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Abstract. Multiple Myeloma (MM) is a severely debilitating neoplastic disease of B cell origin, with the primary source of

morbidity and mortality associated with unrestrained bone destruction. Surface enhanced laser desorption/ionization time-of-

flight mass spectrometry (SELDI-TOF MS) was used to screen for potential biomarkers indicative of skeletal involvement in

patients with MM. Serum samples from 48 MM patients, 24 with more than three bone lesions and 24 with no evidence of bone

lesions were fractionated and analyzed in duplicate using copper ion loaded immobilized metal affinity SELDI chip arrays. The

spectra obtained were compiled, normalized, and mass peaks with mass-to-charge ratios (m/z) between 2000 and 20,000 Da

identified. Peak information from all fractions was combined together and analyzed using univariate statistics, as well as a linear,

partial least squares discriminant analysis (PLS-DA), and a non-linear, random forest (RF), classification algorithm. The PLS-DA

model resulted in prediction accuracy between 96–100%, while the RF model was able to achieve a specificity and sensitivity

of 87.5% each. Both models as well as multiple comparison adjusted univariate analysis identified a set of four peaks that were

the most discriminating between the two groups of patients and hold promise as potential biomarkers for future diagnostic and/or

therapeutic purposes.
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1. Introduction

Multiple myeloma (MM) a B-cell neoplasia char-

acterized by the clonal expansion of plasma cells in

the bone marrow encompasses approximately 1% of all

hematologic malignancies within the United States [1].
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MM is the most malignant of the plasma cell dyscrasias,

which include the precursor stages of monoclonal gam-

mopathy of unknown significance (MGUS) and indo-

lent or smoldering myeloma [2,3]. Recent clinical

and experimental observations suggest that the devel-

opment of lytic bone disease may drive the progression

of MM [4]. Lytic bone disease is usually absent in

MGUS, is very limited and asymptomatic when present

in indolent myeloma, but is frequently associated with

the advanced stages of the disease [5]. The osteolysis

associated with late stage MM is perhaps one of the

most debilitating manifestations of the disease. The

symptoms often include hypercalcemia, pathological

fractures with acute and chronic pain, reduced mobility

and the inability to fully participate in normal day-to-

day activities [2,3,6,7]. In radiographic skeletal scans,

myeloma bone disease appears as circular “punched-

out” areas in involved hematopoietic bone marrow sites,

as diffused osteopenia, or their combination [5].

The bone destruction that is associated with MM

progression results from the activation of osteoclasts

(bone resorbing cells) and the suppression of osteoblast

(bone forming cells) activity in the myelomatous bone

marrow [4,8,9]. Clinically, changes in bone turnover

rates (measured by increased osteoblastic and osteo-

clastic activity) precede the progression of MGUS to

overt myeloma by as long as 3 years [10]. Although

several bone-resorbing cytokines including IL-1α, IL-

1β, TNF-α and IL-6 have been found to be associated

with increases in myeloma proliferation and osteoclast

activity [11,12], definitive diagnostic tests and early

detection strategies remain elusive. Thus, the identi-

fication of changes in protein biomarkers in myeloma

patient serum may be the first indication of disease pro-

gression, and enable the early detection of MM at its

presymptomatic stage.

The advent of SELDI-TOF-MS has provided the

means for analyzing a broad array of proteins of differ-

ent physical properties directly in patient samples [13,

14]. SELDI-TOF MS was selected as the diagnostic

tool of choice, based on the impressive accuracy of the

technology when applied to the diagnosis of a vari-

ety of cancers, including ovarian [15,16], prostate [17],

breast [18,19] and pancreas [20,21]. This technolo-

gy, combined with bioinformatics and/or statistical da-

ta analysis, has proven especially useful in diagnosing

diseases where available tests are either too invasive or

perhaps limited by poor diagnostic accuracy, such as in

the progression of MM.

In the study described here, serum from MM patients

with and without skeletal complications was profiled

to identify protein patterns indicative of bone disease

status. Using univariate statistical analysis as well as

linear (PLS-DA) and non-linear (RF) classification al-

gorithms we were able to generate a diagnostic fin-

gerprint that holds great promise as a potential serum

biomarker profile for the diagnosis and treatment of

MM progression.

2. Materials and method

2.1. Sample collection and preparation

In all cases, blood was collected using a University

of Arkansas for Medical Sciences (UAMS) IRB ap-

proved protocol from patients in the Myeloma Institute

for Research and Therapy (MIRT) at UAMS. Serum

samples were obtained from 24 MM patients with no

radiographic evidence of bone metastasis and 24 mul-

tiple myeloma patients with greater than three radio-

graphically identified bone lesions, based on a review

of patient records. Serum was obtained and stored in

small aliquots, at or below−80◦C until processing. No

samples underwent more than two freeze-thaw cycles

before SELDI-TOF MS analysis [22].

2.2. Patient demographics

Serum specimens were analyzed from forty-eight

age- and sex-matched archived MM patient samples (24

were with �3 bone lesions (bone disease) (average age

55.2± 9.7 years) and 24 without apparent bone lesions

(no bone disease) (average age 55.4 ± 8.9 years), diag-

nosed with MM between February 1998 and December

2001. Blood samples were obtained from all patients

during their regular clinic attendance. The bone disease

group comprised 9 females and 15 males, and the no

bone disease group comprised 6 females and 18 males.

All patients were treated with a number of agents,

according to the status of their MM. In addition, all

MM patients with evidence of bone disease were treated

with the standard anti-catabolic bisphosphonate thera-

py (pamidronate) used at our Institution. Treatments in

the no bone disease group varied due to disease status

and included Coumadin, or dexamethasone or procrit.

No patients in this group required or were treated with

bisphosphonate.
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Table 1

Highest ranking 1.5 fold peaks with significant multiple comparison adjusted p values (<0.1)a

1.5 fold peaks Fraction Median Fold change Raw p values Adjusted Significant in

(mass in KDa) (up bone lesion) (WRS)b p-valuesc PLS-DAd RFe

5.802 F6 −1.6 0.00014 0.00308
√ √

6.639 F3 +4 −2.7 0.00020 0.00308
√ √

6.443 F3 +4 −2.4 0.00153 0.01555
√ √

2.019 F2 +2.0 0.00201 0.01555
√ √

10.472 F1 −2.1 0.00593 0.03677
√

14.898 F1 +1.5 0.01334 0.06894
√ √

11.705 F6 −1.6 0.01753 0.07763
√ √

6.512 F1 −1.8 0.02586 0.09078
√

5.094 F1 −2.2 0.02753 0.09078
√ √

11.744 F3 + 4 +1.6 0.02928 0.09078

a. The peaks in bold were significant at the level of p < 0.05 after multiple comparison adjustments.
b. Wilcoxon rank sum test with t-approx.
c. Multiple comparison adjustments via false discovery rate.
d&e. Among the top ten peaks in partial least squares-discriminant analysis and random forest classifi-

cation model respectively.

2.3. Serum processing and fractionation

To increase the sensitivity of peak detection and al-

leviate signal suppression effects on low-abundance

proteins from preponderant species such as albumin,

serum samples were fractionated into six fractions on

the basis of their isoelectric point [21]. Serum samples

were loaded into each well of a 96-well filter plate pre-

filled with an anion exchange sorbent (Serum Fraction-

ation kit, Ciphergen Biosystems, CA) and eluted in a

stepwise pH gradient using a BIOMEK 2000 (Beck-

man Coulter, Fullerton, CA) liquid-handling robot ac-

cording to the manufacturer’s protocol. The six frac-

tions obtained in this stepwise fashion, designated F1

through F6, contained flow-through plus proteins elut-

ed with buffers of pH 9, pH 7, pH 5, pH 4, pH 3 and

organic solvent, respectively. Each serum sample was

diluted approximately 10 fold during fractionation in

50 mM Tris-HCl with the pH adjusted for the different

fractions and containing 0.1% nonionic detergent.

2.4. Protein chip SELDI TOF-MS analysis

Three different chip chemistries {metal binding

IMAC3 (present name: IMAC30), strong anion ex-

change SAX2 (present name: Q10) and weak cation

exchange WCX2 (present name: CM10), Ciphergen

Biosystems} were initially evaluated in a pilot study to

determine which type provided the best spectral pro-

files in terms of peak number and resolution (data not

shown). The IMAC3 metal binding chip consistently

captured the most peaks in the majority of the fractions

and was selected for analysis. Each fraction was indi-

vidually loaded on to the IMAC3 chip arrays, except for

fractions 3 and 4 which were combined before loading,
as fewer peaks were observed in these fractions during
the preliminary study. The serum samples from each
fraction were diluted 1:5 fold in phosphate-buffered
saline (PBS) and applied to the wells of a 96-well bio
processor containing 8-spot IMAC3 chips (Ciphergen)
previously activated with 100 mM CuSO4, as described
by the manufacturer. The bio processor was then sealed
and incubated with the samples for an hour with vigor-
ous agitation on a Micromix 5 platform shaker. Excess
sera was discarded, and the chips washed three times
with PBS and twice with deionized water before being
removed from the bio processor, and air dried for 20
minutes. A saturated solution of sinapinic acid in 50%
acetonitrile, 0.5% trifluoroacetic acid (0.5 µl) was then
applied to each spot of the protein chip arrays. Each
spot surface was allowed to dry for 10 minutes before
another application of 0.5 µl of the sinapinic acid solu-
tion. All sample handling procedures were carried out
using the BIOMEK 2000 robotic system, minimizing
errors due to technician intervention.

ProteinChips were placed in the Protein Biological
System II C mass spectrometer reader (Ciphergen) and
the time-of- flight spectra generated by averaging 156
laser shots collected in the positive mode at a laser in-
tensity of 180; detector sensitivity of 8, and focus lag
time of 782 ns. All data acquisition parameters were
optimized to detect peaks in the range of 2–20 kDa,
as this range contains the majority of the resolved pro-
tein/peptide peaks. Mass accuracy was calibrated using
the All-in-one peptide and All-in-one protein molecu-
lar weight standards (Ciphergen). Each chip generated
included a randomly assigned control sample (pooled
serum from normal healthy individuals) in order to as-
sess inter assay and inter spot variability.
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2.5. Data processing

Acquisition and preprocessing of all spectral data

was performed using Ciphergen ProteinChip software

version 3.1. All peaks were baseline corrected and peak

intensities normalized to the total ion current of m/z

between 2000–20,000 Da as described previously [21].

All spectra were normalized on a fraction by fraction

basis and individually examined to exclude spectra that

showed ion-current saturation or a lack of peaks. Spec-

tra with normalization factors below 0.5 or above 2.5

were recollected at slightly lower (170) or higher (190)

laser intensities so that all normalization factors were

between 0.5 and 2.0. Biomarker Wizard software (Ci-

phergen) was used to compile spectra and detect peaks

that were consistently present across a minimum of

10% of the spectra with a signal-to-noise ratio of �2.0.

Selected peaks were clustered using a second-pass peak

selection within a 0.3% mass window. Sample statistics

were performed on spectra from each of the fractions

separately, by groups of profiles (MM without bone le-

sions vs. MM with �3 bone lesions). Peak intensities

were considered statistically significantly different at

p-value �0.05.

2.6. Normalization across fractions and Intra-sample

correlation assessment

All peak intensities from all fractions were compiled,

transformed to their base-2 logarithms, and then cen-

tered and scaled on a peak-by-peak basis to means of

zero and standard deviations of one (Fig. 1).

Samples giving rise to paired spectra were used to as-

sess intra-sample correlations by determining the Pear-

son correlation among pairs for each peak. The Pearson

correlation coefficients had a median value of 0.89 with

the interquartile range lying between 0.80 and 0.94.

Even though samples were applied robotically and in a

randomized fashion on the protein chip surfaces, high

median intra-sample correlations were observed due to

high spot-to-spot reproducibility of the SELDI system.

Hence, the paired spectra from each patient were aver-

aged together on a peak-by-peak basis for subsequent

data analysis.

2.7. Feature selection and Univariate analysis

For each peak, the median patient-averaged intensity

was calculated for the bone lesion (bone) and no bone

lesion (no bone) groups. The difference in group medi-

ans was reported as a ratio, the fold change. Peaks were

first pre-selected for all subsequent analysis using the

biological criterion of having a >1.5 fold change in the

median peak intensity level between the groups. These

peaks, referred to as 1.5 fold peaks henceforth, were

assessed for statistical significance via Wilcoxon rank-

sum test with t-approximation. Multiple-comparison

adjustment of p-values was via false discovery rate

and the Step-down Permutation procedure of Westfall

and Young [23] using 100,000 random permutations

of class labels. A peak with a multiple-comparison-

adjusted p-value <0.05 was considered statistically sig-

nificantly different.

All statistical analyses were performed using SAS

version 9.0 (SAS institute) and S-plus version 6.2 (In-

sightful Corporation) statistical software.

2.8. Partial least squares discriminant analysis

PLS-DA attempts to find variance in the set of pre-

dictor variables (X-data) that correlates with variance

in the response variables (Y-data). PLS was developed

as an econometric technique [24] but has been used

as a useful tool in classifying microarray [25,26] and

SELDI data [27].

In the MM sample set, the centered and scaled 1.5-

fold peaks were used as the predictor variables while

the Y-data set was created by indicating the classes

(bone lesion vs. no bone lesion). The significant PLS-

components were determined by leave-one-out cross-

validation. The model was also validated by external

validation on an independent data set that was created

by setting aside 10 randomly selected specimens from

the sample set, 5 from each group. The remaining 38

samples were used as a training set to build the model

which was then applied to the independent test set and

the classification accuracy was recorded. The variable

influence on projection (VIP) [28] and PLS regression

coefficients were used to determine the peaks that were

most important in driving the separation between the

classes.

2.9. Random forest classifier

The random forest algorithm [29] (available freely

from http://www.stat.berkeley.edu/users/breiman/ Ran-

domForests/) was conducted by bagging a classifica-

tion tree coupled with random feature selection. Bag-

ging was performed by re-sampling with replacement

2500 bootstrap subsets from the MM data set contain-

ing 70% of the data from each group. No transforma-

tion, centering or scaling was performed on the peak
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Fig. 1. Peak intensities from different fractions were log transformed, centered to means of zero and scaled to standard deviation of one. A) Raw
peak intensities (prior to transformation and standardization) of a fraction of the peaks with m/z between 2–6.2 KDa. B) The same peaks after

log2 transformation. C) After centering and scaling, the same peaks showed increased uniformity in their distribution.

intensities prior to input into the RF algorithm. A Tree-

classifier was constructed on each of these subsets and

predictions were recorded on the remaining 30% of the

data (called out-of-bag samples). When constructing

the decision trees, 5 random inputs from the 1.5 fold

eligible predictors were attempted at each split. Final

prediction from the RF classifier is the out-of-bag es-

timator averaged over all the 2500 bootstrap samples.

The amount of increase in the prediction error when

the value of a splitter for the out-of-bag samples was

randomly perturbed was used to score the importance

of the splitters in constructing the tree-classifiers.

3. Results

3.1. The compiled dataset and univariate analysis

Forty-eight age- and sex-matched archived MM pa-

tient serum samples (24 were with �3 bone lesions

(bone disease) (average age 55.2 ± 9.7 years) and 24

without apparent bone lesions (no bone disease) (aver-

age age 55.4± 8.9 years) diagnosed with MM between

February 1998 and December 2001 were assayed by

SELDI-TOF MS were selected from the UAMS Myelo-

ma Institute for Research and Therapy (MIRT) tissue
bank. The bone disease group comprised 9 women and

15 men, whereas the no bone lesion group contained 6
women and 18 men.

After ion-current normalization on a fraction by frac-
tion basis, 94, 95, 97, 96 and 93 spectra were compiled

from fractions 1, 2, 3 + 4, 5 and 6, respectively. A total
of 168 peaks were resolved from all the fractions in the
2–20 KDa mass range.

A total of 31 peaks showed median fold change >1.5

between the two groups of which 5 peaks were found
to be significant with multiple comparison adjusted
p-values <0.05 (Table 1). Four of these peaks (m/z
5.802 kDa from F6, 6.639 kDa and 6.443 kDa from F3

and 10.472 kDa from F1) were found to be higher in
sera from patients without bone lesions (1.56 to 2.68
fold) while one peak (2.019 from F2) was higher in
patients with bone lesions (1.92 fold). Representative

protein spectra from different bone disease versus no
bone disease samples, showing the univariately signif-
icant peaks are shown in Fig. 2).

3.2. Partial least squares discriminant analysis

The objective with PLS-DA is to find models that

allow the maximum separation among classes of ob-



250 S. Bhattacharyya et al. / Biomarkers that discriminate multiple myeloma patients

Fig. 2. Differences in peak intensities in the normalized spectra of

bone lesion (BL) versus no bone lesion (NBL) groups. The top eight

spectra depict the differences in expression levels in TraceView mode
while the lower eight depict the difference in GelView mode for the

univariately significant peaks of m/z 5.802 (F6), 6.443 & 6.639 (F3

+ 4), 2.019 (F2) and 10.472 (F1), indicated by the arrows.

jects in high dimensional datasets [30]. Unlike prin-
cipal component analysis where only the X-scores are
chosen to explain as much of the predictor variation as
possible, in PLS the X- and Y-scores are selected such
that the relationship between successive pairs of scores
is as strong as possible. Thus, PLS attempts to extract
the latent factors that account for as much of the mani-
fest predictor variation as possible while modeling the
responses well [30].

The PLS-DA model generated here has three sig-
nificant PLS components determined by leave one out
cross-validation. The number of factors chosen usu-
ally minimizes the predicted residual sum of squares
(PRESS), which is a measure of the predictability of
the model [31]. Usually PRESS is re-expressed as Q2,

the cross-validated R2 and is calculated as 1-PRESS/SS

where SS is the sum of squares of the response cor-

rected for the mean. In PLS-DA analysis both R2 and

Q2 are important parameters to evaluate the predictive

power of the model being investigated [28,31]. The

final 3-componenet model had R2 (Y) = 0.79 and Q2

(Y) = 0.59. Thus, three of the PLS-DA components

alone were able to explain 79% of the response vari-

ance. These data suggest that there is information in

the spectra that correlates extremely well with the two

group differences. The separation of the training ob-

servations in the three PLS components are shown in

Fig. 3. As well, the predictive ability of the model

expressed as Q2 is also very good. Generally, an ac-

cumulated predicted variation share larger than 0.5 is

regarded as good [28].

External validation performed on the model by ap-

plying it on a separate holdout test set of 10 randomly

selected samples showed a prediction accuracy of 100%

i.e., all 10 out of 10 samples were correctly classified

by the model (Table 2). External validation by leave-

one-out cross validation on the entire data set produced

a prediction accuracy of 96%. The predicted classifi-

cation was determined using the simple-rule that if the

predicted class membership of the bone lesion group

was greater than 0.5 then classify the sample as bone-

lesion class. In order to determine which peak variables

contributed most in driving the separation between the

two classes, the variable influence on projection (VIP)

and PLS regression coefficients were analyzed. While

VIP parameters point to the variables that contribute

most in explaining both X- and Y-data [28,32], the

coefficients indicate which X-variables contribute in

modeling the Y-variables structure. The VIP ranking

of the top ten peaks with high PLS coefficients (>0.1)

and VIP parameters (>0.8) that contributed most in the

PLS-DA model are shown (Fig. 4). The highest con-

tributors are m/z 11.705 and 5.802 from F6, 6.639 and

6.443 from F3, 14.898 from F1 and 2.019 from F2.

3.3. Random forest classification

The random forest algorithm [29] uses an ensemble

of classification trees that can achieve both low-bias

and low-variance by averaging over a large number of

low-bias, high-variance but low-correlation trees [33,

34]. The algorithm operates as follows. First from a

training set of n molecules, bootstrap samples of the

same size are drawn randomly, with replacement. In

the process, some molecules are left out while others

are repeated in the sample. The left out molecules
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Fig. 3. PLS score plots based on the peak intensities identified in the bone lesion and the no bone lesion groups of MM patients. Triangles

represent no-bone lesion group; solid circles the bone lesion group. A clear separation between the two classes is observed.

Fig. 4. The VIP ranking of the ten peaks with the highest PLS coefficients (>0.1) and VIP parameters (>0.8) that contributed most in the PLS-DA

model.

constitute the ‘out-of-bag’ sample. For each bootstrap
sample a classification tree is grown. At each node the
best split is chosen from among a randomly selected

subset of predictor variables (rather than all). The trees
are grown to the maximum size till no further splits are
possible and not pruned back. Since the ‘out-of-bag’

samples have not been used in the tree construction,
they are used to estimate the ensemble prediction per-
formance. RF prediction for a molecule is computed

by averaging the tree predictions over trees for which
the given molecule was ‘out-of-bag’. The RF method
correctly classified 21 out of 24 MM samples with bone

lesion (87.5% sensitivity) and also correctly classified

21 out of 24 MM samples with no bone lesions 87.5%
specificity) (Table 3) The area under the receiver op-
erating characteristic (ROC) curve for the ‘out-of-bag’

cases was 0.91. It is generally accepted that the area
under the ROC curve >90% is satisfactory in diagno-
sis. The RF analysis used 25 out of the 31 predictors to

construct the predictive models. The predictors were
ranked based on an importance measure between 0 and
1. A major importance measure indicates that random

permutation of that peak variable causes the samples to
be misclassified more often and hence that peak vari-
able is important. Six peaks had an importance score

>0.35 (Fig. 5). Interestingly, five of these six peaks
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Table 2

PLS-DA prediction results on the separate test set

Patient-ID Pred. Classification Pred. Actual

(Class: Bone Lesion) Class Class

Pt06 0.690773 BLa BL

Pt25 0.596842 BL BL

Pt34 0.642156 BL BL

Pt45 0.788041 BL BL
Pt53 0.722192 BL BL

Pt17 0.093782 NBLb NBL

Pt28 0.228806 NBL NBL

Pt44 0.100527 NBL NBL

Pt54 0.200266 NBL NBL

Pt66 0.258923 NBL NBL

a. myeloma patients with bone lesions.
b. myeloma patients with no bone lesions.

Table 3

‘Out of bag’ prediction results by RF classification

Total cases Correct Percent

sensitivity 24 (BL) 21 87.5

specificity 24 (NBL) 21 87.5

were also identified as top contributors in the PLS-DA

model. The specific peaks are m/z 5.802 from F6,6.639

and 6.443 from F3, 2.019 from F2 and 14.898 from F1.

4. Discussion

A major challenge confronting the management of

MM is a way to positively impact patient survival

through the diagnosis of disease progression. Proteom-

ic signature analysis accurately distinguished serum

samples from patients with MM bone disease and no

bone involvement. The development of our technique

depended not only on proteomic technology (SELDI),

but has also involved critical post-acquisition analysis

of obtained spectra. Currently, the choice of spectral

analysis algorithms by various investigators relies on

personal preference, although these choices have pro-

found effects on the diagnostic accuracy [34,35,33,37].

Due to the multifactorial nature of MM bone dis-

ease [5], it is highly likely that a combination of mul-

tiple markers will be necessary to diagnose the disease

with high specificity and sensitivity. To search for these

diagnostic biomarkers serum samples from 48 MM pa-

tients with and without bone disease were examined

in this study. Each serum sample was fractionated to

increase the peak resolution in SELDI spectra and nor-

malized peak information from each of the fractions

merged into an input data matrix that included 48 sam-

ples and 168 feature (predictor) vectors. Such small

datasets are often a reality in biomedical research, since

obtaining large number of serum samples for many dis-

eases can be difficult and expensive [38].

Our approach to the analysis of this small, but im-

portant MM patient sample set was novel in two ways.

First, we adopted a non-statistical criterion of predictor

variable selection based on a >1.5 fold change in the

median peak intensity level between the groups. This

was because our objective was not only prediction, but

also to identify a small set of proteins with good predic-

tive performance that could subsequently be used for

diagnostic and/or therapeutic purposes in the progres-

sion of MM. We hypothesized that this pre-selection

criterion is biologically relevant for both research and

diagnostic purposes. In addition, we determined that

this criterion did not adversely affect the prediction out-

come of the study. In fact, when all 168 predictors were

used as input variables against 48 samples, the sen-

sitivity and specificity predicted by the RF algorithm

decreased to 83.3% and 75% respectively, presumably,

due to noise in the data.

Variable selection derived in an iterative fashion from

the importance measures based on RF itself was per-

formed and the error cost determined from the models

built at each iterative step. The misclassification error

rate did not show improvement using any of these mod-

els. In PLS-DA there was a small (2%) increase in the

cumulative fit to the Y-data, when all 168 predictors

were used. However, 8 out of the first 11 important

peaks based on the VIP scores were preserved in both

models. Thus, although rule-based peak selection may

miss peaks of very low amplitude this does not appear

to be a significant problem, presumably because of the

large number of discriminating peaks.

Second, to increase the robustness of our analytical

approach a linear (PLS-DA) as well as a nonlinear (RF)

classification algorithm was selected. Linear classifi-

cation techniques like PLS-DA make the assumption of

the existence of a linear relation between the predictor

variables which may not be the case always in spectral

data. Both these unrelated algorithms, that have been

shown to perform extremely well on high dimensional

data, were able to obtain high prediction accuracy on

the MM patient data set, as well as point to the same

4 peak variables as the top predictors of the respective

classification models. It is worth noting that this set of

4 variables were also found to be statistically signifi-

cant based on multiple comparison adjusted WRS test

with t-approximation.

Multivariate data-analysis tools such as PLS-DA are

sensitive to pre-processing steps like scaling, center-

ing and where appropriate, transformation [30]. In or-
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Fig. 5. Variable importance score of the highest ranking 10 peaks from RF. The first six peaks had an importance score >0.35.

der to ensure that efficient biological comparisons can

be made between the samples based on the peak in-

tensity information compiled from six different serum

fractions that were collected on separate days, log2-

transformation, centering and scaling were applied to

the input data set for the PLS-DA algorithm. This sig-

nificantly increased the class separation along the first

three PLS components. This preprocessing step, how-

ever, was not performed for the RF algorithm which is

not sensitive to any kind of rescaling, transformation or

modification.

These high dimensional data sets require a combina-

tion of feature selection methods and robust classifiers

that can handle complex data and effectively recognize

hidden patterns. We used two such classifiers, PLS-DA

and RF that have been successfully applied in high di-

mensional microarray data [25,26,39] as well as SEL-

DI data [27,34,40]. Wu et al. has recently shown that

the RF algorithm outperformed other methods like lin-

ear discriminant analysis, quadratic discriminant anal-

ysis, k-nearest neighbor (k-NN), bagging and boost-

ing classification trees in classifying SELDI generated

ovarian cancer data [40]. RF uses bagging (bootstrap

aggregation) to combine unstable learners and random

variable selection for tree building. Each tree is left

unpruned to obtain low-bias trees, while bagging and

random variable selection results in low-correlation of

the individual trees. PLS-DA is an excellent classi-

fier that is resilient to noise in the data and performs

dimensional reduction and discrimination among the

groups in a simultaneous fashion [30]. Thus, PLS-DA

produces more optimal models compared to Principal

Component Analysis-Discriminant analysis.

The RF algorithm produced an ‘out-of-bag’ sensi-

tivity of 87.5% as well as a specificity of 87.5% on

the MM data set. ‘Out-of-bag’ or OOB testing [34,41,

42] is very similar to a cross validation that is repeated

many times with each replication starting with a ran-
dom reordering of the data. In small data sets which
lack a separate test set OOB results have been shown
to be fully reliable and produce prediction accuracies
nearly identical to that obtained from separate test sets.
The three-component PLS-DA model generated with
leave-one-out cross-validation was able to explain al-
most 80% of the response variance in the data. External
validation performed on a separate test set produced a
prediction accuracy of 100% while leave-one-out cross
validation on the training data produced a prediction
accuracy of 96%.

The four top-ranked peaks (of m/z 5.802 from F6,
6.639 and 6.443 from F3, and 2.019 from F2) derived
from t-tests, multiple comparison adjusted significance
testing, PLS-DA and the RF models were identified
to be of high value in the diagnosis of skeletal in-
volvement in MM. It is particularly important to se-
quence and identify these protein biomarkers. These
protein peaks had a >1.5 fold difference in expression
level between the two groups of MM patients. Once
the individual biomarkers are identified and sequenced,
a more conventional and cost-effective method detec-
tion should result in less patient-to-patient variabili-
ty and improve diagnosis. The identification of these
biomarkers would also help in the understanding of the
pathophysiology of MM. The identification of these
specific biomarkers and the subsequent development of
a diagnostic assay are ongoing.

This diagnostic method needs to be validated using
additional patient samples, especially since the accura-
cy of our test for identifying MM bone disease com-
pares favorably with that reported using the same tech-
nology to diagnose ovarian cancer (sensitivity 100%,
specificity 95%) [15], breast cancer (sensitivity 93%,
specificity 91%) [18,19], pancreatic cancer (100% sen-
sitivity and 93.5% specificity) [20,21] and prostate can-
cer (100% specificity and sensitivity) [17].
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We adopted a novel approach to data analysis by

using a number of different but complementary tech-

niques. The power of our diagnostic method is many-

fold: first, similar results were obtained using unrelat-

ed analytical techniques, indicating the robustness of

the selected proteomic approach; second, the majority

opinion (based on multiple analyses) improves predic-

tive accuracy, since algorithms tend to misassign dif-

ferent patients. For the few individual errors, collective

opinion should either improve the performance of the

worst algorithm or leave it the same [43].

A major advantage of the proteomic biomarker sig-
natures approach described here is that it does not as-

sume differences in the spectral peaks obtained from

different patient samples. From a bone disease diagno-

sis standpoint, there is no need to identify further the

nature of new peaks associated with bone disease (posi-

tive biomarkers), nor to explain why peaks only present

in MM patients with no bone involvement disappear

in patients with bone disease (negative biomarkers).

Nevertheless, biomarkers may be useful for improving

our understanding of the pathophysiology of MM bone

involvement.

In summary, this report describes the accurate diag-

nosis of bone involvement in MM using proteomic sig-

nature analysis. The same approach could equally be
used to improve the early diagnosis of the disease, such

as MGUS and eventually other bone diseases such as

osteoporosis.
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