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ABSTRACT: 

Monitoring biomass changes in the Mediterranean ecosystems is important for better understanding their responses to climatic and 

anthropogenic changes. Multi-frequency SAR data (L-band PASLAR and C-band Sentinel-1) is investigated for developing a 

biomass estimation model along a climatic gradient in Israel. First, the relationships between biomass and transmissivity at various 

frequencies are discussed. Multi-frequency polarimetric radar vegetation index (MPRVI) is then proposed utilizing the ensemble 

average of degree of polarization and cross-polarized backscattering coefficients. After randomly partitioning the data for training set 

and testing set, the new MPRVI-based biomass model is evaluated. It shows a good agreement with reference biomass data with an 

r-square of 0.899 and a root-mean-squared error (RMSE) of 0.381 kg/m2 and with a relative RMSE (RRMSE) of 10.8%.

1. INTRODUCTION

Mediterranean ecosystems along climatic gradients are 

characterized by high diversity of plant such as woodlands, 

dense shrublands, open shrublands, dwarf shrublands, and arid 

vegetation (Safriel, 2009; Shoshany, 2000). Mapping biomass 

for extensive regions along the Mediterranean-to-arid climatic 

gradient is instrumental for studying desertification and 

biodiversity changes and may play an essential role in 

understanding water availability, ecosystem changes, and their 

response to the global carbon cycle and climate change (Chang 

and Shoshany, 2017; Santi et al., 2017; Shoshany and Karnibad, 

2015).  

Remote sensing is a primary information source for assessing 

such responses at wide regional extents (Shoshany, 2000). 

However, the extraction of biophysical information, including 

biomass, from remotely sensed data, is complex in 

Mediterranean areas due to their high geodiversity (high 

fragmentation and heterogeneity) (Santi et al., 2017; Sternberg 

and Shoshany, 2001).  Optical sensor data have been widely 

used at different spatial resolutions; however, it provides 

information mainly for the upper vegetation layer because of its 

shallow penetration into the moderate-to-highly dense 

vegetation canopies (Guyot et al., 1989; Lu, 2006; Prabhakara 

et al., 2015; Shoshany and Karnibad, 2015; Chang et al., 2022). 

Since microwaves signal penetrate deeper into canopy layer 

than optical radiation, synthetic aperture radars (SAR) have 

been used for remote sensing of biomass, and it was proven that 

radar parameters such as backscattering coefficient and 

polarimetric coherence offer relatively high correlation with 

biomass (Le Toan et al., 1992; Neumann et al., 2012; Sarker et 

al., 2013). While radar backscatter models are well developed 

with input parameters including forest and shrubland biomass, 

the assessment of above-ground biomass (AGB) over a wide 

region in the Mediterranean is most challenging due to the high 

spatiotemporal variability of shrubs and background effects 

such as topography and surface roughness (Eisfelder et al., 

2012; Lu, 2006a; Shoshany et al., 2000).  

Polarimetric radar vegetation index (PRVI) was proposed by 

Chang et al. (2018) utilizing the degree of polarization (DOP) 

and the cross-polarized backscattering coefficients: 

 (1) 

where DOP is the average of DOPH (degree of polarization for 

hh- polarization) and DOPV (degree of polarization vv- 

polarization) for full (or quad) polarization SAR data, and  is 

the cross-polarized backscattering coefficient.  

PRVI shows a good performance for estimating biomass, by 

reducing the background effect and moderating the direct 

scattering effect (Chang et al., 2018). In addition, many studies 

have indicated that combining multi-frequencies (different 

wavelengths) shows a better performance than a single 

frequency for mapping wide range of biomass levels (Ferrazzoli 

et al., 1997; Jiao et al., 2010; Naidoo et al., 2015; Saatchi et al., 

2007; Santi et al., 2017).  

Accordingly, this study aims to develop a biomass estimation 

model based on PRVI by using multi-frequency SAR data for 

wide regional mapping along a climatic gradient in the South-

Eastern Mediterranean region. Taking into account the varying 

transmissivity characteristics of different frequencies, a 

technique for improving accuracy by combining multi-

frequency SAR data has been studied. Our research is focused 

on dual-polarization data due to wide availability and low cost 

of this data.  

2. STUDY AREA AND REMOTE SENSING DATA

2.1 Study area (Israel) 

The South-Eastern Mediterranean region (Israel) represents a 

typical Mediterranean-to-arid transition zone from a sub-humid 

Mediterranean climate to a desert, where the mean annual 

rainfall ranges from above 600 mm to below 100 mm (Figure 1) 

(Shoshany et al., 1996; Sternberg and Shoshany, 2001). 

Vegetation patterns consist of four life forms in this area:  
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woodlands (mainly Pinus halepensis), taller than 5 m with 

average biomass of 8 kg/m2; shrubs (dominant species are 

Pistacia lentiscus and Rhamnus palaestinus), with a hight range 

of 0.5 m - 5 m and average biomass of 4.5 kg/m2; dwarf shrubs 

(such as Sarcopoterium spinosum and Thymelaea hirsuta), with 

heights less than 0.5 m and an average biomass of 0.7 kg/m2;  

herbaceous plants, with maximum biomass of 0.8 kg/m2 

(Svoray et al., 2001). These vegetation types vary due to 

precipitation and magnitude and frequency of human 

disturbances. According to the precipitation variation across the 

gradient zones and the intensity of human disturbance, the 

shrubland biomass varies approximately from 0.5 kg/m2 to 5.0 

kg/m2.  

 
Figure 1. The study area with field experiments sites is marked 

with a rectangular box. The contour indicates mean annual 

precipitations (mm/year). 

 

2.2 Remote sensing data 

Table I shows the remote sensing data used in this study: dual-

polarization L-band ALOS-PALSAR2, dual-polarization C-

band Sentinel-1, and mean annual precipitation (MAP). The 

SRTM (1 arc-second) elevation data was applied to SAR data 

for terrain correction for PALSAR2 and Sentinel-1. Landsat 8 

data were acquired for land classification.  All the remote 

sensing data were co-registered in 10-meter spatial resolution 

(WGS84/UTM) by ENVI 5.5 

 

Data Descriptions Year 

ALOS 
PALSAR2 

L-band, dual-pol (HH, HV) 
 (25 m) 

2017 
(July) 

Sentinel-1 

GRD 

C-band, dual-pol (VV, VH) 

(10 m) 

2017 

(July, Sep.) 

Landsat 8  
Multispectral data 

(30 m) 
2017  
(July) 

SRTM Elevation (1 arc-second) - 

Precipitation 17 years 1994~2010 

Table 1. Remote sensing data. 

2.3 Reference biomass  

Numerous allometric models have been suggested to provide an 

adequate methodological solution for biomass estimation of 

shrubs and trees based on their geometric properties (Chave et 

al., 2014; Conti et al., 2019; He et al., 2018; Le Toan et al., 

2011; Pereira et al., 1995; Sternberg and Shoshany, 2001).  

The average shrub biomass allocation of all species combined 

was 9.1~27.6% of leaf biomass and 72.4~90.9% of the woody 

biomass (Sternberg and Shoshany, 2001). Shrub stems (or 

trunks) and branches are therefore the dominant component of 

shrub’ volume. Here we used the allometric model presented by 

Pereira (Pereira et al., 1995): 

 

          (2) 

 

where h is the shrub's height and d is its diameter. 

 

Forty-seven ROIs (regions of interest) of shrublands in the 

study area, 100m by 100m of each ROI, were selected 

representing local areas of low disturbance. Their biomass was 

calculated by combining high-resolution orthophoto images and 

field measurements (Chang and Shoshany, 2017). 

The average of tall tree biomass allocations of most species was 

determined mainly by 72.6% of trunks, followed by 23.8% of 

branches and 3.4% of foliage (Vargas-Larreta et al., 2017). For 

estimating tree biomass in this paper, we utilized the following 

model of He et al. (2018) using the trunk diameter as an 

independent variable: 

 

  (3) 

 

where DBH is a diameter at breast height for a tree. 

 

Ten ROIs with relatively homogeneous tree density in the study 

area were selected for utilizing this method. For each ROI, five 

(or six) trees were measured within 50m by 50m between 

February and April 2019. 

 

3. MULTI-FREQUENCY RADAR VEGETATION 

INDEX 

The microwave transmissivity (horizontal co-polarization) 

relationships with biomass are shown in Figure 2 (Entekhabi 

and Moghaddam, 2007; Ulaby et al., 1986). In this study, the C-

band and L-band SAR data have been used as primary imagery 

source data for biomass estimation (Shimada et al., 2009; Torres 

et al., 2012).  

Multivariate linear regression analysis is frequently used by the 

remote sensing community for bio-physical estimation, using 

multi-frequency and multi-polarization SAR data (Berninger et 

al., 2018; Eisfelder et al., 2012; Lu, 2006b). However, it 

requires the reparameterization of regression coefficients for 

each site, thus it is very limited for wide areas mapping. The 

following generalized PRVI presented by Chang et al., (2018) is 

suggested here as an alternative:  

 

                    (4) 

where a0 and a1 are constant coefficients, and B is the biomass 

in kg/m2.  

While the PRVI was developed based on full-polarimetric data, 

the dual-polarization based PRVI can be obtained by replacing 

the DOP (average of DOPH and DOPV) parameters with one of 

the DOPH and DOPV. The average of DOP and DOPH are 

alternative to each other with little difference, and the r-square 
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between the two is 0.952, as obtained from the previous study 

using the full polarimetric PALSAR data (Chang et al., 2018). 

Therefore, the PRVI for dual-polarization has the following 

form, under the assumption of the homogeneously distributed 

target (Chang et al., 2018; Ulaby et al., 1992, 1986): 

 

                  (5) 

where the subscript pp denotes vv- or hh-polarization, the 

subscript pq denotes the cross-polarization, and the dual-

polairzation combination would be VV+VH or HH+HV. 

 

Consideration of the frequency-dependent transmissivity, a 

combined PRVI based biomass model using multiple frequency, 

can be expressed by the extended form of equation (4): 

 

               (6) 

where Tk indicates the transmissivity at frequency band k, 

PRVIk for the polarimetric radar vegetation index, and b0 and bk 

are constant coefficients. 

The Tk can be replaced by simple equations derived from the 

relationships between biomass and transmissivity (Figure 2) at 

P-, L-, C-, and X-bands (Ulaby et al., 1986): 

  

    (7) 

Equation (6) and (7) would offer better accuracy with 

containing the proportion of biomass due to each different 

penetration depth for each frequency, but they are too complex 

to be used in developing a biomass model.  

The DOP parameter of PRVI is relevant with volume 

scattering (multiple scattering) than biomass itself (Chang and 

Shoshany, 2017; Chang et al., 2018).  Therefore, equation (6) 

can be expressed as separating an integral form of DOP and 

cross-pol backscattering coefficients under the assumption that 

multiple scattering, according to the wavelengths, is similar. In 

the multiplication between the transmissivity T and the cross-

polarized backscattering coefficient ( ), the transmissivity T 

can be ignored since the rate of the change in T with the 

increase in biomass is much smaller than the changes in ‘ ’ 

with the increase of biomass.  

Therefore, equation (7) can be simplified by a new parameter, 

multi-frequency polarimetric radar vegetation index (MPRVI) 

which represent multiplying the ensemble average of DOP and 

cross polarized backscattering coefficient: 

(8)                     MPRVI   

where the subscript Q is H or V for HH+HV or VV+VH dual 

polarization, respectively, and 〈  〉 denotes the ensemble average 

for multi-frequency bands.  

Utilizing C-band Sentinel-1 and L-band PALSAR2 data, the 

MPRVI is calculated and assessed with reference to biomass 

from the previous research (Chang et al., 2018). Figure 3 shows 

that correlation between the MPRVI (equation 8) and the 

multiplying PRVI with the characteristic of transmissivity 

(equation 7) obtains high correlation (r2: 0.908). Such a high 

correlation indicates that the proposed MPRVI incorporates the 

characteristics of multi-frequencies while taking into account 

transmissivities. It can replace thus the complicated non-linear 

equation (7) with the simple form of equation (8) for biomass 

estimation. Therefore, the biomass model utilizing multi-

frequency SAR data can be expressed by the MPRVI, in a 

modified form of equation (4):  

     B =   c0 + c1 (MPRVI )                        (9) 

where c0 and c1 are constant coefficients. 

 

 

Figure 2. Canopy transmissivity for sample microwave bands 

(horizontal co-polarization) corresponding to biomass (Ulaby et 

al., 1986), and structure parameters for woody plants (bottom 

left for tree and  bottom right for shrub).  

 

Figure 3.  Correlation between the multiplying PRVI with the 

characteristic of transmissivity (equation 7) and the MPRVI 

(equation 8). 
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4. RESULTS AND DISCUSSION 

For each ROI, the average of the values extracted for 5 by 5 

pixels (50 m by 50 m) was used as radar parameters 

(backscatters, DOPs, and PRVIs) from the PALSAR and 

Sentinel-1 data. For a preliminary analysis, the correlations 

between radar parameters and biomass were analysed by using 

dual-polarization C-band (DC) Sentinel-1 data, and dual-

polarization L-band (DL) PALSAR2 data:  ( : 0.066), 

( : 0.534), ( : 0.604),  ( : 0.570), 

 ( : 0.639), and  ( : 0.573). The L-band cross 

polarized backscattering coefficient ( ) and C-band DOP 

( ) showed relatively better correlations with biomass than 

other parameters.  

PRVI and MPRVI were calculated and analysed with reference 

biomass:  ( : 0.613), ( : 0.656), and MPRVI 

( : 0.739).  The PRVI values showed better performance than 

other radar parameters in both C-band and L-band data. Above 

all, the MPRVI performed better than single frequency PRVI. 

These results show that synergetic use of multi-frequency could 

improve biomass estimation.  

 

4.1 Model fitting  

Two unknown coefficients (c0 and c1) of equation (9) were 

obtained by using the regression analysis with allometric 

biomass data based on the following logarithmic form:  

Log10 (B) = 2.58 + 1.37 MPRVI (dB)           (10)         

A simple color composition map was shown in Figure 4 (left) 

with an RGB image combination (R: MPRVI, G: NDVI, B: 

HHL-VVC), where NDVI was acquired from Landsat data. 

Green color indicates the vegetated areas and blue shows bare 

surface regions, and red indicates dense forest regions or urban 

and rocky regions with high backscattering coefficients.  

A MPRVI-based biomass map was generated by equation (10) 

as shown in Figure 4 (right). The MPRVI was still affected by 

background effects from rough bare surfaces and rocks, while it 

was found to be instrumental in reducing the effect of surface 

roughness compared with other radar parameters. The biomass 

extracted from the MPRVI based model ranges from 1.1 to 1.8 

kg/m2 for shrublands where the annual rainfall is above 400 

mm/year, and from 0.4 to 1.4 kg/m2 for shrubs in the semi-arid 

region with 200-400 mm/year. The average biomass for forest 

regions (mostly Pinus halepensis) exceeds 3.0 kg/m2.  

Southern Israel (Negev desert, reddish color in RGB image) is 

located mostly in the arid region having very low biomass; 

however, the biomass obtained in practice shows moderate 

biomass because the MPRVI was overestimated by high cross-

polarized backscattering coefficients for very rough surfaces 

and rocks in the region. For these reasons, the biomass model 

was not applied in southern Israel (Negev desert) with NDVI 

values lower than 0.2.  

 

4.2 Model validation 

For validation, data set was partitioned randomly into two 

subsets of 50% for training and testing, using regression leaner 

toolbox of MATLAB. Figure 5 shows the response plot of the 

MPRVI based biomass model in log scale. The average of 

square error was 0.031 for 57 data points. In general, the error 

level was significant at the relatively low biomass region (semi-

arid to arid region). One of the reasons would be the high 

geodiversity of shrubs (high fragmentation and heterogeneity),  

 
Figure 4. (Left) RGB image (R: MPRVI, Green: NDVI, Blue: 

HHL – VVC) with the enlarged area of Ella Valley, and (Right) 

MPRVI-based biomass maps. 

 

and another reason could be the topography effect (the study 

area is hilly).  

Figure 6 shows the validation of the MPRVI based model 

with reference to biomass data. Since there were more 

measurements of shrubs than tall trees, many of the estimated 

biomass values were less than 2kg/m2. Overall, it shows a good 

agreement with reference biomass including shrubs and tall tree 

(r-square: 0.899, root-mean-squared error (RMSE): 0.381 kg/m2, 

and relative RMSE (RRMSE): 10.8%).  

Most other investigations of remote sensing biomass estimation 

have tested biomass ranges up to 600 Mg/ha, primarily in 

forests and dense woodlands, whereas semi-arid shrublands' 

biomass estimation and mapping is  most challenging due to 

their relatively low biomass, ranging  between  0 to 5 kg/m2 (50 

Mg/ha) (Eisfelder et al., 2012; Vaglio Laurin et al., 2021).  

Recently, advanced SAR technology such as PolInSAR, time-

series, and integration techniques have been applied to multi-

frequencies data to improve biomass estimation (Kraatz et al., 

2021; ME and Kumar, 2021; Vaglio Laurin et al., 2021). Future 

BIOMASS mission (satellite-based P-band SAR data) which is 

planned to be launched by the European Space Agency in 2022 

(Le Toan et al., 2011) would be instrumental for further testing 

and implementing our methodology. 
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Figure 5. Response plot of the MPRVI based biomass model in 

log scale. 

 

 
Figure 6. Validation of the MPRVI based biomass model. 

 

5. CONCLUSION 

Based on the concept of polarimetric radar vegetation index 

(PRVI), the multi-frequency polarimetric radar vegetation index 

(MPRVI) was developed and applied to the semi-arid 

Mediterranean ecosystem of Israel. Key radar parameters (i.e., 

the degree of polarization and the cross-polarized backscattering 

coefficient) for biomass estimation are integrated into the 

MPRVI as a simple form for biomass estimation by using dual 

polarization PALSAR2 (L-band) and Sentinel-1 (C-band) data. 

MPRVI based biomass model shows a high r-square value of 

0.899 with reference to biomass.  

Our investigation may contribute to improving a wide range of 

biomass mapping. Further research is needed to apply this 

model to a wide range of biomass data. Integration techniques 

by using multi-sources such as optical sensors (multi-spectral), 

Lidar, Interferometry SAR (InSAR) may improve biomass 

estimation in a wide range of biomass (e.g. Chang and 

Shoshany, 2016; Cutler et al., 2012; Vaglio Laurin et al., 2021). 
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