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Biomarkers of Environmental Tobacco Smoke Exposure

Neal L. Benowitz

Division of Clinical Pharmacology and Experimental Therapeutics, University of California, San Francisco, California

Biomarkers are desirable for quantitating human exposure to environmental tobacco smoke (ETS)
and for predicting potential health risks for exposed individuals. A number of biomarkers of ETS
have been proposed. At present cotinine, measured in blood, saliva, or urine, appears to be the
most specific and the most sensitive biomarker. In nonsmokers with significant exposure to ETS,
cotinine levels in the body are derived primarily from tobacco smoke, can be measured with
extremely high sensitivity, and reflect exposure to a variety of types of cigarettes independent of
machine-determined yield. Under conditions of sustained exposure to ETS (i.e., over hours or
days), cotinine levels reflect exposure to other components of ETS. Supporting the validity of
cotinine as a biomarker, cotinine levels have been positively correlated to the risks of some ETS-
related health complications in children who are not cigarette smokers. - Environ Health
Perspect 1 07(Suppl 2):349-355 (1999). http.//ehpnetl.niehs.nih.gov/docs/1999/Suppl-2/
349-355benowitz/abstract.html

Key words: environmental tobacco smoke, passive smoking biomarkers, cotinine, cigarettes,
tobacco

A biomarker is desirable in quantitating
systemic exposure of nonsmokers to
constituents of environmental tobacco
smoke (ETS). Self-report measures such as
hours per day exposed to ETS by non-
smokers are likely to be imprecise indica-
tors of intake of tobacco smoke because of
variations in the number of cigarettes
smoked, proximity of nonsmokers to
smokers, room ventilation, and other
environmental characteristics, as well as
individual differences in sensitivity to and
concern about adverse effects of ETS. The
optimal assessment of exposure to tobacco
smoke would be by analysis of the concen-
trations of a component of smoke, a bio-
logic marker or biomarker, in body fluids
of an exposed individual.

Two broad questions must be consid-
ered in assessing the validity of a bio-
marker of tobacco smoke exposure. The
first is, How well does the concentration
of a marker chemical in the air reflect
exposure to toxic constituents of smoke
that are of concern with respect to health?
The second is, How well does a concentra-
tion of a particular chemical in a biologic
fluid reflect an individual's intake of that

chemical (or a related chemical) from
tobacco smoke?

The National Research Council (1) has
proposed criteria for a valid marker of ETS
in the air as follows. The markers a) should
be unique or nearly unique for ETS so that
other sources are minor in comparison,
b) should be easily detectable, c) should be
emitted at similar rates for a variety of
tobacco products, and a should have a fairly
constant ratio to other ETS components of
interest under a range of environmental
conditions encountered. Furthermore, the
validity of a biomarker depends on the accu-
racy of the biologic fluid measurement in
quantitating the intake of the marker chem-
ical, which in turn may be influenced by
individual differences in rates or patterns of
metabolism or excretion, the presence of
other sources (such as diet) of the chemical,
and sensitivity and specificity of the analytic
methods used to measure the chemical.

Other issues of interest in assessing the
risks of exposure to ETS are how well the
biomarker indicates long-term exposure to
ETS as well as whether a biomarker pre-
dicts the likelihood of ETS-related disease
and if so how well.

This article is based on a presentation at the Workshop on Environmental Tobacco Smoke Exposure
Assessment held 12-13 September 1997 in Baltimore, Maryland. Manuscript received at EHP 2 July 1998;
accepted 23 December 1998.
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Abbreviations used: 4-ABP-Hb, 4-aminobiphenyl-hemoglobin; NNAL, 4-(methyinitrosamino)-1-(3-pyridyl)-1-
butanol; NNAL-GLUC, glucurononide of NNAL; NNK, 4-(methyinitrosoamino)-1-(3-pyridyl)-1-butanone; PAH,
polycyclic aromatic hydrocarbon; RSP, respirable suspended particles.

Potential Biomarkers
of Environmental
Tobacco Smoke

A variety of biomarkers of tobacco smoke
exposure are proposed (Table 1). The
measurement of cotinine concentrations in

biologic fluids has been used most widely
by scientists to evaluate ETS exposure

because cotinine reflects exposure to nico-
tine, which is almost specific to tobacco.
Chemicals in tobacco smoke such as car-

bon monoxide or cyanide (the latter
metabolized in the body to thiocyanate)
can be measured in blood. However, the
levels of these chemicals are nonspecific,
i.e., there are significant sources of carbon
monoxide and cyanide, including the
body's own metabolism, other than ETS.
Thus, these markers are both nonspecific
and insensitive markers of ETS exposure.

Other markers that have been proposed to

quantitate tobacco exposure include
adducts of 4-aminobiphenyl to hemo-
globin in red blood cells (2-4), adducts of
benzo[a]pyrene and other potential
carcinogens to DNA in white blood cells
(5-8), adducts of polycyclic aromatic
hydrocarbons (PAHs) to plasma albumin
(9), urinary excretion of nicotine-derived
nitrosoamines (10), urinary hydroxy-
proline or n-nitrosoproline excretion (11),
and urinary mutagenicity (2,12). Also,
solanesol has recently been proposed as

perhaps the best marker of particle expo-

sure in the air (13,14). Unfortunately,
solanesol is extensively metabolized in
people and levels are quite low, making
quantitation difficult. Levels of 4-amino-
biphenyl-hemoglobin (4-ABP-Hb) adducts
have been shown to be elevated in non-

smoking ETS-exposed adults compared to

non-ETS-exposed adults (2-4). Adduct
levels showed a significant dose response

with increasing history of ETS exposure in
a study by Hammond et al. (3). However,
4-ABP-Hb levels in nonexposed nonsmok-
ers were substantial, and there was consid-
erable overlap between levels for exposed
and nonexposed nonsmokers.

Similar findings were reported for
PAH adducts with DNA or albumin. A
study by Mooney et al. (15) in which
these biomarkers were followed before and
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Table 1. Comparison of possible biomarkers of ETS exposure.

Duration after
Biomarker Reference Specificity Sensitivity exposure reflected Comments

Cotinine (26) High High 3-4 days Can be measured in urine, plasma, saliva or hair

Nicotine (60,61) High High Hours Short half-life indicates that results are very
dependent on time of sampling; saliva nicotine can
be elevated by local deposition of ETS. Plasma levels
are very low. Urine levels are highly influenced by urine
volume and pH. Hair measurement is promising as a
long-term marker of exposure.

Carbon monoxide (62) Low Low Hours Many environmental sources, CO also produced by
endogenous metabolism. Only small changes in CO
levels seen after ETS exposure

Thiocyanate (63) Low Low Weeks Many dietary sources. Most studies show no difference
between nonsmokers who are or are not exposed to
ETS.

4-Aminobiphenyl- (2-4) Moderate Moderate Months Levels in nonsmokers may be 10 to 20% those of
hemoglobin adduct smokers. Analytical technique technically difficult.

Benzo[a]pyrene-DNA (5-8) Low Low Probably months Analysis is technically difficult. Difference between
adduct smokers and nonsmokers not found in all studies.

PAH-albumin adduct (9) Moderate Moderate 21 days Analysis is technically difficult.

Urinary tobacco-specific (10) High Moderate Probably hours Analysis is technically difficult.
nitrosoamines

Urine hydroxyproline (11) Low Low Probably hours

Urine mutagenicity (2,12) Low Low Hours to 1 day Influenced by dietary and other factors. Inconsistent
results in comparing nonsmokers with and without
exposure to ETS.

after subjects stopped smoking for 14
months illustrated the problem of non-
specificity for both 4-ABP and PAH
adducts. Levels of 4-ABP-Hb and
PAH-DNA adducts dedined to an average
of only 25 and 48%, respectively, of the
baseline smoking value after subjects
stopped smoking for 8 months. Thus,
residual levels were still substantial, which
made detection of ETS exposure difficult
(Figure 1). In contrast, blood cotinine lev-
els fell to an average of 2% that observed
during baseline smoking, a level low
enough to be able to detect nicotine expo-
sure from ETS.

Nicotine-derived nitrosoamines such as
4-(methylnitrosoamino)- 1-(3-pyridyl)- 1-
butanone (NNK) are specific for tobacco
exposure and are metabolized to a butanol
metabolite (4-(methylnitrosoamino)-1-(3-
pyridyl)-1-butanol (NNAL), and its glu-
curonide (NNAL-GLUC) (10). Urine
levels of NNAL + NNAL-GLUC are ele-
vated in nonsmokers exposed to ETS, and
in one small study the correlation between
urine NNAL plus its glucuronide with
urine cotinine concentration was quite
strong (r= 0.89). The assay for NNAL is
technically demanding; as yet very few sub-
jects have been studied using this bio-
marker, so its general utility in exposure
assessment is difficult to assess.

Overall, it appears that although a
number of markers may reflect exposure to
particular components of tobacco smoke in
active smokers, most of the measures are too
nonspecific (i.e., high baseline values even
in nonexposed nonsmokers or environmen-
tal sources other than tobacco smoke)
and/or insensitive (i.e., the increment due to
ETS exposure is small compared to baseline
values) for use in quantitation of levels of
smoke exposure to which most nonsmokers
are exposed. At present, cotinine appears to
be the most specific and most sensitive bio-
marker for exposure to nicotine from ETS.
A limitation of using cotinine, which is dis-
cussed in "Cotinine as a Biomarker," is that
cotinine indicates ongoing exposure but not
long-term exposure to ETS.

Cotinine as a Biomarker
Cotinine, the major proximate metabolite
of nicotine, has been widely used as a bio-
marker of tobacco exposure (16,17).
Plasma cotinine concentrations correlate
better to various measures of biologic
effects of cigarette smoking than does self-
reported cigarettes per day (18,19).
Cotinine concentrations in plasma, urine,
and saliva of nonsmokers have been used
to assess population exposure to ETS to
develop risk estimates for lung cancer
related to ETS exposure (20,21). The

prevalence of significant ETS exposure in
control (reportedly unexposed) groups has
been estimated based on cotinine measure-
ments and used to adjust lung cancer risk
estimates upward for comparison with
actual unexposed controls (1,22,23).

The validity of using cotinine as a
biomarker for ETS exposure has been ques-
tioned (24,25). Concerns include a) the
concentration of nicotine in the air is not a
good marker of other constituents of ETS
because the ratio of nicotine to other ETS
components is highly variable and depends
on such factors within a space as surfaces,
ventilation rate, sampling duration, time
since smoking, and air distribution patterns;
b) the ratio of nicotine emission to respir-
able suspended particles (RSP) emission is
not constant across a wide range of cigar-
ettes; c) exposure to nicotine vapor in the
absence of other ETS components can
occur; d) there is no standard method for
determining nicotine or its metabolites in
biologic fluids; e) interindividual differ-
ences in rates and patterns of nicotine and
cotinine metabolism make the use of nico-
tine or cotinine as biomarkers of limited
utility, and f) dietary nicotine exposure
may confound low-level determinations of
nicotine and cotinine in biologic fluids. A
detailed discussion of these criticisms and
why cotinine is a valid biomarker of ETS
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Figure 1. Biomarkers in blood following smoking cessation. Abbreviations: PAH-DNA, polycyclic
carbon-DNA adducts; 4-ABP-Hb, 4-aminobiphenyl-hemoglobin adducts; B, baseline (precessatio
tion); SD, standard deviation; 1 Ow, 8m and 1 4m = 10 weeks, 8 and 14 months after smoking cessa

of subjects with data were cotinine, n=40; PAH-DNA, n=40; 4-ABP-Hb, n= 16. The SD for c
ng/ml at baseline, and averaged 0.7 ng/ml after cessation; the SD for PAH-DNA was 8.8 adductm
at baseline, and averaged 5.2 after cessation; the SD for 4-ABP-Hb was 8.7 nM/mHb at baseline
after cessation. Adapted from Mooney et al. (15).

exposure has been published recently
(26). The following section is a summary

of that discussion.

Exposure to Nicotine
from Environmental
Tobacco Smoke

Nicotine is a chemical found in all tobacco
products. The tobacco in manufactured
cigarettes contains between 6 and 12 mg of
nicotine (27). Seventy-five percent or more

of nicotine emitted from a cigarette is

emitted into the air as sidestream smoke,
which contributes substantially to ETS
(1,22,23). The amount of nicotine in side-
stream smoke, when normalized for the
generation of tar, is similar for different
brands of cigarette, independent of nomi-
nal nicotine yield (22,23,28). For example,
Rickert et al. (28) found an average tar-to-

nicotine ratio of 5.9 in the sidestream
smoke of 15 different brands of cigarettes,
with a relatively low degree of variability
(coefficient of variation 12.2%). They
found no difference in the sidestream
smoke tar-to-nicotine ratio when compar-

ing ventilated and nonventilated cigarettes.
Because sidestream smoke is not iden-

tical to ETS, it is desirable to examine the
composition of ETS generated by differ-
ent brands of cigarettes. Leaderer and
Hammond (29) confirmed in chamber
studies that the air RSP-to-nicotine ratio
generated by smokers smoking 10 different
brands of U.S. cigarettes with widely differ-
ing machine-determined yields is similar.
The average RSP-to-nicotine ratio was 14.1
(coefficient of variation 13.4%). The ratio
was similar for filtered and nonfiltered

cigarettes. The results of the:
(28) and Leaderer and Han
studies are consistent, and ther
son to believe that the compos

stream smoke generated by ot

marketed cigarettes, which a

nicotine content, should be dif
ever, if future cigarettes cont.
tine but generate similar amc

and other combustion prod
duced by currently marketed
has been proposed to make ci
addictive (30), ETS nicotii

expected to underestimate
other tobacco combustion proc

In mainstream smoke-
taken in by the smoker-nic
tained in particles composed
and other nicotinelike alkalo
most of the nicotine leaves et
phase and becomes part of ti

vapor phase (29,31,32). Nic(
is breathed in through the no,

and inhaled into the lungs by
Nicotine is extremely soluble
is highly extracted from ET
respiratory tree (33).

Levels of nicotine and othei
ETS decay at different rates

that the ratio of nicotine to

tuents ofETS may differ at var

time after generation of the
35). Another source of varia
RSP-to-nicotine ratio is du
ground level of partides arising
other than ETS. Thus, when
particle levels for ETS decline
background particle concentral

tially influence the ratio of RS
At low concentrations of EI

4-ABP-Hb becomes very large. For this reason, measur-
(n= 16) ing the slope of the regression line between

air nicotine concentration and respirable
particle concentration is the best way to
assess the degree of correlation between air
RSP and nicotine (29). In addition, when
air samples are collected over the time
interval of a typical human exposure, i.e.,
over hours or days, RSP-to-nicotine ratios
are much less variable compared with spot

1Ow 8m 14m or brief measurements. Leaderer and
Hammond (29) showed an RSP-to-nicotine
slope of 9.8 for 47 home air samples sam-

c aromatic hydro- pled over several days. The correlation coef-
)n smoking condi- ficient between RSP and nicotine was 0.8.
ition. The number Similar ratios for RSP to nicotine were
otinine was 114 reported by Miesner et al. (36) in work-
s/1 08 nucleotides place samples. Thus, time-averaged ratios of
and averaged 3.6 nicotine to RSP and presumably other ETS

constituents are relatively consistent (21).
When a person is exposed to ETS over time,

Rickert et al. the intake of nicotine reflects exposure to
nmond (29) other constituents of ETS.
re is little rea- Cotinine as a Biomarker
sition of side-
.her currently for Intake of Nicotine
ire of similar The presence of cotinine in a biologic fluid
Tferent. How- indicates exposure to nicotine. There is
ain less nico- some individual variation in the quantita-
)unts of RSP tive relationship between cotinine levels in
lucts as pro- the blood, saliva, or urine and the intake of
cigarettes, as nicotine. This is because different people
igarettes non- convert different percentages of nicotine to
ne would be cotinine (usual range 55-92%) and
exposure to because different people metabolize coti-
ducts. nine at different rates (usual range of coti-
-i.e., smoke nine clearance, 19-75 ml/min) (37). The
otine is con- relationship between nicotine and cotinine
of tar, water, can be expressed mathematically as follows
oids. In ETS,
ie particulate
ie gaseous or

otine in ETS
se and throat
nonsmokers.
in water and
S within the

r chemicals in
over time so

other consti-
*lous points in

ETS (13,34,
ability in the
Le to a back-
from sources

nicotine and

to low levels,
tions substan-
,P to nicotine.
FS, this ratio

based on steady-state exposure:

Generation rate of COT
= intake rate of NIC
x percent conversion NIC to COT [1]

where COT= cotinine and NIC= nicotine.
At steady state,

Generation rate of COT
= elimination rate of COT
= CLCOT X CBSS [2]

where CLCOT is the clearance of cotinine
and CB,, is the steady-state blood cotinine
concentration.

Therefore, combining Equations 1
and2:

Intake rate of NIC

CLCOT X CBS5
% Conv NIC to COT [3]
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Or rearranging:

Intake rate of NIC

% Conv NIC to COT) BS [4]

K x CBss

In adult smokers, the conversion factor
(K) that on average converts a blood level
of cotinine to a daily intake of nicotine has
been estimated to be 0.08 mn/24hr (range
0.05-0.10, coefficient of variation 21.9%)
(37). Thus, a cotinine level of 300 ng/ml,
a typical value for a smoker, corresponds to

a daily intake of 24 mg nicotine. Clearance
data are similar for smokers and nonsmok-
ers (38), so the K factor is expected to be
similar in nonsmokers.

Cotinine levels only approximate
nicotine intake because of variability in the
conversion factor. However, the degree of
variability in the conversion factor (coeffi-
cient of variation=21.9%) is not particu-
larly great compared with variability in the
clearance of most other drugs and is much
less than the degree of variability typically
observed for pharmacodynamic parameters
(39). Even with this inevitable degree of
imprecision, cotinine levels in large groups
of subjects would be expected to accurately
reflect average group exposure to nicotine
from ETS.

Because nicotine from ETS is absorbed
into the bloodstream and cotinine is gener-
ated from nicotine in the liver and released
into the bloodstream, blood levels of coti-
nine should most closely reflect the dose of
nicotine absorbed from ETS. However,
most studies of ETS exposure have used
saliva or urine concentrations of cotinine
because these samples are easier to obtain.
Saliva and blood cotinine levels are highly
correlated, with a saliva-to-blood ratio of
1. 1 to 1.4 (40,41). Therefore, saliva and
blood cotinine levels can be used inter-
changeably. Urine concentrations are also
highly correlated with blood concentra-
tions, with urine levels about 6 times higher
than those for blood.

Typical Levels of Cotinine
from ETS Exposure and
Estimation of Corresponding
Dose of Nicotine
Cotinine levels in people exposed to ETS
have been studied by many research
groups (for reviews, see 1,22,23). Most
studies found increasing levels of cotinine

with increasing levels of self-reported
ETS exposure.

Nonsmoking subjects in various studies
represent several different populations. The
data of Jarvis et al. (42) on adults attend-
ing cardiovascular disease clinics at a

London hospital are an example of estimat-
ing daily nicotine intake from ETS (42).
Using urine concentrations of 7.7 and 1.6
ng/ml and the equations described previ-
ously, the estimated daily intake of nico-
tine by nonsmokers was 100 and 20 pg for
those reporting exposure and no exposure
to ETS, respectively. Extreme ETS expo-
sure is likely to occur in pubs and bars
where smoking is common and ventilation
is often poor. Among 42 nonsmoking bar
staff in London and Birmingham,
England, the median saliva cotinine con-
centration was 7.95 ng/ml (SD 6.1) and
ranged from 2.2 to 31.3 ng/ml (43). Using
Equation 4, the median nicotine intake is

estimated to be 630 pg/day. The maximal
nicotine intake, corresponding to a saliva
cotinine concentration of 31.3 ng/ml, is
estimated to be 2.5 mg/day (nicotine
intake equivalent to actively smoking 2.5
cigarettes per day).

Air Levels of Nicotine from
Environmental Tobacco
Smoke and Predicted Cotinine
Levels in Biologic Fluids
The theoretical relationship between air
levels of nicotine and cotinine levels in the
urine of nonsmokers can be described and
is useful in understanding potential sources
of variability in that relationship. Assume a
workplace level of nicotine in the air due to
ETS of 20 pg/m3 (44). The dose of nico-
tine inhaled is equal to the product of air
concentration and ventilation rate. A typi-
cal ventilation rate for an adult during light
activity is 1 m3/hr. Thus, the intake of
nicotine would be about 20 pg/hr. About
71% of nicotine that is inhaled is absorbed
(33), so the systemic dose of nicotine is
estimated to be about 14 pg/hr. Assuming
an 8-hr workplace exposure, this would be
equivalent to 112 pg/day. Using the equa-
tions described previously results in this
level of intake producing an average urine
cotinine concentration of 8.6 ng/ml, a
value consistent with that measured in
nonsmokers exposed to ETS. Air nicotine
levels measured by Hammond et al. (45)
over 9 hr at 11 Massachusetts office work-
sites that allowed smoking indicated a
median level of 8.6 pg/m3 (45). The
absorption of nicotine from this level of

exposure over 9 hr is predicted to be 55 pg,
resulting in an average urine cotinine
concentration of 4.0 ng/ml. For perspec-
tive, in office workplaces that banned
smoking, the median air nicotine level was

0.3 pg/m3.
Individual variability may exist in the

factors that determine the relationship
between air levels of nicotine and urine

cotinine concentrations. Potential sources

of variability include respiratory ventilation
rate (e.g., higher minute ventilation with
higher work levels), extent of pulmonary
retention of nicotine by the lung, timing of
the sample collection versus time of expo-
sure, sources of exposure other than that
under study, percent metabolic conversion
of nicotine to cotinine, total and renal
clearance of cotinine, and urine flow rate.
It is expected, therefore, that urine cotinine
would yield only an approximate estima-
tion of air nicotine levels.

The relationship between ambient air
nicotine levels and cotinine levels in the
urine or saliva of nonsmokers has been
reported in three studies. Studies by
Marbury (46) and Henderson (47) involv-
ing children in the home and one study by
Coultas (44) of adults in the workplace
found a reasonably strong correlation
between ambient air nicotine and urine
cotinine concentrations (correlation coeffi-
cients, r= 0.81, Marbury; r= 0.68,
Henderson; r= 0.60, Coultas). These corre-
lations are probably as high as can be
expected, given the sources of variability in
nicotine uptake and metabolism. In view of
the multiple potential sources of individual
variability, the Marbury, Henderson, and
Coultas studies support the predictive value
of urine cotinine concentration as a bio-
marker of ETS-derived nicotine exposure.

Nicotine in Food as a Source
of Cotinine
Several foods contain small amounts of
nicotine (48-50). It has been suggested that
nicotine from food might falsely indicate
exposure to ETS (24,25). Davis et al. (49)
estimated that average daily consumption of
tomatoes, potatoes, cauliflower, and black
tea together could result in a daily intake of
8.8 pg nicotine. They estimated, based on a
maximum consumption of all of these parti-
cular foods on the same day, that a person
could ingest as much as 99.9 pg of nicotine
per day from food. It should be noted that
more than 50% of intake in the Davis study
was based on drinking black tea; this study
and others have shown that some black teas
contain no nicotine. It is not known how
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much nicotine is contained in the typical tea
consumed by most Americans.

Also of note, the nicotine intake from
tea reported by Davis et al. (49) necessi-
tates drinking about 4 qt (3,840 ml) per
day. Consumption of such large volumes
of fluid would result in a urine output
much greater than the 1000 ml these
authors assume in their prediction of urine
cotinine concentration. A larger urine vol-
ume would substantially reduce concentra-
tions of cotinine in the urine below the
Davis et al. estimate of 6.2 ng/ml.

Average nicotine intake (i.e., absorbed
dose) from significant ETS plus dietary
exposure is about 80 pg. Repace (51) used
average American vegetable consumption
data, which included 27 g of tomatoes and
75 g of potatoes, to estimate daily nicotine
intake from the diet of 0.7 pg/day. As
noted previously, Davis et al. calculated
that daily consumption of tomatoes, pota-
toes, cauliflower, and black tea might result
in a daily intake of 8.8 pg nicotine. Even in
the latter case, the expected intake from a
diet rich in nicotine-containing food is
only 10% of the total nicotine exposure
experienced by a person with significant
ETS exposure. Conversely, an intake of 8.8
pg nicotine per day from food would be
expected to yield a steady-state urine coti-
nine level of less than 0.7 ng/ml, which is
well below the level indicating significant
ETS exposure.

The impact of tea drinking on serum
cotinine levels of nonsmokers in Scotland
has been studied explicitly (52). No effect
on plasma cotinine levels was observed
with consumption levels of up to 10 cups
or more of tea per day. In contrast, the
same study showed a robust relationship
between self-reported ETS exposure and
plasma cotinine levels. Thus, nicotine in
tea appears to contribute little to cotinine
levels in most people and would be insigni-
ficant compared with nicotine levels from
exposure from ETS.

I conclude that although food is a
source of low-level nicotine exposure, for
most people it represents an insignificant
exposure compared with exposure to ETS
and is likely to inflate population estimates
ofETS nicotine exposure very little.

Nicotine Emissions from the
Environment as a Source of
Human Exposure

Nicotine from ETS deposits on room

surfaces, such as walls and carpets, and
may contaminate house dust. Nicotine

emissions from surfaces or dust in the air
may result in measurable levels of nicotine
in the air that persist after the last cigarette
was smoked in a room (53). Similarly,
nicotine can be emitted from the clothes of
smokers even when they are not smoking
in the room. Thus, it has been suggested
that nonsmokers may be exposed to nico-
tine not only through direct exposure to
ETS but also by exposure to air in a room
in which smoking has occurred in the past
or to air in a room shared by people whose
clothes have been contaminated by tobacco
smoke (53). Although concentrations of
nicotine have been measured in the air
under these conditions, levels of nicotine
are quite low compared to those from ETS.
For example, house dust in a nonsmoker's
home in which cigarettes were smoked on
one occasion was reported to contribute to
nicotine levels in the air of 0.2 to 0.7
pg/m3 over the next few days (53). Using
calculations described previously assuming
a ventilation rate of 1 m3/hr, and assuming
an 8-hr exposure would produce a daily
nicotine intake of 1.1 to 4.0 pg and result
in a urine cotinine concentration of 0.1 to
0.3 ng/ml. These values are trivial compared
to those derived from ETS exposure.

Health and Other Biologic
Effects That Validate Cotinine
as a Biomarker of ETS
Exposure
A significant relationship between biologic
effects of ETS and cotinine levels of
biologic fluids would further support coti-
nine as a quantitative marker of ETS expo-
sure. Several studies support this concept.
Matsunga et al. (54) studied the effects of
ETS exposure on the metabolic clearance
of theophylline, a drug whose metabolism
is known to be increased in nonsmokers
by the presence of cigarette smoke. In 14
nonsmokers, significant correlations were
found between plasma cotinine (r= 0.72)
or urinary cotinine (r= 0.79) and the clear-
ance of theophylline. Strachan et al. (55)
studied 736 seven-year-old school children
and found a positive correlation between
the quintile of salivary cotinine levels and
the risk of middle ear effusion. In another
study of a group of 770 children, Strachan
et al. (56) reported a significant inverse
correlation between salivary cotinine and
various tests of lung function. Similar
results were reported among a group of
2,511 children in a study by Cook et al.
(57), and Rylander et al. (58) found that
the risk of wheezing bronchitis in children

18 months of age or younger increased
as urinary cotinine excretion increased.
Finally, and perhaps most relevant to con-
cerns about occupational exposure in
adults, Tunstall-Pedoe et al. (59) found a
gradient of risk of diagnosed coronary
heart disease that increased with increas-
ing serum cotinine in nonsmokers. Thus,
several different biologic effects of ETS
were shown to be quantitatively related
to cotinine levels, supporting the idea
that cotinine levels reflect ETS exposure
and effects.

Conclusion
To summarize, the National Research
Council criteria for a valid marker of ETS
exposure include: a) should be unique or
nearly unique for ETS so that other sources
are minor in comparison; b) should be eas-
ily detectable; c) should be emitted at simi-
lar rates for a variety of tobacco products;
and 4a should have a fairly constant ratio
to other ETS components of interest under
a range of environmental conditions
encountered (1). Nicotine in the air and
measurement of its metabolite cotinine in
biologic fluids meet these criteria reason-
ably well. Interindividual variability exists
among any set of biologic measurements.
Such variability may limit the value of
predictions based on measurements in
individuals, but this variability is compen-
sated for in studies of large numbers of
subjects, as in epidemiologic studies.
Supporting this conclusion is the observa-
tion that cotinine levels in nonsmokers
have been positively correlated with the
risks of some ETS-related health compli-
cations in children. The evidence pre-
sented in this review indicates that
cotinine levels provide valid and quantita-
tive measures of average ongoing human
ETS exposure over time. The main limita-
tion in using cotinine is that it does not
provide a measure of long-term ETS
exposure, a measure that would be most
useful for epidemiologic studies.

Other biomarkers, particularly
4-ABP-Hb adducts, PAH-DNA or albu-
min adducts, and urine levels of metabolites
of the nicotine-derived nitrosoamine NNK
more directly reflect exposure to carcino-
gens in tobacco smoke than cotinine. Some
of these biomarkers are better markers of
long-term exposure, but available data indi-
cate that they lack adequate sensitivity or
specificity to be useful as quantitative bio-
markers of ETS exposure. Whether levels of
these biomarkers are useful in predicting
disease risk remains to be determined.
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