role in senescence in
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adipocytes by modulating DNA-damage responses via in-
teraction with PARP1, independent of its lipogenic reg-
ulatory function. Genetic depletion of SREBP1c accelerates
adipocyte senescence, leading to adipose tissue inflamma-
tion and insulin resistance (Lee et al., 2022a).
Aging leads to increased fat deposition and programmed

loss of brown and beige adipocytes contributed by changes in
core thermogenic regulators. For example, aging regulates
Forkhead box factor A3 (Foxa3) levels by glucocorticoid
signaling, consequently cooperates with C/EBPs for PPARγ
transcription and lipid storage, while competing with CREB
on Pgc1α promoter to inhibit its transcription and reduced
thermogenic and mitochondrial functions, overall reduced
energy expenditure (Ma et al., 2014; Ma et al., 2016).
Meanwhile, aging leads to impaired epigenetic regulation
such as enhanced 273 phosphorylation of Pparγ and caused
insulin resistance (Xu et al., 2018a). Aged adipocytes also
feature an increase in autophagic activity. Genetic ablation of
Rubicon in adipocytes exacerbates metabolic disorders by
promoting excess autophagic degradation of PPARγ coacti-
vators SRC-1 and TIF2, highlighting a critical involvement
of autophagy during aging (Yamamuro et al., 2020).
Impaired protein and metabolite secretion impact AT

homeostasis during aging. For example, FGF21 has been
proposed to be an aging intervention hormone, which in-
duces browning of white fat, while FGF6 is shown to act as a
proliferative factor for ASPC hyperplasia and prevents fi-
brosis and maintain AT homeostasis during aging (Liu et al.,
2023a). Meanwhile, exercise-induced myokine Irisin pro-
motes browning and improves age-associated metabolic
dysfunction while its level declines under sarcopenia (Bos-
tröm et al., 2012; Guo et al., 2023). On the other hand, cold
exposure leads to increased hepatic acylcarnitine production
and thermogenesis, which is impaired in aged mice (Simcox
et al., 2017). Besides, mitochondrial proteomics analysis
shows that mitochondrial lipoylation is disproportionally
reduced in aged BAT, and enhancing mitochondrial lipoy-
lation by α-lipoic acid supplementation effectively restores
BAT function in old mice, thereby preventing age-associated
obesity and glucose intolerance (Tajima et al., 2019).
It is noted that though detailed molecular changes may not

be identical, obesity, which represents all major character-
istics of age-associated impairment in AT homeostasis, is
proposed as a state of accelerated aging and is itself a major
risk factor for worsened age-associated metabolic diseases.
The intervention strategies against obesity, such as caloric
restriction and metformin, are also effective in preventing
aging (Geng et al., 2022; Ou et al., 2022).

Secretory factors detectable in biofluids
Senescent cells express SASP factors that link their accretion
with metabolic disorders. During aging, adipocytes chron-
ologically accumulate lipids and pro-inflammatory factors

such as IL-6, MCP-1 and TNFα under NF-κB signaling
(Ahmed and Si, 2021). In addition to classic SASP factors,
other forms of SASP were discovered. For example, aged
sWAT shows a significant increase in pregnancy-associated
plasma protein-A (PAPP-A) levels, which are also highly
enriched on the surface of extracellular vesicles secreted by
senescent pre-adipocytes (Conover and Bale, 2022).
AT, which synthesizes and secretes numerous bioactive

molecules termed adipokines, has now been well recognized
as an endocrine organ that regulates whole-body energy
homeostasis (Fasshauer and Blüher, 2015). Dysregulated
adipokine biosynthesis and secretion are regarded as a key
feature of obesity and aging associated diseases (Arai et al.,
2019; Tilg and Moschen, 2006). Leptin is a well-established
adipokine that communicates with central nervous system to
regulate appetite, satiety and energy expenditure. Leptin is
associated with a reduced incidence of dementia and AD and
with cerebral brain volume in asymptomatic older adults
close to 80 years of age (Lieb et al., 2009). The functional
decline of responsiveness to leptin in central nerve system
with age may lead to negative consequences for cognitive
function (Irving and Harvey, 2021), suggesting a pro-cog-
nitive effect of leptin. Adiponectin, on the other hand, is
associated with reduced inflammation and improved meta-
bolic status in the elderly, which is positively correlated with
longevity (Arai et al., 2019) by blocking NF-κB activation
and inhibiting proinflammatory cytokine synthesis. Adipo-
nectin also improves neuronal metabolism, muscle function
and cardiovascular health that are highly related to aging,
possibly via adiponectin receptors in these systems (Ya-
mauchi and Kadowaki, 2013).
In aged animals, the differentiation of precursor cells of the

metabolically beneficial beige adipocytes is impaired and
transited toward an alternatively fibrogenic profile, which
correlated with reduced adipocyte expression of PRDM16.
PRDM16-expressing adipose cells secrete β-hydro-
xybutyrate (BHB), which blocks precursor fibrogenesis and
facilitates beige adipogenesis. Dietary BHB supplementation
in aged animals reduces adipose fibrosis and promoted beige
fat formation (Wang et al., 2019), Moreover, sphingolipids,
such as ceramides, accumulate and mediate metabolic im-
pairment of thermogenic adipocytes during aging. Blocking
ceramide synthesis in thermogenic adipocytes improves
adipose biology and function (Chaurasia et al., 2021), sug-
gesting that adipocyte-secreted metabolites may control
beige fat remodeling.
AT from Ames dwarf (df/df) mice, an exceptionally long-

lived animal model, provides additional information. Pre-
vious studies showed that miR-146a-5p increases during
aging and this increase is not observed in long-living df/df
mice. Intraperitoneal injections with miR-146a-5p mimetic
increases cellular senescence and inflammation but de-
creases pro-apoptotic factors in vWATof df/df mice, which is
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recapitulated in 3T3-L1 cells, indicating that miR-146a-5p
can be a marker for cellular senescence (Nunes et al., 2022).
Furthermore, 5-hydroxyeicosapentaenoic acid (5-HEPE), an
ω-3 fatty acid metabolite, is increased in BATand circulation
of dwarf mice, which correlates with increased thermogen-
esis and insulin sensitivity. The levels of 5-HEPE are posi-
tively correlated with BAT activation and negatively
correlated with body weight, insulin resistance and trigly-
ceride levels in humans, thus represent a novel lipid secre-
tory signature of AT in a mouse model of extreme longevity
(Darcy et al., 2020) (Figure 19).

Skin aging

Skin aging is the most recognizable outcome of aging, which
also directly reflects the degree of whole-body aging to some
extent. Skin aging is a sophisticated, multifactorial process
involving multiple steps in which chronologic aging and

photoaging are closely intertwined (Kohl et al., 2011). The
aged skin manifests structural, functional, cellular, and mo-
lecular changes as well as an accumulation of senescent cells
(Franco et al., 2022). More importantly, these cells are ac-
companied by SASP, which induces senescence in adjacent
cells through a process called paracrine senescence in the
skin, further triggering age-related dysfunction of other tis-
sues (Franco et al., 2022) (Figure 20).

Physiological characteristics
Like other tissues, the structural stability and physiological
function of the skin are affected by aging. The most obvious
sign is the appearance of wrinkles (Zhao et al., 2020a). Skin
elasticity shows the clinical ravages of time, and the aged
skin sags in the direction of gravity, resulting in bags under
the eyes, etc. (Blair et al., 2020; Panwar et al., 2015). In
addition, skin aging is accompanied by alterations in pig-
mentation, such as lighter color in unexposed areas due to
reduced pigment synthesis, and colored patches in exposed
areas due to increased pigment synthesis as a result of sun-
light and ultraviolet (UV) rays (Kang et al., 2021). In addi-
tion, the irregular proliferation of epidermal keratinocytes
leads to the occurrence of papules and maculopapules (se-
borrheic keratosis). Vascular changes are also common fea-
tures of skin aging. Vascular proliferation in non-exposed
areas forms senility angiomas, while exposed areas exhibit
cutaneous vasodilation and reticulovascular proliferation,
which is particularly prominent in highland populations
(Kajiya et al., 2011). Hair follicle (HF) aging is another
phenotypic trait of skin aging, usually manifesting as diffuse
thinning, softening, graying, and gradual loss of luster
(Fernandez-Flores et al., 2019). Moreover, there is a decrease
in the secretion of sebaceous gland (SG) and sweat gland,
usually resulting in xerosis (Ahmed et al., 2022).
The skin provides a barrier against the environment.

However, it is more than just a barrier; it is also involved in
physiological functions, including the maintenance of hy-
dration and secretion, thermoregulation, immunological
surveillance (Gravitz, 2018). It has been demonstrated that
the aged skin had a reduced ability to transport water, hy-
drogen peroxide, drugs, and other substances due to impaired
hydration (Ferreira et al., 2020). With age, impaired secre-
tion of sweat glands along with reduced vasodilation of
dermal arterioles and the loss of subcutaneous fat led to
thermoregulation disorders (Ding et al., 2021b; Lazarus et
al., 2019). Repair processes of collagen remodeling, cell
proliferation, and wound metabolism in the elderly were
shown to be delayed (Kenney et al., 2021; Mistry et al.,
2021). Furthermore, a more pronounced inflammatory phe-
notype has been uncovered in aged skin wounds, featured by
the persistence of neutrophils and a higher abundance of
inflammatory macrophage subsets compared to younger
counterparts (Kenney et al., 2021; Vu et al., 2022). Recent

Figure 19 Biomarkers of adipose tissue aging. Fat mass increases with
age but declines at older stages. Besides, aging is associated with fat re-
distribution from subcutaneous AT depots to intra-abdominal visceral de-
pots, accompanied with hyperlipidemia and hyperglycemia, which is
accelerated by obesity. Fat depots remodel during aging with fat accumu-
lation, loss of thermogenic fat, dysfunction in stromal vascular fraction, and
excessive accumulation of extracellular matrix. At the cellular level, aging
leads to exhaustion and functional decline of adipose stem and progenitor
cells, reduction in brown and beige adipocytes, accumulation of senescent
cells producing SASP, dysregulation of immune cells, enhanced in-
flammation and fibrosis, and impaired secretory factors.
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studies have also revealed an increase in immuno-suppres-
sive activity in the aging process of the skin (Salminen, 2020;
Salminen et al., 2022).

Imaging traits
The skin changes caused by aging can be detected by optical
and ultrasonic imaging. Reflectance confocal microscopy
(RCM) observes that skin thickness decreases and epidermal
grooves increase; meanwhile, coarse collagen fibers and
coiled collagen in the dermis increase (Segurado-Miravalles
et al., 2018). Optical coherence tomography (OCT) shows
uneven epidermal surface, significant light attenuation, and
reduced papillary layer in the dermis (collagen degeneration)
during aging (Mamalis et al., 2015). Dermatoscopic features
of skin aging include severe xerosis, surface irregularity,

atrophy, uneven pigmentation, telangiectasia, miniaturized
HFs, and hair graying (Hu et al., 2019a; Ye et al., 2021). As
observed by high-frequency ultrasound imaging, the echo-
genicity of the aged skin is diminished and its thickness
decreases; besides, the aged dermis shows more irregularities
in the subdermal interface (Vergilio et al., 2021).

Histologic features
There are differences between chronologic aging and pho-
toaging in histological changes. During chronologic aging,
one of the first alterations is thinning of the epidermal layer
associated with the loss of epidermal rete ridges (Blume-
Peytavi et al., 2016; Branchet et al., 1990; Czekalla et al.,
2019; Lintzeri et al., 2022; Lock-Andersen et al., 1997),
accompanied by a reduced count of melanocytes and Lan-

Figure 20 Biomarkers of skin aging. The skin mainly comprises epidermis, dermis, and skin appendages. Skin aging can be roughly divided into
chronologic aging caused by intrinsic factors and photoaging caused by environmental factors. Aged skin is featured by the development of wrinkles and
sagging, accompanied by decreased skin elasticity, which is due to a flattening of epidermal-dermal junction and a decrease/degradation of dermal collagen
and elastin. Alterations in skin appendages, such as the increased miniaturized hair follicles and the reduced secretion of skin appendages, are common
features during aging. Moreover, the amount and activity of melanocytes and immune cells in skin are dysregulated, resulting in uneven pigmentation and
impaired immunological surveillance. Simultaneously, senescent cells accumulate in the skin with age. These cells exhibit the loss of proliferative potential,
and several other markers for specific cell types, such as reduced cornified envelop proteins in keratinocytes, hampered stemness and delayed hair cycle in HF
cells, as well as elevated ECM disassembly genes in fibroblasts. Notably, SASP from these senescent skin cells further triggers senescence in adjacent cells.
This crosstalk among different cells eventually results in an aging phenotype. Abbreviations: FOXC1, forkhead box C1; COL17A, collagen type XVII;
LCE1&2, late cornified envelope group I & 2; KLF6, krüppel-like factor 6; STAT3, signal transducer and activator of transcription 3; HES1, hairy and
enhancer of split 1.
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gerhans cells (Bhushan et al., 2002; Lavker, 1979), and
acanthosis atrophy (El-Domyati et al., 2002; Lavker, 1979).
The reduced epidermal-dermal junction is another major
feature of skin aging (Lavker et al., 1986; Lavker et al.,
1987). The dermis also thins gradually, mainly due to the
reduction of dermal collagen fibers and elastin. There is an
additional change in the dermis namely less compacted
collagen bundles in the reticular dermis (Braverman and
Fonferko, 1982; Lovell et al., 1987; Uitto, 2008). In addition,
the number of dermal micro-vessels decreases (Toyoda et al.,
2001), as well as the skin appendages (including HF, SG, and
sweat gland) (Montagna and Carlisle, 1990), however, the
volume of SGs increases. The aged skin is also accompanied
by thinner subcutaneous tissue with fewer blood vessels and
fat.
The skin epidermis of photoaging is characterized by ir-

regularly thickened, which may be due to the irregular pro-
liferation, differentiation and apoptosis of keratinocytes
(Kanaki et al., 2016). However, studies have shown that
severe photodamage can lead to epidermal atrophy (Bhawan
et al., 1995; Fu et al., 2016). The changes of the dermis are
the most pronounced of the photoaged skin, mainly including
the deformation, thickening, and bifurcation of elastic fiber,
the reduction of collagen fibers, and the cleavage of hya-
luronic acid and other mucopolysaccharide components in
the matrix (Fisher et al., 2002; Hughes et al., 2011; Lavker,
1979; Uitto, 2008), ultimately resulting in dry, loose, in-
elastic skin. Photoaging skin shows a decrease in the density
of dermal micro-vessels, accompanied by an increase in the
thickness of the vessel walls (Toyoda et al., 2001). In addi-
tion, the subcutaneous blood vessels in photoaged skin be-
come varicose and dilated, increasing the vulnerability of the
blood vessels.

Cellular alterations
The skin epithelium contains inter-follicular epidermis
(IFE), HF, SG and sweat glands (Franco et al., 2022). It is a
constantly self-renewing tissue mainly made by keratino-
cytes. The IFE is a stratified epithelium composed by basal,
spinous, granular, and cornified layers. In aged human IFE,
the normal stratified structure is maintained, but shows re-
duced epithelial extensions into dermis and/or overall
thickness (Giangreco et al., 2010; Zou et al., 2021). In the
basal layer, overall cell density and the abundance of IFE
stem cells (IFESCs) expressing high MCSP and β1 integrin
are reduced (Giangreco et al., 2010). Interestingly, overall
cell proliferation in aged human IFE is not necessarily re-
duced (Giangreco et al., 2010), but may become further
confined to the basal layer (Thuringer and Katzberg, 1959).
Increased p16INK4a+ senescent cells may be mostly melano-
cytes (Victorelli et al., 2019; Zou et al., 2021). Clonal ex-
pansion of IFESCs is prevalent during skin aging (Liu et al.,
2019; Martincorena et al., 2015), reminiscent to that of

clonal hematopoiesis (CH).
HF is a cyclic regenerating mini-organ driven by hair

follicle stem cells (HFSCs). In late-stage HF aging, HFSCs
are depleted through trans-differentiation or apoptosis,
leading to HF miniaturization (Dries et al., 2021; Matsumura
et al., 2016; Xie et al., 2022). In early-stage HF aging,
HFSCs are maintained but with blunted regeneration re-
sponsiveness (Doles et al., 2012; Ge et al., 2020; Giangreco
et al., 2008; Keyes et al., 2013; Zhao et al., 2022b). Hair
graying is caused by loss of HF melanocytes and their stem
cells (Arck et al., 2006; Nishimura et al., 2005), and is also
associated with depletion of hair progenitors in human scalp
HFs (Wu et al., 2022a). HF aging is also accompanied by
changes in the distribution of nearby sensory neurons (Ge et
al., 2020) and atrophy or dysfunction of SGs (Giangreco et
al., 2008; Hou et al., 2022).
The skin dermis is mainly made by dermal fibroblasts and

their ECM products (Lynch and Watt, 2018). The dermal
fibroblasts are mostly non-proliferative during normal
homeostasis and are gradually lost during aging (Marsh et
al., 2018), leading to dermal atrophy with decreased tissue
density, altered ECM composition, decreased contact be-
tween the cells and collagen fibers, and accumulation of
p16INK4a+ senescent cells (Farage et al., 2013; Haydont et al.,
2019; Ogata et al., 2021; Quan et al., 2013; Zou et al., 2021).
Different types of immune cells in the skin undergo dif-

ferent changes during aging. In naturally aged IFE, Lan-
gerhans cells and their ability to migrate are reduced, the
proportion of CD4+/CD8+ T cells is increased, and the pro-
liferative capacity of monocytes is reduced, accompanied by
impaired immune responsiveness and wound healing ability
(Keyes et al., 2016; Koguchi-Yoshioka et al., 2021; Nestle et
al., 2009). In HF aging, increased immune cell infiltration
into HF and activation of inflammatory signaling pathways
in HFSCs are observed (Doles et al., 2012; Wu et al., 2022a).
In the dermis, increased infiltration of macrophages, T cells,
and mast cells are also observed during photoaging (Bosset
et al., 2003).

Molecular changes
Aged skin epidermis shows reduced levels of several cal-
cium controlled cornified envelope proteins, such as loricrin,
filaggrin and LCE1&2, implicating deregulated calcium
gradient in IFE (Rinnerthaler et al., 2013). Aged epidermal
keratinocytes also have reduced pro-growth transcription
factor (TF) KLF6 and elevated p16INK4a (Adamus et al.,
2014; Zou et al., 2021), implicating reduced growth potency.
Several inflammatory signaling pathways, such as NF-κB
and interferon-α pathways, are upregulated in aged IFE un-
der normal homeostasis (Zou et al., 2021), consistent with
the common theme of chronic inflammation (inflammaging)
in other tissues. That said, aged epidermal keratinocytes are
inefficient at activating STAT3 or up-regulating Skints under
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wounding conditions, leading to reduced inflammatory re-
sponse and delayed wound healing in aged skin (Keyes et al.,
2016).
Aged HFs show sophisticated molecular changes de-

pending on their hair cycle and aging status. Aging HFs at
miniaturizing stage have reduced level of several key genes
involved in HFSC maintenance, including FOXC1, NFATC1
and COL17A1, leading to HFSC trans-differentiation and
elimination (Matsumura et al., 2016; Zhang et al., 2021b). In
aging HFs with hair shaft shrinkage, activated Piezo1 in-
duces apoptosis via a calcium-TNFα pathway in HFSCs (Xie
et al., 2022). In aging murine HFs with intact structure,
HFSCs displays inflammaging feature mediated by JAK/
STAT activation, along with upregulated NFATC1 expres-
sion and downregulated SIRT7 expression, leading to ham-
pered hair cycle activation (Doles et al., 2012; Keyes et al.,
2013; Li et al., 2020b). In human scalp HF, activation of P53
and inflammatory pathways are found in HFSCs and hair
progenitors at early stage of hair graying (Wu et al., 2022a).
Aging HFSCs also upregulate miR-31, which downregulates
Clock to activate MAPK/ERK signaling to inhibit hair cycle
activation and drive HFSC trans-epidermal elimination (Yu
et al., 2021). Notably, miR-31 is also a pro-inflammatory
microRNA that is up-regulated in IFE aging (Yan et al.,
2015; Yu et al., 2021).
Aged dermis shows degradation of the dermal collagen

network and elastin fibers, due to upregulation of MMP
activity and downregulation of TGF-β signaling (Haydont et
al., 2019; He et al., 2014a; Parkinson et al., 2015; Qin et al.,
2017). These can be attributed to NF-κB and AP-1 activation
induced by ROS, which is a key driver of dermal aging
(Chiang et al., 2013; Shin et al., 2019; Vicentini et al., 2011).
The fibroblasts of aged dermis also show increased senes-
cence and production of skin aging-associated secreted
proteins (SAASPs), which overlap with classical SASPs in
matrix degradation and pro-inflammatory categories (Wal-
dera Lupa et al., 2015). Single-cell transcriptional analysis
confirms that aged dermis has elevated ECM disassembly
genes and decreased growth control genes, with HES1 as
potential core regulatory TF (Zou et al., 2021).

Secretory factors detectable in biofluids
Few studies have reported that specific biomarkers of skin
aging can be detected in body fluids. Interestingly, patients
with premature hair graying have higher serum levels of
oxidative stress compared to healthy controls, even if they
are of similar age (Acer et al., 2020). Similarly, signal
pathways related to cytokines and growth factors play a
driving role in skin photoaging (Fitsiou et al., 2021).
Moreover, aging-related epidermal dysfunction partially in-
creases cytokines in blood circulation, including TNFα, IL,
EGF, and FGF (Hu et al., 2017).
In addition to circulation, the level of many age-related

markers also changes in the skin wash fluid. This was mainly
manifested by decreased markers involved in collagen
synthesis (EGF and FGF), epidermal proliferation and
wound healing (keratin-6), anti-inflammatory (IL-1Ra), and
innate immunity (interferon alpha-2, IFN-α2) (Kinn et al.,
2015). Additionally, age-associated upregulation of cortisol
is also observed in the skin wash fluid (Kinn et al., 2015).

Intestinal aging

The intestine is the main digestive organ and the largest
immune organ in the body, which absorbs nutrients and acts
as a protective barrier against the external environment
(Calleja-Conde et al., 2021). Aging induces significant shifts
in the body, with decreased immune function and damage to
the intestinal barrier, where harmful molecules, such as pa-
thogens, escape the immune barrier and sneak into the
bloodstream, causing serious damage to other organs (Bosco
and Noti, 2021). Therefore, an in-depth understanding of the
markers associated with aging-related intestinal failure
would be beneficial for targeted prevention or treatment,
reducing the occurrence of aging diseases and improving the
quality of life for elderly people. Based on previous studies,
we will describe the biomarkers of aging-related intestinal
failure from different aspects, such as physiological char-
acteristics, histologic features, and cellular and molecular
levels.

Physiological characteristics
In terms of physiological characteristics, intestinal barrier
failure has been described as a pathological hallmark of
aging in both animal and human studies (Funk et al., 2020;
Parrish, 2017). The function of intestinal digestion and ab-
sorption decreases during aging, and this physiological
change significantly alters the intestinal flora structure
(DeJong et al., 2020), such as a decrease in Akkermansia
muciniphila (Akk) and short-chain fatty acid (SCFA)-pro-
ducing bacteria, and a marked increase of potentially
proinflammatory commensal microbes (Ragonnaud and
Biragyn, 2021). Akk is a bacterium that degrades mucins and
provides energy to beneficial microbes, as well as protects
the integrity of the intestinal epithelium by activating epi-
thelial cells and producing mucus. Its decrease in the gut of
aging mice and, possibly, elderly people leads to leaky gut,
which in turn leads to low levels of systemic inflammation,
also known as “inflammaging” (Ragonnaud and Biragyn,
2021). In conclusion, during intestinal aging, changes in the
physiological characteristics include a reduction in the di-
versity of the intestinal flora and a decrease in beneficial
bacteria such as Akk bacteria, and a reduction in intestinal
permeability, which triggers a range of health problems, in-
cluding irregular intestinal transit, decreased appetite, leaky
gut, intestinal inflammation and premature death of elderly
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people (An et al., 2018; Nagpal et al., 2018).

Histologic features
Histologic features associated with intestinal aging include
increased microbial metabolites, thinning of the mucus layer
and an increase in villus length. In the intestine of healthy
young people, beneficial commensal bacterial members of
Firmicutes produce SCFAs. SCFAs (e.g., butyrate, propio-
nate and acetate) have physiological functions such as pro-
viding energy to commensal microbes and colonocytes,
inducing production of mucus, maintaining intestinal in-
tegrity, regulating the differentiation of CD4+ T cells and the
activation of CD8+ T cells (Arpaia et al., 2013; Trompette et
al., 2018). In aged mouse and human intestine, SCFAs levels
are generally reduced and this reduction favors the survival
of bacteria capable of degrading mucins in the intestine
(Nagpal et al., 2018). In aged mice, decreased mucins lead to
a thin, discontinuous mucus layer that allows direct inter-
action between microbes and intestinal epithelium, which
triggers an inflammatory response (Elderman et al., 2017).
Another study shows an increase in the length of intestinal
villi in aged mice (Suzuki et al., 2022).

Cellular alterations
At the cellular level, physiological changes in aging-related
intestinal failure are associated with deterioration in the
function of ISCs. Upon aging, ISCs suffer from an accu-
mulation of cellular and DNA damage (Liu and Rando,
2011). Thus, ISCs are highly prone to stem cell exhaustion,
which is an integrative hallmark of aging (López-Otín et al.,
2013). Abnormal proliferation of ISCs in Drosophila is as-
sociated with aging (Jasper, 2020). The expression of the ISC
marker Lgr5 decreases in aged mice. Upon aging, the num-
ber of crypts where ISCs are located decreases, while the size
of intestinal crypts, the number of Paneth cells and goblet
cells increase in aged mice (Nalapareddy et al., 2017; Na-
lapareddy et al., 2022). There is a significant aging-induced
reduction in the organoid-forming capacity of colonic crypts
derived from biopsies of healthy human donors, which in-
dicates a reduction in ISC function (Pentinmikko et al.,
2019).

Molecular changes
Aging-induced aberrant proliferation of ISCs is associated
with alterations in multiple signaling pathways, including
different endogenous and exogenous signals such as Wnt,
Notch and Sirt1/mTORC1. During aging in mice and hu-
mans, canonical Wnt signaling is reduced in ISCs, Paneth
cells, and mesenchyme, which leads to decreased ISC re-
generative potential upon aging. Addition of exogenous Wnt
such as Wnt3a in vitro improves regeneration of aging ISCs
(Nalapareddy et al., 2017). In addition to Wnt signaling, the
expression levels of Notch1 receptor and target Olfactome-

din-4 (Olfm4) gene in the Notch signaling pathway are re-
duced in the ISCs of aging mice (VanDussen et al., 2012).
Upon aging, levels of Sirt1 and activity of mTORC1 also
decline, and the treatment with the NAD+ precursor nicoti-
namide riboside rejuvenates ISCs from aged mice and re-
verses an impaired ability to repair gut damage (Igarashi et
al., 2019). Aging leads to a reduction in the number and
function of ISCs in mice, which is associated with decreased
fatty acid oxidation (FAO). Pharmacological activation of
FAO or addition of FAO substrates (e.g., palmitate) enhances
aging ISC organoid formation capacity (Mihaylova et al.,
2018). Cdc42, a small RhoGTPase, has increased activity in
proliferating TA cells and ISCs in aged mice, and inhibition
of Cdc42 activity enhances ISC regeneration after radiation-
induced injury and organoid formation in aging crypts and
ISCs (Nalapareddy et al., 2021). The discovery of these
markers strongly supports that the function of aging ISCs can
be reversed by targeted mechanisms and also improves the
understanding of the molecular alterations in the extrinsic
physiology and intrinsic signaling of aging intestinal failure
(Figure 21; Table S14 in Supporting Information).

Secretory factors detectable in biofluids
Clinically, aging-related secretory factors are detectable in
body fluids, such as serum, plasma. Increased LPS can be
detected in the plasma of elderly people. LPS is produced by
the increased production of gram-negative bacteria in the gut
and enters the blood circulation through the intestines,
leading to the activation of chronic inflammatory factors
(Bosco and Noti, 2021; Nagpal et al., 2018; Stevens et al.,
2018). As a result, the elderly population tends to have high
concentrations of inflammatory factors such as IL-6, IL-8,
CRP and TNFα in their serum (Chambers and Akbar, 2020;
Espinoza and Walston, 2005). High expression of in-
flammatory cytokines can reduce the expression of tight
junction proteins in aged mouse and human intestine (e.g.,
Zonulin and Claudin), which increases intestinal perme-
ability and induces long-term inflammation (An et al., 2018;
DeJong et al., 2020; Mabbott, 2015). In addition, indole le-
vels have been reported to decrease, while kynurenine in-
creased in aged mouse and human fecal samples and mouse
serum (Hohman and Osborne, 2022). Kynurenine, an alter-
native tryptophan-derived product, is a primary driver of the
aging process and is associated with high mortality in hu-
mans (Kim et al., 2020a). Overall, an increase in bacterial
metabolites and inflammatory factors, as well as a decrease
in tight junction proteins, can be detected in the blood during
aging.

Summary and perspectives
In this section, we review biomarkers of intestinal aging at
the physiological characteristics, histologic features, cellular
and molecular levels. Upon aging, the reduced intestinal
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barrier integrity facilitates the entry of microbes/metabolites
into the circulation, which promotes inflammation and in-
duces disease. With the improvement of ISC organoid cul-
ture technology and maturation of single-cell sequencing
technology, quantifying the phenotype and function of in-
testinal epithelial cells in the elderly and finding more bio-
markers of intestinal aging will be the key to future research.
These biomarkers could provide new intervention strategies
to improve the quality of life and increase life expectancy in
the global aging population.

Pancreatic aging

The pancreas lies in the upper abdomen behind the stomach
and has a complex histology, with endocrine and exocrine
cells coexisting in the same organ. It belongs to the gastro-
intestinal system that produces and secretes digestive en-
zymes into the intestine and is also an endocrine organ that
makes and secretes critical metabolism-regulating hormones
(Gyr et al., 1985). Exocrine pancreas, which comprises more
than 95% of the pancreatic mass, primarily includes acinar
and duct cells, with associated connective tissue, vessels, and
nerves (Longnecker, 2014). Acinar cells make up about 85%
of the pancreas and are arranged in acini, which empty into
ducts and are functional units for digestive enzyme synthesis,
storage, and secretion, including lipase, amylase, trypsin,
chymotrypsin, and elastase (Longnecker, 2014; Madole et
al., 2016). The centroacinar cells are an extension of the most
peripheral of duct cells and partially cover the apical surface

of each acinus. Downstream of the centroacinar cells are the
intercalated ducts, which converge and form the intralobular
ducts, then the interlobular ducts, and eventually drain into
the main pancreatic duct (Figure 22). Endocrine pancreas,
which comprises 1%–2% of pancreatic mass, is also called
the islet of Langerhans (Figure 22), consists of α cells, β
cells, delta cells, PP cells, and epsilon cells that make and
secrete insulin, glucagon, somatostatin, and pancreatic
polypeptide into the blood, respectively (Longnecker, 2014).
Of these, β cells make up 60%–80% of the islet cell popu-
lation and their dysfunction may cause diabetes mellitus
(Noguchi and Huising, 2019).

Physiological characteristics
Both the exocrine and endocrine parts of the pancreas un-
dergo aging (Figure 22; Table S15 in Supporting Informa-
tion). Pancreatic exocrine function deteriorates with age,
manifested as pancreatic exocrine insufficiency (Herzig et
al., 2011), which may lead to maldigestion and malnutrition
(Feibusch and Holt, 1982; Löhr et al., 2018). Secretin sti-
mulation test (SST), or secretin test, is a standard test for
pancreas exocrine function, measuring the pancreatic se-
cretory volume, bicarbonate output, and pancreatic enzymes
output (Dossin, 2011; Steer et al., 1995). Studies based on
this test document that duodenal aspirates from elderly in-
dividuals contain significantly reduced volume of pancreatic
secretions (Fikry, 1968; Matsumoto et al., 1989), reduced
concentrations of pancreatic enzymes and bicarbonate
(Matsumoto et al., 1989; Tiscornia et al., 1986; Vellas et al.,
1988), as well as reduced activity of amylase and trypsin
(Fikry, 1968). Fecal elastase test (FET) is to determine the
elastase-1 (FE-1, an enzyme secreted by pancreas) content in
feces, a highly sensitive marker in the diagnosis of severe
and moderate exocrine pancreatic insufficiency (Herzig et
al., 2011; Lüth et al., 2001). 10%–21.6% of the elderly have
pancreatic exocrine insufficiency (EPI, with FE-1
<200 μg·g−1) and 5% of them have serious pancreatic exo-
crine insufficiency (SEPI, with FE-1 <100 μg·g−1), indicat-
ing that the incidence of EPI and SEPI increases significantly
with age (Herzig et al., 2011; Lüth et al., 2001; Piciucchi et
al., 2015). For pancreatic endocrine, its function is mainly
reflected by glycemia control, glucose tolerance, and fasting
or stimulated insulin/c-peptide secretion. Glycated he-
moglobin test (Hemoglobin A1c, HbA1c) is a clinical test for
glycemia control, reflecting the blood glucose fluctuation in
the past 2–3 months (Sherwani et al., 2016). A couple of
studies in different populations reported that the HbA1c level
is higher in the elderly than that in the younger individuals
(Arnetz et al., 1982; Yang et al., 1997). Especially for the
elderly with type 2 diabetes (T2D), a less stringent HbA1c
standard is suggested to maximize the treatment benefits and
minimize harm (Lipska et al., 2016). Glucose tolerance and
insulin secretion are usually measured through oral glucose

Figure 21 Biomarkers of intestinal aging. Abbreviations: mTORC1,
mammalian target of rapamycin complex 1.
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tolerance test (OGTT). In humans, glucose tolerance gra-
dually declines with age (Chang and Halter, 2003; Coordt et
al., 1995). This age-related glucose intolerance is frequently
accompanied by insulin resistance; meanwhile, a decline of
glucose- or meal-stimulated insulin/c-peptide secretion with
age also indicates β cell dysfunction in the elderly (Basu et
al., 2003; Chang et al., 2006; Chen et al., 1985; Fritsche et
al., 2002; Gumbiner et al., 1989; Kahn et al., 1990; Muller et

al., 1996). Insulin secretion in isolated human islets also
showed a declined glucose stimulation index (GSI) in vitro,
compromised coordination of [Ca2+] dynamics, and impaired
insulin secretion dynamics in the elderly (Barker et al., 2015;
Westacott et al., 2017). These assays act with the value as
minimally invasive and promising biomarkers for diagnosis
of metabolic diseases and assessment of the health status and
aging of pancreas.

Figure 22 Biomarkers of pancreatic aging. The aged pancreases exhibit decreased pancreatic volume, hardened texture, increased lobulation, steatosis, and
duct dilation, which can be detected by ultrasound/CT/MRI-based medical imaging technologies. Exocrine functional decay during aging can be detected by
secretin stimulation test and fecal elastase test. Islet dysfunction during aging is reflected by decreased insulin secretion and impaired glucose tolerance
during OGGT in vivo. At the histological level, increased prevalence of fibrosis, atrophy, lobulocentric atrophy, ADM, PanIN, and fatty replacement was
observed in exocrine pancreas; and increased fibrosis, amyloidosis, decreased vascular density, and reduced β cell mass were observed in endocrine islet
during aging. At the molecular level, markers indicating genomic instability, epigenomic dysregulation, transcriptomic alterations, aberrant posttranslational
modification and metabolic disturbance are identified. Abbreviations: IGF1R, insulin like growth factor 1 receptor; HSP90B1, heat shock protein 90 beta
family member 1.
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Imaging traits
Medical imaging is a promising source for biomarker de-
velopment as it provides a macroscopic view of tissues of
interest (O’Connor et al., 2017) and has advantages of non-
invasiveness, readily availability in clinical care, and re-
peatability (Lambin et al., 2017; Morin et al., 2018). CT
(Caglar et al., 2012), MRI (Sato et al., 2012; Wang et al.,
2021b), ultrasonography (Glaser and Stienecker, 2000), en-
doscopic ultrasonography (EUS) (Rajan et al., 2005), endo-
scopic ultrasound elastography (EUS-elastography) (Janssen
and Papavassiliou, 2014), and endoscopic retro-
cholangiography (ERCP) (Anand et al., 1989; Hastier et al.,
1998), etc., have been commonly used to assess the age-
related morphological changes of the human pancreas. Re-
duction of pancreatic volume, hardening of texture, and di-
latation of the pancreatic ducts, as well as pancreatic
lobulation (Sato et al., 2012) and pancreatic steatosis (Be-
govatz et al., 2015) are the main findings from these studies
associated with aging, which are potential biomarkers for the
macroscopic changes of pancreatic aging (Table S15 in
Supporting Information).
Pancreatic atrophy is considered to be one of the char-

acteristics of pancreatic aging. MRI analysis shows the
pancreatic anteroposterior (AP) diameter reaches maximum
values at the age of 30–39 years, followed by a gradual de-
crease, especially in the tail of the pancreas (Sato et al., 2012;
Wang et al., 2021b). Accordingly, studies showed that the
pancreatic volumes gradually increased to peak during the
ages ranging from 20–49 years, and gradually decreased
after 60 years of age by CT/MRI examinations (Caglar et al.,
2012; Wang et al., 2021b; Yoon et al., 2020). Janssen and
Papavassiliou (2014) found that the average strain values of
pancreases were 110.2 in the young and middle-aged group
and 80.0 in the elderly group by semi-quantitative EUS-
elastography, indicating that the pancreas becomes sig-
nificantly harder during aging. As regards dilatation of the
pancreatic ducts, Glaser and Stienecker (2000) analyzed the
results of pancreatic duct diameters measured by ultra-
sonography, and found that the mean diameter of the pan-
creatic duct was 1.5, 1.9 and 2.3 mm for the 18–29, 40–49
and ≥80 years old groups, respectively. Using ERCP, Anand
et al. (1989) found that the mean diameter of the main
pancreatic duct of the pancreatic body in those two groups
was 2.36 and 2.86 mm in the two groups of people aged <40
and ≥40, respectively, indicating a significant broadening of
the main pancreatic duct with age.
The development of deep-learning-based image segmen-

tation facilitates analyzing medical images automatically and
identifying pancreas changes, such as volumetric differences,
at the pixel level among large populations, thus has been
widely used in various medical imaging tasks (Cai et al.,
2022a; Li et al., 2021c). For example, the deep-learning-
based identification of CT biomarkers facilitates the diag-

nosis of T2D, such as measurements of pancreatic CT at-
tenuation and visceral fat (Tallam et al., 2022). A 3D dual-
contrast nnU-Net aided segmentation of pancreas on Dixon
MRI images automates the assessment of pancreatic fat dis-
tribution with high reliability (Lin et al., 2023). In terms of
pancreatic aging, a recent study by Le Goallec et al. (2022)
built an abdominal age predictor by training convolutional
neural networks to predict abdominal age from liver MRIs
and pancreas MRIs, which is driven by both liver and pan-
creas anatomical features, as well as surrounding organs and
tissues. They found that the accelerated abdominal aging is
associated with biomarkers such as body impedance and
blood pressure, clinical phenotypes such as chest pain, dis-
eases such as cardiovascular diseases, and even environ-
mental and socioeconomic factors (Le Goallec et al., 2022). It
is foreseeable that deep learning (DL) technology has pro-
mising potential in the development of aging clocks by taking
advantage of the availability of mass medical imaging data.

Histological features
Taking advantage of pancreas autopsies or pancreas tissue
from organ donors, a mass of histological studies on pan-
creatic aging have been conducted, allowing the identifica-
tion of microscopic histological changes during pancreatic
aging.
In the exocrine pancreas, the aging-associated histological

alterations mainly include increased fibrosis, fatty replace-
ment, lobulocentric atrophy (LCA), presence of low-grade
pancreatic intraepithelial neoplasia (PanIN). Pancreatic fi-
brosis can be caused by cell death, inflammation, or ductal
obstruction, via cytokine-triggered transition of resident fi-
broblasts/pancreatic stellate cells to myofibroblasts and
subsequent extracellular matrix production and deposition
(Klöppel et al., 2003). The pattern of fibrosis in the aged
pancreas was found to be multifocal and predominantly in-
tralobular, termed patchy lobular fibrosis in the elderly
(PLFE) (Detlefsen et al., 2005), which is present in 50% of
those older than 60 years (Matsuda et al., 2017). Increased
fibrosis is not only present in exocrine tissue, but also within
or around islets, peri-vasculatures, and peri-ducts in the el-
derly (Chen et al., 2021a; Gupta and Kumar, 2018; Hastier et
al., 1998; Li et al., 2011b). Pancreatic fatty replacement, also
known as lipomatosis, is describing the partial replacement
of the acinar parenchyma by adipose tissue. The proportion
of fat in pancreas increases progressively with age in both
rodents and human beings (Murakami et al., 2017; Walters,
1966). LCA represents a change that affects the center of the
pancreatic lobules, which is a common phenomenon in the
aging pancreas (Detlefsen et al., 2005). LCA often co-occurs
with other important age-related alterations, such as fibrosis,
acinar to ductal metaplasia (ADM) (Esposito and Häberle,
2022), and PanIN (Matsuda et al., 2017). Among them, the
frequency of PanIN, a precursor of pancreatic ductal ade-
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nocarcinoma is closely correlated with age, as low-grade
PanINs are uncommon in patients younger than 40 years but
become more obvious after 40 years of age (Matsuda et al.,
2015).
In the endocrine islets, amyloidosis (Su et al., 2012) and

reduced vasculature density (Chen et al., 2021a) have been
reported as age-associated histological changes. Islet amy-
loidosis, or amyloid deposit, which mainly occurs in the
pancreas of T2D patients and is strongly associated with islet
dysfunction, affects 6% of non-diabetic individuals after
80 years of age (Su et al., 2012). Both the prevalence of islet
amyloidosis and the frequency of affected islets increase
with age (Cornwell and Westermark, 1980; Su et al., 2012).
In addition, the instantaneous and dynamic hormone output
of islets also relies on rich vascularization (Ballian and
Brunicardi, 2007; Gorczyca et al., 2010). By comparing
adult and aged mice, the decreased number of capillaries and
arterioles, but not in perivascular cells, is also observed in the
aged pancreas (Chen et al., 2021a). Chen et al. (2021a) also
discovered a distinct age-dependent subset of endothelial
cells, which supports β cell expansion but declines during
aging. Due to the invasiveness of obtaining pancreas biop-
sies, these microscopic alterations can only be assessed as
aging biomarkers in research so far. Luckily, some of the
above alterations can be partially reflected by the measure-
ments from medical imaging. For instance, pancreas atrophy
can be reflected by the pancreas volume measurements from
CT/MRI/US (Caglar et al., 2012; Sato et al., 2012; Wang et
al., 2021b; Yoon et al., 2020), fibrosis by pancreas hardness
measurements from EUS-elastography (Janssen and Papa-
vassiliou, 2014), and fatty replacement by steatosis mea-
surements from CT (Meier et al., 2007) or MRI (Li et al.,
2011b; Sato et al., 2012).

Cellular alterations
Cellular alterations of each cell type in the pancreas are
shown in detail (Table S15 in Supporting Information).
Generally, the cellular proliferation rate in the pancreas de-
creases with aging, not only in the endocrine and exocrine
cells but also endothelial cells and stellate cells (Chen et al.,
2021a; Chen et al., 2009; Fitzner et al., 2012; Reers et al.,
2009; Takahashi et al., 2012). Here, cell type-specific age-
related characteristics which have been extensively docu-
mented are introduced (Figure 22; Table S15 in Supporting
Information).
(1) Exocrine cells. A critical alteration of exocrine pan-

creatic aging is acinar atrophy, which is commonly accom-
panied by ADM, a critical contributor to lobulocentric
atrophy and ductal cell hyperplasia (Detlefsen et al., 2005;
Matsuda et al., 2017). Metaplasia between different cell
types occurs through multiple mechanisms, including
dominant proliferation or loss of one cell type, transdiffer-
entiation or dedifferentiation of specific cells, and abnormal

activation of progenitor cells (Tosh and Slack, 2002). Simi-
larly, ADM is a process that acinar cells reprogram into
ductal-like cells with ductal cell characteristics (Jiang et al.,
2022; Pour et al., 1982). Early ADM cells express both
ductal (e.g., CK19) and acinar markers (e.g., trypsin, amy-
lase) and established ADM cells only express ductal mar-
kers, indicating a transdifferentiating process (Esposito and
Häberle, 2022). Besides, the proliferation rate and mi-
tochondria number in acinar cells were also found to de-
crease with age in mouse studies (Nagata, 2012; Oates and
Morgan, 1986; Takahashi et al., 2012). In ductal cells, a key
age-related pathological change is oncogenic transformation,
which occurs possibly via the accumulation of gene muta-
tions, epigenetic dysregulation, telomere dysfunction, or an
altered stromal milieu (Arai and Takubo, 2007; DePinho,
2000; Risques and Kennedy, 2018). Pancreatic ductal ade-
nocarcinoma (PDAC) is the most common and lethal form of
pancreatic cancer, and one of its key risk factors is aging
(Jentzsch et al., 2020; Matsuda, 2019). Except for the
aforementioned PanIN, another main precursor of PDAC is
intraductal papillary mucinous neoplasms (IPMN). The
median ages at the time of diagnosis for IPMN and PDAC
were both over 70 years (Khan et al., 2010; Latenstein et al.,
2020).
(2) Endocrine cells. Different from age-related carcino-

genesis in ductal cells, the neoplasms in islet endocrine cells
are rarely associated with age. In contrast, the aging-related
change in islet cells accounts for the strong association of
T2D incidence with age (Halter, 2010). T2D represents 90
percent of diabetes cases and is generally associated with
insulin resistance and compensatory hyperinsulinemia,
which are early indicators of metabolic dysfunction. When
the insulin secretion from islet β cells fails to compensate for
the insulin resistance, hyperglycemia occurs and β cell dys-
function accelerates (Weir et al., 2020). Clinical studies have
shown that insulin secretion in the elderly is impaired, which
might contribute to the increasing incidence of diabetes with
age. The aging-related cellular changes in β cells include the
following aspects. (i) Decreased β cell mass and restricted
proliferation rate. Some reports have indicated a modest age-
associated reduction in β cell mass in non-diabetic subjects
(Mizukami et al., 2014; Rahier et al., 2008; Saisho et al.,
2013), which is possibly due to the restricted β cell pro-
liferation rate and increase of senescent β cell in the elderly
(Chen et al., 2009; Desgraz et al., 2011; Reers et al., 2009).
The clearance of these senescent cells by senolytics is de-
monstrated to improve insulin secretion in aged mice
(Aguayo-Mazzucato et al., 2019). (ii) β cell identity altera-
tions. β cell dedifferentiation is a critical mechanism for β
cell failure in type 2 diabetes (Talchai et al., 2012; Wang et
al., 2020b), manifested with a decrease or loss of maturity-
related genes and obtaining of progenitor gene expressions,
as well as compromised β cell function. Recently, Song et al.
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(2022b) found an almost 2-fold increase in the proportion of
dedifferentiated cells in the elderly and middle-aged groups
versus the young group. Earlier studies also reported that β
cell maturity and identity genes such as PDX1 had lower
expression in the elderly than in the younger individuals
(Avrahami et al., 2015; Mizukami et al., 2014; Reers et al.,
2009), supporting the notion of increased dedifferentiation
level during aging. Single-cell sequencing analyses in human
islets or non-human primates also revealed the age-asso-
ciated increase of transcription noise and compromised β cell
identity along with increased oxidative stress, increased
unfolding protein response and ER stress, downregulated
transcription factor expressions, and impaired proteostasis
(Enge et al., 2017; Li et al., 2021b; Shrestha et al., 2022).
Similar to the histological alterations, these aging-related
cellular changes also need to acquire the pancreas tissue,
therefore their application is restricted to aging biomarkers
research. Developing non-invasive or minimally invasive
biomarkers for pancreatic aging and establishing the asso-
ciation between these biomarkers with the histological and
cellular alterations during aging are urgent for pancreatic
aging prediction.

Molecular changes
Driven by intrinsic and external factors, pancreatic aging is
caused by interlinked molecular changes over time. In recent
years, with the aid of cutting-edge technologies, especially
those based on omics (genomics, epigenomics, tran-
scriptomics, proteomics and metabolomics), novel bio-
markers of pancreatic aging have been identified (Table S15
in Supporting Information). More importantly, these ap-
proaches provide the potential for identifying previously
unknown interconnections among different biomarkers as-
sociated with pancreatic aging.
(1) Genomic instability. Mutational loads are considered to

be positively correlated with pancreatic aging. Cells har-
boring DNA sequence rearrangements, which accumulated
in aged pancreas, led to an increased mutation frequency
(Wiktor-Brown et al., 2006). The most common method to
study somatic mutations is to perform whole genome se-
quencing or whole exome sequencing, which hinders the
discovery of rare mutations. However, single-cell genomic
sequencing or DNA sequencing of many cells originating
from the same clone in vitro is capable of uncovering rare
mutations but costly. Enge et al. (2017) developed a com-
putational method for determining genetic variation asso-
ciated with aging using scRNA-seq data collected from
pancreata with donors spanning six decades of life. This
identified genome instability as a novel age-dependent sig-
nature in endocrine cells, characterized by high rates of C>A,
C>G and C>T substitutions for the transcribed strand related
to oxidative stress in aged cells. This mutational signature
may serve as a candidate biomarker of pancreatic aging.

Consistently, 8-OHdG (Reiter et al., 1999; Shi et al., 2004), a
major oxidative DNA damage marker, has been observed to
be higher in aged rodent pancreas. Additionally, the free base
of 8-OHdG, namely 8-hydroxyguanine (8-OHG), was de-
tected to be elevated in plasma samples from diabetic pa-
tients and positively correlated with endocrine dysfunction
(Shin et al., 2001). This may indicate the potential of 8-OHG
as a plasma biomarker of pancreatic aging.
(2) Epigenomic dysregulation. Epigenomic changes are

also of great predictive or diagnostic value in pancreatic
aging and related diseases, as extensive studies have linked
the dysregulation in histone modification or DNA methyla-
tion to pancreatic aging (Avrahami et al., 2015; Bacos et al.,
2016; Horvath, 2013; Li et al., 2019b; Sandovici et al., 2011).
For example, Hnf4a, a transcription factor involved in reg-
ulating insulin secretion, was epigenetically silenced with
age (Sandovici et al., 2011). In aged rat islets, the Hnf4a
enhancer and its distal P2 promoter were enriched with re-
pressive marks H3K9me2 and H3K27me3, while lacking
active marks H3Ac and H3K4me1, thus causing impaired
promoter-enhancer interaction and its gene expression
(Sandovici et al., 2011). Additionally, in mice, aging-asso-
ciated methylation changes explained the decline in pro-
liferative capacity and enhanced insulin secretion in β cells
of old mice (16–20 months) (Avrahami et al., 2015). Pro-
moters of genes involved in cell-cycle, such as Ki-67
(MKi67), cyclin D3 (Ccnd3), and Plk1, became de novo
methylated, and their expression was decreased during β cell
aging. Whereas, the differentially methylated regions asso-
ciated with genes involved in β cell function, such as Foxa2
and NK6 homeobox 1 (Nkx6-1), and cell cycle inhibitor
Cdkn2a became demethylated with age, and their expression
was increased (Avrahami et al., 2015). And the methylation
level of the aging-associated differentially methylated pro-
moters could be partially reversed via rejuvenation strategies
(Chondronasiou et al., 2022). A cohort study of genome-
wide analysis for DNA methylation in islets from donors
aged 26–74 years identified loci with elevated DNA me-
thylation levels with age (Bacos et al., 2016). Some age-
associated DNAmethylation changes in blood can mirror the
changes in islets. For example, the methylation level of CpG
sites located in promoter regions of four and a half LIM
domains 2 (FHL2) was increased with age both in islets and
blood (Bacos et al., 2016). The increased methylation hin-
dered binding of repressive transcription factors, thereby
enhancing FHL2 expression (Bacos et al., 2016). Interest-
ingly, high expression level of FHL2 was closely correlated
with high blood HbA1c level (Fadista et al., 2014; Krus et al.,
2014; Taneera et al., 2012) and its level was much higher in
blood samples of T2D patients compared to that of the
healthy donors (Solimena et al., 2018). Accordingly, FHL2
deficiency improved a series of pancreatic functions, such as
insulin secretory capacity of pancreatic islets and glucose
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tolerance, further indicating the potential of FHL2 methy-
lation as a biomarker and target for therapeutic interventions
on pancreatic aging (Habibe et al., 2022).
(3) Transcriptomic alterations. Increasing efforts have

been devoted to characterize the aging-associated tran-
scriptomic changes in pancreas, including (i) increased
transcriptional noise. Single-cell transcriptomic analyses
identified pancreatic α and β cells from older individuals
with increased transcriptional noise in both human and non-
human primates, implying the aggravated heterogeneity of
aged pancreatic cells (Enge et al., 2017; Li et al., 2021b;
Shrestha et al., 2022). (ii) Increased expression of cellular
senescence markers. Extensive studies measured the mRNA
and protein levels of CDKN2A, DNA damage response
factor (TP53BP1), transmembrane tyrosine kinase (IGF1R),
and the genes encoding SASP factors such as IL-6 and IL-8
to indicate the senescent state of aged pancreatic cells
(Aguayo-Mazzucato et al., 2019; Arda et al., 2016; El-Far et
al., 2020; Enge et al., 2017; Helman et al., 2016). (iii) De-
creased expression of cellular function and identity genes.
Decreased expression of key β cell transcription factors such
as MAF bZIP transcription factor A (MAFA), pancreatic and
duodenal homeobox 1 (PDX1), NKX-6.1, neuronal differ-
entiation 1 (NEUROD1), FOXA2 and hepatocyte nuclear
factor 4 alpha (HNF4A), solute carrier family 2 member 2
(GLUT2), and insulin (INS) in aged mammalian β cells, is
associated with the dedifferentiation of β cells that probably
contributes to diabetic β cell failure (Aguayo-Mazzucato et
al., 2019; Ihm et al., 2007; Odom et al., 2004; Shrestha et al.,
2022; Talchai et al., 2012). (iv) Increased ER stress and
unfolded protein response. In senescent β cells, protein
synthesis was increased to meet the higher demand for glu-
cose metabolism, which overloads the ER and triggers ER
stress response and UPR pathways (Gonzalez-Teuber et al.,
2019; Iwawaki et al., 2004; Kalwat et al., 2021; Lee and Lee,
2022). In aged human islets, a chronic state of ER stress was
observed, which contributed to β cell secretory dysfunction
and/or death (Shrestha et al., 2022). HSPA5 and X-box
binding protein-1 (XBP-1), encoding key regulators of ER
stress and UPR, and HSP90B1, encoding a molecular cha-
peron, were transcriptionally increased in aged β cells when
early adaptive events were present (Li et al., 2021b; Shrestha
et al., 2022). The β cell-specific age-related upregulation of
HSP90B1, verified to be a key insulin secretion regulator,
may serve as a potential biomarker for β cell aging. (v) In-
creased autophagy. Autophagy-associated genes like lyso-
some-associated membrane protein 1 (LAMP1, lysosome
marker) were transcriptionally increased in human and rat
aged β cells, together with elevated LAMP1 and microtubule
associated protein 1 light chain 3 alpha/beta (LC3A/B, au-
tophagosome marker) protein levels, indicating that the ex-
tent of pancreatic autophagy is positively correlated with age
(Shrestha et al., 2022; Wang et al., 2013b). (vi) Enhanced

cellular interaction. Cell-cell communications were shown to
be enhanced in aged islets, especially the interaction between
the ligand transthyretin (TTR) expressed by α cells and its
receptor discoidin domain receptor tyrosine kinase 1
(DDR1), or that between sortilin related receptor 1 (SORL1)
upregulated in aged β cells and its ligand midkine (MDK)
highly expressed in all four kinds of aged islet cells, implying
that the altered microenvironments in aged pancreatic islets
might give rise to disruption of proteostasis and activated
UPR in aged β cells (Li et al., 2021b).
(4) Aberrant posttranslational modification. PTMs are in-

creasingly being recognized as important markers of organ
aging. Glycated and nitrated proteins, the non-enzymatically
modified proteins, accumulated in aged pancreatic islets.
Kehm et al. (2018) observed an accumulation of advanced
glycation end products (AGEs), such as pentosidine, arg-
pyrimidine and MG-H1, and nitrated proteins (3-nitrotyr-
osine, 3-NT) in the islet vascular system of old mice. Since
the formation of AGEs has been reported to be associated
with β cell aging and contributed to the decline in insulin
secretory capacity of β cells, thereby rendering them po-
tentially valuable protein biomarkers of pancreatic islet
aging (Coughlan et al., 2011; Lim et al., 2008; Zhao et al.,
2009). Moreover, other modifications, such as SUMOylation
and O-GlcNAcylation have also been identified to play
crucial roles in regulation of β cell function and viability
during pathological processes (Akimoto et al., 2007; Li et al.,
2020c). For instance, Akimoto et al. (2007) found a global
increase in O-GlcNAcylated proteins in the diabetic rat
model, which was accompanied by impeded glucose-sti-
mulated insulin secretion. Despite these important dis-
coveries, further research is warranted to uncover the roles of
these PTMs in the physiological aging of the pancreas, with
the goal of defining biomarkers and potential therapeutic
targets for pancreatic aging.
(5) Metabolic disturbance. During aging, the endocrine

pancreas undergoes metabolic changes, contributing to a
deregulated glucose homeostasis. Mitochondria play essen-
tial roles in stimulus-secretion coupling in β cells. Depletion
of mtDNA copy number is associated with impaired insulin
secretion in pancreatic β cell lines (Wollheim, 2000). In
isolated human islets, there was a negative correlation be-
tween mtDNA copy number and islet donor age, suggesting
decline in mtDNA copy number might be an age-related
characteristic of β cell (Cree et al., 2008). Meantime, in β
cells, elevated mitochondrial respiration subsequently in-
duced [Ca2+] influx through cell membrane localized vol-
tage-gated [Ca2+] channels and consequently triggering
insulin exocytosis (Westacott et al., 2017; Wollheim and
Maechler, 2002). By examining β cell [Ca2+] and electrical
communication during aging in mouse and human islets,
Westacott et al. (2017) found that there was a decline in the
coordination of [Ca2+] dynamics, gap junction coupling, and
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insulin secretion dynamics with age, indicating an age-re-
lated decay in stimulus-secretion coupling in β cell. In ad-
dition, aged mouse islets show increased glycolysis and
altered cytosolic NAD metabolism, affecting β cell function
and identity, similar to that seen in diabetic islets (Murao et
al., 2022). Metabolite profiling identified 1,5-AG, 5′-me-
thylthioadenosine (5′-MTA), X-11315 as potential bio-
markers of pancreatic aging and T2D in human serum,
saliva, and urine samples (Mook-Kanamori et al., 2017;
Pramodkumar et al., 2016; Wang et al., 2017e; Zhang et al.,
2021c). It is worth mentioning that, for people aged 65 and
over, via the ultra-performance liquid chromatography-tan-
dem mass spectrometer (UPLC-MS/MS) approach, the
abundance of 5′-MTA was 34 percent higher in the urine of
late-onset diabetic subjects, which therefore may be a pro-
mising biomarker of pancreatic aging and T2D in human
urine (Tam et al., 2017).
Expanding molecular signatures of pancreatic aging have

been identified across a number of species and different cell
types. These studies have yielded important predictive and
diagnostic biomarkers, and have laid the groundwork for the
development of therapies for pancreatic aging and its asso-
ciated diseases.

Summary and perspectives
The question of how to accurately evaluate pancreatic aging
and predict the risk of associated diseases continues to fuel
research efforts. Given the advancements in the development
of non-invasive detection technologies, and the gradually
deepening understanding of pancreatic aging, more and more
diagnostic methods and biomarkers hold great potential for
clinical utility to evaluate pancreatic aging. Nevertheless,
efficient biomarkers to enable better judgement of the degree
of pancreas degeneration and the development of effective
intervention strategies are still needed. Additionally, com-
bining existing evaluation methods to develop diagnostic
panels could provide an efficient alternative to discovering
new pancreatic aging biomarkers. As research progresses,
we believe that imaging examinations, clinical biochemical
assays, biomarker tests and other novel methods for under-
standing pancreatic aging will provide a wealth of beneficial
opportunities for the global population.

Reproductive system aging

Aging is characterized by progressive physiological changes
and a decline in function of organisms during adulthood
(López-Otín et al., 2023). As one of the major functional
systems, reproductive system aging not only compromises
the fertility but also dampens the functions of other organs,
leading to an array of age-associated diseases. Subfertility is
one of the earliest clinical signs related to reproductive
aging. Reproductive life span of women (age at natural

menopause (ANM)) remains constant (50–52 years). A later
age at ANM is associated with a higher risk of cardiovascular
and other reproductive aging-associated chronic diseases
(Yureneva et al., 2021). Women′s fecundity starts to decline
gradually after the mid-20s and becomes more pronounced
after 35 years of age (Ahmed et al., 2020; Broekmans et al.,
2009; Kasapoğlu and Seli, 2020). In women aged ≥35 years,
the incidences of infertility, aneuploidy, and birth defects
dramatically increase. Since ovary plays a dominant role in
the female reproductive system, reduction of female fertility
over time is considered the natural consequence of ovarian
aging (Busnelli et al., 2021). Although the male reproductive
system ages more slowly, age-related decline in male fertility
is also a hallmark of male reproductive aging (Bhasin et al.,
2000). Other accompanying symptoms include a loss of li-
bido, erectile dysfunction, as well as decreases in muscle
mass and bone density, which are caused by sex hormone
dyshomeostasis and known as late-onset hypogonadism
(LOH) (Snyder, 2022). Moreover, the incidence of benign
prostatic hyperplasia and prostate cancer also increases with
age and reduces the quality of life in older men (Kaufman et
al., 2019). Here, we summarize our latest understanding of
the biomarkers of reproductive system aging, in particular of
ovary and testis, two critical reproductive organs in female
and male, respectively, which are expected to play a certain
role in the diagnosis and intervention of female and male
reproductive aging (Figure 23; Table S16 in Supporting In-
formation).

Biomarkers of ovarian aging
(1) Physiological characteristics. Ovarian aging manifests as
reproductive decline until menopause, accompanied by en-
docrine dysfunction and menstrual cycle irregularities.
Subfertility is one of the earliest clinical signs in the cascade
of events associated with reproductive aging. In addition,
ovarian aging leads to declined secretion of estrogen and
inhibin-B and elevated level of follicle-stimulating hormone
(FSH), which can be easily assessed by blood test, although
these alterations do not become prominent until menopause.
Anti-Müllerian hormone (AMH) is produced by granulosa
cells of small antral follicles, not controlled by the hy-
pothalamus or gonadotropins, and independent of the men-
strual cycle. AMH and antral follicle count (AFC) represent
direct and accurate measurements of the ovarian reserve
(Broer et al., 2014; Practice, 2015).
(2) Imaging traits. The ovarian aging process is dominated

by decline in both the quantity and the quality of oocytes or
follicle reserve (Broekmans et al., 2009; Li et al., 2012;
Llarena and Hine, 2021; May-Panloup et al., 2016; Qiao et
al., 2014; te Velde and Pearson, 2002). The nongrowing
follicles (NGFs) are considered to represent the ovarian re-
serve. But direct measures of ovarian NGFs in women are
relatively rare due to the technical challenges, given histo-
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logical examination is invasive and time-intensive (Hansen,
2013). Antral follicle (2–10 mm diameter) count, visualized
by transvaginal ultrasonography, is one of the most afford-
able and easy-to-perform diagnostic methods to measure
ovarian reserve (Yureneva et al., 2021). An age-related de-
cline in the AFC can be assessed by 3D ultrasound (Kupesic
and Kurjak, 2002; Maheshwari et al., 2006; Scheffer et al.,
1999). The number of visualized follicles has been correlated
with ovarian reserve with histologic confirmation (Hansen et
al., 2011), and AFC is considered as a marker of ovarian
reserve (Hansen, 2013). Moreover, AFC is considered to be
the best marker of ovarian response to stimulation in in vitro
fertilization (IVF) cycles (Wang et al., 2021f). However, the
accuracy of counting antral follicles depends on the experi-
ence level of the ultrasonographer.
(3) Histological features. The ovary consists of the germ-

inal epithelium layer, the nonvascularized and thick fibrous-
rich layer, the cortex containing ovarian follicles, and the
medulla containing loose connective tissue and blood ves-
sels. As women enter the perimenopausal period from the
reproductive period, the ovary exhibits notable morpholo-
gical and structural degeneration. Ovarian shrinkage, fibrosis
and stiffness increase with age (Amargant et al., 2020).
Ovarian follicles are structural and functional units of the

ovary, most primordial follicles (PMFs) undergo degenera-
tion or atresia at any stage of ovarian folliculogenesis and
approximately 300,000–400,000 PMFs are retained at me-
narche. By the age of 33 on average, approximately 90% of
the ovarian NGFs are depleted (Hansen, 2013). Only 400–
500 follicles reach the ovulatory phase during the re-
productive span. At the age of about 51 years, the number of
follicles decreases to 750–1,000 when menopause ensues

Figure 23 Biomarkers of ovarian aging. Clinical markers include age-associated infertility, menopause, and decreased ovarian reserve as shown by
decreased antral follicle count revealed by 3D ultrasound imaging and serum AMH levels. Elevated serum FSH and reduced estradiol and inhibin-B levels
can be found in peri-menopause to menopause. On the ovarian tissue level, elevated inflammation, fibrosis and apoptosis in the microenvironment,
dysfunction corpus luteum, reduced number of primordial and antral follicles and elevated atretic follicles and oxidative stress products in the follicular fluid
can be considered as major biomarkers indicative of ovarian aging. At the cellular and molecular levels, oocytes exhibit age-associated aneuploidy, reduced
cohesin, reduced DNA damage repair, increased DNA damage, altered epigenetic modifications, shorter telomeres, reduced expression of antioxidant genes,
elevated mtDNA mutation and mitochondria dysfunction, inflammatory response and apoptosis. Reduced steroid synthesis and expression of antioxidant
genes, elevated inflammatory response, apoptosis, autophagy, and advanced glycation end products in granulosa cells surrounding the oocytes within the
follicles or in follicular fluid provide convenient non-invasive biomarkers to indicate oocyte quality with increasing maternal age.
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(Zhu et al., 2022c). Ovarian biopsies are not an adequate
technique for the assessment of ovarian reserve due to the
irregular distribution of ovarian NGFs within the ovarian
cortex (Lass, 2004). Additionally, the depletion rate of NGFs
accelerates in reproductive older women compared with
younger women (Gougeon et al., 1994). Recently, a quanti-
tative morphometric analysis using modern stereology
techniques has been employed to define the ovarian reserve
in the primate monkey (Tu et al., 2022).
(4) Cellular alterations. Unlike most somatic cell organs,

germline stem cells have not been found in adult ovaries
(Hainaut and Clarke, 2021). Absence of germline stem cells
directly affects ovarian tissue homeostasis and function.
Exhaustion and no-replenishment of oocytes due to the ab-
sence of neo-oogenesis result in depletion of follicle reserve
and thus, menopause inevitably ensues. Therefore, depletion
of the PMF pool caused by massive follicular atresia and
periodic ovulation is the fundamental cause of ovarian aging.
The age-related decline in female fertility is also attribu-

table to the oocyte quality (Bentov et al., 2011; Broekmans et
al., 2009; Keefe et al., 2015; Navot et al., 1991). Many
factors significantly contribute to the poor oocyte quality
associated with maternal aging. Among them, mitochondrial
dysfunction, ROS, recombination failure, cohesin dete-
rioration and spindle assembly checkpoint dysregulation are
the leading causes of oocyte aneuploidy (Charalambous et
al., 2023; Mikwar et al., 2020; Zhu et al., 2022c).
Decreased mitochondrial biogenesis, impaired mitochon-

drial homeostasis, and free radical imbalance play critical
roles in ovarian aging (Wang et al., 2017c). Mitochondrial
genome, lacking of protective histones, is particularly sus-
ceptible to oxygen free radicals attack and to somatic mu-
tation development (Busnelli et al., 2021). MtDNA mutation
exacerbates female reproductive aging via impairment of the
NADH/NAD+ redox (Yang et al., 2020). Women aged
≥35 years with a poorer ovarian response are often char-
acterized by a higher incidence of 4,977 bp deletion and a
lower mtDNA copy number (Chan et al., 2005). Moreover,
mtDNA T414G mutation of the human oocytes increases in
an age-dependent manner (Barritt et al., 2000). Also, gran-
ulosa cells from women older than 38 years have been re-
ported to contain higher levels of mtDNA deletions and
damaged mitochondria (Busnelli et al., 2021), which results
in a reduced capacity for steroid hormone biosynthesis and
an increasing ROS generation (Liu et al., 2017c; Tatone et
al., 2011).
Age-related increased ROS levels in the oocyte and other

cells in the ovary and decreased antioxidant capacity result in
oxidative stress, which decreases the oocyte quality and
significantly accelerates the ovarian aging process (Hama-
tani et al., 2004; Lim and Luderer, 2011; Ntostis et al., 2021;
Steuerwald et al., 2007; Wang et al., 2020d), supporting a
rationale for antioxidant therapy to delay ovarian aging (Yan

et al., 2022). Autophagy is also linked to oxidative stress-
driven pathologies in the aging oocyte and surrounding
ovarian environment (Peters et al., 2020). The link between
accumulating ROS and mtDNA damage is well-known with
age (Loeb et al., 2005). The mtDNA content of cumulus cells
may be considered as a biomarker for IVF outcomes with age
(Yang et al., 2021). Moreover, a single-cell transcriptomic
atlas of young and aged non-human primate (NHP) ovaries
reveals declined expression of GPX1 and GSR in early-stage
oocytes or reduced expression levels of IDH1, PRDX4 and
NDUFB10, for oxidoreductase activity, in granulosa cells
that could provide specific molecular biomarkers to char-
acterize oocyte quality and indicate ovarian aging in primates
(Wang et al., 2020d).
Human oocyte aneuploidy is attributed to inherent meiotic

spindle instability, increased merotelic attachments, and age-
related changes in kinetochore and chromosome architecture
(Das and Destouni, 2023). Age-related spindle abnormality
and chromosome misalignment reduce the oocyte quality
and contribute to the higher prevalence of aneuploidy in
women with advanced age (Battaglia et al., 1996; Broek-
mans et al., 2009; Capalbo et al., 2013; Charalambous et al.,
2023; Hunt and Hassold, 2008; Keefe et al., 2015). Mean-
while, actin cytoskeleton organization that supports the oo-
cyte spindle is also notably downregulated in oocytes with
age (Gou et al., 2022). Premature separation of sister chro-
matids and misaligned chromosomes detected in cytogenetic
studies of human oocytes are associated with the age-related
reduction of cohesin proteins, including Rec8, SA3, and
SMC1β, which are not replenished with age (Charalambous
et al., 2023; Chiang et al., 2010; Duncan et al., 2012; Jess-
berger, 2010; Liu and Keefe, 2008; Xu et al., 2005). Spindle
abnormalities in human oocytes can be detected non-
invasively using polarized light microscopy (Keefe et al.,
2003). Moreover, biopsies of polar bodies from the oocytes
of women undergoing IVF demonstrate high rates of pre-
mature sister chromatid separation with age (Capalbo et al.,
2013; Christopikou et al., 2013).
Intercellular communications between oocytes and sur-

rounding granulosa cells or cumulus cells (CCs) are critical
for folliculogenesis in development as well as in maintaining
ovarian function. Granulosa cells provide nutrients and me-
chanical support for oocytes and follicle development and
homeostasis (Eppig, 1991; Wigglesworth et al., 2013). Se-
nescence of granulosa cells, CCs and stromal cells can lead
to inflammation and fibrosis (Secomandi et al., 2022; Tu et
al., 2022). Moreover, ovulation is an intensely inflammatory
process that generates ROS and leads to oxidative damage
(Duffy et al., 2019). A unique population of macrophage-
derived multinucleated giant cells, found in reproductively
old mouse ovaries, is considered as functional drivers of
inflammation and fibrosis in ovarian aging (Foley et al.,
2021; Umehara et al., 2022). Additionally, the age-associated
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increase in collagen and decrease in hyaluronan are con-
served in the human ovary (Amargant et al., 2020). Also,
accumulation of AGEs products at the level of the ovarian
follicle might trigger early ovarian aging (Li et al., 2012;
Pertynska-Marczewska and Diamanti-Kandarakis, 2017;
Stensen et al., 2014; Tatone and Amicarelli, 2013; Tatone et
al., 2008). Measurement of AGEs in granulosa cells or on the
surface of follicular fluid-derived cells may be used as a
biomarker of ovarian aging.
(5) Molecular changes. Early oocytes despite in a dormant

state are particularly susceptible to DNA damage due to long
exposure to chronic inflammation and oxidative stress in the
ovarian microenvironment. The DDR pathway to guard the
genome stability may represent the unifying link between
oocyte quality and age (Das and Destouni, 2023). DDR has
been identified to be the key regulator of ANM by genome-
wide association studies (Stolk et al., 2012). Recently, 290
genetic determinants of ovarian aging are identified, and
assessed using normal variation in ANM. Women in the top
1% of genetic susceptibility have an equivalent risk of pre-
mature ovarian insufficiency (POI) to those carrying mono-
genic FMR1 pre-mutations. The identified loci implicate a
broad range of DDR processes across the life-course to shape
the ovarian reserve and its rate of depletion (Ruth et al.,
2021). Earlier, genomic markers such as FMR1 premutation
can be regularly used to predict ovarian reserve (Wood and
Rajkovic, 2013). Through whole-exome sequencing in a
cohort of 1,030 patients with POI, another study detected 195
pathogenic/likely pathogenic variants in 59 known POI-
causative genes and identified 20 novel POI-associated
genes with a significantly higher burden of loss-of-function
variants (Ke et al., 2023). Quantification of increased DNA
oxidation (8-OHdG-positive) and damage (γH2AX-positive
granulosa cells) by immunofluorescence microscopy also
serve as biomarkers of ovarian aging (Wang et al., 2020d).
Progressive telomere shortening is associated with the age-

related decrease in the quality of oocytes (Keefe et al., 2006).
With human age, aneuploid embryonic cells possess sig-
nificantly less telomere DNA than euploid embryonic cells at
the cleavage stage (Treff et al., 2011). Polar body (PB) DNA
is remarkably similar to that of the oocyte, PB telomere
content thus provides a promising biomarker of oocyte aging
(Keefe et al., 2015). Also, shortened telomere length and
diminished telomerase activity are associated with bio-
chemical primary ovarian insufficiency (Xu et al., 2017).
Measurement of telomere length in peripheral blood leuko-
cytes or granulosa cells could serve as biomarkers of ovarian
aging and POI.
(6) Secretory factors detectable in biofluids. Markers of

ovarian reserve include hormone levels and sonographically
measured features of the ovaries. These markers can be
useful as predictors of oocyte yield following controlled
ovarian stimulation and oocyte retrieval.

AMH is a dimeric glycoprotein produced by granulosa
cells of preantral (primary and secondary) and small antral
follicles with a diameter of about 4 mm and regulates re-
cruitment and maturation of follicles from the primordial
follicle pool (PFP) (Broekmans et al., 2009; Visser et al.,
2006). AMH prevents PFP depletion by reducing phos-
phorylation and maintaining activation of FOXO3a (Llarena
and Hine, 2021). AMH levels are relatively stable across the
menstrual cycle and no seasonal difference in AMH levels is
observed (Long et al., 2018). With the decrease in the
number of preantral follicles and small antral follicles, AMH
serum levels become diminished and will invariably become
undetectable near menopause, therefore, serum AMH levels
are the best available biomarker of a woman’s ovarian re-
serve and may provide an index of age at menopause (Birch
Petersen et al., 2015; Freeman et al., 2012; Tehrani et al.,
2022; Toner and Seifer, 2013). Similarly, serum AMH levels
appear to be high in monkeys from young to middle re-
productive age, but noticeably declined from middle (from
the age of 11 or 12 years) to old age (Long et al., 2018; Tu et
al., 2022). Nevertheless, AMH may not reflect oocyte health
or chances for conception, age is thus the only current marker
of oocyte quality in determining success rates with fertility
treatments (Bishop et al., 2017; Cedars, 2022; Ulrich and
Marsh, 2019). However, low serum AMH levels are asso-
ciated with increased risk of embryo aneuploidy in women of
advanced age (Jiang et al., 2018).
Elevated serum FSH levels at relatively late reproductive

age and the cycle-specific nature of its measurement high-
light its limitations as a marker of true ovarian reserve
(Hansen, 2013). Clinical manifestations of subfertility as
well as values of FSH>10 mIU mL−1 or AMH <1.0 ng mL−1

can serve as the criteria for diagnosing decreased ovarian
reserve (DOR). The nature of DOR can be physiological
when a woman is over 40 years old (Yureneva et al., 2021).
An estimated 10% of the general female population will
experience an accelerated loss of ovarian reserve, pre-
sumably from a more rapid rate of follicular atresia, leading
to a loss of fertility in the mid-30s and early menopause by
age 45 (Bishop et al., 2017; Ulrich and Marsh, 2019).
BMP15, GDF9, and c-KIT play critical roles in folliculo-

genesis through interaction between oocytes and cumulus
cells (Gilchrist et al., 2008). Ovarian expressions of BMP15,
GDF9, and c-KIT decrease with age (Park et al., 2020), and
their expression levels in cumulus granulosa cells could
serve as potential biomarkers of ovarian aging and predicting
oocyte developmental potential (Li et al., 2014).
Follicular fluid (FF) is easily available during oocyte pick-

up and may represent an optimal source on non-invasive
biochemical predictors of oocyte quality. Evaluating levels
of biochemical biomarkers in FF may be a noninvasive ap-
proach than extrapolating data from invasive methods like
embryo biopsy (Molka et al., 2022). FF concentrations of
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IGF1, GH and IL-6 are notably higher in women less than
35 years old with higher pregnancy than those of more than
35 years old with bad prognosis (Molka et al., 2022). Also,
exosomes and exosomal miRNAs in ovarian follicle fluid
may be potential biomarkers for evaluating oocyte quality
associated with maternal age (Revelli et al., 2009; Zhang et
al., 2021d). ROS levels from FF of women undergoing IVF
correlate with chronological age, which may be associated
with the down-regulated expression of antioxidant genes in
granulosa cells, hence can be employed as a simple, non-
invasive biomarker to assess ovarian aging (Wang et al.,
2020d).

Biomarkers of testicular aging
(1) Physiological characteristics. The testis is a critical male
reproductive organ that serves as the source of sperm and a
major supplier of the sex hormone, indispensable processes
for both male fertility maintenance and physiological
homeostasis (Mäkelä et al., 2019). However, testicular
function declines gradually as men age (Salonia et al., 2019).
Previous studies have shown that aging is negatively corre-
lated with sperm concentration, motility, normal morpholo-
gical changes, and reproductive outcomes (Johnson et al.,
2015; Matzkin et al., 2021; Sharma et al., 2015). In addition,
the sperm of elderly men are more likely to bear genetic and
epigenetic defects, leading to an elevated risk of pregnancy
loss and birth defects in offspring (Laurentino et al., 2020;
Potabattula et al., 2020). Aging also impairs testosterone
production and causes male hypogonadism, which is char-
acterized by low libido, erectile dysfunction, infertility,
obesity, muscle weakness, osteoporosis, depressed mood,
impaired cognition, and other symptoms (Kaufman et al.,
2019; Mularoni et al., 2020; Xia et al., 2020a). Testicular
aging therefore affects not only men’s reproductive func-
tions, but also their overall health status and quality of life
(Matzkin et al., 2021).
Previous studies have shown that aging testes undergo

profound alterations of germ cells and somatic cells, leading
to reduced functionality, which also provide potential bio-
markers for age-related male reproductive diseases (Jiang et
al., 2014a; Santiago et al., 2019) (Figure 24).
(2) Imaging traits. Structural imaging methodologies in-

cluding US, MRI and PET mainly provide evidence of
morphological and functional changes of testes related to the
aging process. Different studies have shown that testicular
volume decline with advancing age in middle-aged and el-
derly men (Mahmoud et al., 2003; Well et al., 2007; Yang et
al., 2011). Ultrasound, as the first choice for morphological
evaluation of male genitalia, is often used to evaluate testi-
cular volume. In addition to evaluating the changes of tes-
ticular morphology with age, MRI can be used to evaluate
spermatogenic function. Wang et al. (2018a) report that
younger men had significantly lower apparent diffusion

coefficient and higher magnetization transfer ratio than
those of older men, which may be explained by the age-
related reduction in testicular spermatogenesis function and
testosterone level. Besides, 2-deoxy-2-[18F] FDG-PET can
indirectly reflect hormone production and spermatogenesis,
two important testicular functions, by providing data of
glycolytic activity. In elderly men, the standardized uptake
value of FDG decreases with age, consistent with the testi-
cular function decline in aging (Kitajima et al., 2007; Well et
al., 2007; Yang et al., 2011).
(3) Histological Features. The most common histologic

pattern of human testicular aging is a mosaic of seminifer-
ous tubular lesions ranging from complete spermatogenesis
to complete sclerosis of the seminiferous epithelium (Per-
heentupa and Huhtaniemi, 2009). Other features include
narrowing of tubular diameter, thickening of basal mem-
brane associated with arrested spermatogenesis, interstitial
fibrosis (Perheentupa and Huhtaniemi, 2009), and basement
membrane and tunica albuginea thickening (Dakouane et al.,
2005; Johnson, 1989; Johnson et al., 1984a). Further chan-
ges in the seminiferous tubules include thinning of the
seminiferous epithelium and eventual obliteration of the
seminiferous tubules (Regadera et al., 1985; Sasano and
Ichijo, 1969). In addition to humans, similar alterations are
also reported in monkey, such as fibrosis in the interstitium
and increased thickness of the basement membrane in aged
testes (Huang et al., 2022a). Compared with young mice,
older mice have smaller testes (Gosden et al., 1982; Wolf et
al., 2000) and thicker basement membrane (Gosden et al.,
1982).
(4) Cellular alterations. (i) Germ cells. In most mammals,

germ cell numbers decrease with increasing age, resulting in
a reduced diameter of seminiferous tubules and epithelium
vacuolization (Kimura et al., 2003; Paniagua et al., 1987).
The loss of germ cells usually begins with the spermatids, but
gradually affects less mature spermatocytes or spermatogo-
nia until a completely sclerosed tubule forms (Jiang et al.,
2014a; Kimura et al., 2003). However, there have been in-
consistent findings about spermatogonia numbers during
aging, significantly decreased (Nistal et al., 1987) or re-
mained unchanged (Johnson et al., 1987). Morphological
changes like multinucleated spermatocytes and spermatids
due to the fusion of cell membranes of neighboring sper-
matocytes or spermatids in aged human testes have been
reported (Miething, 1993; Nistal et al., 1986). In the ultra-
structural level, intra-nuclear inclusions are seen in sper-
matocytes and spermatogonia, as well as spirals of
endoplasmic reticulum in cytoplasm (Paniagua et al., 1987).
Age-related alterations in spermatids include acrosome
malformation, redundant nuclear membranes, intra-nuclear
inclusions, excessive droplets in the cytoplasm, and irregular
configuration of the nuclei (Paniagua et al., 1987).
(ii) Sertoli cells. Multiple alterations associated with aging
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have been observed in the Sertoli cell of different mamma-
lian species. It has been consistently reported that the number
of Sertoli cells declined with age in rat, monkey, and human
(Huang et al., 2022a; Johnson et al., 1984b; Santiago et al.,
2019). Moreover, Sertoli cells of aged individuals show
multiple ultrastructural and histological alterations, such as
irregularly shaped nuclei, lost typical localization, enlarged
vesicles, mitochondrial metaplasia, loose and vesiculated
endoplasmic reticulum, and irregular lysosomes (Bohl et al.,
1991; Paniagua et al., 1987). Other Sertoli cell abnormalities
such as dedifferentiation and multinucleation are also re-
ported in aging males (Santiago et al., 2019). The cell
junctions of aged Sertoli cells also lose characteristic ap-
pearance and degenerate, suggesting the presence of a da-
maged blood-testis barrier in the old individuals (Huang et
al., 2022a; Jiang et al., 2014a).
(iii) Leydig Cells. Compared to other types of cells in the

testes, there have been more contradictory findings about
Leydig cells populations during aging. Some investigations
show that the number of Leydig cells was decreased in aged
testes (Mularoni et al., 2020; Neaves et al., 1985; Neaves et
al., 1984), while others present the opposite results (Honoré,
1978; Ichihara et al., 1993). It is generally accepted that the
capacity of Leydig cells to secret testosterone is declined
during aging (Jiang et al., 2014b; Wang et al., 2017d). Many
age-related changes in morphology and ultrastructure are
observed in aged Leydig cells, such as cellular atrophy,
multinucleation, intranuclear Reinke crystals, multiple va-
cuoles, as well as the accumulation of lipofuscin and lipid
droplets (Paniagua et al., 1991). These cells also develop
signs of dedifferentiation and a decreasing quantity of
smooth endoplasmic reticulum and mitochondria during
aging (Matzkin et al., 2021; Paniagua et al., 1991).
(5) Molecular changes. (i) Germ cells. The decreased

Figure 24 Biomarkers of testicular aging. Abbreviations: ADC, apparent diffusion coefficient; TV, testicular volume; MTR, magnetization transfer ratio;
SUV, standardized uptake value; LH, luteotropic hormone.
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number of germ cells in aged testes is accompanied by in-
creased apoptotic cells with age (Barnes et al., 1999). Age-
related transcriptional signatures reveals imbalance of self-
renewal and differentiation in aged spermatogonia (Huang et
al., 2022a). Further analysis in older elongated spermatids
reveals that upregulated genes are enriched in categories for
protein targeting, whereas downregulated genes were en-
riched categories for peptide chain elongation and oxidative
phosphorylation (Nie et al., 2022b). Despite being one of the
cells with the lowest spontaneous mutation rates in all human
tissues, germ cells show signs of genetic mutations with
advancing age (Crow, 2000). It has been identified that the
spermatogonia clusters displayed elongated DNA replication
time and higher risks for replication errors (Aitken et al.,
2020). Similar results have been observed in aging sperma-
tocytes, such as DNA damage and defects in DNA methy-
lation-related molecules (DNMT1 and Np95) (Selvaratnam
et al., 2015; Takada et al., 2021).
(ii) Sertoli cells. It has been reported that aging could in-

duce molecular changes of Sertoli cells. Due to the accu-
mulation of amyloid fibrils and damaged mitochondria,
Sertoli cells in aged testes develop high ROS levels (Desai et
al., 2010). Sertoli cells in aged human testes show major
metabolic changes, including dysregulation in lipid meta-
bolic pathway as well as the decline of precursor metabolites
and energy production (Nie et al., 2022b; Wang et al.,
2022e). In accordance with disruption of the blood-testis
barrier, the expression of junction components proteins such
as ZO-1, Claudin 11, Jam2, Ocln and Ctnna are reduced in
aged Sertoli cells (Huang et al., 2022a; Paniagua et al., 1985;
Paul and Robaire, 2013). Moreover, single-nucleus tran-
scriptomic profiling of young and aged NHP testes reveals
decreased WT1 causes misregulation of inter-Sertoli cell
contacts and a compromised cell identity signature (Huang et
al., 2022a). Additionally, age-associated alterations in the
cytoskeletal components of Sertoli cells have been observed,
including F-actin, vimentin, and cytokeratin (Tanemura et
al., 1994).
(iii) Leydig cells. Aged Leydig cells display dysregulation

in signaling, function, and developmental identity. The ex-
pression of inflammatory marker cyclooxygenase-2 (COX2)
and senescence-associated markers (p53, p21CIP1) increase in
aged Leydig cells (Chen et al., 2007a; Wang et al., 2005;
Zhang et al., 2020a). Aging induces ROS production in
Leydig cells, concomitant with upregulation of multiple
genes, including PRDX6, SOD2,MT2A,MT1X, NAMPT, and
HIF1A (Nie et al., 2022b). Consistent with the declined ca-
pacity of testosterone secretion, the age-related alterations of
Leydig cells that have been reported include decreased ex-
pression of steroidogenic mRNAs (Star, Cyp17a1, Cyp11a1,
Hsd3b6, Hsd17b3) and LH receptors (Amador et al., 1985;
Curley et al., 2019). Aged Leydig cells also upregulate
PTEN, RHOB, and ROCK1/2, which suppress cell survival

and proliferation (Nie et al., 2022b). Additionally, the up-
regulated genes in older Leydig cells are associated with
smooth muscle contraction (ACTA2, MYH11, TPM1/2,
MYL9, and FLNA), indicating that aged Leydig cells acquire
transcriptome features of peritubular myoid cells (Nie et al.,
2022b).
(6) Secretory factors detectable in biofluids. Testicular

function changes in aging processes can be assayed in blood
and semen.
(i) Blood. It has been reported that serum total testosterone

decreases by 0.4% per annum and serum free testosterone
declines by 1.3% per annum (Wu et al., 2008). LC-MS/MS
represents the gold standard and most accurate method for
testosterone evaluation; however, standardized automated
platform immuno-assay also works for total testosterone
assessment (Huhtaniemi et al., 2012). LC-MS/MS remains
the standard method for free testosterone determination.
Alternatively, free testosterone can be derived from specific
mathematical calculations, taking into account serum sex
hormone binding globulin (SHBG) and albumin levels
(http://www.issam.ch/freetesto.htm) (Vermeulen et al.,
1999).
In addition, Insulin-like peptide 3 (INSL3) is a peptide

hormone produced uniquely by the Leydig cells of the testes
(Ivell and Anand-Ivell, 2009). And from 30–40 years on-
wards, serum INSL3 concentration in the blood appears to
decline at approximately 15% per decade, serving as an ac-
curate reflection of the reduced number and differentiation
status of the Leydig cell population and hence also of their
functional capacity to produce testosterone (Ivell et al., 2013;
Toppari, 2021). INSL3 can be assessed by specific time-
resolved fluorescent immunoassay (Ivell and Anand-Ivell,
2009; Ivell et al., 2022). This well-established and validated
assay yields essentially identical values to a new LC-MS/MS
procedure (Albrethsen et al., 2018). Inhibin B is a hormonal
glycoprotein secreted by Sertoli cells. This hormone is often
used as a marker for the impairment of spermatogenesis and
can be detected by immunoassay (Chong et al., 2017). In
men, older individuals present significantly lower serum
Inhibin B already at the age of 40 (Haji et al., 1994). AMH is
a dimeric glycoprotein, which is also secreted by the Sertoli
cells and has the main role in male sexual differentiation (Xu
et al., 2021). Men exhibit declining serum AMH levels with
age after sexual maturity, as detected by immunoassay
(Chong et al., 2017; Ramezani Tehrani et al., 2017).
(ii) Semen. Adverse alterations gradually appear in semen

volume, sperm motility, and sperm function with advancing
age. Daily sperm production is negatively correlated with
male age and decreases by more than 30% in men older than
50 years (Neaves et al., 1984). One study found that men’s
semen volume decreases by 0.22 mL for every 5 years of age
(Begueria et al., 2014) and that the sperm count begins to
decrease significantly from the age of 41 years (Pino et al.,
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2020; Verón et al., 2018). Similarly, sperm total motility and
forward motility decrease with increasing male age (Johnson
et al., 2015; Verón et al., 2018). Specifically, sperm motility
decreases by 1.2% every 5 years (Begueria et al., 2014), and
progressive motility is two-fold lower in men aged 50 years
or older compared with those aged 40–50 years (Pino et al.,
2020).
Sperm DNA fragmentation index (DFI) is a common

parameter used to assess the quality of semen samples
(Agarwal et al., 2020). Many studies have found that DFI
increases with age (Evenson et al., 2020; Rosiak-Gill et al.,
2019). Men over 45 years of age exhibit higher DFI and
lower DNA stability (Deenadayal Mettler et al., 2020), and
the DFI of 60-year-old men is more than double that of 20-
year-old men (Chianese et al., 2014).
Semen analysis has been standardized by the WHO and

disseminated by publication of the most updated version of
the WHO Laboratory Manual for the Examination and Pro-
cessing of Human Semen (WHO, 2021).

Summary and perspectives
In this section, we review the biomarkers for ovarian and
testicular aging on clinical, tissue, cellular and molecular
levels. Given that many aging biomarkers vary widely in
accuracy, reliability, and invasiveness, combining multiple
biomarkers of aging that meet comprehensive criteria can
provide a more accurate assessment of aging. The emergence
of new technologies, such as single-cell sequencing, spatial
transcriptomics, bioinformatics, and artificial intelligence
used for training of age prediction models (Zhang et al.,
2022b), allows us to gain a more comprehensive under-
standing of the age-related changes in reproductive system,
which helps identify more novel and precise sets of bio-
markers and facilitate the development of early and accurate
diagnosis of reproductive system aging in clinical practice.
Yet, the final predictive relation among such sets of markers
may only be derived from long-term follow-up studies.

Hematopoietic system aging

Aging of hematopoietic system contributes to a number of
clinically significant pathologies, that include: clonal he-
matopoiesis (CH), increased incidence of hematological
malignancies, elevated frequency of age-related chronic
anemia, and dysfunction of immune system (Beerman et al.,
2010). All cells of hematopoietic system arise from the most
primitive hematopoietic stem cells (HSCs), therefore, the
age-dependent cellular and molecular changes within this
compartment contributes greatly to the functional decline of
hematopoietic system (de Haan and Lazare, 2018; Morrison
et al., 1996). CH, which most likely occurs at HSC level, is
commonly seen in human aging and has been associated with
hematopoietic disorders, cardiovascular diseases and overall

mortality (Jaiswal and Ebert, 2019; Mitchell et al., 2022).
Here, we mainly focus on the recent findings that implicate
the biomarkers of HSC aging, the intrinsic and extrinsic
factors associated with HSC aging, and the consequences of
HSC aging in hematopoietic system (Figure 25).

Physiological characteristics
Hematopoietic system aging is characterized by a gradual
disruption of hematopoietic homeostasis, leading to numer-
ous changes including reduced production of red blood cells
and lymphocytes as well as a relative increase in the pro-
duction of myeloid cells (Konieczny and Arranz, 2018).
These changes are associated with anemia, an increased risk
of infection, poor response to vaccinations, increased risk of
bone marrow failure and the development of hematological
malignancies in older people (Belyavsky et al., 2021; Pang et
al., 2011; Yamashita and Iwama, 2022). Defects in the
function of HSCs during aging are considered to be the pi-
votal factor underlying this complex process (Groarke and
Young, 2019). Most HSCs are at quiescent or dormant in a
steady-state environment, which is conducive to maintaining
their function and youthful stemness, while proliferations
will lead to depletion. Old bone marrow contains an in-
creased myeloid-dominant HSCs with a lower output of
mature blood cells per HSC, while competitive transplanta-
tion assays have revealed a reduced self-renewal, regenera-
tion potential as well as impaired homing ability for aged
HSCs (Cho et al., 2020; Dykstra and de Haan, 2008; Wilk-
inson et al., 2020). The most common hematologic disease
among elderly people is anemia, which is caused by defi-
ciencies of iron, folate, and vitamin B12, as well as chronic
inflammation. The cause of anemia has not been identified in
one-third of cases, including patients with idiopathic cyto-
penia of undetermined significance (ICUS). 30% of ICUS
patients have been found clonal expansion of HSCs with
somatic mutations (Fujino et al., 2022). All cells of the im-
mune system are derived from HSCs and immune aging
stems from HSC aging (Shaw et al., 2010). Im-
munosenescence, the age-associated alterations in the im-
mune system, has been considered to be involved in the
vulnerability to infections among elderly people. The decline
in B cell production as well as its antibody diversity may be
the reason why the elderly is less effective when vaccinated
and are more likely to develop autoimmune diseases (Hagen
and Derudder, 2020; Kim et al., 2003). Naive CD4 and CD
8 T cells gradually decrease upon aging leading to dys-
function of adaptive immunity and a subsequent predis-
position to cancers (Denkinger et al., 2015; Naylor et al.,
2005; Qi et al., 2014). The number of NK cells is increased,
but the cytotoxicity is weakened and cytokine secretion is
reduced (Mocchegiani et al., 2009). Monocytes are important
components of innate immunity and function by differ-
entiating into antigen-presenting cells such as macrophages
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and dendritic cells. During hematopoietic aging, the number
of circulating neutrophils and monocytes increases but their
function decreases. It is manifested by a decrease in the
migration of neutrophils to stimuli and a decrease in the
phagocytic activity of macrophages, which affects the innate
immune system (Mogilenko et al., 2022). A recent study
defines pluripotent HSCs with platelet bias, where age-re-
lated platelet count decline and functional changes are cri-
tical for thrombotic diseases (Frisch et al., 2019; Jones,
2016).

Clonal hematopoiesis
HSCs undergo multiple divisions to sustain lifelong hema-
topoiesis, they are susceptible to accumulate mutations,
which likely confer a survival advantage, resulting in higher
chance of malignancy (Groarke and Young, 2019). Mutation
in HSC and microenvironment aging lead to the imbalance of
HSC expansion and downstream blood cell differentiation,
that is, CH. DNA damage or DNA replication errors cause
somatic mutations in HSCs, driving HSCs dysfunction (Li et
al., 2022d). CH expanded stem cells usually have somatic
mutations in genes of epigenetic regulators, which are also
considered to be the driving mechanism of stem cell clonal
dominance (Buscarlet et al., 2017; Xie et al., 2014). CH
increases the risk of malignancy and is used as a biomarker
of aging and cancer prognosis (Genovese et al., 2014; Jan et

al., 2017). Transmitted through downstream blood lineages,
CH leads to abnormal circulation, which is shown to be an
independent risk factor for atherosclerotic cardiovascular
diseases and affects the function of distant tissues (Jaiswal,
2020; Misaka et al., 2023; Sidlow et al., 2020). A series of
large-scale population-based studies have found that CH
increases with age, and the proportion of CH in older people
is as high as 31% (Genovese et al., 2014; Gillis et al., 2017;
Razavi et al., 2019; Xie et al., 2014). The most common
mutated genes include epigenetic regulators (DNMT3A,
TET2, ASXL1), RNA splicing factors (SF3B1, SRSF2,
U2AF1, PRPF8), DNA repair and cell cycle regulatory genes
(PPM1D, TP53). Recent population-wide genome analysis
demonstrated that the GWAS signal of CH is enriched in the
open chromatin region of hematopoietic stem and progenitor
cells (HSPCs) and discovered novel locus fields associated
with DNA damage repair (PARP1, ATM, CHEK2), HSCs
migration/homing (CD164), and bone marrow tumorigenesis
(SETBP1) (Kar et al., 2022), further illustrating the im-
portance of CH as a marker of hematopoietic aging. Al-
though CH is observed with increasing frequency with age,
the vast majority of individuals with CH will not develop
MDS or other hematologic malignancies. To distinguish
cancer mutation-associated non-malignant CH clearly from
other forms of CH, such as ICUS and clonal cytopenia of
undetermined significance (CCUS), the concept of CH with

Figure 25 Biomarkers of hematopoietic system aging. Aged HSCs exhibit broad changes at cellular and molecular levels. The acquisition and accumulation
of driver mutations in HSCs during aging lead to CH, which enhances myeloid cells output that is associated with an increased risk of hematological
malignancies and diseases in several organs.
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indeterminate potential (clonal hematopoiesis of in-
determinate potential, CHIP) was introduced. Defined as at
least 4% cancer-related clonal mutations are present in nu-
cleated blood cells of individuals without obvious tumors
(the variant allele fraction (VAF) threshold is set to 2%),
CHIP can be used as an independent age-related risk factor
for diseases such as cardiovascular and leukemia (Jaiswal,
2020). As bone marrow has a good correlation with VAF
values in peripheral blood, the condition of HSCs in bone
marrow can be reflected by measuring VAF values in per-
ipheral blood (Hwang et al., 2018). Since the fitness effect of
each mutation is specific, VAF can not only be used as an
indicator to measure the size of the clone, but also can de-
termine the fitness brought by a gene mutation to HSC
(Venkataram et al., 2016) and the fitness effect of each
mutation can be quantified by CH developmental models
(Watson et al., 2020a). Without other hematologic abnorm-
alities, people over 70 years old are prone to appear CHIP in
peripheral blood with genetic mutations such as DNMT3A,
TET2, ASXL1, PPM1D and JAK2. A WGS study on new-
borns to the elderly of HSCs has found that some older adults
also show signs of clonal expansion without known driver
gene mutations. The hematopoietic function of adults under
65 years of age is polyclonal and has high clonal diversity,
while coming forth a sudden and general loss of clonal di-
versity after the age of 75, which proposes a new theory of
human aging. The study concluded that clonal amplification
after the age of 70 was more common than the statistical
results of existing studies. Clones with more than 1% VAF
are ubiquitous. The number of clone amplifications can reach
to 10–20 per person accounting for 30%–60% of the entire
hematopoiesis rather than just 3%–5%. These mutations are
carried early in life (Mitchell et al., 2022). A GWAS and
ExWAS study involving 27,331 CHIP mutation carriers re-
vealed common and rare variants (mCA, mLOX, mLOY, and
telomere length) in CH phenotypes, further illustrating that
CHIP represents a complex set of phenotypes with common
and unique germline genetic causes and different clinical
significance (Kessler et al., 2022). We know that loss of
HSCs diversity is associated with positive selection for
clonal proliferation carrying driver mutations. Studies of
oligoclonal competition in CH have found that although
DNMT3A is the most common gene to drive clonal ampli-
fication preferentially initiated early in life (Huang et al.,
2022f), the most common mutated gene after age 85 is not
DNMT3A but TET2 (Buscarlet et al., 2017). Even the
DNMT3A R882 hotspot mutation does not affect its ampli-
fication rate. On the contrary, U2AF1 and SRSF2-P95H
mutations, although only initiated late in life, are the fastest
drivers of CH and are considered risk factors for AML
progression (Fabre et al., 2022). The emerging evidence
suggests that mutations that drive faster clonal growth are
associated with a higher risk of malignant progression.

Cellular alterations
HSCs maintain self-renewal and differentiation potential
over lifetime in order to preserve the homeostasis of the
hematopoietic system (Mejia-Ramirez and Florian, 2020).
Young HSCs divide mainly asymmetrically, while aged
HSCs undergo symmetrical division (Florian et al., 2018).
This may explain the phenomenon that HSCs expand by 2
to10 fold in both murine and human during aging (Geiger et
al., 2013; Pang et al., 2011). The expanded aged HSC
compartment partially compensates the functional decline of
reconstitution capacity at the population level as measured
by total bone marrow transplantation assay (Harrison, 1983).
While on a per cell basis, aged individual HSC exhibits
impaired self-renewal in serial competitive transplantation
assay (Dykstra et al., 2011). Similarly, HSCs from older
donors show reduced reconstitution capacity when assayed
by xenotransplantation in immunodeficient mice (Pang et al.,
2011). In clinic, the age of the donor is a strong factor that
limits the source of HSC for transplantation, as transplanta-
tion of HSCs from old donors always associates with worse
survival of recipients (Wang et al., 2014d; Xu et al., 2019).
Aged HSCs also display a biased differentiation capacity
towards myeloid lineages with reduced lymphocyte output,
which is strongly associated with CH (Zink et al., 2017).
Aged HSCs highly express megakaryocyte-related genes,
including Selp, Vwf and CD41 (Flohr Svendsen et al., 2021;
Frisch et al., 2019; Gekas and Graf, 2013; Grover et al.,
2016). High level of CD61 is also associated with myeloid-
biased differentiation in aged HSCs (Mann et al., 2018). In
addition to the aforementioned characteristics, HSCs from
aged mice also show deficiency in their homing to and en-
grafting the bone marrow of recipient mice (Morrison et al.,
1996).
As mentioned above, HSCs reside mostly in a non-cycling

state, termed as “quiescent”, and they need to enter cell cycle
in order to either give rise to downstream progenitors or to
self-renew for repopulation (Biermann and Reya, 2022).
However, HSCs can only self-renew for a limited time
(Bernitz et al., 2016; Wilson et al., 2008). Recent studies
indicate that HSC functions are inversely correlated with the
cell divisional history. In the 5-FU-induced myeloabative
chemotherapy model, HSCs proliferate extensively and
show reduced reconstitution capacity (Lerner and Harrison,
1990). After extended serial transplantation, young HSCs
exhibit a strong feature of aging phenotype, which pheno-
copy the aged HSCs (Dykstra et al., 2011). Likewise, young
HSCs that are processed with repeated inflammatory chal-
lenges also showed several reduced functional properties,
which are usually considered as the markers of aged HSCs
(Bogeska et al., 2022). The functional decline of HSCs with
cell divisions also occurs under homeostatic conditions
(Bernitz et al., 2016; Qiu et al., 2014). A study based on the
H2B-GFP mouse model (H2B-GFP is diluted with each cell
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division) has reported that HSC loss their reconstitution
potential gradually along with cell division (Bernitz et al.,
2016). Of note, HSCs may never return back to its identical
state even if they return to quiescence phase after cell divi-
sion, but rather replicate and give rise to the HSCs with
impaired functionality (Qiu et al., 2014). The exact signaling
underlying this phenomenon is unclear but it is strongly as-
sociated with the changes in transcription and metabolism
during cell division (Hinge et al., 2020; Qiu et al., 2014;
Umemoto et al., 2018). It seems plausible that cumulative
stresses enforce HSCs to enter excessive replication during
aging, however, they only self-renew phenotypically as they
lose self-renewal potential along with each cell division. As a
consequence, the aged HSC compartment expands but the
function of individual stem cells is impaired.

Molecular changes
The aging process of HSCs is modulated by both transcrip-
tional changes and epigenetic alterations, thus far known to
be involved in a wide variety of physiological or pathological
events including, DNA damage, mutations accumulation,
telomere shorting, oxidative stress, proteostasis decline,
metabolism and epigenome remodeling (Ju et al., 2007;
Mejia-Ramirez and Florian, 2020; Raaijmakers, 2019). Aged
HSCs have high level of DNA damage accumulation, as
demonstrated by a significant increase in γH2AX foci and a
higher tail moment in the comet assay (Beerman et al., 2014;
Rossi et al., 2007; Rube et al., 2011). Increase in DNA da-
mage may result in elevated DNA mutations in aged HSCs.
Indeed, recent studies uncover that mutations associated with
CH are accumulated in aged HSCs in both healthy murine
and human, and consequently increase the myelopoiesis and
age-related diseases in other organs (Ahmad et al., 2023;
Chin et al., 2022; Mitchell et al., 2022). Transcriptional
analyses reveal that aged HSC are distinct from young HSCs
at transcriptomic level. The expression of genes involved in
inflammation, protein quality control and stress response are
enriched in aged HSCs, while genes associated with DNA
repair and chromatin remodeling are down-regulated in aged
HSCs (Chambers et al., 2007). Aged HSCs also exhibit up-
regulated myeloid genes and down-regulated lymphopoiesis-
related genes, which correspond to myeloid-biased differ-
entiation capacity of aged HSCs (Sun et al., 2014).
The genomic alterations that occur in HSCs during aging

have been extensively studied. Recent emerging evidence
highlights that loss of epigenetic regulations may drive HSC
aging and strongly contribute to neoplastic transformation in
hematopoietic system (Zhang et al., 2020d). Studies have
uncovered the functional importance of epigenetic regulation
in HSC aging at several levels, including DNA methylation,
histone modification, and changes in chromatin accessibility.
The DNA methylome is generally stable in HSC during
aging, however, DNA methylation is enriched specifically at

the promoter regions of lymphoid-related genes, while genes
responsible for myeloid output show reduced DNA methy-
lation (Beerman et al., 2013). Interestingly, experimental
evidence shows that a higher proliferative rate leads to DNA
hypermethylation in HSCs, suggesting that the cell pro-
liferation and DNA methylation are coordinated in mod-
ulation of HSC aging process (Beerman et al., 2013).
Alterations of histone modifications also occur in HSC
during aging. H3K4me3 peaks are more widespread in aged
HSCs and are more enriched in genes associated with HSC
identity (Sun et al., 2014). This change is correlated with the
enforced self-renewal of aged HSCs (Sun et al., 2014). Upon
aging, H4K16ac peaks are reduced and exhibit a loss of
epipolarity redistribution, which is correlated with the
functional decline of aged HSCs (Grigoryan et al., 2018).
More recently, an integrated analysis of transcriptome and
chromatin accessibility reveals that differentially open ac-
cessible regions (open DARs) in aged HSCs are preferably
enriched in the regions that are activated in response to ex-
ternal stresses (Itokawa et al., 2022). However, an acute in-
flammatory stress in young HSCs does not exhibit the same
persistent modulation of chromatin accessibility changes as
that observed in the aged HSCs. This finding puts forward a
conjecture that the signals generated following stress ex-
posure may be epigenetically inscribed in HSCs during
aging, thus endowing aged HSC to be more responsive to
external stimuli (Itokawa et al., 2022). A previous study
showed that HSCs gain long term epigenetic modifications
in accessibility of specific myeloid lineage enhancers, that
allows them to respond to secondary infections more effi-
ciently (de Laval et al., 2020). This “epigenetic memory”
mechanism endows young HSCs with enhanced function to
rapidly differentiate in order to meet the need for more
myeloid cells in the context of inflammation. However, the
increased responsiveness of aged HSCs to external stimuli
by the trained “epigenetic memory” may lead to reduced
stemness and eventually cause HSC exhaustion. HSCs in
human also undergo an age-associated epigenetic repro-
gramming (Adelman et al., 2019). Of note, the changes in
epigenetic modifications and their targeting pathways in
aged human HSCs are comparably altered in AML patients,
indicating the epigenetic reprogramming of aged human
HSCs may directly promote cancer formation in hemato-
poietic system (Adelman et al., 2019).
The genome is hierarchically organized in the nucleus and

higher-order of chromatin structure including, chromosome
territories, A/B compartments, topologically associating
domains (TADs) and enhancer-promoter loops are involved
in gene regulation (Szabo et al., 2019; Wang et al., 2016c;
Zheng and Xie, 2019). The impact of epigenetic modifica-
tions of DNA and histone on HSC aging has been thoroughly
investigated, the role of higher-order chromatin structure in
regulating HSC aging still needs to be uncovered. Under-
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standing the role of higher-order epigenome organization
and how it interacts with gene regulation in HSCs during
aging would facilitate the discovery of novel targets to
control blood cancer formation.

Secretory factors detectable in biofluids
Increase in chronic inflammation is a driving force accel-
erating HSC and hematopoietic system aging (Caiado et al.,
2023; Caiado et al., 2021). Recent studies have highlighted
the emerging role of inflammation signals, particularly the
secretory factors in both bone marrow microenvironment
and the systemic circumstance on shaping the hematopoietic
system. Upon aging, hematopoietic stem and progenitor cells
niches undergo degeneration and remodeling. In aged mice,
HSC-supporting niche cells close to the bone, including ar-
terioles, transition zone vessels (TZV) and nestin-expressing
MSC, are reduced (Ho et al., 2019; Raaijmakers, 2019).
Whereas the niches distant from the bone, such as capillaries
and nestin-positive stromal cells, are expanded (Ho et al.,
2019; Raaijmakers, 2019). The increase in the sympathetic
noradrenergic fibers triggers IL-6 secretion of MSCs and
results in megakaryopoiesis of aged HSCs (Ho et al., 2019).
In addition, the number of LepR+ Osteolectin+ osteogenic
progenitors is lower in aged bone marrow niche. This results
in reduced stem cell factor (SCF) secretion and contributes to
reduction of common lymphoid progenitor (CLP) as well as
impaired lymphopoiesis of aged mice (Shen et al., 2021).
Furthermore, the accumulation of adipocytes and altered
expression of extracellular vesicles in aged bone marrow
also accelerates HSC aging and disturbs hematopoiesis
(Ambrosi et al., 2017; Goldberg, 2021). Microbiota altera-
tions are strongly associated with increased inflammation
during aging (O’Toole and Jeffery, 2015; Trowbridge and
Starczynowski, 2021). A recent study discovers that a mi-
crobiome-IL-1 axis functions as a self-sustaining driver of
HSC aging (Kovtonyuk et al., 2022). Targeting IL-1 or an-
tibiotic administration can reverse the myeloid-biased dif-
ferentiation phenotype of aged HSC (Kovtonyuk et al.,
2022).
Apart from changes in secretory factors originating from

HSC bone marrow micro- and the systemic environment,
HSPCs also secrete inflammatory factors in response to in-
flammatory stimuli (Zhao et al., 2014). For instance, HSPCs
produce IL-6 in response to TLRs signaling activation,
which acts on the adjacent HSPCs in a paracrine manner to
promote HSPCs differentiation in order to meet the acute
need of blood cell generation (Zhao et al., 2014). As aged
HSCs exhibit higher responsiveness to inflammation, in-
trinsic changes in aged HSCs may also contribute greatly to
the enlarged pool of secretory factors during aging (Chen et
al., 2019b; Mann et al., 2018). Furthermore, the increased
number of myeloid cells originated from aged HSCs due to
the CH boosts the systemic inflammatory cytokine secretion,

and may in turn negatively affect the aged hematopoietic
system (Jaiswal and Libby, 2020; Yura et al., 2020).
The aging-associated hematological disorders are also

strongly connected to increased level of inflammatory fac-
tors during aging. Several studies have shown the relation-
ships between elevated chronic inflammation signals and
CH. The age-dependent elevation of secretory factors, such
as IFN-γ and TNFα, promote DNMT3a-mutant HSC ex-
pansion and leads to CH (Hormaechea-Agulla et al., 2021;
Liao et al., 2022). Consistent with this finding, another study
reveals that aging drives Tet2+/− CH via IL-1 signaling in
aged mice (Caiado et al., 2023). Together, these observations
point out the translational value of targeting secretory factors
to treat age-dependent myeloid malignancies.
Based on the cognition of significance of inflammatory

factors on hematopoietic system aging, interventions that
could potentially reduce the inflammatory signals, including
caloric restriction, changing the blood-borne factors via
heterochronic parabiosis and senescent cell clearance, have
been implicated to delay hematopoietic system aging. Ca-
loric restriction has been known to attenuate chronic in-
flammatory diseases via reducing circulating monocytes and
pro-growth factors (Jordan et al., 2019). Study has showed
that prolonged fasting, refeeding cycles or reduced food in-
take by 30% could reduce circulating IGF-1 levels, which
promotes HSC self-renew capacity in aged mice (Cheng et
al., 2014; Tang et al., 2016). Heterochronic parabiosis, the
pairing of a young and an aged mouse, has been widely used
in aging research to evaluate the contribution of systemic
factors that influence the aging processes (Ashapkin et al.,
2020). The rejuvenating factors from the young systemic
circulatory milieu alleviated age-associated lymphopoiesis
decline in old mice after heterochronic parabiosis (Ma et al.,
2022; Wang et al., 2022b). In line with this finding, another
study also indicates that HSCs are one of the cell types
showing high responsiveness to heterochronic parabiosis
(Pálovics et al., 2022). Clearing of senescent cells via genetic
modifications or senolytic drugs holds great promise to en-
hance regeneration potential and extend a healthy life span in
aged mice (Baker et al., 2016; Baker et al., 2011; Chaib et al.,
2022). Combating hematopoietic system aging by targeting
senescent HSCs has been tested in mice. It will be interesting
to know whether this approach could be applied to human to
ameliorate aging-related hematopoietic changes (Chang et
al., 2016). Although HSC aging is uncoupled from p16INK4a-
mediated senescence (Attema et al., 2009), pharmacological
depletion of senescent cells in aged bone marrow and the
whole body may decrease the secreted factors that have
impacts on HSC function negatively.

Summary and perspectives
Here, we have summarized the aging-related disorders in the
hematopoietic system, the biomarkers of HSC aging, and the
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causal factors that contribute to HSC aging. Extensive efforts
have been made in deciphering the mechanism underlying
hematopoietic system aging, however, the possible ap-
proaches that potentially relieve aging-associated hemato-
poietic disorders are still limited. As many of the
hematological pathologies are strongly associated with HSC
aging, interventions that target HSC aging will be clinically
important. Considering the role of CH in hematopoietic
malignancies and in non-malignant aging-associated dis-
eases, a deep understanding of the occurrence and develop-
ment of CH will be beneficial for healthy aging.

Immune system aging

Physiological characteristics
Aging of the immune system is inevitable with physiological
or pathologically induced aging, characterized by bio-
markers denoting the degradation of immune organs and
changes in the proportion and function of immune cells
(Figure 26; Table S17 in Supporting Information). Aging
disrupts the physiological balance of antigen recognition by
the immune system. On the one hand, the immune response
to foreign antigens, including pathogenic microorganisms
and tumor antigens, is weakened with age, leading to a high
incidence of cancer and a high mortality rate from viral in-
fection. On the other hand, aging elevates the recognition of
self-antigens, which contributes to the development of in-
flammation. It was recently reported that elderly people have
an increased risk of developing and dying from viral infec-
tions, especially COVID-19, mainly caused by immune se-
nescence (Chen et al., 2021c; Huang et al., 2020a). During
aging, the efficiency of antigen presentation by DCs de-
creases, inhibiting the adaptive T-cell response and antibody
response. Macrophages and neutrophils infiltrate infected
tissues more severely, leading to destructive inflammation
(Wong et al., 2022). Respiratory failure owing to severe lung
injury is the major factor contributing to the clinical death of
COVID-19 patients. The lung tissues of elderly patients with
COVID-19 show a more serious senescent state, specifically
characterized by the upregulation of cell aging markers,
SASP expression, and DNA oxidative damage. In addition,
the expression of the SARS-CoV-2 receptor ACE2 increases
gradually with age, and virus invasion also induces the up-
regulation of ACE2 expression. As a consequence, the lung
cells of elderly people are more vulnerable to SARS-CoV-2
infection, accelerating lung failure (Wang et al., 2021d).

Imaging traits
Medical imaging techniques like MRI and FDG-PET can
assess changes in the structure and function of immune or-
gans that occur with aging. Bone marrow produces various
immune cells with distinct developmental stages and other
stromal cells. Bone marrow includes both red marrow

(containing 40% fat cells and 60% hematopoietic cells) and
yellow marrow (containing about 95% fat cells and 5% non-
fat cells) according to structural differences (Krishnaraj,
1997). TheMRI technology used in bone marrow assessment
relies on the ratio of fat cells to non-fat cells, which directly
affects the signal intensity. The MRI results imply that the
percentage of fat cells increases and a large part of red bone
marrow is replaced by yellow bone marrow during aging
(Blebea et al., 2007). These changes may contribute to
physiological and histologic aspects of immune senescence.

Histological features
One of the most important hallmarks of the aging of the
human immune system is the degeneration of the thymus.
The human thymus weighs 10–15 grams at birth and de-
velops during puberty to 30–40 grams. Thereafter, the cortex
and medulla of the thymus begin to be replaced by adipose
tissue, and at an old age, the entire thymus dwindles to
roughly 10 grams (Kendall et al., 1980). Aging-related de-
generation of the human thymus includes the deconstruction
of its histological structure, reduction in thymus size and
weight, and decrease in the number of thymocytes (Mittel-
brunn and Kroemer, 2021). The thymus is one of the major
organs for T-cell development, and functional degeneration
of the thymus by aging could directly lead to a decline in
naïve T-cell production, compensatory clonal expansion of
memory T cells, and a reduction in the diversity of peripheral
T cells. Thymus degeneration could also cause decreased
functional activity of T cells, which in turn leads to a decline
in immunity, with a possible deficiency in immune tolerance
and enhancement of the autoimmune response.
The human body contains 300–500 lymph nodes, which

weigh around 100 grams in total (Cakala-Jakimowicz et al.,
2021). Through human aging, the number and volume of
lymph nodes both gradually decrease, and age-related
functional degeneration of lymph nodes starts to appear, e.g.,
fibrosis, vitrification, lipomatosis, reduction in the number of
postcapillary vessels, and morphological and functional al-
teration of the venous capillary endothelial cell linings
(Murakami, 2004). As degenerative changes accumulate, the
functional zonal structure and composition of lymph nodes
are gradually disordered: the number of lymphoid tissues in
the cortex and medulla of lymph nodes decreases, the
number and sizes of lymphoid follicle germinal centers de-
cline, the number of follicular dendritic cells reduces (Phan
et al., 2007; Szakal et al., 2002; Turner and Mabbott, 2017b),
and the level of lymph node homeostasis-associated che-
mokines (e.g., CCL19, CCL21, and IL7) drops (Becklund et
al., 2016; Chai et al., 2013; Masters et al., 2019; Textor et al.,
2016). Eventually, these aging-induced structural and func-
tional defects in lymph nodes ultimately lead to impaired
cellular homeostasis of T and B cells, a reduced capability of
antigen recognition by immune cells, and decreased humoral
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immune responses.
Aging also causes a reduction in the size and volume of the

human spleen. Structurally, the thickness of the spleen cap-
sule is affected by age: the capsule thickness develops to its
peak from birth to puberty and then starts thinning slowly
(Alex et al., 2015). In addition, follicles become irregular,
and somatic hypermutation in the germinal center of the
spleen also decreases with age (Alex et al., 2015; Banerjee et
al., 2002; Turner and Mabbott, 2017a).

Cellular alterations and molecular changes
In the aging process, many immune cell subsets in both the
innate and the adaptive immune systems are altered. The
major alterations in the immune cell populations and the
relative molecular changes in aging subjects are discussed in
this section.

Macrophages engulf and digest pathogens and act as tissue
sentinels in the innate immune system, influencing adaptive
immune responses and exerting tissue repair functions.
Macrophages consist of a heterogeneous cell population that
may differ in phenotype and behavior (Kohut et al., 2004),
and the reported age-related alterations in macrophage
functions differ according to the site (Mogilenko et al., 2022;
van Beek et al., 2019).
With their ability to quickly capture and kill invading pa-

thogenic microorganisms, neutrophils form a paramount part
of the innate immune system. During aging, neutrophils
display low migration and phagocytic ability and are more
susceptible to apoptosis when activated, which reduces their
recruitment to infection sites and phagocytosis of pathogens
(Brubaker et al., 2013). Moreover, the persistence of in-
flammatory neutrophils may impede the resolution of in-

Figure 26 Biomarkers of immune system aging. Immunosenescence leads to compromised organismal barriers and the elevated susceptibility to infection
and chronic diseases. The aged immune system is characterized by the degeneration of thymus, spleen and lymph node, the declined function the innate and
adaptive immune cells, and excessive inflammatory signaling. Abbreviations: NKp30, natural cytotoxicity receptor in natural killer cells; DNAM-1, DNAX
accessory molecule-1 (CD266); KIR, killer cell immunoglobulin like receptor; TCR, T-cell receptor; Lck, lymphocyte cell-specific protein-tyrosine kinase;
ZAP70, zeta chain of T cell receptor associated protein kinase 70; DLG1, discs large homolog 1; SLP-76, SH2 domain-containing leukocyte protein of 76 kD;
KLRG-1, lectin-like receptor subfamily G; TIGIT, T cell immunoreceptor with Ig and ITIM domains; NEAT1, nuclear paraspeckle assembly transcript 1;
MALAT1, metastasis associated lung adenocarcinoma transcript 1.
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flammation, causing tissue lesions (Sendama, 2020; Stout-
Delgado et al., 2009). Furthermore, the residencies of neu-
trophils in some organs increase with age, but the mechan-
isms and physiological function of higher neutrophil
infiltration remain unclear.
DCs are important antigen-presenting cells that build a

bridge between innate immunity and adaptive immunity.
Elderly individuals have low circulating DCs (Agrawal and
Gupta, 2011; Jing et al., 2009; Stervbo et al., 2015), and
functional disturbance has also been demonstrated in aged
dendritic cells, including decreased production of IFN I and
II, increased production of IL-6 and TNFα, and lower MHC
II molecular expression on the cell surface (Gupta, 2014;
Jing et al., 2009), all of which are associated with compro-
mised antiviral responses, pro-inflammatory bias and wea-
kened activation of T cells (Agrawal and Gupta, 2011; Jing et
al., 2009). Excessive NF-κB stimulation contributes to den-
dritic cell alteration during aging (Agrawal et al., 2009;
Panda et al., 2010).
NK cells are a group of innate immune cells with cytotoxic

properties. Age-related NK cells are characterized by com-
promised abilities in cytotoxicity, including the production of
cytokines and chemokines and interactions with DCs and
macrophages. Alterations in the expression of activation
receptors, such as NKp30, NKp46, and DNAM-1, may im-
pair the immune monitoring function of NK cells in the el-
derly (Campos et al., 2015; Campos et al., 2014). These
changes probably result in an increased risk of morbidity and
mortality in elderly individuals (Krishnaraj, 1997).
Immune senescence also results in the exhaustion of

adaptive immunity, and the number of naïve T cells drama-
tically declines, while the number of memory T cells is in-
creased. TCR diversity declines with age, and the reduced
expressions of Lck, ZAP70, DLG1, Lat, and SLP-76 have
been reported to be involved in the TCR signaling mechan-
ism (Rodier et al., 2009; Zhao et al., 2020b). Senescent T
cells present decreased SA-β-galactosidase and cytotoxic
activity, low proliferative capacity, upregulation of the ex-
pression of cell cycle arrest genes such as p16INK4 and p21CIP1

and immune checkpoint-related molecules such as Tigit,
Tim3, and CTLA-4, and decreased expression of functional
molecules such as Perforin and GzmB. These changes may
be associated with increased pro-inflammatory cytokine se-
cretion and decreased new antigen recognition (Larbi et al.,
2008; Mittelbrunn and Kroemer, 2021; Zhang et al., 2021g;
Zhang et al., 2020g). The surface markers also change during
aging, and senescent T cells lose the expression of the
costimulatory molecules CD27 and CD28 but increase the
expression of killer cell lectin-like receptor subfamily G
(KLRG-1) and CD57 (Huff et al., 2019; Zhang et al., 2020g),
so CD27−CD28−CD57+KLRG-1+ T cells can be used as an
indicator of immunosenescence. Correspondingly, the naïve
B-cell frequency and B-cell activation are impaired, and the

ability to form antibodies and antibody affinity are reduced
in elderly people, while memory B cells accumulate owing to
increased antigen stimulation (Johnson et al., 2002; Pinti et
al., 2016). The expression of costimulatory molecules
(CD27, CD40) is reduced in senescent B cells (El-Naseery et
al., 2020). Antibodies produced by B cells aimed at patho-
genic microorganisms are important to resist bacterial and
viral infections. Therefore, a decline in B-cell functions
might contribute to weak anti-infection immunity in elderly
individuals.
Secretory factors are detectable in body fluids such as

blood, urine, and CSF. Peripheral blood is a common body
fluid in which aging biomarkers are identified. Aging-related
secretory factors in the blood are often linked to the chronic
low-grade inflammatory phenotype (CLIP), which was first
described by Krabbe et al. (2004). In contrast to classical
acute inflammation, CLIP is characterized by a persistent
low-grade inflammatory state, which typically develops
during aging. CLIP is manifested by elevated levels (2 to 4-
fold increase) of inflammatory cytokines in blood serum. In
addition to the classical IL-6 and CRP, an increasing number
of proinflammatory factors have been identified to be asso-
ciated with CLIP initiation and development, including (i)
cytokines and the corresponding soluble receptors or related
molecules (e.g., IL-1, IL-8, IFN, and TNF); (ii) chemokines
(e.g., CCL2, CCL3, and CCL5); (iii) adhesion molecules
(e.g., VCAM-1, ICAM-1, and E-selectin); and (iv) acute
phase reactants of inflammation (e.g., serum amyloid A and
fibrinogen), many of which are also associated with SASP
(Chen et al., 2019a). The accumulation of lncRNAs and
miRNAs in peripheral blood was also found to be associated
with immune aging (Table S17 in Supporting Information).
Single-cell transcriptome analysis has revealed over-
expression of lncRNA NEAT1 and MALAT1 by exhausted T
cells and frailty-specific monocytes during aging (Luo et al.,
2022b).
In addition to peripheral blood, urine samples are also

commonly used for laboratory tests on age-related immune
functions. A number of urinary or fecal measurements, in-
cluding 8-OHdG, cell-free mitochondrial DNA, glucocorti-
coid metabolites, urinary C-peptide of insulin, thyroid
hormones and neopterin, have been shown to be plausible
biomarkers for inflammaging (Behringer et al., 2014; John-
ston et al., 2021; Cooper et al., 2022; Sacco et al., 2021;
Svoboda et al., 2008). EVs from urine and CSF have also
been proven insightful for reflecting parental cell properties
and remote cell-cell communication status. A study showed
that SASP cytokines and immune defense factors could be
identified in urinary EVs but not in urinary solutions. SASP-
associated factors (e.g., IL-8, IP-10, GRO, and MCP-1) were
detected at significantly higher levels in urinary EVs from
old individuals (age >60) than young adults (Yeh et al.,
2021).
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The meninges and CSF surrounding the brain encompass
immune cells and systems tightly regulated to respond to
brain antigens under pathological conditions (Louveau et al.,
2016). Several inflammaging cytokines and metabolic
components have been found to change with age (Hu et al.,
2019b; Huber et al., 2018; Solvang et al., 2022). Studies have
revealed immunological changes in CSF in the pathological
events of age-related neurodegenerative disorders such as
AD and Lewy body dementia (Gate et al., 2020; Gate et al.,
2021). More recently, aging-related single-cell transcriptome
analysis has uncovered the upregulation of lipid transport
genes (e.g., APOE, APOC2 and APOBR) in non-classical
monocytes within the CSF of elderly healthy individuals,
which highlights the critical role of lipid metabolism in in-
nate immunity and immunoregulation of the age-related CSF
system (Piehl et al., 2022).

Summary and perspectives
In this section, we summarize the biomarkers of immune
system aging that are characterized by the degeneration of
the thymus, spleen, and lymph nodes, decreased innate and
adaptive immune responses, and the excessive inflammatory
signaling. The aging of the immune system exhibits changes
in function, structure, and cellular/extracellular components.
Immunosenescence results in compromised organismal bar-
riers and elevated susceptibility to infection and chronic
diseases. Understanding these processes is required for de-
veloping more efficient interventions to modulate the se-
nescence process and minimize the negative influence of
immunosenescence.

Aging clocks and their applications

Beyond the cellular and organ levels, the heterogeneity of
aging is also reflected at the organismal and population le-
vels. Composite measures should be used to evaluate aging
at these system levels, but it is not an easy task to decide
which combination of biomarkers to use. Using various
modeling techniques, especially with the application of ar-
tificial intelligence, biomarkers measured in large cohort
studies have generated diverse prediction models of biolo-
gical age, or aging clocks. In this chapter, we introduce aging
clocks and their applications based on the nature of bio-
markers used in these models, and delve into the challenges
and complexities in interpreting these models, which are
areas for further innovation.

Phenotypic clocks

The definition of aging phenotypes is broad and can be
roughly divided into physical characteristics (e.g., facial,
skin, and brain imaging) and functional capacities (e.g.,

cognitive and psychological evaluation scores) for building
phenotypic aging clocks.
PhotoAgeClock is developed to predict chronological age

using images of eye corners with deep neural network
(DNN) and achieve the mean absolute error (MAE) of
2.3 years (Bobrov et al., 2018). Chen et al. (2015) first find
human 3D facial imaging features could be as reliable aging
markers, based on which a linear regression model had the
MAE of around 6.1 years. Later with a larger cohort, Xia et
al. (2020b) build a convolutional neural network (CNN) age
predictor and reported an error between chronological/per-
ceived age and predicted age of only ±2.79/2.90 years, and
uncovered that heterogeneity of the aging rate reached its
peak in middle age. Brain structural MRI data could also be
applied to age prediction with the MAE of 4.16 years (Cole
et al., 2017). More recently, a 3D CNN model (Yin et al.,
2023) has been introduced with a more accurate MAE of
2.3 years. Their model can reveal neurocognitive trajectories
in adults with MCI and AD and may serve as early indicators
for AD.
Psychological function changes occurring throughout the

human lifespan have been overlooked as a phenotypic bio-
marker. Zhavoronkov et al. (2020) trained a deep learning
age predictor based on social and behavioral data from a
large-scale study and obtained the MAE of 6.7 years for
chronological age prediction, which contained actionable
features that can be modified using interventions (Table S18
in Supporting Information).

Epigenomic clocks

In 1942, Waddington introduced the concept of epigenetics
by describing the influence of the environment on the de-
velopmental process of the embryo(Waddington, 2012). In
simple terms, epigenetics refers to all reversible, heritable
processes that do not alter the sequence of the genome but are
capable of regulating the expression of genes and causing
changes in the phenotype. Living organisms are constantly
influenced by the environment, which is reflected at the
cellular level, and external influences constantly alter the
intracellular phenotype. Aging is a process accompanied by
the continuous accumulation of epigenetic changes that
eventually lead to cellular, tissue, and organ degeneration
(López-Otín et al., 2023). In turn, the features of the epi-
phenomena also change continuously with the aging process
(Zhang et al., 2020d). Given that, it becomes possible to
predict biological age by measuring the level of apparent
epigenetic changes. Such a method of using epigenetic
markers to predict biological age is also known as the
“epigenetic clock”.
Epigenetic modifications include many processes, such as

DNA methylation and histone modifications. In this section,
we will mainly focus on the changes in DNA methylation in
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the aging process. DNA methylation refers to adding methyl
groups to the cytosine at the fifth position or the adenine at
the sixth position of the DNA. Methyl groups can be actively
demethylated by ten-eleven translocation (TET) enzymes,
thymine DNA glycosylase (TDG), and base excision repair
(BER) (Moore et al., 2013). In eukaryotes, 5-methylcytosine
is the most common form of methylation and usually occurs
on a cytosine located in front of guanine, hence named “CpG
sites” (Smith and Meissner, 2013). In mammals, approxi-
mately 75% of CpG sites are methylated (Tost, 2010).
Genome-wide DNA methylation is erased and re-established
during early embryonic development. Following embryonic
implantation, tissue-specific DNA methylation is gradually
established and remains stable for a considerable time (Cedar
and Bergman, 2012). This suggests that DNA methylation
plays a key role in maintaining cell fate determination and
programmed embryonic development.
Age-related changes in DNA methylation have been ob-

served in various species and tissues for decades. In 1967,
Berdyshev et al. (1967) found that the level of DNA me-
thylation gradually decreased with age in salmon. Later, si-
milar changes in DNA methylation with age were found in
mice, rats, and humans (Vanyushin et al., 1973; Wilson and
Jones, 1983; Wilson et al., 1987). In rats, DNA methylation
decreases in the brain, heart, and spleen, with no changes in
the liver and lungs but a slight increase in the kidneys (Va-
nyushin et al., 1973). In mice, loss of DNA methylation sites
was observed at a speed of approximately 4.7×104 per month
(Wilson et al., 1987). A similar trend can also be observed in
experimental primary cell models. DNA methylation is sig-
nificantly reduced in mouse, hamster, and human fibroblasts.
However, DNA methylation is relatively more stable in im-
mortalized cells (Wilson and Jones, 1983). These observa-
tions indicate that DNA methylation changes along with the
aging process in animal or cell models. A recent study found
that some methylation sites that change along with aging are
conserved across mammalian species by analyzing changes
in methylation levels in more than 59 tissues from 128
mammalian species (Lu et al., 2021). One study on human
twins found that epigenetic heterogeneity among twins in-
creases with age (Talens et al., 2012). As we age, epigenetic
modifications of DNA methylation tend to occur at some
conserved loci (Bollati et al., 2009; Christensen et al., 2009;
Rakyan et al., 2010). This suggests that it is possible to
discover conserved DNAmethylation sites and use them as a
model to predict aging. And this epigenetic model is referred
to as the DNA methylation-based epigenetic clock.
Early epigenetic clocks were generated from only a few

samples and a small number of CpG loci with limited ac-
curacy (Bocklandt et al., 2011; Koch et al., 2012; Koch and
Wagner, 2011). Advanced epigenetic clocks emerged in re-
cent years; these clocks incorporated data from a large
number of tissues and organs, leading to the discovery of

different epigenetic clocks, such as multi-tissue, tissue- or
disease-specific, single CpG site prediction models. In 2013,
Horvath discovered the first multi-tissue epigenetic clock
(Horvath, 2013; Horvath, 2015). The Horvath clock was
generated from 8,000 samples from 51 tissues and cell types.
A total of 353 CpG sites were found to be strongly associated
with aging, with a 0.96 correlation and a 3.6-year error. In the
Horvath clock, different tissues show different aging rates.
However, limitations are also evident. For example, it cannot
be applied to cultured cells (Horvath et al., 2019; Horvath et
al., 2018). Therefore, Horvath developed the Skin & Blood
Clock, which is based on human fibroblasts, keratinocytes,
buccal cells, endothelial cells, lymphoblastoid cells, skin,
blood, and saliva samples (Horvath et al., 2018). The Skin &
Blood Clock contains 391 CpGs. It can effectively predict
the age of in vitro cultured neuron, glia, brain, liver, and even
bone samples. An epigenetic clock developed by Zhang et al.
(2019b) using blood and saliva as samples can also accu-
rately predict age with samples from the mammary gland,
liver, fat, and muscle. In addition to multi-tissue clocks,
many tissue-specific clocks have been generated. In 2013,
Hannum et al. (2013) collected blood samples from 656 in-
dividuals ranging in age from 19 to 101 and found 71 CpG
loci highly correlated with aging. Weidner et al. (2014)
identified 102 CpG loci from blood samples. From 508 hu-
man skin samples, Boroni et al. (2020) identified 2,266 CpG
loci that are capable of accurately predicting age for both
cultured skin cells and primary human skin tissue samples.
To improve the accuracy of prediction in the young popu-
lation, McEwen et al. (2020) developed the Pediatric Buccal
Epigenetic Clock (PebBE) using buccal swab samples from
the young population aged 0–20 years. To date, most epi-
genetic clocks are based on Illumina Infinium arrays. Their
high price makes them unsuitable for large-scale clinical
drug trials. Weidner et al. (2014) developed the 3-CpG clock
based on blood samples that contain fewer CpG loci. For
forensic purposes, Zbieć-Piekarska et al. (2015) used the less
expensive pyrosequencing method to identify the five CpG
loci that are most relevant to age (ELOVL2, Clor132,
TRIM59, KLF14, and FHL2) as prediction models. The 5-
CpG clock was able to predict age with high accuracy for 300
samples (R(2)=0.94, standard error of estimate=4.5 years).
CpG clock based on these five genes was validated in mul-
tiple tissues (Cho et al., 2017; Dias et al., 2020; Jung et al.,
2019a). It has been shown that even three of the five CpG
loci (ELOVL2, FHL2, and Clorf132) are sufficient to predict
effective age (Dias et al., 2020).
New training models were developed in order to generate

more explainable epigenetic clocks that directly reflect bio-
logical phenotypes of the aging process. A series of studies
(Horvath et al., 2014; Horvath et al., 2016; Levine et al.,
2018) have classified traits such as BMI, obesity, physical
fitness, Huntington’s disease, sleep, and smoking as pro-
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aging factors. Other studies have also linked the epigenetic
clock to the mortality risk (Levine et al., 2018; Lu et al.,
2019; Zhang et al., 2017c). Zhang et al. (2017c) analyzed
DNA methylation in a population group with up to 14 years
of follow-up and identified 10 CpG loci that were highly
associated with mortality factors. Levine et al. (2018) com-
bined chronological age and multiple clinical factors asso-
ciated with mortality risk as a biological age score. They
identified 513 CpGmarkers to develop the model PhenoAge.
PhenoAge can effectively predict a variety of age-related
phenotypes, including all-cause mortality, cancer, health
span, and physical function, while Lu et al. (2019) developed
GrimAge by combining the effects of smoking and age-re-
lated serum protein levels, which can effectively predict
mortality risk and multiple age-related diseases.
Animal models play a key role in revealing the mechan-

isms of epigenetic changes with aging and the effects of
intervention modalities on aging. Therefore, an accurate as-
sessment of the epigenetic clock in non-human animal ex-
perimental models is needed. Stubbs et al. (2017) collected
mouse liver, lung, heart, and brain samples from newborn up
to 41 weeks and identified 329 unique CpG loci, thus con-
structing a model that could accurately assess DNA methy-
lation age with a median absolute error of 3.33 weeks. Meer
et al. (2018) collected multiple tissues from mice at 6, 10, 12,
20, and 30 months of age and derived a clock with 435 CpG
loci. In addition to the multi-tissue clocks, tissue-specific
clocks based on blood (Petkovich et al., 2017) and liver
(Koch and Wagner, 2011) have also been developed in mice.
DNA methylation clocks have also been established for a
variety of model animals, including naked mole rats (Hor-
vath et al., 2022), dogs, wolves (Thompson et al., 2017),
humpback whales (Polanowski et al., 2014), and chimpan-
zees (Guevara et al., 2020).
Since there is a strong correlation between DNA methy-

lation and aging, it is necessary to elucidate the underlying
mechanisms of how epigenetic changes and the aging pro-
cess interact reciprocally. Recently, Kabacik et al. (2022)
provided a detailed analysis of the relationship between
DNA methylation and the hallmarks of aging in human cells.
Using the Skin & Blood Clock to measure the degree of
epigenetic aging in primary cells across several human cell
types, they found that nutrient sensing, mitochondrial func-
tion, stem cell exhaustion, and cell-cell communication af-
fect epigenetic aging, while cell senescence, telomere
attrition, and genomic instability do not. Lu et al. (2021)
obtained an unprecedentedly large dataset from 121 eu-
therian species and 7 marsupial species to characterize se-
nescence-associated CpG loci. They found that genes close
to these senescence-associated CpG loci are also involved in
developmental processes, such as HOX and PAX. This
suggests that development and aging may share important
yet unrevealed mechanisms throughout the life course of the

organism.
Undoubtedly, the aging process is accompanied by epi-

genetic changes in DNA methylation, but whether and how
epigenetic interventions affect the aging process remain
unclear. Cellular reprogramming changes the apparent state
of the entire cell. Ocampo et al. (2016) reported that short-
term reprogramming cycles delay aging-related alterations,
remodel the epigenetic status, and enhance regeneration in
mice. This phenotypic remodeling is a shift from an aged
state to a youthful state (Lu et al., 2020). Manipulating some
key DNA methylation clock-related genes can also affect the
aging process. For example, the ELVOL2 gene, which
functions as a long-chain fatty acid elongation catalyst, has a
strong correlation with aging among DNA methylation
clock-related genes (Zbieć-Piekarska et al., 2015). Recently,
Li et al. (2022h) reported that DNA methylation caused
impairment of ELVOL2, leading to lipid synthesis dysfunc-
tion, which in turn increased ER stress and mitochondrial
dysfunction, ultimately leading to the appearance of aging-
related symptoms. In contrast, back-compensation of EL-
VOL2 restores mitochondrial function and attenuates the
onset of age-related macular degeneration. These findings
demonstrate that interventions on either the overall appear-
ance or key epigenetic factors associated with aging can be
used as interventions for aging (Figure 27). These studies
indicate that DNA methylation, an important factor of the
epigenetic clock, could not only be a marker of the aging
process but also a direct regulator of it.

Transcriptomic clocks

Using gene expression levels to build aging clocks can link
the aging process more directly to gene functions, making
these clocks more interpretable. Transcriptomic data from
multiple organs have been used to build aging clocks. Peters
et al. (2015) performed a linear regression on peripheral
blood mononuclear cell gene expression array data in several
large cohorts, and obtained a model with the MAE of
7.8 years. This transcriptomic clock was found to have as-
sociations with some biomarkers and risk factors, including
smoking status. In 2018, Fleischer et al. (2018) derived a
clock using human dermal fibroblast RNA-seq data with a
Median Absolute Error (MedAE) of 4.0 years. In order to
reduce the noisiness of transcriptomic data, this study com-
bined multiple linear discriminant analysis classifiers which
could also be applied in detecting progeria samples. In the
same year, Mamoshina et al. (2018) tested several supervised
machine learning models, including neural networks, on
human skeletal muscle transcriptome data for age prediction
and obtained the MAE of 6.24 years.
Previous work mostly suffered from considerable variation

between transcriptomic data, while Meyer and Schumacher
(2021) demonstrated that a simple binarization and relative
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age scaling of transcriptomic data to define a gene set could
denoise the data and improve age prediction in C. elegans.
Additionally, they demonstrated, using human fibroblast data
from Fleischer et al. (2018) that an elastic net-based clock
derived from binarized transcriptomic data improved age
prediction to the MAE of 6.63 years. Holzscheck et al.
(2021) constructed an artificial deep neural network ac-
cording to well-described biological pathways, allowing the
prediction of age from human epidermal skin transcriptome
data with a MeAE of 4.71 years. Their model increased the
interpretability of aging clocks and responded in expected
ways to known perturbations of biological age in silico.
Moreover, Xia et al. (2020b) predicted age with PBMC ribo-
minus RNA-seq data using linear partial least squares re-
gression (PLSR) which had the MAE of 5.68 years.
The recent development of the scRNA-seq method enables

the characterization of transcriptomic data at the individual
cell level and provides a new method for constructing aging
clocks. Lu et al. (2022) developed a mixed-effect elastic net
model to predict the age of individual CD8+ T cells from
three cohorts and showed a strong correlation with chron-
ological age in cross-validation. Buckley et al. (2023) trained
cell-type-specific aging clocks using single-cell tran-
scriptomes from mice subventricular zone neurogenic region
with high resolution and reached MAE ranging from 2.3 to
4.6 months across all cell types. Additionally, they reported
that heterochronic parabiosis and exercise of these two in-
terventions could reverse aging clocks in neurogenic regions,
indicating the ability of their model to quantify tran-
scriptomic rejuvenation (Table S19 in Supporting Informa-

tion).

Proteomic clocks

Compared with DNA methylation or transcriptomic studies,
the proteomic approach has been well recognized as a
powerful technique which provides more insights into phe-
notypic traits changes across human aging (Bathke et al.,
2019; Diz et al., 2012; Haider and Pal, 2013). In different
biological fluids (i.e., plasma (Lehallier et al., 2019; Tanaka
et al., 2018), serum (Di Narzo et al., 2017), saliva (Wang et
al., 2018b), urine (Bakun et al., 2014), cerebrospinal fluid
(Baird et al., 2012; Zhang et al., 2005a)) and tissues (i.e.,
skeletal muscle (Staunton et al., 2012), liver (Heinze et al.,
2018)), thousands of proteins which dynamically vary along
with age may directly regulate both of age-related health and
disease biology. It is noteworthy that the generation of
multiple proteomic datasets of human or animal lifespan
during the past few years may hold a strong translational
potential in aging research.
Since Zhang et al. (2005a) carried out the pioneering study

to characterize proteomic signature in the cerebrospinal fluid
of elderly and young individuals, increasing studies have
been performed to map proteome alterations during aging. In
the literature research led by Johnson et al. (2020), the au-
thors investigated 36 proteomic analyses performed in dif-
ferent matrices. The results showed that a total of 1,128
proteins were reported by at least two or more analyses.
Among them, a set of 32 proteins changing with age in five
or more studies might show strong evidence of age asso-

Figure 27 The DNA methylation clock theory of aging. In mammal, DNA can undergo reversible methylation or demethylation processes. Aging is
accompanied by global DNA hypomethylation. Based on chronological age or biological age, different DNA methylation clocks are established by analyzing
the methylation changes with age. These clocks are further used to predict the rate of aging. The methylation sites associated with aging can be altered by
methods such as reprogramming in order to slow down or reverse the aging process.
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ciation. As indicated in the enrichment analysis, the most
common proteins were mainly involved in immune signal-
ing, extracellular matrix organization, complement and
coagulation cascades and metabolic signaling. Notably, in an
analogous review conducted by Moaddel et al. (2021), the
authors also summarized the findings of aging proteomes in
multiple matrices and different species from 33 independent
studies. It turned out that a list of 232 proteins was identified
to be significantly associated with age across at least two
studies and matrices. It is noteworthy that the most re-
markable pathways with significant connection with age
were essentially in accordance with those discovered in the
previous review. Both two studies proposed important aging
protein subsets in the plasma, which is an ideal source for
aging biomarkers discovery largely owing to its high sensi-
tivity to organ or cell function. Nevertheless, the robustness,
reproducibility, as well as selectivity and sensitivity of these
proteins remain to be validated. Besides, substantial biolo-
gical work is still in great need to comprehensively elucidate
the underlying mechanisms of aging.
On the basis of the age-associated proteomic datasets, a

couple of aging clocks have been constructed. Tanaka et al.
(2018) developed an aging clock based on circulating plasma
proteins highly relevant to chronological age. The proteomic
signature of 76 proteins was eventually identified to be
possessed with favorable age prediction. Among them,
Growth differentiation factor 15 (GDF15) demonstrated the
strongest age association. Johnson et al. (2020) also estab-
lished several novel proteomic clocks from 2019 to 2021.
The first clock comprised of protein lists determined through
literature searching among multiple analyses, which is cap-
able of accurately predicting human age in an independent
patient cohort derived from 3,301 subjects. Based on the first
study, the second clock composing 491 proteins was devel-
oped by further data mining of the previous protein panel.
The new clock denotes high-quality aging intervention pro-
tein targets with ultra-predictability (Pearson correlation
≥0.9) in 3 independent human cohorts (Johnson et al., 2021;
Lehallier et al., 2020). There is a notable point that fewer
protein inputs with more significant changes with age may
provide the clock model with better predictability. It is en-
couraging that the established proteomic clocks settled for
capturing the complex organismal mechanisms may have
potential applications beyond measuring accelerated biolo-
gical aging. Mostly, they can be used for enhancing the
surveillance of multiple age-related diseases (Grassmann et
al., 2018; Kim et al., 2021) and promoting the development
of aging intervention drug candidates (Fahy et al., 2019;
Schultz et al., 2020). So far, with close relevance to aging in
liver and kidney pathophysiology, immune dysfunction,
metabolic disorder and neurodegenerative diseases, several
multiplex protein panels have revealed great application
value in the clinical settings (Ganz et al., 2016; Kearney et

al., 2018; Rutledge et al., 2022; Williams et al., 2019).
In spite of many remarkable achievements made in pro-

teome-based aging clocks, there remain a few limitations.
Firstly, the integrated proteomic datasets used for model
development were usually generated from different pro-
teomic platforms (Johnson et al., 2020; Moaddel et al.,
2021). The measurements mainly include mass spectrometry
(MS)-based platform, SomaLogic aptamer (SOMAscan)-
based platform, and proximity extension assay (PEA, O-
Link). Apart from the MS-based approach, the other two
technologies are not possible to be tailored for quantifying
the entire proteome. Thus, in-depth unbiased MS-based
analysis pipelines (i.e., data-independent acquisition (DIA)
methods (Bilbao et al., 2015)) which allow for reliable pro-
tein detection and quantification in large-scale cohorts are
urgently needed. Another advantage of MS-based technol-
ogy is that it may precisely identify the post-translational
modifications of proteins, which also show significant al-
terations during the aging process (Baldensperger et al.,
2020; Krištić et al., 2014; Meyer et al., 2018; Santos and
Lindner, 2017). Secondly, besides chronological age, the
clocks need to be further improved through incorporating
other specific age-related molecular functions (Rutledge et
al., 2022). With more inclusive insights into the biological
features throughout aging progression, this will definitely
enhance the accuracy and predictability of the existing
models to a large extent. An interesting example is that in a
recent study, Sayed et al. (2021) developed an inflammatory
aging clock by tracking the patterns of predominant pheno-
types of systemic inflammation like multimorbidity and
immunosenescence. And they eventually proposed CXCL9
as a key biomarker for the early detection of immune system
changes in the aging process. Thirdly, future well-con-
structed multi-center proteomic studies in aging research are
required for more model validation to avoid any sex- or race-
based differences, as well as inter- or intra-individual vari-
abilities (Rivero-Segura et al., 2020). Lastly, it should be
clearly realized that the widespread application of the models
can be limited with relatively fixed protein panels as single
indicators. On one hand, protein markers need to be further
evaluated and continually updated in consideration of dif-
ferent stages of lifespan or aging disease progression. On the
other hand, the integration of proteins with various sig-
natures derived from other omics layers will create new
possibilities for exploring to what extent the multi-omics
markers can shed light on effective biomarkers or targets
relevant to aging (Rivero-Segura et al., 2020; Rutledge et al.,
2022).
Despite the gap between lab discovery and clinical appli-

cation, protein-based aging clocks have distinctive ad-
vantages as they exert direct effects on multiple biological
processes and form the vast majority of aging intervention
drug targets. Committed efforts in the development and

992 Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



improvement of realistic proteomic clocks will pave the way
of outlining the roadmap to effective aging-associated in-
terventions in the clinical practice.

Metabolomic clocks

Metabolism has strong associations with aging and the
abundances of some metabolites are shown to be correlated
with age (Chaleckis et al., 2016; Panyard et al., 2022; Yu et
al., 2012), suggesting the potential to use these components
to assess biological age. The first metabolomic age predictor
was established based on the large-scale urine metabolite
profiling using proton nuclear magnetic resonance (1H-
NMR) spectroscopy, named the metabolic score, by applying
a non-linear regression method (Table S20 in Supporting
Information) (Hertel et al., 2016). The metabolic score was
validated in two independent cohorts and was prognostic for
weight loss in individuals who received bariatric surgery.
Another study trained a metabolic age clock model based on
the blood metabolome data from a larger cohort (van den
Akker et al., 2020). Their results suggested that the blood
metabolic age was associated with the risk of cardiovascular
disease, mortality, and functionality in individuals with ad-
vanced age.
Robinson et al. (2020) measured metabolites in both urine

and serum samples generated from different platforms, based
on which the metabolic clock models were built. This study
also demonstrated that the prediction performance of meta-
bolic clocks was relatively stable across populations from
different areas. Efforts have also been made to compare the
performance of age prediction powers of metabolites from
blood and urine samples. Rist et al. (2017) collected the
metabolomic data from 301 healthy individuals aged
18–80 years, which were generated from multiple platforms.
Metabolic clocks were built based on the blood and urine
datasets both separately and in combined using different
algorithms. The authors found that the overall performance
of blood metabolic age predictors was superior to those
based on urine metabolic data. A recent investigative study
with a relatively small sample size shows the potential of
CSF metabolites to predict age (Hwangbo et al., 2022). The
authors subjected the prediction model based on healthy
individuals to age-match patients with AD and Parkinson’s
Disease, which showed more significant prediction errors
compared to the control, indicating that the association be-
tween the CSF metabolome and age differs with the neuro-
degenerative diseases.
The metabolic data also shows the ability to predict age-

related diseases and mortality (Deelen et al., 2019; Fischer et
al., 2014), which further underscores the potential utility of
the metabolic clock in health monitoring. Future investiga-
tion on the development of stable targeted metabolic analysis
methods on those metabolites being identified to be highly

correlated with age in different studies might further promote
the application of metabolomic clock into clinical use.

Circadian clocks

Nearly all physiological and behavioral activities, including
sleep-wake cycles, body temperature, energy metabolism,
hormone secretion and locomotor activity, are oscillated to
be near 24 hours by an internal self-sustained circadian clock
in the vast majority of living organisms (Panda et al., 2002).
In mammals, the suprachiasmatic nucleus (SCN) of the hy-
pothalamus serves as a master pacemaker that coordinates
the endogenous circadian clocks across the body to the ex-
ternal environment (Hastings et al., 2018). Light is a pre-
dominant environmental cue, called Zeitgeber, that entrains
the central clock in the SCN; SCN then synchronizes sub-
sidiary oscillators in the peripheral via systemic cues like
feeding activity, body temperature and hormones (Dibner et
al., 2010; Mohawk et al., 2012). At the molecular level, the
circadian oscillator is composed of a transcription- and
translation-based negative feedback loop, wherein a hetero-
dimer of CLOCK and BMAL1 promotes the transcription of
Period (PER) and Cryptochrome (CRY) (Bunger et al., 2000;
DeBruyne et al., 2007; Gekakis et al., 1998; Kume et al.,
1999; Reick et al., 2001; Takahashi et al., 2008; van der
Horst et al., 1999). PER and CRY dimerize to drive their own
oscillation and rhythmic expression of genes involved in key
cellular functions (Patke et al., 2020; Takahashi, 2017).
Aging is a gradual decline of physiological function, and

the circadian clock is not an exempt. Disruption of circadian
rhythmicity often leads to diseases, including metabolic dis-
orders, diabetes, cardiovascular diseases and cancers (Acos-
ta-Rodríguez et al., 2021; Bass and Lazar, 2016; Hood and
Amir, 2017; Tabibzadeh, 2021). In humans, the most reliable
observation of circadian disruption is the wakening activity
and retiring to bed in elderlies which show a tendency to be
earlier compared with younger adults (morning chronotype)
(Carrier et al., 1997; Horne and Ostberg, 1976; Roenneberg et
al., 2007). This is attributable to the loss of rhythmicity of
biosynthesis and release of hormones, which regulate feeding
and sleep activity, and oscillated the expression of clock
genes in peripheral tissues (Gamble et al., 2014). Among
these hormones, melatonin release is under the control of the
SCN and plays an important role in regulating sleep onsets
and core body temperature. Melatonin rhythmicity reduction
is observed in old individuals (Kennaway et al., 1999; Reiter
et al., 1980; Touitou et al., 1981; Zhao et al., 2002). The phase
advance of melatonin rhythms also contributes to the earlier
chronotype of the circadian sleep-wake cycle during aging.
Their capacity to adapt to light/dark schedule changes (shift
work or jet lag) is also impaired in old individuals (Monk et
al., 2000; Monk et al., 1993). Analysis of the expression
pattern of core clock genes in the orbitofrontal cortex reveals
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dampened oscillation of PER1, PER2 and CRY1 in elderlies
(Chen et al., 2016a). Aging also downregulates BMAL1
transcripts in the peripheral blood cells in healthy women
(Ando et al., 2010). Age-associated changes in core clock
gene expression are also observed in nonhuman species
(Bonaconsa et al., 2014; Kolker et al., 2003; Kolker et al.,
2004; Yamazaki et al., 2002).
How aging perturbs the function of internal circadian

clocks remains an open question. Transplant experiments
suggest that the SCN is a critical regulator of diseases, aging
and longevity (Li and Satinoff, 1998; Swaab et al., 1985).
Studies have found a reduction in SCN volume in aged
people compared with younger adults (Zhou and Swaab,
1999). The expression of two key neuropeptides, arginine
vasopressin (AVP) and vasoactive intestinal polypeptide
(VIP), is consistently reduced in the SCN of aged humans
and rodents (Cayetanot et al., 2005; Chee et al., 1988; Hof-
man and Swaab, 1994; Roozendaal et al., 1987; Zhou et al.,
1995). The ex vivo bioluminescent imaging of cultured SCN
slices of PER2::luciferase knock-in (PER2::LUC) mice re-
veals the reduced amplitude of PER2::LUC rhythms and a
lengthening of the circadian period in aged mice under
constant darkness condition (Nakamura et al., 2015). The
most reliable change observed in aged SCN is loss of co-
herence in SCN neuronal network activity in old animals
(Nakamura et al., 2011; Watanabe et al., 1995), which may
contribute to the deterioration of daily rhythms of physiology
and behavior. Aging affects the synchrony between the
central pacemaker and peripheral oscillators (Sellix et al.,
2012). Following 6-h phase advance of the light/dark sche-
dule, the peripheral clocks of old mice showed slower rates
of re-entrainment. By contrast, a more rapid SCN response is
observed in aged mice compared to younger mice, suggest-
ing a major consequence of aging is weakened control by the
master clock over peripheral oscillators. Cellular senescence
is a biomarker of aging and contributes to age-related dis-
eases (Cai et al., 2022d; Guo et al., 2022). BMAL1 and
CLOCK facilitate heterochromatin stabilization and prevent
the senescence of mesenchymal stem cells (Liang et al.,
2022; Liang et al., 2021). A recent study reveals that exercise
can restore dysregulated circadian machinery in different cell
types across tissues in aged mice (Sun et al., 2023). Parti-
cularly, the transcription of Bmal1 is downregulated in var-
ious endothelial cells during aging, which was rescued by
prolonged exercise, while overexpression of Bmal1 delays
the senescence of cardiac endothelial cells. Thus, small
molecules that activate endogenous clocks are potential
drugs for delaying age-related diseases (Chen et al., 2018b).
Chronotype varies owing to individual genetic predis-

position, age and sex. Integrating the chronotype, circadian
drug pharmacokinetics, age and sex could provide optimal
interventions to promote healthy aging. Additionally, ma-
nipulating feeding time (time-restricted feeding) in the at-

tempt to modulate the circadian clock shows powerful effects
on mitigating age-related chronic diseases, though specific
mechanisms are still far from being fully understood. Whe-
ther feeding behavior may serve as a potential biomarker of
aging requires further investigation.

Longevity clocks

The heterogeneity of aging leads to differences in life ex-
pectancy and health state in different individuals of the same
age. Almost all people want to know how many years of
“good health” they have left. With this in mind, researchers
have proposed the concept of biological age (Andrews et al.,
2017), which is imperfectly associated with chronological
age but can indicate individual health and longevity. If a
person has a biological age younger than their chronological
age, they are more likely to exhibit good health; conversely,
those with a biological age older than their chronological age
are more likely to show poor physical health or underlying
chronic disease. Extensive efforts have been made over
several decades to identify biomarkers and develop corre-
sponding biological clocks to predict biological age, thus
representing individual health and longevity potential.

Prediction of longevity by biological clocks
One challenge in establishing an accurate biological clock is
to identify biomarkers/indices associated with biological
age. At present, most biological clocks for health and long-
evity prediction are derivations of the aging clock, as most
biological age related biomarkers/indices vary roughly lin-
early with chronological age. For example, frailty, measured
by the frailty index (FI), reflects a state of increased risk of
age-related negative health outcomes (e.g., physical dis-
ability, cognitive decline, and hospitalization). Several stu-
dies have shown that the FI-based biological clock can be
utilized as a predictor of health and lifespan (Kim et al.,
2017; Schultz et al., 2020). Research has also shown that the
number of senescent cells (which accumulate with age and
can be marked by p16INK4a) in some tissues can reflect human
biological age, with fewer p16INK4a-positive cells represent-
ing a propensity for longevity in middle-aged individuals
(Waaijer et al., 2012). Furthermore, various studies have
suggested that blood biochemical markers (e.g., albumin and
glucose) and cell counts can be used to construct a biological
clock and quantify biological age (Putin et al., 2016; Pyrkov
et al., 2021). Higher serum dehydroepiandrosterone sulfate
(DHRAS) levels, which decrease with age, are considered a
predictor of longevity in men (Enomoto et al., 2008). At the
molecular level, TL (i.e., telomere length) declines pro-
gressively with age, and is thus considered a biomarker of
chronological age (López-Otín et al., 2013). Coupled with
evidence linking shorter TL with increased incidence of age-
related diseases (e.g., cardiovascular disease, cancer) and
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limited life expectancy (Barthel et al., 2017; Haycock et al.,
2014; Heidinger et al., 2012), TL has been used to construct a
biological clock to estimate the biological age and to predict
longevity (Vaiserman and Krasnienkov, 2020; Zhang et al.,
2014). Importantly, advances in multi-omics technologies in
recent years have increased potential molecular biomarkers
associated with chronological age as well as biological age
and longevity. As a well-known epigenetic modification,
DNA methylation has been widely used in the construction
of aging clocks, represented by the epigenetic clocks of
Horvath and Hannum based on tens to hundreds of age-
related methylation sites (Hannum et al., 2013; Horvath,
2013). Studies have also suggested that epigenetic age is an
indicator of biological age or a potential predictor of health
and longevity, with epigenetic age (or biological age) minus
chronological age (Xiao et al., 2018a; Xiao et al., 2019;
Zhang et al., 2017c). Likewise, informative biomarkers ex-
tracted from transcriptomes, proteomes, and metabolomes
have been applied to construct various aging clocks that can
track individual biological age and assess longevity potential
(Fleischer et al., 2018; Johnson et al., 2019; Tanaka et al.,
2020). In addition, several attempts have been made to ex-
plore health- and longevity-related biomarkers based on the
gut microbiota, given its close relationship with aging and
age-related diseases (Claesson et al., 2012; Ghosh et al.,
2022b). For instance, Bacteroides depletion is an important
characteristic of healthy aging and a predictor of extended
survival in older individuals (Wilmanski et al., 2021). Thus,
these studies suggest that different types of biological clocks
based on various molecular signatures have the potential to
predict human longevity.

Training new efficient biological (or longevity) clocks: in-
sights from longevous cohorts
Despite considerable advances in the construction of biolo-

gical clocks, the biological functions of most current bio-
markers in healthy human aging and longevity are poorly
understood. The accuracy of biological clocks in predicting
individual longevity potential also needs to be improved. As
such, researchers have been driven to screen more re-
presentative causal and functional biomarkers to optimize
longevity prediction and intervention guidance. Longevous
people (e.g., centenarians) serve as paradigms of successful
and extraordinary aging, living much longer than “normal”
and managing to delay or even escape common age-related
diseases, such as cardiovascular disease, neurodegenerative
disease, and cancer (Atzmon et al., 2004; Engberg et al.,
2009; Hitt et al., 1999). Therefore, long-lived people present
an opportunity to search for reliable and causal molecular/
biological indicators of biological age, health, and longevity
potential.
Initial studies focused on identifying longevity-associated

genetic mutations in long-lived cohorts that could serve as
potential indicators of longevity. For example, several var-
iations within the FOXO3A gene (e.g., rs13217795 (C),
rs2802292 (G)) are highly prevalent in longevous cohorts
and increase longevity potential by decreasing IGF-1 sig-
naling (Willcox et al., 2008); and vice versa, some long-lived
individuals display a depletion in the AD-susceptibility
factor ε4 allele (i.e., rs7412 (C) + rs429358 (C)) of the APOE
gene, thus achieving longevity by decreasing the risk of AD
(Sebastiani et al., 2019). These findings indicate that genetic
variations associated with longevity and age-related diseases
may facilitate the construction of a biological clock that
predicts health and longevity. Consistent with this, a recent
predictive model based on longevity- and disease-related
genetic markers successfully partitioned components of
longevity and non-longevity (AUC=0.767) and predicted
lifespan (explaining 8% of the variance in lifespan), with
predictive ability improving (AUC=0.86 for longevity clas-

Figure 28 The clock that regulates longevity. Longevity indicators identified from longevous cohorts to guide construction of new “longevity clocks”, and
their application in assessing rejuvenation interventions (e.g., CR) may rewind the clock. Abbreviations: CR, caloric restriction.
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sification, explaining 19.8% of the variance in lifespan)
when information on disease status and lifestyles was in-
cluded (Liu et al., 2021b).
Given the limited heritability (15%–35%) of longevity

(Gögele et al., 2011), extensive work has attempted to
characterize potential biomarkers (or indicators) of healthy
human aging and longevity in long-lived cohorts at other
molecular levels, including gene expression, protein ex-
pression, DNA methylation, and metabolism (Figure 28).
Accumulating evidence suggests that the longevity ad-
vantage of centenarians is reflected in their younger epige-
netic age (i.e., biological age) relative to their chronological
age (Daunay et al., 2022). Transcriptomic evidence from
long-lived individuals and functional experiments has also
shown that increased autophagy-lysosome activity and de-
creased ribosome activity are two important indicators of
healthy aging and longevity in humans (Xiao et al., 2018b;
Xiao et al., 2022). Long-lived individuals also tend to exhibit
a favorable lipid profile, which may be partly associated with
the enhanced lipid metabolism activity found in long-lived
individuals (Barzilai et al., 2003; Gonzalez-Covarrubias et
al., 2013; Li et al., 2022a). A serum proteome study of
centenarian families also identified several proteins asso-
ciated with abundance and human survival (Sebastiani et al.,
2021). In addition, progressive decline in immune function
with advanced age is a major risk factor of age-related dis-
eases (e.g., cancer and infection) in older individuals. A re-
cent single-cell RNA sequencing study of centenarian
families revealed a “positive” immune remodeling process in
centenarians, marked by increased numbers and functional
reinforcement of cytotoxic Tcells that kill cancer cells (Dong
et al., 2022; Weigelin et al., 2021). Aging is also character-
ized by persistent low-grade systematic inflammation. A
recent study suggests that long-lived individuals however
have relatively lower inflammation levels (e.g., IL6, TNFα),
which likely result from the upregulation of activating
transcription factor 7 (ATF7) (Huang et al., 2022d). In ad-
dition, several studies on the gut microbiome have revealed
unique signatures in centenarians (Biagi et al., 2016; Kong et
al., 2016; Sato et al., 2021). For example, some centenarians
harbor abundant strains of Odoribacteraceae that can gen-
erate unique secondary bile acids and protect against en-
teropathogenic infection (Sato et al., 2021). Taken together,
these studies suggest that longevous cohorts can facilitate the
identification of longevity-specific indicators and/or bio-
markers associated with healthy human aging, but non-lin-
early associated with age, for the construction of more
efficient longevity clocks.

Rewinding the biological (or longevity) clocks by
interventions
Unlike chronological age, individual biological age can be
delayed, or healthspan/lifespan can be extended, by inter-

vention strategies such as healthy lifestyle, dietary therapy,
and drug therapy (Figure 28). For instance, moderate ex-
ercise and excessive sedentary behavior can markedly im-
prove and impair physical health, respectively. Several
studies have shown that people who exercise regularly have a
younger biological age compared to those who are sedentary
(Rea, 2017; Sellami et al., 2021). Likewise, a healthy diet is
also beneficial in reducing chronic diseases and lowering
biological age (Kresovich et al., 2022). Evidence has also
shown that multiple longevity-promoting strategies can de-
lay or reverse the biological clock and may serve as good
indicators for assessing intervention efficacy. Among them,
caloric restriction is one of the most natural and effective
dietary therapies for improving health and promoting long-
evity (Huang et al., 2022e). Results from various studies
have shown that caloric restriction can delay age-related
methylation drift in diverse species (e.g., mice and rhesus
monkeys), resulting in younger DNA methylation-based
biological age (Maegawa et al., 2017; Petkovich et al., 2017).
Dietary rapamycin, another prevalent intervention strategy,
can promote longevity by inhibiting the mTOR signaling
pathway and reducing biological age (Wang et al., 2017b).
Similar results have been observed in interventions with
other longevity drugs, such as metformin (Li et al., 2022c).
These findings indicate that biological clocks can help
evaluate different longevity interventions, in part by resol-
ving issues that are time consuming and costly.

Summary and perspectives
In conclusion, extensive efforts over several decades have
successfully constructed multiple types of biological clocks
(e.g., epigenetic and metabolic clocks) that can be used to
predict a person’s health and longevity potential. Evidence
also suggests that these clocks can be utilized to assess the
efficacy of various longevity interventions. However, despite
tremendous advances, most current biological age related
biomarkers have been identified based on the principle of
chronological age correlation. In other words, many biolo-
gical age related biomarkers may be a consequence of aging
rather than a cause, or their biological functions have not yet
been elucidated, resulting in limited accuracy and sensitivity
of the corresponding biological clocks as significant pre-
dictors of longevity. Therefore, novel longevity- and health-
specific molecular and biological biomarkers are required,
and their application to non-linear systems with deep learn-
ing methods may facilitate the construction of more efficient
longevity clocks.

Aging clocks at single-cell resolution

With the development and innovation of the latest high-
throughput omics technology of single-cell sequencing, a lot
of studies are devoted to age-related diseases and extending a
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healthy lifespan (Leng and Pawelec, 2022; Tabula Muris,
2020; Wen and Tang, 2022; Wu et al., 2023; Zhang et al.,
2022a; Zhou et al., 2022). Numerous biomarkers have been
proposed to understand and measure these processes. Aging
clocks, estimators of chronological age, can integrate and
predict various measures of biological aging utilizing mul-
tiple omics and phenotypic data across tissues, aiming to
evaluate or predict the biological age and aging speed of the
body at molecular resolution (Bell et al., 2019; Palmer,
2022).
In the past decade, a series of aging clocks based on epi-

genomics (Bocklandt et al., 2011; Hannum et al., 2013;
Horvath, 2013; Levine et al., 2018; Weidner et al., 2014),
transcriptomics (Fleischer et al., 2018; Holzscheck et al.,
2021; Meyer and Schumacher, 2021; Peters et al., 2015),
proteomics (Lehallier et al., 2019; Tanaka et al., 2020; Ta-
naka et al., 2018), and metabolomics (Robinson et al., 2020;
van den Akker et al., 2020) data of bulk samples have been
established by machine learning methods and achieved
meaningful results in animal models and human cohort stu-
dies. One of these aging clocks with excellent properties is
the epigenetic clock, where cytosine methylation in CpG
dinucleotides (CpG methylation) changes during aging that
can be detected by microarray, genome-wide, or targeted
detected by sequencing (Bocklandt et al., 2011; Horvath,
2013). Despite the strong complexity and heterogeneity of
aging between and within individuals, epigenetic clocks
accurately predict tissue age across a broad range of human
tissue types, suggesting shared cellular senescence signals
across different cell types (Horvath et al., 2018). However,
bulk sequencing data could not provide insights into the
molecular changes that occur in specific cell types.
It is worth exploring how the phenotypic characteristics of

individual or tissue aging are affected by changes in cell type
composition or cell age, and how to quantitatively assess the
contribution of molecular level changes in specific cell types
to individual or tissue aging, which would be a challenging
but promising research field (Figure 29A). Limited by the
development of single-cell omics sequencing technology, the
current aging clock at single-cell resolution mainly focuses
on the use of single-cell epigenome and single-cell tran-
scriptome (Figure 29B) (Lähnemann et al., 2020). A com-
mon approach is to use machine learning methods to predict
the biological age of individual cells (Figure 29C). With the
development of single-cell multi-omics sequencing tech-
nology, the new aging clock is expected to achieve more
precise performance. It is believed that aging clocks based on
single-cell omics will completely revolutionize our under-
standing of aging clocks in the near future (Table S21 in
Supporting Information).

Aging clocks based on single-cell epigenome
Epigenetic alteration is an important hallmark of aging,

especially at CpG sites. Over the past decade, several aging
clocks have been developed to profile epigenetic age (Belsky
et al., 2022; Horvath et al., 2018; Lin et al., 2016; McEwen et
al., 2020; Shireby et al., 2020; Vidal-Bralo et al., 2016;
Zhang et al., 2019b), which suggests the homogeneity of
underlying cellular senescence and masks the epigenetic
heterogeneity between individual cells. Epigenetic clocks
have revolutionized the study of aging and a series of studies
in peripheral blood or saliva hint at its broad application
prospects (Bocklandt et al., 2011; Hannum et al., 2013; Lin et
al., 2016; Vidal-Bralo et al., 2016; Zhang et al., 2017c).
Advances in epigenome sequencing methods the enable as-
sessment of single-cell epigenetic profiles, including single-
cell reduced-representation bisulfite sequencing (scRRBS)
(Guo et al., 2013), single-cell bisulfite sequencing (scBS-
seq/scWGBS) (Smallwood et al., 2014), single-cell sequen-
cing assay for transposase-accessible chromatin (scATAC-
seq) (Buenrostro et al., 2015), single-cell chromatin immune-
precipitation sequencing (scChIP-seq) (Rotem et al., 2015),
and single-cell extended-representation bisulfite sequencing
(scXRBS) (Shareef et al., 2021) and so on. The application of
these sequencing technologies in the field of aging research
has greatly advanced our understanding of molecular chan-
ges in aging at an unprecedented single-cell resolution,
which puts forward higher requirements and new challenges
for the aging clock.
Most previous research on epigenetic clocks of bulk

samples has focused on the level of DNA methylation, such
as the Hannum clock (71-CpG clock) (Hannum et al., 2013),
Horvath clock (353-CpG clock) (Horvath, 2013), DmAM (8-
CpG clock) (Vidal-Bralo et al., 2016) and DunedinPACE
(Belsky et al., 2022), and the accurate prediction and per-
formance of the DNA methylation clock further motivate the
development of more aging clocks at the single-cell level.
Recently, Trapp et al. (2021) developed a novel single-cell
epigenetic clock framework scAge, which provided a solu-
tion for the complex challenges of sparse and binarized
methylation profiles in single cells. The scAge is the first
epigenetic clock to characterize age-associated CpG me-
thylation changes in single cells of mammals relying on bulk
DNA methylation data for calibration, which recapitulates
the chronological age of hepatocytes, muscle stem cells, and
embryonic stem cells. In addition, two additional models,
PRC2 clock (Moqri et al., 2022) and Tarkhov clock (Tarkhov
et al., 2022), would be officially released soon as predictors
of cell age leveraging single-cell DNA methylation data of
mice, which would continue to enrich aging prediction
methods at single-cell resolution. It is worth mentioning that
all these methods also use bulk samples as a reference to
ensure the robustness of the algorithm or calculation results.
However, the solution to predict chronological age using
single-cell methylation data from blood samples remains to
explore, which would greatly advance their potential value as

997Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



clinically applicable biomarkers.
In the field of aging clocks, methylation clocks have been

reported extensively, but the mysteries of chromatin struc-
ture, conformation, and other changes at the epigenome level
during aging remain unclear. Chromatin accessibility is an
important indicator for assessing the degree of aging based
on the “loss of heterochromatin” theory (Liu et al., 2022a;
Pal and Tyler, 2016; Wang et al., 2022a; Wu et al., 2018;
Zhang et al., 2015; Zhang et al., 2020d; Zhang et al., 2022e).
Some novel chromatin accessibility-based aging clocks
using bulk samples remain to be developed (Rechsteiner et
al., 2022). The rapid progress of scATAC-seq sequencing
technology has opened up a new era for the aging clock
based on single-cell big data. Recently, a promising method,
EpiTrace, was actively tried on scATAC-seq data of human
adult CD34+ hematopoietic stem cells to determine cell age
and perform lineage tracing (Rechsteiner et al., 2022). Cur-
rent evidence suggests that methylation clocks hold the most
promise for development and application.

Aging clocks based on single-cell transcriptome
Changes in RNA expression levels both in single cells or
bulk tissues during aging have been widely reported in var-
ious common model organisms across tissues, and a large
number of data resources and databases have been developed
(Aging Atlas, 2021; Kang et al., 2022; Ma et al., 2020; Ma et
al., 2022; Sun et al., 2023; Tabula Muris, 2020; Yan et al.,
2023). The association between genes with aging makes it
possible to predict the rate of aging or lifespan based on
transcriptome data. There are already several aging tran-
scriptome clocks that leverage bulk RNA-seq data to predict
individual aging based on linear regression or machine

learning methods (Fleischer et al., 2018; Holzscheck et al.,
2021; Meyer and Schumacher, 2021; Peters et al., 2015).
Single-cell resolution data could provide new perspectives
on aging clocks.
Machine learning-based methods have shown robust cap-

abilities in predicting cell age and are gaining popularity
(Bulteau and Francesconi, 2022; Lu et al., 2022; Singh et al.,
2018). Singh et al. (2018) established GERAS in 2018, a
machine learning-based framework capable of assigning
individual pancreatic cells to chronological stages based on
the transcriptomes of zebrafish and human. They leverage a
supervised deep learning classifier based on neural networks
to classify the cell age stages which achieved an overall
accuracy of 91%, while the multinomial logistic regression
model only displayed an overall accuracy of 64%. In addi-
tion, Buckley et al. (2023) trained single-cell-based regres-
sion models to predict chronological age and biological age
leveraging scRNA-seq data in neurogenic regions of the
mice brain. Lu et al. (2022) developed a machine-learning
model capable of predicting the age of individual cells in
human T cell subpopulations based on their transcriptomic
features, which are closely associated with their differ-
entiation and mutation burden. All of these approaches are
well-established paradigms for the study of single-cell aging
clocks in different animal or cell-type models.
More aging clocks based on single-cell transcriptome data

are trying to predict the biological age of cells in a wider
range. Neumann et al. (2023) utilized mouse scRNA-seq
data to train molecular aging clocks that distinguish between
cells of young and old mice using two models: a first model
trained specifically to predict the age of B cells and a second
one predicting age across 70 cell types from 14 tissues. In

Figure 29 Aging clocks at single-cell resolution. A, Cellular senescence accompanies the whole process of individual aging. B, Current aging clocks based
on single-cell omics data. C, A general flow chart for biological age prediction based on single-cell omics data.

998 Aging Biomarker Consortium, et al. Sci China Life Sci May (2023) Vol.66 No.5



addition, RAPToR was developed to estimate age both dur-
ing development or aging in most common animal models
and humans, from bulk or single-cell expression profiles
(Bulteau and Francesconi, 2022). To be noted that some
studies have not been peer-reviewed and published yet, it can
be predicted that these methods will help us better under-
stand cellular senescence.
Although there is a lack of scRNA-seq data from large

population cohorts, all these methods show highly predictive
transcriptional features of single cells that can be used to
accurately estimate cell age. Machine learning, an approach
to artificial intelligence, is rapidly revolutionizing the re-
search paradigm of aging clocks. Given the noise of the data
sets and the bias of sequencing technology, one issue is to
integrate large-scale single-cell data sets to evaluate the cell
age and the contribution of each cell type to organisms aging
across tissues.

The application of medical imaging techniques in aging
clocks

The word “aging clock” vividly demonstrates the change of
aging biomarkers during the process of aging. Accompanied
by the revolutionary development of physical science and
computer technology, abundant imaging modalities have
been applied in preclinical and clinical medicine. Multiple
imaging modalities, such as CT, MRI, ultrasound, optical
imaging systems, single-photon emission computed tomo-
graphy (SPECT) and PET, are available to provide mole-
cular, functional and structural information of aging clock
from microscale to macroscale (Tian et al., 2021). In this
part, we will discuss the application of medical imaging
techniques in the aging clock (Table S22 in Supporting In-
formation), which would shed light on the purpose of clinical
translation of the aging clock in managing and treating
aging-induced diseases, such as neurodegenerative diseases
and cardiovascular diseases.

PET/CT and PET/MRI
Medical imaging could be divided into structural, functional
and molecular modalities. Functional and molecular imaging
modalities provide functional and molecular alterations oc-
curred at the early phase or stage of diseases. Hybrid PET/CT
and PET/MRI imaging have been regarded as the vital
modality in the clinical practice to detect early abnormalities
underlying diseases (Zhang et al., 2020c). The core part of
PET/CT and PET/MRI is PET, which is based on specific
recognition of targets that existed in the human body. Due to
the characteristics of PET, PET/CT and PET/MRI have the
potential in revealing the alterations of aging biomarkers in
the aging clock, which could achieve observation from DNA
damages to phenotypes of organs (Table S23 in Supporting
Information) (Jack et al., 2017).

For DNA damages, in vivo activity of PARP could be
visualized by using 18F-FluorThanatrace (18F-FTT) or 18F-
PARPi PET/CT imaging, which could indicate the respon-
siveness to PARP inhibitor treatment in patients with cancer
(Pantel et al., 2022; Schöder et al., 2020). Besides, γH2AX (a
phosphorylated DNA damage repair protein) activity could
be visualized by using 89Zr-anti-γH2AX-TAT radio-
immunoconjugates to indicate the repairment of DNA dou-
ble-strand breaks (Knight et al., 2017). Meanwhile, HDACs
involved in histone modification could also be observed by
using radionuclides. 18F-suberoylanilide hydroxamic acid
(18F-SAHA) achieved in vivo evaluation of HDACs by la-
beling SAHA (a broad spectrum HDAC inhibitor), while
failed to demonstrate HDAC expression in the brain (Hen-
dricks et al., 2011). Recently, 11C-Martinostat successfully
revealed that reduced HDAC I level in the brain of patients
with AD was associated with AD pathophysiology, which
compensates for the application of HDAC radiotracers
(Pascoal et al., 2022). Telomeres, as a tandem repetitive se-
quence that protected the ends of the chromosome from
progressive degradation, are closely associated with aging.
Telomerase reverse transcriptase (TERT), a main part of
telomerase, could be noninvasively reported by hyperpolar-
ized [U-13C, U-2H]-glucose metabolism (Viswanath et al.,
2021).
As for phenotypes of organs affected by the aging clock,

PET/CT and PET/MRI have their unique superiority (dy-
namic, real-time and noninvasive) to investigate these al-
terations in the whole body. Aβ peptide and tau protein are
admitted pathological alterations in the brain of patients with
AD (Busche and Hyman, 2020). 11C-Pittsburgh compound B
(11C-PiB) is one of the most widely applied radiotracers in
the clinic for Aβ plaques visualization (Hatashita and Wa-
kebe, 2020). Apart from 11C-labelled ligands, three 18F-la-
belled amyloid PET ligands (18F-florbetapir, 18F-
flutemetamol and 18F-florbetaben) are also approved by USA
and applied in the clinic. For tau PET imaging, 18F-AV1451
(18F-flortaucipir) is the most widely used tau-specific PET
radiotracer, and its distribution is in accordance with Braak
staging of tau pathology (Maass et al., 2018). Advancing age
induced oxidative stress and inflammatory factors accumu-
lation has been linked with cardiovascular aging, which
usually develops cardiovascular diseases in the elderly
(López-Otín et al., 2023). 18F-tetraphenylphosphonium (18F-
TPP+) was used to indicate the mitochondrial membrane
potential in both animals and patients showing the potential
applications in myocardial imaging (Pelletier-Galarneau et
al., 2021). Combined with fluorescent material, 18F-5MEF (a
dual-modal probe) was synthesized and achieved mi-
tochondria-targeting myocardial dual-modal imaging (Zheng
et al., 2022). Besides, 18F-sodium fluoride (18F-NaF) showed
promising use in characterizing culprit atherosclerotic pla-
ques in the carotid circulation (Kaczynski et al., 2022).
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However, it is worth noting that PET/CT and PET/MRI just
play part of their roles in investigating the aging clock as
integrated CT and MRI make part use. Thus, future studies
are required to make full use of each component of PET/CT
and PET/MRI for a better understanding of variations of the
aging clock.

MRI
MRI is a medical imaging technique that is extensively used
in clinical practice to capture anatomic and functional in-
formation of the body. Its numerous scanning sequences
could offer different information about the tissues and or-
gans. Compared with PET, MRI has better contrast of soft
tissues, especially the brain and abdomen. Therefore, the
application of MRI in the aging clock mainly focuses on
brain aging.
The intuitive change of brain aging is the loss of brain

volume. T1-weighted structural MRI could be applied in
evaluating brain volume and revealed that the brain volume
declined about 7% of their volume between the 20s and 60s
(Hedman et al., 2012). While T2-weighted structural MRI
images showed that the T2 signal increased in most brain
regions as a result of increased water content (Kumar et al.,
2012). Diffusion imaging is a well-established MRI techni-
que for investigating the directionality of water self-diffu-
sion. A recent study indicated the white-matter
microstructural organization during aging processes by using
diffusion MRI and showed that age-related brain alterations
began earlier in males than females (Toschi et al., 2020).
Another important MRI scanning method without contrast
agents is the BOLD technique, which linked the change of
cerebral oxidative metabolism with neuronal activity. By
using BOLD fMRI scanning, the shape of hemodynamic
response function (HRF) was found different between young
and old individuals, and elevated time-to-peak and decreased
peak amplitude were discovered in old individuals (West et
al., 2019).
Another important component of MRI technique is en-

hanced scanning based on fMRI techniques. The basic fMRI
technique is based on a widely used contrast agent that is
gadolinium-DTPA (Gd-DTPA). With the administration of
Gd-DTPA, dynamic susceptibility-contrast perfusion ima-
ging could reflect the real-time cerebral blood flow (Barker
et al., 2013). Arterial spin labeling (ASL) techniques depend
on endogenous contrast produced by blood water. Several
studies have demonstrated the decrease of parenchymal CBF
in old individuals (Zhang et al., 2017b). Meanwhile, different
brain regions showed diverse patterns in the aged population.
Superior temporal and orbitofrontal regions performed de-
creased perfusion, while caudate, posterior cingulate and
amygdala showed increased perfusion (Lee et al., 2009). In
recent decades, resting-state fMRI was used to indicate the
functional connectivity in the brain. Gonneaud et al. (2021)

predicted chronological age across the lifespan by using
resting-state fMRI data and assessed the possibility of in-
dividual developed AD. Though MRI technique has been
extensively used in clinic practice, it mainly indirectly re-
flects the alterations of the brain induced by the aging clock.
More specific contrast agents are required to enhance the
ability of MRI to image aging biomarkers.

Ultrasound
Medical ultrasound is a medical imaging technique by using
sound waves with frequencies over 20,000 Hz. Since its
appearance in the 1940s, medical ultrasound has been widely
accepted in the clinical practice as it is flexible, convenient
and economic. Medical ultrasound has various imaging
mode, including amplitude mode, brightness mode, motion
mode, doppler sonography and harmonic imaging. Based on
these imaging modes, most of organs in the body, such as
vasculature, heart, skin and kidneys, could be evaluated by
medical ultrasound.
Vascular assessment is an essential content of ultrasound

daily examination. Atherosclerosis is one of the obvious
phenotypes of vascular aging. Ultrasound imaging was
proven to have the ability of vascular assessment (Johri et al.,
2016). Three-dimensional vascular ultrasound (3DVUS) re-
vealed and quantified higher plaque burden in males with
advancing age, and plaque burden was closely related with
cardiovascular risk factors (López-Melgar et al., 2017).
Meanwhile, a Northern Manhattan study indicated that
markers of carotid atherosclerosis (such as carotid intima-
media thickness) provided by ultrasound were associated
with cognitive status (Gardener et al., 2017). Contrast-en-
hanced ultrasound achieved in vivo visualizing of plaque
neovascularization which is a biomarker of carotid plaque
vulnerability (Camps-Renom et al., 2020). Besides, ultra-
sound realized molecular imaging of atherosclerosis by using
nanoparticles. Punjabi et al. (2019) developed a microbubble
targeted to human VCAM-1 and successfully characterized
the expression of VCAM-1 in the human plaques.
Ultrasound could also assess the function of the heart

during aging from multiple perspectives. The function of the
heart is decreased associated with advancing age. Regular
cardiac ultrasound images could provide precise information
for characterizing the diastolic function of the left ventricle
(LV) (Omar et al., 2017). Echocardiography is a kind of
medical imaging for the heart, which is dependent on stan-
dard ultrasound or Doppler ultrasound. By using echo-
cardiography, aging was revealed to be associated with
decreased left atrial (LA) reservoir function and delayed P-
wave dispersion and total atrial conduction time (Abou et al.,
2017). Besides, echocardiography indicated that global
longitudinal strain was an independent and incremental
prognostic factor for long-term risk of cardiovascular mor-
bidity and mortality (Biering-Sørensen et al., 2017).
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Photoacoustic imaging and near-infrared (NIR) fluores-
cence imaging
Photoacoustic imaging (PAI) is a recently developed medical
imaging with the characteristics of real-time, noninvasive-
ness and nonionizing radiation. Based on the heat induced by
non-ionizing laser pulses, transient thermoelastic expansion
could be produced and lead to wideband ultrasonic emission
which could be translated into images by ultrasonic trans-
ducers (Attia et al., 2019). Due to its image-forming prin-
ciple, PAI owns the benefits of optical resolution and
acoustic depth of penetration. Generally, PAI systems could
be divided into several groups, such as PA microscopy
(PAM), PA endoscopy (PAE) and PA computed tomography
(PACT) (Liu et al., 2016). Based on these unparalleled ad-
vantages, PAI demonstrates a wide range of preclinical and
clinical applications in aging clock, mainly focused on su-
perficial organs. Quantitative evaluation of skin aging was
achieved according to the signals from both sectioned and
nonsectioned porcine skin by using PA microscopy (Murata
et al., 2017). Besides, PAI system has also been extensively
used in breast imaging. Breast cancer is a heterogeneous age-
associated malignancy, and about 80% of breast cancers
happened in females over age 50 (Benz, 2008). A PAI system
called PA the Twente Photoacoustic Mammoscope succeed
to detect about 97% of lesions in patients with breast cancer
(Heijblom et al., 2016). Multispectral optoacoustic tomo-
graphy (MSOT) was applied in visualizing pilosebaceous
units which are the hair follicle structure (Ford et al., 2016).
Mesoscopic and microscopic configurations of the PAI sys-
tem are also applicable to demonstrate microvascular net-
works (Taruttis et al., 2016).
NIR fluorescence imaging is a type of medical imaging

technique based on the optical signal emitted by fluor-
ophores or endogenous molecules with the excitation of light
(Frangioni, 2003). According to the emission wavelengths,
NIR fluorescence imaging can be classified into fluorescence
imaging within the first NIR window (NIR-I) around
150–900 nm and fluorescence imaging within the second
NIR window (NIR-II) near 900–1,700 nm (Welsher et al.,
2011). In the past decade, more attention has been paid to the
NIR-II fluorescence imaging due to its deeper penetration.
With the aid of NIR-II fluorescence molecule, NIR-II
fluorescence imaging achieved dynamic vascular imaging.
Li et al. (2020a) reported an organic NIR-II molecule (LZ-
1105) with a long blood half-life and used it for real-time
monitoring for dynamic vascular processes, such as throm-
bolysis in carotid artery. Similarly, another NIR-II nano-
particle based on aggregation-induced emission (AIE)
strategy was conducted for multiscale vasculature visuali-
zation in animal models (Li et al., 2021d). Additionally, brain
is no longer the forbidden area of NIR-II fluorescence ima-
ging. By using neutrophils (NEs) as the carrier, 2TT-oC6B
succeed in penetrating the blood-brain barrier and visualiz-

ing deeply located brain inflammation (Liu et al., 2020).
Though rapidly increased number of NIR-II nanoparticles
were developed in recent years, few of them were approved
in the clinic. More effort is required to boost this medical
imaging technique into clinical practice.

Summary and perspectives
Medical imaging techniques play an irreplaceable role in
monitoring the aging process and provide a powerful tool of
dynamic, real-time and noninvasive visualization of aging
biomarkers. While each imaging technique has its own
limitations, the combined use of different imaging methods
is necessarily required for acquiring full-scale information of
the aging clock. Meanwhile, with the development of basic
techniques, much more imaging techniques and the re-
constructed algorithm will be established to reveal the cor-
relation between aging biomarkers and aging-induced
diseases in vivo.

AI application in aging clocks

Advances in artificial intelligence
Artificial intelligence, also known as AI, refers to the field of
computer science and engineering that is dedicated to the
development of intelligent systems. These systems are char-
acterized by their ability to make decisions, judgments, and
predictions without the need for explicit programming. AI has
demonstrated remarkable potential in a range of applications,
including natural language processing, computer vision, and
protein structure prediction. For example, more than 98.5% of
the three-dimensional structures of human proteins can be
predicted by artificial intelligence (Jumper et al., 2021).
AI has its origins in statistical methods and has evolved to

encompass a diverse set of machine learning-based algo-
rithms. These algorithms are designed to perform tasks such
as classification, regression, clustering, and decomposition.
Since 2013, deep structured learning, also called DL systems
have surpassed human performance in multiple applications.
In healthcare, DL systems outperformed human dermatolo-
gists, ophthalmologists, and radiologists in various tasks. DL
also demonstrated significant improvement over conven-
tional ML methods in biomedical data analysis (Aliper et al.,
2016; Mamoshina et al., 2016). DL comprises a set of
methods that rely on deep architectures with cascades of
multiple layers, and include architectures such as DNNs,
generative adversarial networks (GANs), deep reinforcement
learning (RL), and others.
One of the most recent and impactful developments within

AI is deep learning, which is characterized by the use of
DNNs. DNNs are architectures that stack multiple neural
network structures in order to form a “deep” network with
hidden layers, which improves the prediction performance.
With the increased computational power and the availability
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of large public datasets, DL architectures have evolved to
include thousands of layers and have been applied to a wide
range of biological systems and drug development.
Furthermore, another example of these DL methods is

Generative Adversarial Networks (GANs), which are pow-
erful generative models that can produce new data points
with a similar distribution to that of real data. GANs are
composed of two models, a generator and a discriminator,
which work together to produce synthetic data points that are
indistinguishable from real data. GANs have already been
applied in various fields, including making predictions of
compound properties or for molecular structure generation
(Kadurin et al., 2017a; Kadurin et al., 2017b; Putin et al.,
2018a; Putin et al., 2018b).
RL is a subset of machine learning that is concerned with

the design of goal-oriented algorithms that can learn to op-
timize a complex objective or maximize a particular di-
mension over many steps (Kulkarni, 2017). One of the
defining characteristics of RL algorithms is that they operate
in an environment where the relationship between actions
and outcomes is not immediately apparent, and the effects of
actions may not be fully realized until several time steps have
passed. To address this challenge, RL algorithms aim to es-
tablish a correlation between immediate actions and the de-
layed returns they produce. Therefore, reinforcement
learning is usually applied to pathway design, such as
compound reverse synthesis analysis and metabolite bio-
synthesis prediction (Segler et al., 2018).

AI facilitated development of aging clocks
Aging is a complex and multi-factorial process that is af-
fected by genetic, epigenetic and environmental factors at the
molecular, cellular, organ and whole body levels (Khan et al.,
2017). Molecular and cellular mechanisms of aging have
been studied extensively, which has led to the identification
of numerous “hallmarks of aging”: telomere attrition, epi-
genetic dysregulation, genome instability, shifts in gene ex-
pression patterns and metabolic profiles (López-Otín et al.,
2013). Longitudinal studies of aging have collected a ple-
thora of “aging biomarkers”, which are used to assess
“biological age” and potentially predict healthspan and
lifespan for an individual (Galkin et al., 2020). Quantifying
aging at the individual level by biomarkers led to the de-
velopment of “aging clocks”, which lead to a deeper un-
derstanding of underlying mechanisms during aging, and
thus develop preventive and therapeutic restorative inter-
ventions that can increase lifespan and healthspan by re-
versing the biological clocks back to the young, healthy state.
Current aging clocks are mainly based on statistical

models of a series of biological features. These features in-
clude clinical indicators (Jylhävä et al., 2017; Tzemah-Sha-
har et al., 2022), instrumental parameters (di Giuseppe et al.,
2012; Russoniello et al., 2013), and molecular genetic

measures (Hannum et al., 2013; Zhang et al., 2014). The
methods commonly used are based on univariate or multi-
variate regression methods (Gialluisi et al., 2019), such as
principle component analysis (PCA) (Nakamura and Miyao,
2007), multilayer perceptron (MLP) (Bae et al., 2008), and
the Klemera and Doubal method (KDM) (Klemera and
Doubal, 2006).
Although these classical methods perform well in pre-

dicting adverse aging outcomes, they have limitations in
processing multidimensional data, especially when the shape
of the distribution is not suited for parametric methods (Cao
et al., 2021a), and recognizing the actual interactions be-
tween the biomarkers and outcomes (Jin et al., 2020), as
some significant biomarkers were proved to be nonlinear
(Klemera and Doubal, 2006). While recently, the increasing
availability of large-scale molecular biological data from
high-throughput experiments, in parallel with technological
advancements in machine learning and bioinformatics, have
greatly accelerated the discovery of biomarkers and fueled
the use of computational modeling to unravel complex bio-
logical phenomena by discovering multivariate relationships
(Jordan and Mitchell, 2015). Since then, numerous age
clocks based on DL models have been developed and have
shown considerable accuracy and efficiency in age predic-
tion (Bobrov et al., 2018; Putin et al., 2016). DL-based aging
clocks may also differ through training and validation pro-
tocols. Moreover, the concept of “aging clock” expanded to
further levels of biological data, using medical data include
not only images (Bobrov et al., 2018), but a wide range of
genomic, epigenetic, transcriptomic, proteomic, and meta-
bolic features (Fleischer et al., 2018; Hannum et al., 2013;
Hertel et al., 2016; Holly et al., 2013; Horvath, 2013; Ma-
moshina et al., 2018; Peters et al., 2015; Tanaka et al., 2018).

Summary and perspectives
AI enables the analysis of cross-sectional and longitudinal
data related to large human populations and facilitates the
development of aging biomarkers which offer a tool to assess
health, quantify the effect of interventions, and produce
personalized medical reports. AI allows for enhanced pre-
cision in creating panels of actionable biomarkers, enables
rapid assessment, and facilitates preventive measures (Zhu et
al., 2022a). Future research using DL is still evolving to
achieve better performance. On one hand, aging clocks will
continue to evolve as new biomarkers and integrate multiple
biomarkers. Also, increasing the sample size for training by
aggregating public or private datasets could further improve
the model’s performance. On the other hand, new DL mod-
eling architectures (with careful modeling of parameters),
could be designed and explored further to get great promise
in age estimation.
For pharmaceutical companies, multimodal aging clocks

enable the integration of multiple data types and provide
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deeper insights into biological data management. Deep aging
clocks are excellent tools for a pharmaceutical company to
evaluate which type of data is affected by a drug or inter-
vention, leading to a clearer understanding of which data are
most important in a clinical trial. Aging clocks can also help
to evaluate the quality of the data as well as their impact both
on the prediction accuracy and on the importance of specific
features. Another interesting challenge and potential exten-
sion of this work are to study how the aging clock can be
used as a tool for general health monitoring, including early-
onset disease identification. For instance, an inflammatory
aging clock (iAge) based on deep learning made early di-
agnosis of inflammatory conditions and immune system
decline and further identified CXCL9 as a key contributor to
iAge (Sayed et al., 2021).
Although DL models seem promising applications in in-

tegrating and identifying meaningful patterns from medical
profiles, experts fear that, due to the design architecture, DL
models appear to be “black boxes”, without showing details
of inner working to reach from raw images for disease pre-
dictions (Kelly et al., 2019). Nevertheless, efforts have been
made in improving the interpretability of DL in healthcare
(Richards et al., 2019). It is expected that by combining
modeling approaches with medical expertise, more age-re-
lated pathways and targets can be revealed, which may fur-
ther boost target identification and drug discovery (Figure
30). Furthermore, many computational approaches are being
developed using various kinds of techniques in the compu-
tational drug repurposing, a highly active field of pharma-
cology (Lamb et al., 2006; Zhu et al., 2021b).

Composite clocks

As demonstrated in the previous sections, aging clocks based

on different omics data have been proposed in the past
decade. These findings suggest that biological age is indeed
measurable, although it sometimes remains unclear exactly
how these measured variables relate to the aging-associated
decline in biological function. Moreover, aging is a complex
process that coordinately influences nearly all tissues and
organs at multiple physiological levels, thus it is urgent to
surpass aging clocks that only evaluate limited aspects of
aging and constitute composite markers of aging that reflect
hostile characterization of aging (Figure 31).
Nowadays, only limited studies have tried to build a

composite clock to evaluate biological aging. Recently, a
study conducted a longitudinal study of 106 healthy in-
dividuals aged 29–75 years, and obtained multi-omics mea-
surements, covering transcripts, proteins, metabolites,
cytokines, microbes, and clinical laboratory values for these
individuals (Ahadi et al., 2020). Based on these measure-
ments, the authors defined different aging patterns across
individuals, termed “ageotypes”, and highlighted the het-
erogeneity of the aging pace between individuals (Ahadi et
al., 2020). This study divided the aging trajectories into
different classes with omics datasets, implying the potential
to establish an integrative aging clock. In addition, another
study collected data on immune characteristics in different
modalities, including cell subset phenotyping, functional
responses of the cell to cytokine stimulations, and whole-
blood gene expression from peripheral blood samples of 135
healthy individuals (Alpert et al., 2019). By integrating these
data, the immune aging (IMM-AGE) score was defined,
which was shown to have better performance in predicting
mortality in older adults than the epigenetic clock. This study
mainly focuses on quantifying immune aging, but not the
hostile characterization of aging.
A pioneering study computed a composite index by sum-

Figure 30 AI application in aging clocks. A generalized conceptual framework for applying artificial intelligence to aging clocks.
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ming five scaled biological aging indicators and found that
the composite index displayed a higher correlation with
health determinants than the other clocks (Jansen et al.,
2021). The study measured telomere length, profiled whole-
blood DNAmethylation and transcriptome, serum proteome,
and plasma metabolome from a single cohort, and compared
their ability in predicting chronological age. Among these
features, DNA methylation has the best performance in
predicting age, followed by the proteomics and metabo-
lomics data, and the telomere clock showed the worst per-
formance. A more recent work collected biomedical
information from 4,066 individuals from 20 to 45 years old,
identified age-dependent changes in multi-omics variants,
and established clocks indicating the biological age of dif-
ferent tissues/organs, such as cardiovascular age, renal age,
liver age, as well as sex hormone age and gut microbiome
age (Nie et al., 2022a).
Collectively, an aging clock composed of information

from multiple data modalities might help to identify the key
age-related features shared in different omics layers and
provide a more comprehensive view of aging. Further ana-
lysis of these valuable omics datasets to establish a compo-
site aging clock might elucidate whether incorporating more
data modalities could improve prediction power. Moreover,
experimental validations on these features can facilitate
finding their causal effects on aging and the development of
aging intervention strategies.

Ethical and social implications regarding the re-
search of aging biomarkers

As mentioned in previous chapters, the field of aging bio-

marker research is rapidly evolving and has led to several
breakthroughs. The advancement has demonstrated its po-
tential to play an essential role in the diagnosis, treatment, or
prevention of age-related diseases. However, aging bio-
marker research and its clinical translation, which often in-
volve human beings and animals as subjects, also present a
range of potential ethical, legal, and social risks. These issues
should receive considerable attention from design to ex-
ecution in every study and in the field of aging research.
In this chapter, we carefully explore the ethical, legal, and

social risks associated with aging biomarker research and its
clinical translation, and summarize them into four categories:
(i) Potential scientific considerations, including difficult
clinical efficacy and safety verification and limited pre-
dictive value. (ii) Informed consent issues, involving fully
informed consent, informed consent capacity, and family
informed consent. (iii) Disclosure of assessment or diag-
nostic results, as a highly complex process but lacks dis-
closure standards. (iv) Other specific ethical and social
concerns, involving personal privacy, health insurance, and
patient selection. We believe that these issues should be
addressed in every study, and an ethical framework for aging
biomarker research should be established to provide gui-
dance to researchers, physicians, policy makers, and con-
sumers to advance and safeguard the long-term development
of the field.

Potential scientific considerations

The complexity and heterogeneity of aging make the study of
aging biomarkers extremely complicated and expensive, far
beyond the capacity of a single researcher. In this context, the
clinical validity of aging biomarkers is often questioned. On

Figure 31 Composite aging clocks. A conceptual diagram showing the components of the composite clock and its advantages in evaluation of aging
process.
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the one hand, environmental differences between preclinical
studies and clinical trials of aging biomarkers (Porteri et al.,
2017), such as differences in motivation, risk tolerance and
psychological performance of participants/subjects, make it
possible that their results may differ (Ketchum et al., 2022),
and their clinical effectiveness needs further demonstration.
On the other hand, the clinical application requires evidence
of clinical efficacy and safety of aging biomarkers and re-
levant criteria. However, the time-consuming nature of data
collection and the lack of collection criteria have greatly
increased the difficulty of discovering and validating aging
biomarkers, which makes it much harder to establish criteria
for the effectiveness and safety of aging marker applications
(OECD, 2011).
Currently, existing studies on aging biomarkers target a

relatively homogeneous population. Larger and more diverse
cohort studies are urgently needed to obtain more general-
ized safety and prognostic evidence. Moreover, the lack of
ongoing risk follow-up has led to limited data on the asso-
ciated risks, making it more difficult to analyze their efficacy
and safety (Ketchum et al., 2022). The lack of effective
corresponding treatments or precise prognostic assessments
of aging biomarkers in the clinical setting also makes it more
difficult to verify their clinical effectiveness (Bunnik et al.,
2018). In addition, the predictive nature of aging biomarkers
studies and the uncertainty of the associated results detract
somewhat from their predictive value. Based on these po-
tentially biased test results, it is difficult for clinicians to
make a definitive diagnosis. For example, in amyloid-posi-
tive individuals, it is difficult to use aging biomarkers to
determine whether and when they develop symptoms asso-
ciated with AD (Vanderschaeghe, 2018).

The challenges of informed consent

The above-mentioned scientific uncertainty and in-
completeness make it a great challenge to seek the informed
consent of research participants/subjects. Particularly, how to
fully inform participants/subjects of the potential benefits,
risks and uncertainty of aging biomarkers testing in a com-
prehensive and understandable way is one of the challenges
that researchers/clinicians have to face when conducting
relevant research. Meanwhile, the process of informed con-
sent is also challenged by the ability of research participants/
subjects to give informed consent. For example, for those
whose underlying pathology or physiological changes that
may never result in symptoms, they could better understand
the potential benefits and risks of biomarkers of aging and
make more appropriate decisions (Walter and Covinsky,
2001). By contrast, for those with mild cognitive impair-
ment, such as those with AD, their ability to understand the
risks is relatively limited, and obtaining their consent and
safeguarding their best interests would be more difficult

(Milne et al., 2018). Furthermore, there is some controversy
about whether informed consent should take into account
family involvement (Porteri and Frisoni, 2014).

Disclosure of assessment or diagnostic results

Aging biomarkers research and its clinical trials also face
the question of whether relevant results should be disclosed
to research participants/subjects (Molinuevo et al., 2016).
To some extent, the assessment of aging biomarkers or the
disclosure of diagnostic results is two-sided. On the one
hand, it may provide participants/subjects with opportu-
nities for early management of age-related diseases or life
planning as a way to enhance their life quality (Rostamza-
deh et al., 2021). On the other hand, the limited options for
aging interventions make it possible for relevant disclosures
to cause specific psychosocial distress that affects the life
quality of participants/subjects and alters their social en-
vironment (Paulsen et al., 2013). For example, for those at
higher risk for assessment or diagnosis of biomarkers of
aging, they often fear stigmatization, discrimination, dis-
ruption of family relationships or life plans (Gaille et al.,
2020; Vanderschaeghe et al., 2018), and the possibility of
suffering from ongoing anxiety, high stress, depression and
even suicidal tendencies (Draper et al., 2010). In this sense,
the potential benefits of aging biomarkers research and its
clinical trials are closely linked to the attitudes, beliefs,
expectations, life quality, family support, and social en-
vironment of the research participants/subjects as in-
dividuals. Considered in conjunction with the heterogeneity
of researchers/clinicians, the disclosure of relevant risks
becomes a complex process of ongoing communication
between participants/subjects and researchers/clinicians
(Rostamzadeh et al., 2021).
As can be seen, the disclosure of aging biomarkers as-

sessment or diagnostic results has become a complex and
challenging task that requires specific training and the ability
to convey uncertainty (Molinuevo et al., 2016). Should re-
searchers/clinicians inform participants/subjects of the re-
sults of the aging biomarkers assessment or diagnosis? If
necessary, what should and should not be told, whether re-
levant results should be disclosed or shared with family
members, and whether different disclosure mechanisms
should be adopted depending on the differences between
basic research and clinical trials? All of these questions face
great difficulties due to individual differences in participants/
subjects and differences between preclinical studies and
clinical trials (Molinuevo et al., 2016).
More importantly, despite attempts to standardize the

disclosure or consultation of aging biomarkers assessments
or diagnostic results, consistent standards or systems of
disclosure and consultation guidance have not been estab-
lished (Alpinar-Sencan and Schicktanz, 2020; Karlawish,
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2011; Roberts et al., 2013), which has also left the practice of
disclosure or consultation in an unregulated or even con-
fusing state. In practice, there have been some instances of
clinicians being dishonest or withholding diagnostic in-
formation from patients, which may lead to a loss of trust,
thereby affecting not only the physician-patient relationship
but also the patient’s family relationship (Cornett and Hall,
2008).

Other specific ethical and social concerns

Aging biomarkers research and its clinical trials may also
have significant implications for research participants/sub-
jects at the individual or social level. At the individual level,
the disclosure of aging biomarkers assessment or diagnosis
results and the associated data information involve the pro-
tection of personal privacy. Considering the potential stig-
matization of relevant results, breaches of data information
due to inadequate protection may have a negative impact on
the employment and insurance of research participants/sub-
jects (Cornett and Hall, 2008). Allowing disclosure of in-
formation about aging biomarkers to insurance companies
may also make it more difficult or costly for those whose
aging biomarkers indicate a shorter or more painful life span,
and could even widen the gap between them and healthy
individuals (Davis, 2010). At the societal level, the future
clinical application of aging biomarkers may make the fair
and equitable distribution of diagnostic resources or in-
surance coverage problematic. For example, whether aging
biomarkers tests are primarily used for therapeutic or pre-
dictive needs (Rostamzadeh et al., 2021), whether they are
targeted to patients or the general population, and whether
the associated costs are self-imposed or covered by health
insurance, pose challenges to the current health care system.
This affects not only equitable access to aging biomarkers
testing, but also insurance coverage for other diseases in
other groups. In the long run, these issues could undermine
the principle of solidarity in social security and health care
systems, change the future direction of national health care
systems and social security systems, and even create new
health care equality issues (Gaille et al., 2020).
Not surprisingly, aging biomarkers research and its clinical

trials involve the recruitment of research participants/sub-
jects, but the recruitment criteria are controversial. For ex-
ample, should the study and its clinical trials recruit young
people in a healthy state, should research include those who
pass the optimal treatment window (Molinuevo et al., 2016),
or should research target only healthy older adults? Issues
such as these are difficult to solve. In fact, current aging
biomarkers studies and their clinical trials often have dif-
ferent recruitment sources (Ketchum et al., 2022), but there
are differences in target populations, such as those with a
family history of age-related diseases versus the general

population (Gooblar et al., 2015), people of color versus
whites (Wikler et al., 2013), and disadvantaged groups. It is
equally difficult to consider the principle of diverse recruit-
ment to ensure fair and equitable recruitment to aging bio-
markers research and its clinical trials. In addition, aging
biomarkers research may infringe on the welfare of experi-
mental animals through their use. These issues also need to
be addressed.

Summary and perspectives

In sum, to obtain high scientific standards for early warning
and aging interventions, measurable, sensitive, reliable, and
operable biomarkers based on data and scientific evidence
must be determined. These studies are developing rapidly.
Aging biomarker research has broad health, ethical, societal,
and regulatory implications while advancing aging research
as a whole. To realize the potential benefits of aging re-
search, it has become necessary to establish an ethical fra-
mework for aging marker research to help guide researchers,
physicians, policy makers, and consumers.

Epilogue

Aging biomarkers are critical to answer the three major
questions in the field of aging: how old are we? Why do we
get old? And how can we age slower? In this comprehensive
review, we provided an encyclopedia summary of aging
biomarkers covering a hierarchy of dimensions at cellular,
organ, organismal and populational aging levels, along with
associated ethical and social implications. We hope this re-
view serves as a resource for readers in academia, industry
and medical practice, broadening our understanding of not
only what biomarkers can be used to monitor aging, but also
how to use them to assess novel therapies to slow, modify or
even reverse aging. As such, we can accelerate the journey of
basic science discoveries in the aging field from bench to
bedside.
A broad spectrum of aging biomarkers has been developed

via diverse data types and modeling techniques. With these
rich resources, it becomes more important to know when to
use which set of biomarkers. Throughout this review, we
stick to the three criteria for the selection of aging bio-
markers: specific, systemic and serviceable. Thus, we do not
tend to suggest a single best biomarker; rather, we provide a
reliable collection of biomarkers from multiple dimensions
for the prediction of the biological age and certain disease
risks of a specific organ, which are practical for translation
into clinical practice. They are organized according to the 6
pillars of classification: physiological characteristics, imag-
ing traits, histologic features, cellular alteration, molecular
changes, and secretory factors.
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Owing to the successive release of new aging studies,
especially those based on large cohorts, for example, the new
initiative of the “1000 people aging research project”, and
the ever-expanding power of machine learning approaches,
aging biomarkers and models of application are quickly
evolving. Moreover, aging biomarkers in different species of
animals may not be consistent or even contradictory under
certain circumstances. Thus, translation into clinical practice
requires the development of biomarkers applicable or spe-
cific for the assessment of aging and early warning of age-
related diseases. Therefore, we tend to update this manual for
aging biomarkers and their usage in the years to come to
reflect our most up-to-date understanding of aging. The
identification of specific, sensitive, and serviceable bio-
markers of aging is the premise and basis for achieving aging
interventions through various strategies (Cai et al., 2022c;
Campisi et al., 2019; Chaib et al., 2022; Di Micco et al.,
2021; Gasek et al., 2021; Longo and Anderson, 2022; Rando
and Jones, 2021; Sun et al., 2022b). Although there is still
much to learn about aging biomarkers, it is foreseeable that
as the theory and application of aging biomarkers gradually
advance, our understanding of the laws of aging and the
prevention and treatment of aging-related diseases will usher
into a new era.
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