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Abstract 

The use of fossil fuels has been strongly related to critical problems currently affecting society, such as: global warm-

ing, global greenhouse effects and pollution. These problems have affected the homeostasis of living organisms 

worldwide at an alarming rate. Due to this, it is imperative to look for alternatives to the use of fossil fuels and one of 

the relevant substitutes are biofuels. There are different types of biofuels (categories and generations) that have been 

previously explored, but recently, the use of microalgae has been strongly considered for the production of biofuels 

since they present a series of advantages over other biofuel production sources: (a) they don’t need arable land to 

grow and therefore do not compete with food crops (like biofuels produced from corn, sugar cane and other plants) 

and; (b) they exhibit rapid biomass production containing high oil contents, at least 15 to 20 times higher than land 

based oleaginous crops. Hence, these unicellular photosynthetic microorganisms have received great attention from 

researches to use them in the large-scale production of biofuels. However, one disadvantage of using microalgae 

is the high economic cost due to the low-yields of lipid content in the microalgae biomass. Thus, development of 

different methods to enhance microalgae biomass, as well as lipid content in the microalgae cells, would lead to 

the development of a sustainable low-cost process to produce biofuels. Within the last 10 years, many studies have 

reported different methods and strategies to induce lipid production to obtain higher lipid accumulation in the 

biomass of microalgae cells; however, there is not a comprehensive review in the literature that highlights, compares 

and discusses these strategies. Here, we review these strategies which include modulating light intensity in cultures, 

controlling and varying  CO2 levels and temperature, inducing nutrient starvation in the culture, the implementation 

of stress by incorporating heavy metal or inducing a high salinity condition, and the use of metabolic and genetic 

engineering techniques coupled with nanotechnology.
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Introduction
Recent reports from the Department of Economic and 

Social Affairs (DESA) show that the global human popu-

lation is growing at alarming rates, predicting the world 

population will be higher than 9.8 billion in 2050 if the 

current population growth rate is maintained [1]. There-

fore, within the next 30 years, society will face a series of 

problems that will put at risk the existence of most liv-

ing organisms in the planet, and these problems include: 

energy crisis, global warming, greenhouse effects, toxic 

gases emission and drastic climate changes. This has 

created a concern in international scientific communi-

ties that seek to tackle one of the main sources of these 

problems: the use of fossil fuels as our main energy 

source [2]. One way to counteract the problem, is to seek 
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an environmentally-friendly substitute of fossil fuels 

capable of satisfying the growing global energy demand 

[3]. Among the alternatives to fossil fuels, biofuels pre-

sent relevant environmental advantages over the other 

options [4].

Biofuels are a renewable and sustainable alternative 

energy source; different regions of the world have used 

them to partially replace the use of fossil fuels, such is the 

case of Brazil with sugarcane, Europe and parts of Asia 

using mostly palm oil as their production source and for 

the case of biofuels produced from microalgae, countries 

like Brazil, Japan, China and the Unites States are the 

leaders in the field. Biofuel production is an important 

source of job creation, and the first generation of biofuels 

has allowed significant increments in farmers’ incomes 

[5–7]. These reasons propelled biofuels as a suitable alter-

native to fossil fuels [2, 8–10], especially for the automo-

tive industry, which is one of the activities that generates 

the largest amounts of carbon dioxide worldwide [11].

Currently, a high percentage of the biofuels produced 

worldwide come from different raw organic materials, 

grouped into three different categories or generations 

[2, 12]. First-generation biofuels include those based on 

feedstocks that can be used for human consumption, 

including crops like maize, sugarcane, palm oil, sugar 

beet and wheat. Second-generation biofuels are those 

obtained from lignocellulosic feedstock, the non-edible 

parts from food crops that are usually discarded such as 

stems, leaves and husks [13–15]. Although, these gen-

erations of biofuels can partially satisfy the global energy 

demand, they depend on cultivable land available, being 

its main disadvantage; since cultivable land is limited 

and the space necessary for their production compete 

with the production of food crops intended for human 

consumption. Therefore, biofuels derived from edible 

or non-edible crops are not considered as the optimal 

alternative to fossil fuels [16]. A proposed solution to 

tackle these drawbacks is the third generation of biofuels, 

obtained from the cultivation of microalgae, unicellular 

photosynthetic microorganisms capable of converting 

 CO2 and light into biomass and high-energy lipids, pre-

cursors of biofuels [17]. Compared with the first two 

generations of biofuels, the third generation have certain 

advantageous characteristics: they do not compete with 

food crop production or available farmland, they require 

less water, a higher  CO2 mitigation rate, the potential to 

obtain nutrient sources from wastewater, higher carbon 

uptake and higher lipid content, at least 15–20 times 

higher than the second generation biofuels obtained 

from oleaginous crops [18–27]. Microalgae have rapid 

growth rates in favorable conditions, being able to gen-

erate a higher biomass production rate compared with 

land crops [28]. In addition, the space where microalgae 

can be cultivated is much smaller, a great advantage over 

other biofuel alternatives [29], and they are also capable 

of growing in wastewater or reject water, saline/brack-

ish water and even sewage [30–32]. The use of biofuels 

obtained from microalgae have the possibility of reduc-

ing greenhouse gas effects as they are accountable for 

40% of global carbon fixation and can reach up to 70% of 

oil content by dry weight in some strains [4]. Moreover, 

microalgae as a photosynthetic organism, use water and 

atmospheric  CO2 to convert in a very efficient way, sun-

light into chemical energy to produce from the carbon in 

 CO2, valuable organic components such as proteins, car-

bohydrates and lipids [33, 34].

During the process of photosynthesis, nonpolar lipids 

like triacylglycerol (TAG), end up being stored in the 

microalgal cells [33]. It has been widely accepted that 

the production of these lipids serves as energy stor-

age to microalgae cells. Despite this, they are valuable 

compounds since have an important commercial value 

[33, 35–37]. Through the process of trans esterification, 

the TAGs can be easily converted into fatty acid methyl 

esters which are an important and versatile form of bio-

diesel and the cornerstone for its production [2]. The best 

way to produce high amounts of these lipids is through 

the efficient large-scale cultivation of microalgae [38]. 

However, wild-type microalgae under environmental 

conditions are not capable of producing enough lipids to 

satisfy the global energy demands. Therefore, different 

techniques and approaches to enhance higher production 

rates of lipids in microalgae and make this process sus-

tainable and scalable have been explored [2].

It is important to mention that the production of lipids 

in microalgal cells goes beyond energy storage since they 

use these lipids to construct their cellular membranes 

and are fundamental in the production of other biomol-

ecules [2, 39]. Within recent years, researchers have been 

focused in studying different methods to increase the 

production of lipids in microalgae cells at different levels 

(induction with molecules, presence or absence of a fac-

tor, and specific growing/production conditions). Here 

we provide a more comprehensive review of the differ-

ent lipid induction strategies in microalgae cells and their 

applications in biofuel production.

Lipids in microalgae
Lipids produced by microalgae can be divided into two 

main groups: polar lipids, like glycerophospholipids, 

which have an important role in cell structure; and non-

polar lipids, like triacylglycerols, mainly responsible for 

energy storage. Structural lipids (polar lipids) usually 

have long chains of fatty acids which could be trans-

formed to obtain polyunsaturated fatty acids (PUFAs), 

this type of fatty acid includes Eicosapentaenoic acid 
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(EPA), docosapentaenoic acid (DPA) and docosahexae-

noic acid (DHA). PUFAs play an important role in the 

formation of mitochondrial super complexes [40], they 

have potential for biofuel production and have been 

found to have applications in the treatment of some dis-

eases such as atherosclerosis, Parkinson and Alzheimer 

[41]. Polar lipids and some sterols provide a selectively 

permeable barrier that protects the cell from the outside 

and helps in the separation of the different intracellu-

lar organelles [42]. These lipids have special roles in the 

optimal maintenance of membrane fluidity for a variety 

of metabolic and biosynthetic processes and partici-

pate directly in different intracellular membrane fusion 

events. Moreover, these structural lipids have a signifi-

cant function in cell signaling pathways and play a key 

role in response to changes in cellular environment [34, 

42].

On the other hand, TAGs play a fundamental role in 

energy storage within the microalgae cell (Fig. 1), where 

the photosynthesis process generates basic energy by 

transforming sunlight into a useful molecule for the cell. 

To do this, cells use a molecule with a carbon skeleton 

(Glycerate-3P) and then convert it into more important 

molecules (such as pyruvate, glucose, xylose, acetate, 

amino acids, lipids, etc.); this very complex process helps 

the cell generate the biochemistry which is part of basal 

and complex metabolism, growth, energy storage and 

maintenance [43]. Moreover, less than 10% of these com-

pounds can be metabolized to produce fatty acids in the 

chloroplast [44, 45].

The last product of the fatty acids can be used to pro-

duce phosphatidic acid and diacylglycerol in the endo-

plasmic reticulum (ER) and in the chloroplast, whose 

participation is known to act at the cellular metabolism 

level. Due to a variety of conditions and elements, the 

accumulation of TAGs (specially in situations such as the 

lack of nutrients or stress environments) can be influ-

enced. Some ER-derived diacylglycerol can be used to 

assemble TAG in ER [46–49]; these TAGs are principally 

formed in the light period in ER and stored there, they 

could be reused for polar lipid constructing in the dark-

ness period [50].

Microalgae cells are constituted of saturated and mon-

ounsaturated fatty acids [51]. It was believe that the red 

algae Porphyridium cruentum was the only one that 

could accumulate PUFAs in TAGs [52], however, recent 

studies have discover that some species of green micro-

algae, such as Parietochloris incisa have better abili-

ties to produce high amounts of omega-6, long-chain 

PUFA (n-6 LC-PUFA) [53, 54]. Other species, such as 

Pavlova lutheri, Nannochloropsis oculata, Thalassiosira 

Fig. 1 Simplified photosynthesis process and the three main possible biochemical pathways for TAGs formation: in the chloroplasts, in the ER, or in 

the cytosol
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pseudonana, and Phaeodactylum tricornutum could also 

accumulate TAGs but in lower levels [55, 56].

Different studies have shown that TAGs can be used to 

perform more activities besides energy storage activation. 

For example, they could have an indirect role in the reor-

ganization of membrane in response to a sudden changes 

in environmental conditions, TAGs can help the produc-

tion of polar lipids by transferring a special acyl group to 

cause a rapid adaptive rearrangement of the membrane 

[57, 58].

Approaches to promote lipids production
Various species of microalgae have different type and 

quantity of lipids [2] but the basal levels can be altered 

by modifying lipid metabolism in different ways. A bio-

chemical engineering approach is one method based on 

the manipulation of the nutritional and/or cultivation 

conditions. The different cultivation conditions include 

exposure to different wavelengths and light intensity, 

carbon dioxide levels, temperature, available nutrients 

[27, 59], stress to heavy metals, stress to salinity [2, 51], 

and the use of nanoparticles (NPs). Other approach 

is through genetic engineering, where specific genes, 

related to lipid metabolism, are manipulated to improve 

synthesis, storage and structural contents of lipids inside 

the microalgae cell.

Effects of light on lipid production and accumulation

Light is one of the most important factors for the devel-

opment of the microalgae and the production of biomass. 

More importantly, wavelength and light intensity can 

cause drastic changes on how the microalgae grow and 

produce/accumulate lipids. Among the different algal 

species, photoautotrophic species are the only ones that 

require light to grow, using light as the energy source 

for their bioprocesses. However, it is important to study 

other microalgae species such as the photoheterotrophs 

and the mixotrophs, to improve biomass, especially since 

around half of the dry weight of the microalgal biomass is 

carbon, and lipid production [15, 60].

Within the literature, there are different studies that 

report on the effect of different light wavelengths on 

microalgae growth and metabolism. Some reports con-

firm the effect of blue (400–500  nm) and red (600–

700  nm) wavelengths in the development of microalgae 

and the optimal performance of key enzymes (structural 

alteration) in photosynthesis processes and product for-

mation [61]. In these cases, cell pigments play an impor-

tant role in the absorption of specific light wavelengths, 

for example, the normal range of the photosynthesis 

spectrum in microalgae cells is 400 nm to 700 nm; there-

fore the pigments inside the cell (mainly chlorophyll a 

and b) correlate their adsorption spectrum to the optimal 

conditions of microalgae growth [62, 63].

Regarding this, Severes et al. reported that a combina-

tion of the wavelengths of red and blue light for the light-

ing of a culture of Chlorella sp. can cause an increase in 

the biomass production. Also, they have shown that the 

dry weight of lipids contained in Chlorella cells is dou-

bled when the wavelength of red light is applied during 

the growth periods [61]. Similar results were published 

by Monika and colleagues where they report on the effect 

of different light wavelengths (light colors: white, red, yel-

low and green) on the growth behavior and lipid accumu-

lation of a Chlorella sp. strain. According to their results, 

the best growth and the highest lipid accumulation 

obtained were when the cells are exposed to red light, 

meanwhile, the minimum values in these two aspects 

were obtained with the green light [64].

In another study, a Chlorella vulgaris strain was grown 

under different internal LED strips of cold white, blue 

and red, showing that after 10 days with 18:6 light/dark 

periods, with wastewater as a culture medium and with 

an initial cell number of approximately  106 cells/ml they 

obtained a microalgae cultivated with blue light that 

reach the highest production of lipid content (34.06%) 

due to its efficiency and deep penetration [62]. Mean-

while, Osman et al. discover that the color of the cultiva-

tion light affects both the total lipid content and the fatty 

acid profile; they reported that the saturated fatty acids 

were not different in the blue, white and green lights, 

but they were reduced with the red light. The treatment 

also found that the tendency of the saturated fatty acids 

was the opposite of the monounsaturated fatty acid [65]. 

The effect of the light on total oil accumulation and lipid 

composition correlate with reports presented by Markou 

[66], Liu et al. [67], Marchetti et al. [68] and Wacker et al. 

[69].

The light intensity is as important parameter as it has 

been shown to drastically affect the growth of microalgae 

and their lipid content. Typically, both low light intensity 

and extremely high light intensity, causes unfavorable 

growth and undesirable responses in microalgae cells. In 

many cases these extreme light intensities cause photo-

inhibition and photo oxidation that affect lipid content 

[2, 70]. Identifying the optimum range of light intensity 

aids in obtaining the optimal growth of microalgae and 

a higher lipid production [71, 72]. Many research efforts 

have been made to show the light intensity needed to 

obtain the maximum growth and lipid content, but it var-

ies with microalgae species. For instance, Pal et al. report 

that the microalgae Nannochloropsis sp. produces the 

highest lipid amount (47% of dry weight) under a light 

intensity of 700 μmol photons/m2/s [73]. Takeshita et al. 

showed that C. sorokiniana, C. viscosa, C. emersonii, C. 
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vulgaris, P. beijerinckii, and P. kessleri CCALA255, NIES-

2152, and NIES-2159 can produce more lipids with a 

light intensity of 600  μmol photons/m2/s [74]. Further 

studies indicate that lipid accumulation in Scenedesmus 

sp. was increased 11-fold when the intensity of light 

changes from 250 to 400 μmol photons/m2/s [67], while 

other study demonstrate that the highest lipid accumula-

tion in a Ettlia sp. culture (291,4 mg/L/day) is observed at 

a light intensity of 1500 μmol photons/m2/s [75]. Further-

more, lipid content is not affected in several microalgae 

species when exposed to changes in light intensity; such 

is the case of Scenedesmus obliquus, where experiments 

that exposed it to a range of light intensity from 200 to 

1500  μmol photons/m2/s show that the lipid content 

remains unchanged [76].

Nowadays, two main categories of microalgae cultiva-

tion methods have been suggested. One method involves 

open systems with configurations of open ponds, tanks, 

raceway ponds and the other methods involve closed 

culture configuration systems such as photo bioreactors 

(PBR) [77, 78]. PBRs are flexible systems that can vary in 

shape, such as including tubular, vertical columns and flat 

plates [79]. PBRs have the ability to adjust and have a 

tighter control in the culture-parameters [80]. Table  1 

shows the main advantages and disadvantages of these 

two types of microalgae cultivation systems [77, 81].

Both open and PBR cultivation systems are used in 

large-scale commercial production of biomass to obtain 

different chemical compounds, such as fatty acids, pro-

teins, anti-oxidants, pigments and animal feedstock [82]. 

Nevertheless, considering the sensitivity of the open 

pond system to contamination, the open pond systems 

is mainly used for biomass production of microalgae 

strains, which grow in specific conditions, such as high 

nutrient concentration. Jorquera et  al. introduced Chlo-

rella sp., Spirulina sp. and Dunaliella salina as strains 

with a requirement of specific growth condition [83]. 

Hence, it is indispensable to employ PBRs to produce 

high-value products such as human nutrient and phar-

maceutical products from microalgae which are grown 

under tightly controlled conditions [84].

One aspect to be considered is the difficulty of control-

ling light exposure in an industrial production setting. 

One main design aspect of culture systems involves the 

ratio between light exposure surface area and volume of 

culture. The literature shows that typically high ratios 

between these two parameters lead to higher biomass 

yields and growth in microalgae. Therefore there is an 

intense area or research being developed to design inno-

vative culture systems with the purpose of maximizing 

light exposure area per volume of culture. Although both 

open pond and closed PBRs can use either natural sun-

light or artificial illumination for microalgae cultivation 

[85], closed PBRs offer better control of light than open 

systems. Controlling wavelength and intensity of light is 

more feasible in a lab-scale PBRs compared to industrial 

settings. Therefore, optimal conditions are determined in 

a lab-scale PBR to further test large-scale models. One of 

the complexities in the scalability of these systems is cor-

relating light permeation into the cultures system since 

it decreases exponentially with distance from the light 

source, posing a difficult engineering problem when scal-

ing PBR systems [86, 87].

Contrary to closed PBRs, surface-to-volume ratio and 

the corresponding light penetration in open ponds sys-

tem are far from ideal; although direct sunlight is too 

strong for most microalgae, most of them only need 1/10 

of direct sunlight [88]. Mainly, in most open pond system, 

only the top 7–10  cm of water are exposed to enough 

light penetration for efficient photosynthesis [89], the 

causes are bulk algal biomass that is accumulated in the 

surface which leads to blocking natural light sources and 

preventing it from reaching deeper into the water [90]. 

However, one main advantage of open culture systems is 

that they are inexpensive to install and operate [87].

When comparing both open and closed systems, 

choosing between them heavily depends on specific 

conditions of the user, however, it should be clear that 

for research and in order to expand understanding the 

Table 1 Main advantages and  disadvantages of  open 

pond and  closed culture systems for  microalgae biomass 

production

Cultivation 
system

Advantages Disadvantages

Open Low operating costs Process and contamina-
tion controls with low 
efficiency

Easy to scale up High evaporation rate

Cooling through direct contact 
with atmosphere

Requires lots of land to 
produce

Good gas interchange Poor light penetration

High loss of  CO2

High harvesting costs

Low production perfor-
mance

Low control over growth 
factors (e.g. evapora-
tion, temperature)

PBR Lower contamination risk High operating costs

High production performance High construction cost

Relatively low harvesting cost Difficult to scale up

High light use efficiency

Requires low land to produce

High control parameters of 
culture

Low loss of  CO2
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behavior of a microalgae culture, the most convenient 

way is through PBRs. In this regard, a simulation model 

for algae production in greenhouses system, developed 

by Hermans et al. [91] and then adopted in industrial set-

tings, was used to calculate the yearly algae production in 

a one-hectare greenhouse filled with PBRs in the Neth-

erlands [92]. Their study showed that the minimum cost 

price of algae produced in a one-phase and two-phase 

tubular PBR were between 16–35 € and 11–19 € per kg 

of dry algae biomass, respectively. Very interestingly the 

report included depreciation of the PBR and greenhouse 

equipment, labor, maintenance and electricity required 

for illumination, this last one accounting for the highest 

percentage of the total cost.

Carbon dioxide

The atmosphere, industries discharge gases and car-

bonate salts are highly valuable sources for microalgae 

cultures and other photosynthetic microorganisms, 

to capture  CO2 and in the presence of sunlight use the 

inorganic carbon to produce biomass and chemical 

compounds of interest [93] (Table 2). For microalgae to 

grow and be metabolically active, there are specific maxi-

mum and minimum  CO2 level parameters that must be 

reached. These optimal  CO2 levels influence lipid produc-

tion and their accumulation within the cell [2]. Although 

the increase of  CO2 could help in the production and 

accumulation of lipids in the microalgae cells, as men-

tioned previously there is also a maximum level where 

the excess  CO2 levels leads to disruptive effects in lipid 

production and cell growth. Previously it was believed 

that the microalgae cells develop best at high concen-

trations of  CO2 and this was corroborated with experi-

ments performed with some species of Nannochloropsis, 

which are not inhibited at high  CO2 levels. However, later 

experiments have demonstrated that most species exhibit 

a maximum range where  CO2 become non-optimal 

and in some cases lethal to the culturing of microalgae 

[94–96].

When a culture of microalgae cells is aerated with high 

concentrations of  CO2, a part of the carbon is used by the 

cells for the process of photosynthesis, but the remain-

ing carbon could be converted to carbonic acid  (H2CO3). 

This compound can cause acidification of the medium, 

altering cell growth and metabolic pathways. Ying et  al. 

studied pH changes in the medium when exposing the 

culture to different  CO2 aeration parameters, and they 

report that dramatic pH changes that lead to damage of 

enzymes involved in the photosynthesis process. Hence, 

it is very important to consider optimum pH levels for 

the various species of microalgae to determine the  CO2 

exposure optimal for biomass growth and lipid produc-

tion and accumulation in the cells [97].

A variety of works in the literature have focused on 

understanding the effect of different  CO2 concentra-

tions on microalgae cells. Montoya et  al. determined a 

high concentration of fatty acids and lipid productivity 

(29.5  mg/L/day) in a culture of C. vulgaris with a  CO2 

concentration of 8% (v/v) [107]. In another work, Ying 

et al. reported an inhibition of growth in a culture of D. 

Salina with a 0.02 mol  CO2/L concentration and discover 

that if the concentration increases more than 0.02  mol 

 CO2/L (i.e. constant doses of 50% (v/v)  CO2) it turned out 

to be deadly for its growth [97]. Moreover, Chlorella Pyr-

enoidosa an oleaginous specie, was cultivated under 5% 

(v/v) of  CO2 concentration, obtaining the highest lipid 

productivity, 107 mg/L/day. Bagchi and Mallick reported 

that a cultivated Scenedesmus Obliquus (Turpin) Kützing 

Table 2 Studies on the effect of  CO2 levels on the accumulation of lipids in different species of microalgae

Microalgae strain Used  CO2 concentration Change of lipid amount Refs.

Chlorella sp. BTA 9031 3% (v/v) Accumulated 25% of lipid as a percentage of dry cell weight [98]

Chlamydomonas sp. JSC4 4% (v/v) Generated maximum lipid content (65.3%) and productivity (169.1 mg/L/day) [99]

Chlorococcum littorale 5% (v/v) Lipid content increased up to 34% wt [100]

Scenedesmus obliquus CNW-N The optimal CO2 consump-
tion rate was 1420.6 mg/L/
day

The highest productivity of lipid (140.35 mg/L/day) is achieved [101]

Synechocystis sp. PCC6803 3% (v/v) The total lipid content increased up to 14% of dry weight [102]

Porosira glacialis 20–25% levels of  CO2 The total lipid content increased from 8.91 to 10.57% in cell dry mass
Docosahexaenoic acid content increased from 3.90 to 5.75%
EPA decreased from 26.59 to 23.66%

[103]

Attheya longicornis 20–25% levels of  CO2 Did not show any significant increase in total lipid content [103]

Nannochloropsis oculata 3% (v/v) Demonstrated high lipid content (53.2 wt%) [104]

Scenedesmus sp. 10%  CO2 Lipid productivity reached up to 20.65 mg/L/day [105]

Chlorella vulgaris 30%  CO2 The highest lipid content (45.68%) and lipid productivity (86.03 mg/L/day) is 
obtained

[106]
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GA 45 with 15% (v/v) of  CO2 concentration was able to 

obtain a lipid accumulation performance of 850  mg/L 

in a period of 16 days [108]. Finally, green microalgae of 

the Chlamydomonas sp. JSC4 strain were cultured under 

4% (v/v)  CO2 achieving a maximum lipid productivity 

(169.1 mg/L/day) [99].

Temperature

Temperature is another important factor that affects 

growth and the lipid content in microalgae cells. Differ-

ent studies have shown that temperature changes have 

a crucial effect on microalgae development, lipid pro-

duction and formation of fatty acids, however optimal 

parameters depend on the species. The literature shows 

that the biochemical pathways related to the synthesis 

and accumulation of lipids are controlled by enzymes 

with a high sensitivity to thermal variations [109]. Some 

researches based on reported results suggest that as the 

temperature increases, microalgae tend to produce and 

accumulate saturated fatty acids; opposite to this, at low 

temperatures microalgae tend to produce and accumu-

late unsaturated fatty acids. Menegol et  al. studied the 

effects of temperature on Heterochlorella luteoviridis, 

finding that with a temperature set at 22 °C, it could get 

a 40.7% of PUFAs (of the total percentage of fatty acids), 

and when the temperature change from 22 to 27 °C, the 

percentage of saturated fatty acids was increased (52.9%) 

[110].

Depending on the objective of the study, the ideal tem-

perature for microalgae cultivation can be selected, but 

as with the other parameters, the optimal temperature 

will vary for each species of microalgae affecting sig-

nificantly their growth and lipid production. Such is the 

case observed with Nannochloropsis limnetica, where 

the cells can grow in the range of 15  °C to 27  °C but 

their maximum growth and lipid productivity occurs at 

22  °C [111]. Converti et  al. have studied N. oculata and 

C. vulgaris, they suggest that an increase in temperature 

causes a decrease in lipid content in C. vulgaris, and the 

decrease causes an increase of lipid content. Meanwhile, 

in N. oculata, increase and decrease temperature resulted 

in increase and decrease of lipid production, respectively 

[112].

Two strains of Monoraphidium consortiums and 

Desmodesmus quadricauda showed that a decrease in 

temperature of up to 13  °C provides an optimal condi-

tion for lipid accumulation [113]. In a different study, 

the optimal temperature for Tetraselmis subcordiformis 

and N. oculata was 20  °C and 30  °C, respectively [114]. 

In addition, considering that there are open and closed 

systems, regulation for high and low temperatures can 

only be carried out in closed PBRs, since open systems 

are typically operated at environmental conditions with 

constantly varying temperature [51]. Temperature is a 

very important condition that should be considered in 

the cultivation of microalgae, a closed system is an excel-

lent method for temperature control, especially when an 

optimal temperature has been determined to obtain the 

best lipid productivity and biomass quantity.

Nutrient limitation

Essential inorganic nutrients such as nitrogen, sulfur, 

carbon, iron and phosphorus have remarkable impact 

on growth, reproduction and metabolism of microalgae 

cells. Nutrient limitation is an applied and promising 

strategy used by many researchers to change and control 

the microalgae cell cycle and the biochemical pathways 

linked to lipid production and accumulation. The lack 

of nutrients causes undesirable situations inside the cell, 

generating the accumulation of more lipid compounds as 

a response, this technique has been therefore exploited 

by researchers and the industry to increase lipid produc-

tion and accumulation [115].

In a culture medium, cell growth is linked to availability 

of a high concentration of nutrients in the culture, espe-

cially during the early life cycle stages of cell growth; a 

rich media therefore leads to a maximization of biomass 

productivity. Then, after reaching the necessary biomass, 

nutrient limitation can cause an environment of stress 

and a ramp-up in lipid production, especially observed in 

the late growth-stages. Most of the work and studies have 

shown that numerous species of microalgae produce and 

accumulate higher amount of lipids, specially the TAGs, 

in nitrogen-limited mixotrophic conditions [116–119]. 

However, it is possible that nutrient limitation might 

affect other biochemical pathways in the cells impacting 

indirectly lipid productivity [120].

Several studies have explored different nutrient limi-

tation techniques in different strains to understand and 

optimize different output parameters. Yang et al. showed 

that under situations of phosphorus or nitrogen defi-

ciency the fatty acid yield in Chlamydomonas reinhardtii 

is significantly increased [121]. Cordeiro et al. carried out 

a study of the effects of phosphorus and nitrogen levels 

on the growth of species of Microcystis, they reported 

that the obtained lipid performance from Microcystis 

panniformis and Microcystis novacekii had the inverse 

and direct correlation with nitrogen (35.8%) and phos-

phorus concentration (31.7%), respectively. They also 

have reported that Microcystis aeruginosa had an inverse 

correlation with the nutrient concentration (23.3%) 

[122]. Furthermore, Mata et  al. showed that by increas-

ing ten times the concentration of nitrogen in the cul-

ture medium, lipid productivity and content increased 

33.5% and 47.4 mg/L/day, respectively in Dunaliella ter-

tiolecta [123]. It was also shown that by increasing the 
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iron concentration 10 times (compared to the standard 

culture medium), the lipid productivity increased from 

14.6  mg/L/day to 28.0  mg/L/day. Finally, Figueroa et  al. 

cultivated C. reinhardtii under limited mixotrophic con-

ditions, and had a significant 66% increase in lipid pro-

duction (0.08 g/L).

Heavy metal stress

There are some heavy metals such as Cu, Fe, Mn, Ni and 

Zn that are vital micronutrients in many biological pro-

cesses [124–126] since they have essential roles as pre-

cursors of vitamins, catalytic cofactors for numerous 

metallo-enzymes, and structure proteins of the cell mem-

brane [124, 127, 128].

Microalgae have proven to be efficient and effective 

in the removal of heavy metals and are able to tolerate 

high concentrations of heavy metals through different 

mechanisms such as coupling metals to surface proteins, 

expression of cellular ligands to create metal complexes, 

triggering of efflux pumps to excrete metal ions, and kid-

napping heavy metals through polyphosphates, phyto-

chelatins and metallothioneins [129]. The accumulation 

of high concentrations of heavy metals can cause the pro-

duction of reactive oxygen species (ROS) [130], inhibition 

in the synthesis of chlorophyll [131] and negative disrup-

tion on cell proliferation [132] affecting lipid accumula-

tion within the microalgae cell [133]. In different studies, 

heavy metal stress has led to increase the lipid content in 

some microalgae [134].

Ren et  al. evaluated the effects of  Fe3+ (0–0.12  g/L), 

 Mg2+ (0–0.73 g/L) and  Ca2+ (0–0.98 g/L) on lipid accu-

mulation in Scenedesmus sp. cells and suggested that the 

total lipid content and lipid productivity increased up to 

28.2% and 29.7%, respectively with the addition of EDTA 

during cultivation [133]; this implies that, the main meta-

bolic pathways related to lipid synthesis and breakdown 

in Scenedesmus sp. cells could be modified by  Fe3+,  Mg2+ 

and  Ca2+ [135]. These metal ions have multiple physio-

logical functions that affect metabolic activity of microal-

gae cells and their lipid accumulation processes [136], for 

example,  Ca2+ is a universal messenger involved in the 

signaling of environmental and developmental stimuli 

[137]. It is worth noting that  Mg2+ has been recognized 

as an important signaling ion, both activating and medi-

ating many biochemical reactions, such as regulation of 

carbon fixation in chloroplasts in the Calvin cycle [138, 

139]. In addition, the literature shows that the increment 

of

Mg2+ could assist Acetyl-CoA carboxylase (key regula-

tor of fatty acid synthesis) function to increase the neu-

tral lipid content in microalgae cells [136]. Battah et  al. 

examined the effect of heavy metals  (Mn2+ and  Co2+) on 

the lipid content of C. vulgaris [140], using manganese 

chloride  (MnCl2) at a concentration of 2 μM, 10 μM and 

12 μM. The results demonstrate that all of these concen-

trations increased lipid content significantly by 14%, 16% 

and 15%, respectively. They also discovered that if cobalt 

nitrate is added at different concentrations, lipid content 

can be increased up to 25% more, compared to the cor-

responding controls.

An additional study reports up to 56.6% increase in the 

total lipid content in C. vulgaris at 5 different  Fe3+ con-

centrations in the culture medium [135]. Einicker-Lamas 

et  al. mentioned that cadmium increases the total lipid 

content in Euglena gracilis. For the case of cadmium and 

its effects on C. vulgaris, reports have shown that TAGs, 

acetone mobile polar lipids (AMPL) and phospholipids 

(PL) were the main lipid classes after exposing C. vulgaris 

to different combinations of cadmium (2 × 10−8;  10−7 M) 

and nitrogen (2.9 × 10−6 to 1.1 × 10−3  M) Furthermore, 

by changing the combination of nitrogen and cadmium 

in the medium it is possible to alter and control lipid 

composition [134].

Nanoparticles

Researches have used various types of metallic NPs, 

within a range of 5–100 nm, since they exhibit different 

physical and chemical properties than the same metals 

at the macroscale [109, 141]. The diverse physicochemi-

cal behavior of metallic nanoparticles have allowed 

their use for many different applications in drug deliv-

ery systems, the food industry, cosmetics, optics and 

the synthesis of multifunctional biomaterials [142]. One 

very recent application of NPs is linked to their ability 

to improve gas–liquid mass transfer rate in fermenta-

tions [143, 144]. The presence of the NPs improves the 

mass transfer coefficient at the gas–liquid interface 

[145]; therefore, the assumption is that the increase of 

 CO2 concentrations through NPs can affect the growth 

rate and the induction of lipids in some microalgae.

Jeon et  al. used silica nanoparticles and methyl-

functionalized silica  (SiO2–CH3) nanoparticles in a C. 

vulgaris culture. They used Blue-Green medium (BG-

11) and grew microalgae that used solely  CO2 as a 

carbon source; they were able to observe that the NPs 

increased the gas–liquid mass transfer rate in this  CO2/

medium culture system and improved both growth and 

lipid accumulation in the cultivated microalgae. They 

reported that the use of both NPs causes an increase 

in the volumetric mass transfer coefficient  (kLa) of 31% 

and 145%, respectively; the results also showed that, 

although the addition of silicon NPs leads to an increase 

in cellular dry weight and in fatty acid methyl ester pro-

ductivity, the highest cellular dry weight (1.49 g/L) and 

the highest fatty acid methyl ester productivity (610%) 
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were obtained by the addition of 0.2  wt%  SiO2–CH3 

NPs [146].

Similarly, Ahn et  al. examined the effect of magnetic 

cobalt ferrite/silica NPs and methyl functionalized mag-

netic silica NPs (methyl-MSNs) on growth and lipid 

production in a culture of C. vulgaris by improving gas–

water mass transfer and increasing the concentration of 

dissolved  CO2. Reporting that for the  kLa of 0.3  wt% of 

the MSNs and methyl-MSNs were 3.11/h and 4.01/h, 

respectively; and the use of 0.3  wt% Methyl-MSNs 

yielded the highest mass transfer rate [147]. Nonetheless, 

improving the rate of mass transfer not only does not 

increase the lipid content, but also decreases it sharply 

(to 3.37% and 4.57%, respectively).

It has been found that some metallic NPs such as Ag, 

Au, CuO, ZnO, Se, Pd and FeO turn out to be highly toxic 

for different organisms [148–153]. One of these affected 

organisms is microalgae (Table 3); the toxic effect of NPs 

is related to ROS production and the induction of oxida-

tive stress, this is only achieved when the concentration 

of NPs reaches an effective level [149–151].

Some researchers mention that if microalgae are 

exposed to adequate doses of NPs, they can induce oxida-

tive stress and thus improve lipid production [142, 160, 

161]. He et al. evaluated the effects of Carbon nanotubes 

(CNTs), α-Fe2O3 NPs and MgO NPs on lipid production 

of Scenedesmus obliquus, and they discovered that expo-

sure to 5 mg/L CNTs, 5 mg/L  Fe2O3 and 40 mg/L MgO 

NPs increased the lipid content up to 8.9%, 39.6% and 

18.5%, respectively. In addition, when microalgae were 

exposed to high doses of NPs, biomass and lipid produc-

tion decreased, due to the high concentrations of ROS 

generated that caused cell death [142].

Similarly, Kang et al. used the oxidative stress of  TiO2 

NPs to stimulate and enhance lipid productivity in C. 

vulgaris UTEX 265 and suggested that oxidative stress 

causes the accumulation and decomposition of lipid pro-

ductivity. They also mention that the highest productiv-

ity of fatty acid methyl ester (18.2 g/L/day) was obtained 

with low doses of  TiO2 NPs (0.1 g/L) and a short induc-

tion time of 2 days [160].

Other reports related to the use of NPs to improve lipid 

productivity are listed in Table 4. It should be emphasized 

that the use of NPs for the improvement of lipid produc-

tivity is a unique method and has some disadvantages for 

example, how expensive it is to recycle NPs for the fol-

lowing experiments. Therefore, more in depth studies 

should be carried out to describe in detail the stability 

and environmental effects that NPs can cause.

Saline stress

Salts play a vital role in the physiological and bio-chemi-

cal pathways of growth, reproduction and metabolism of 

fatty acids in microalgae, therefore, saline stress is one of 

the most efficient enrichment strategies for lipid content. 

Because of this, many researchers have focused on study-

ing salt stress for this purpose [167–169].

Saline stress is known to cause a difference in osmotic 

pressure within microalgae cells, which, generates a 

stress-response that leads to the modification of their 

metabolism which will allow the microalgae to adapt to 

these new conditions [170, 171]. Changes at the meta-

bolic level causes saline fluctuations within the cell, 

increasing significantly the lipid content; it has even been 

found that variations in the concentration of salt in the 

growth medium not only increase the total lipids of the 

Table 3 Toxic effect of different NPs in several species of microalgae

Microalgae strain Type of NPs Size of NPs Used concentration Refs.

Platymonas subcordiforus
Chaetoceros curvisetus
Skeletonema costatum

Co NPs 30 nm 67.2 mg/L
38.6 mg/L
21.5 mg/L

[154]

Soil alga Chlamydomonas reinhardtii Ag NPs < 100 nm 0–50 mg Ag NPs/kg dry weight soil [155]

Chlorococcum sp.
Scenedesmus rubescens
Dunaliella tertiolecta
Tetraselmis suesica

ZnO NPs < 100 nm 0.081–810 mg/L [156]

Navicula sp.
Chetoceros sp.

CoO NPs < 50 nm 2 mg/ml [1]

Dunaliella salina SiO2 NPs 11–14 0.1, 0.3, 0.85, 2.4, 7, 20 and 50 mg/L [157]

Chlorella vulgaris (KCTCAG10002) ZnO NPs
CuO NPs
NiO NPs
TiO2 NPs
Fe2O3 NPs

40–100 nm
30–50 nm
30 nm
< 25 nm
20–40 nm

8, 16, 33 mg/L
0.5, 1, 2 mg/L
4, 9, 18 mg/L
20, 40, 80 mg/L
22, 45, 90 mg/L

[158]

Dunaliella salina Al2O3 NPs 20 nm 0.005, 0.026, 0.14, 0.7, and 3.8 mg/L [159]
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microalgae cells, but can also altered lipid composition 

[51].

Bartley et  al. investigated the effects of salt stress 

on the growth of marine microalgae Nannochlorop-

sis salina. They grew it at 22 PSU (particle salinity unit) 

until the culture reaches the stationary phase and then 

they increased the concentration of salts to 34, 46, and 58 

PSU. They reported that the lipid content increased sig-

nificantly under these salt concentrations, obtaining the 

highest total content of fatty acids (36% dry tissue mass) 

at 34 PSU [172].

Meanwhile in a study by Salama et al., Chlamydomonas 

Mexicana and Scenedesmus obliquus were grown in a 

culture medium with different levels of salt stress reach-

ing up to 100 mM NaCl; showing that the maximum lipid 

content obtained (37% and 34% respectively) from C. 

Mexicana and S. obliquus were achieved with a concen-

tration of 25 mM NaCl. They also investigated the com-

position of fatty acids, finding that linoleic acids (41%) and 

oleic acids (41%) were the dominant fractions. Although 

the data on the effect of NaCl on the fatty acid composi-

tion of microalgae lipids are scarce and conflicting, these 

results also show that the higher concentrations of NaCl 

in some species of microalgae such as Chlamydomonas 

Mexicana and Scenedesmus obliquus can improve the 

composition of their fatty acids [173]. Depending on the 

type of lipid used, different levels of NaCl can be used to 

alter the fatty acid composition. In other words, depend-

ing on which one of polyunsaturated fatty acids, monoun-

saturated fatty acids and saturated fatty acids are needed, 

the suitable NaCl level can be used.

Pandit et al. grew two strains of microalgae (C. vulgaris 

and Acutodesmus obliquus) in a medium that contained 

different levels of salt concentration (from 0.06 to 0.4 M 

NaCl) and they reported that the maximum amount of 

lipids (49% and 43%, respectively) was obtained at a con-

centration of 0.4  M NaCl [174]. Besides, Acutodesmus 

dimorphus showed a significant accumulation of lipids 

(33.40 ± 2.29%) in 200 mM NaCl of added medium; and 

the lipid accumulation increased significantly up to 43%, 

when saline stress extended to 3 days [175].

The type of salt used to cause the saline stress also 

has an effect on the accumulation of lipids in microal-

gae. Srivastava et  al. cultivated Chlorella sorokiniana 

CG12(KR905186) and Desmodesmus GS12(KR905187) 

with different types of salts (NaCl, KCl,  MgCl2 and 

 CaCl2) and found that with  CaCl2 the maximum effect on 

lipid production was obtained, improving up to a 40.02% 

and 44.97% in CG12 and GS12, respectively. It is assumed 

that  Ca2+ plays a definitive role in cell signaling under 

conditions of salt stress which causes an increase in the 

synthesis of lipid compounds [176].

Genetic modification of microalgae to increase lipid 

production

Employing molecular biology to genetically alter micro-

algae is an approach that offers an alternative to obtain 

better lipid productivity. Recently, different genetic 

engineering methods have received a lot of attention 

from researchers because they are considered novel and 

especially tunable tools [177, 178]. In general, it seeks 

to reduce, inhibit or over express one or several genes 

related to the production of a metabolite of interest. For 

the case of the microalgae, these genes are related with 

the photosynthetic process, the growth rate, improved 

resistance against extreme conditions such as pH, salin-

ity, temperature and genes that have great importance 

in the metabolism of lipids [109]. The impact on the 

Table 4 Improvement of lipid productivity using different types of NPs in some species of microalgae

Microalgae strain Type of NPs Utilization Lipid profile change Refs.

Chlorella vulgaris Cu NPs Metal resistance induction Total lipid increase (up to 32%) [162]

Mg NPs Photosynthesis enhancement Lipid content increase (0.43 mg/L)

Zn NPs Metal resistance induction Total lipid content increase (0.74 mg/L)

Pb NPs Increase of growth rate Total lipid content increase (0.76 mg/L)

Isochrysis galbana Fe NPs – No significant difference in total lipid content [163]

Pavlova lutheri Increase of growth rate Increase of the total lipid (up to 12 pg/cell)

Tetraselmis suecica Increase of growth rate Increase of the total lipid (up to 40 pg/cell)

Chlorella vulgaris Nanoscale MgSO4 Photosynthesis enhancement 185.29 ± 4.53% improvement in lipid produc-
tion

[164]

Chlorella sp. KR-1 CTAB-decorated Fe3O4 NPs Improvement of harvesting and cell 
disruption efficiency

The cells harvested using CTAB-OTES-MNP 
yielded an approximately 2.3-fold-higher 
lipid content compared with the control 
extracted by only hexane

[165]

Nannochloropsis maritima Fe3O4 NPs Improvement of harvesting efficiency The algal biomass increased up to 1.02 g/L 
at day 18 (subsequently, more total lipid 
amount is achieved)

[166]
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microalgae are related to: fast growth and large cell size 

for high biomass production, high lipid yield, the ability 

to secret lipid into media, adaptive capability to envi-

ronmental fluctuations and stress and the ability to form 

flocs for easy and low-cost harvesting [194].

However, one of the main limitations of this approach 

relies on the data available to do such modifications; 

sequencing the genomes of microalgae and having them 

available facilitates genetic manipulation, allowing to 

know with greater detail and precision the different genes 

that participate in the different metabolic pathways. Sev-

eral nuclear microalgae genomes have been sequenced 

(C. reinhardtii, P. tricornutum, T. pseudonana, Cyanidi-

oschyzon merolae, Ostreococcus lucimarinus, Ostreococ-

cus tauri, and Micromonas pusilla). However there are 

a lot of ongoing projects to have more genomes avail-

able [181, 184]. Despite this, it is estimated that there are 

72.500 species of microalgae but only about 44.000 have 

been described [186].

For genetic modification of microalgae there are a 

variety of bioengineering methods that can be applied: 

Random Mutagenesis, Clustered Regularly Interspaced 

Short Palindromic Repeats—CRISPR associated with 

the protein 9 (CRISPR–Cas9), Transcription Activa-

tor-Like Effector Nucleases (TALEN) and Zinc-Finger 

Nucleases (ZFN) used mainly for the alteration of the 

gene sequence [179–181]; while the use of micro RNA 

(miRNA), short interfering RNA (siRNA) and homolo-

gous recombination allows the activation and repression 

of genetic expression [182–184]; meanwhile agitation in 

the presence of glass bread or silicon, carbide whiskers, 

electroporation, biolistic microparticle bombardment 

and Agrobacterium tumefaciens-mediated gene transfer 

has been used to transfer DNA into microalgal cells [4, 

181]. The efficiency of transformation strongly depends 

on the microalgae specie and both the genetic modifi-

cation method and the transformation method must to 

be carefully selected according to the specie and type of 

modification.

The use of the CRISPR–Cas9 system allows the regu-

lation of the expression of multiple target genes [185], 

the expression of complex traits through the multigene 

engineering. Since 2014, the use of this tool marked a 

beginning of a new age of genome editing in microalgae; 

although the main challenge of using this tool is the tox-

icity of the Cas9 nuclease (with a mutation rate of 10%); 

which has an alternative, the use of ribonucleoproteins 

[4, 188, 189].

The majority of the genetic edition reports on micro-

algae for the increase of lipid production have been car-

ried out in the study models as Chlamydomonas and 

Chlorella [186]. The earliest successful DNA modifica-

tion was accomplished by Rochaix and Van Dillewijin in 

C. reinhadtii [4, 187]. And in the case of fatty acid bio-

synthesis, Roessler isolate the acetyl-CoA carboxylase in 

1990 to later transform the diatoms Cyclotella cryptica 

and Navicula saprophila [51, 193].

One of the first experimental reports related to this 

was done by Dunahay and colleagues when they tried to 

introduce additional copies of the acetyl-CoA carboxy-

lase gene in the diatom Cyclotella cryptica to manipu-

late the lipid accumulation [187]. Kang et al. investigated 

the gene of a Wrinkled1 transcription factor type AP2 in 

Arabidopsis thaliana (AtWRI), whose main function is to 

regulate lipid biosynthesis in plants, and they transferred 

it in the microalgae Nannochloropsis salina [188]. The 

characterization of the transformed cells revealed that 

the total lipid content increased by 36.5% compared to 

the wild-type strain.

One of the best methods in the genetic engineering 

approach uses the RNA silencing technique. Deng et al. 

investigated the CrCO gene of C. reinhardtii [189], a 

homologous gene of the circadian-regulated CON-

STANS gene (CO) which plays an important role in the 

photoperiod and flowering time [190, 191]. They deter-

mined that the repression and overexpression of the 

CrCO gene can change lipid accumulation in microal-

gae cells and the silencing of the gene (by RNA inter-

ference, RNAi) can increase the lipid content and the 

levels of TAGs up to 24%. Trentacoste et  al. reported 

that the gene knockout of a multifunctional lipase/

phospholipase/acyltransferase increased the amount 

of lipids in the cell without affecting the growth of the 

T. pseudonana diatom [192]. In addition, they discov-

ered that antisense-mediated knockout mutants of the 

diatom had 3.3 times more lipid content than the wild-

type variants in the exponential phase of growth.

There are many other experiments and reports 

based on the genetic engineering methods applied to 

the various species of microalgae (Table  5). However, 

these methods have some limitations: high production 

cost, low growth rate, low transformation success and 

incomplete genetic and characterization problems for 

the scaling of microalgae culture [51, 193, 194].

One problem of working with genetically modified 

(GM) microalgae is the environmental impacts and the 

ethics regarding their release. It is worthy to note that, the 

intentional release of GM organisms such as microalgae 

into the natural environment must be thoroughly ana-

lyzed and accepted by different international committees 

of experts; since in the error or consensual release of GM 

microalgae, they can remain in the natural habitat but 

even reproduce and spread further [195]. This concern 

related to GM microalgae and the impact to the environ-

ment and human health needs to be check by the nega-

tive ecological effects like change of food webs structure, 
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displacing native species such as phytoplankton, causing 

local extinctions, detrimental algal blooms formation, 

and having serious societal, cultural and economic effects 

where different toxic strains are involved [196]; in order 

to make a final decision about their release.

Other examples related to genetic modifications of 

microalgae to improve resistance and that could be useful 

to improve lipid content/productivity: one was carried 

out by Nakamoto and colleagues [194, 195], the small 

heat shock protein (ch-sHSP) was overexpressed in Syn-

echococcus elongates resulting in higher thermo tolerance 

under light condition (in comparison with wild-type). 

Schroda and collaborators [194] overexpressed HSP70B 

in Chlamydomonas and find that exhibited greater pho-

tosynthetic efficiency by protecting the photosystem 

II. Finally, Li and colleagues [197] overexpressed the 

homogentisate phytyltransferase vitamin E2 (VTE2) 

obtaining a higher protection against oxidative stress.

Conclusion
Microalgae as unicellular photosynthetic microorgan-

isms can produce high amounts of lipids, which makes 

them a promise for biofuel production in the sustainable 

energy sector. Most importantly the growth of microal-

gae, their maintenance, the extraction of lipids and their 

subsequent conversion to biofuels must be profitable and 

competitive with fossil fuels. This review has shown dif-

ferent environmental and genetic engineering strategies 

that have been explored in order to achieve increased 

lipid production in different microalgae species and 

therefore an economically feasible strategy of energy pro-

duction. These strategies can be used alone or in combi-

nation, however, it is necessary to carry out more studies. 

It is also important to remember that the effectiveness of 

the strategies and their results will depend on the species, 

the lipid production objective, the experimental facilities 

available and the economic resources accessible to the 

development of the project.

Table 5 Improvement of lipid content in different species of microalgae with genetic engineering methods

Microalgae species or strain Type of modification Changes in lipid profile in the microalgal 
cells

Refs.

Chlamydomonas reinhardtii Repression of Major lipid droplet protein 
(MLDP) gene expression

40% increase in the average lipid droplet 
diameter

[197]

Chlamydomonas reinhardtii Knockout of citrate synthase gene TAG level increased up to 169.5% [198]

Chlamydomonas reinhardtii Artificial silencing of Diacylglycerol acyltrans-
ferase 2–4 gene (CrDGAT2-4)

24%-34% increase in lipid content [199]

Chlamydomonas reinhardtii (starchless mutant) Inactivation of Adenosine diphosphoglucose 
pyrophosphorylase (ADP-glucose pyrophos-
phorylase)

10-fold increase in TAG [200]

Chlorella minutissima UTEX 2219 Overexpression of glycerol-3-phosphate 
aceyltransferease gene, lysophosphatidic 
acetyltransferase gene and diglyceride 
acyltransferase

2-fold increase in lipid content [201]

Scenedesmus obliquus (starchless mutant) Knockdown of competitive pathways genes Increase in TAG accumulation of up to 51% [202]

Phaeodactylum tricornutum Heterologous gene expression of acyl–acyl 
carrier protein thioesterases (Acyl-ACP 
thioesterases)

Increased accumulation of shorter chain 
length fatty acids

[203]

Synechocystis sp. Cyanophycin synthetase gene deletion Fatty acids secretion into the medium [204]

Synechocystis sp. Phosphotransacetylase gene deletion Increase in production of fatty acids [204]

Phaeodactylum tricornutum Suppression of TAG lipase gene expression Increase of the lipid content (0.04 ± 0.01 mg 
TAG/mg dry weight)

[205]

Scenedesmus obliquus Successful expression of diacylglycerol acyl-
transferase gene

Enhanced 128% of lipid content. [190]

C. reinhardtii Knock-down of PEPC enzyme with CRISPRi Enhanced lipid production up to 94% [191]

P. tricornutum Expression of malic enzyme Enhanced lipid productivity by 2.5 in compari-
son with wild-type

[192]

P. tricornutum Overexpression of glucose-6-phosphate dehy-
drogenase (G6PD)

Increased production of lipids up to 55.7% of 
dry weight

[186]

T. pseudonana Knock-down of a multifunctional lipase/phos-
pholipase/acetyltransferase enzyme

Mutant strains produced 2.4- to 3.3-fold higher 
amounts of lipids in comparison with wild-
type

[186]
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