
  
Biomass turnover time in terrestrial ecosystems halved by land 

use 
 
 

Postprint version 
 
 

Erb, K.-H., Fetzel, T., Plutzar, C., Kastner, T., Lauk, C., Mayer, A., 
Niedertscheider, M., Körner, C., Haberl, H. 

 
Published in:  Nature geoscience 
 
 
 
Reference: Erb, K.-H., Fetzel, T., Plutzar, C., Kastner, T., Lauk, C., Mayer, A., 
 Niedertscheider, M., Körner, C., Haberl, H. (2016). Biomass turnover time in 
 terrestrial ecosystems halved by land use. Nature geoscience, 9, 674-678. 
 doi:10.1038/ngeo2782 
 
 
Web link: http://www.nature.com/ngeo/journal/v9/n9/full/ngeo2782.html 
 

This project has received funding from the European Union's Horizon 2020 research and innovation programme under 
grant agreement No 640176 



  

 

 

TTERS 

Biomass turnover time in terrestrial ecosystems 
halved by land use 
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Andreas Mayer1, Maria Niedertscheider1, Christian Körner3 and Helmut Haberl1 

 
The terrestrial carbon cycle is not well quantified1 . Biomass 
turnover time is a crucial parameter in the global carbon 
cycle2–4 , and contributes to the feedback between the ter- 
restrial carbon cycle and climate2–7 . Biomass turnover time 
varies substantially in time and space, but its determinants 
are not well known8,9 , making predictions  of future global 
carbon cycle dynamics uncertain5,10–13 .  Land use—the sum 
of  activities that  aim at  enhancing terrestrial ecosystem 
services14 —alters plant growth15 and reduces biomass stocks16 , 
and is hence expected  to affect biomass turnover. Here we 
explore land-use-induced alterations of biomass turnover at 
the global scale by comparing the biomass turnover of the 
actual vegetation with that of a hypothetical vegetation state 
with no land use under current climate conditions. We find 
that, in the global average, biomass turnover is 1.9 times faster 
with land use. This acceleration affects all biomes roughly 
equally, but with large differences between land-use types. 
Land conversion, for example from forests to agricultural fields, 
is responsible for 59% of the acceleration; the use of forests and 
natural grazing land accounts for 26% and 15% respectively. 
Reductions  in biomass stocks are partly compensated  by 
reductions in net primary productivity. We conclude that land 
use significantly and systematically affects the fundamental 

modifications’)22 . By replacing ecosystems dominated by perennial, 
often woody lifeforms with agroecosystems dominated by annual, 
herbaceous   lifeforms,   land   use   obviously   accelerates   biomass 
turnover (τb ). Moreover, land use affects both productivity15,23   and 
carbon storage16,24  also within land-cover types. While reductions in 
biomass C stocks (SC) tend to accelerate τb , reductions in terrestrial 
productivity  (which  happen  frequently15,21,23 )  would  reduce  τb . 
A comprehensive, global, spatially explicit quantification of the 
interplay of these effects for τb is missing at present, despite its 
obvious importance. 

Complementary  to previous  attempts  to understand 
determinants  of  patterns  of  C  turnover  time1,8 ,  which  did  not 
explicitly analyse land use as a covariate, we here aim to explore 
the role of land use as a determinant  of rates and patterns of τb . 
By  adopting  an  approach  that  has  proved  useful  in  quantifying 
land-use effects on ecosystem properties such as net primary 
production (NPP)15,20,21 , we here compare τb of the potential and the 
actual vegetation. The potential vegetation refers to a hypothetical 
condition that would prevail in the assumed absence of land use but 
under current climate15 . We define the acceleration of τb as turnover 
of the potential natural vegetation divided by actual turnover: 
 

τb acceleration = τbpot /τbact 

trade-off between carbon turnover and carbon stocks. 
Biomass   turnover   time  (τb )  is  a  critical  parameter   of  the 

global  carbon  cycle  and  a  key  vegetation  property1,3,5 .  τb    is  a 

SCpot = 
NPPpot 

/ SCact 

NPPact 

 
(1) 

decisive parameter for the elemental composition (stoichiometry) of 
ecosystems, critically influencing the accumulation and availability 
of  chemical  elements  in  ecosystems,  rendering  τb   a  key  factor 
for plant growth dynamics17  and a crucial determinant of fluxes 
between  terrestrial  vegetation  and the atmosphere3–7 . Because  τb 
is an ecosystem property that emerges from the interplay between 
climate, soil, vegetation type, the chemical composition of the 
atmosphere, precipitation, and land use, it is highly variable across 
space  and  time8,9 .  However,  patterns  and  determinants  of  the 
variability of τb are poorly understood5,9,18 . In particular, the inability 
of land-cover or plant functional type classifications, which form the 
basis of many carbon cycle models8,10 , to comprehensively represent 
the variability of τb  induces massive uncertainties in predictions of 
future global carbon cycle dynamics1,5,8,10–13,19 . Thus, improving the 
understanding of covariates for τb  is central to understanding the 
biosphere’s responses to a changing climate. 

Land use is a pervasive driver of global change14,20,21  that results 
in land conversions, for example, the replacement of pristine 
ecosystems with agroecosystems, as well as in changes of stocks and 
flows of carbon  within  the same land-cover  type (denoted  ‘land 

This approach allows us to quantify the scale of land-use-induced 
impacts  on  τb    in  the  absence  of  data  sets  on  past  land-use 
dynamics. While it would be intriguing to model the land-use- 
induced  impacts  on ecosystem  turnover  time  (that  is, including 
soil compartments), the lack of adequate and robust data sets25 

restricts  this study to τb . To avoid oversimplifications  or steady- 
state assumptions  about, for example, plant functional types1 , we 
do not rely on a mechanistic  model for our assessment, but base 
our approach on the consistent integration  of available data sets. 
Four  independent  data  sets  were  established:  the  living  biomass 
stock  of  carbon  of  the  potential  (SCpot )  and  actual  vegetation 
(SCact ), as well as NPP of the potential (NPPpot ) and of the actual 
vegetation (NPPact ). ‘Actual vegetation’ refers to the year 2000. Data 
limitations restrict the study to a temporal resolution of one year. 
To isolate and quantify the effects of individual land uses we use a 
comprehensive  land-use data set14  that distinguishes the six land- 
use types: infrastructure; cropland; forestry; artificial grasslands; 
natural grasslands without trees; savannah, other wooded land, 
shrubs and grassland-tree mosaics, as well as untouched areas (see 
Supplementary Information). Spatially explicit NPPpot  was derived 
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Figure  1 | Global human acceleration of biomass turnover, spatial pattern, histogram and latitudinal profiles. a–c, Potential biomass turnover (τbpot 
) in years (a), actual biomass turnover in years (τbact ) (b), and acceleration of biomass turnover (c), calculated as the ratio of τbpot to τbact . The 
shaded area in the latitudinal profiles (right-hand plots) relates to the entire range of calculations for τbact ,τbpot , and for τb acceleration resulting 
from 216 combinations  of independent data sets for SC and NPP (Supplementary Information). Histograms (left-hand plots) show the area under τb 
classes for a and b and acceleration classes for c. n.d., not defined. 

 
by calculating the cell-based arithmetic mean of three different 
NPPpot    maps  (Supplementary  Information).  NPPact    was  derived 
by  applying  factors  for  land-use-induced  productivity  changes15 

to NPPpot . SCpot   was calculated  by combining  three biome  maps 
with  typical  carbon  stock  values  for  undisturbed   ecosystems. 
SCact    of  managed  and  untouched  forests  was  downscaled  from 
ref. 26 using tree-height information (Supplementary Information). 
τbact  of cropland and artificial grasslands  was assumed to be 1 yr 
(see Supplementary  Information).  An uncertainty  analysis, based 
on  additional  data  sets  for  SCpot ,  SCact ,  NPPpot    and  NPPact ,  was 
undertaken (Supplementary Information). 

Land use has accelerated τb  globally by a factor 1.9 (Fig. 1). In 
the potential vegetation, mean τb would amount to 13.7 yr (Fig. 1a), 
compared to 7.1 yr in the actual vegetation (Fig. 1b). The uncertainty 
analysis reveals that our results are well within the range of estimates 
(see   Fig.   1c   and   Supplementary   Information,   Supplementary 
Tables 14–17). These τb values refer to the entire terrestrial living 
biomass, averaged across all world regions, ecosystems, land-use 
types and biomass compartments (for example, woody biomass, 
leaves or roots). The spatial variation of the land-use-induced τb 
acceleration is massive. 39% of the land surface experiences no 
change, 19% has a τb acceleration below 1.5, while 21% experiences 
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a moderate (between 1.5 and 3), and 21% a massive acceleration 
of τb  of >3. The highest turnover acceleration values are found in 
the agricultural  belt in India, China,  Latin America,  Eastern  US 
and Europe, with the lowest in zones of remote tropical and boreal 
forests, but also in steppes. At a sub-annual level, one can suspect a 
stronger τb  acceleration because cropland agriculture is commonly 
associated with a shortening of the growing season. 

The  acceleration  of  τb   is  almost  uniformly  at  or  close  to  2 
across latitudes (Fig. 1c). The lack of variability across latitudinal 
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regions, and not limited to certain climatic zones. The remarkable 
exception to this uniformity is the high acceleration of τb in the 
subtropical belt between 10 and 30◦ N. This region is dominated by 
agricultural belts with intensive land use on the Indian subcontinent 
and East Asia, and otherwise consists mainly of deserts. Potential 
as well as actual τb  show a complex latitudinal profile, influenced 
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northern high latitudes (Fig. 1c and Supplementary Table 16). The 
pattern found for actual τb differs markedly from the latitudinal 
profile of total ecosystem carbon turnover (including soil C), which 
shows a strong U-shape8 , suggesting that latitude effects are stronger 

15.3 
13.9 

11.0 
20 

9.5 

40 

 
16.7 

 
15.3 

19.5 Boreal forest 
Untouched forest 
Temperate forest 
 
Tropical forest 

for soil turnover than for τb 
19 . 

Our  assessment  confirms  the  large  variability  of  τb    within 
and  between  terrestrial  biomes9,18     (Fig.  2).  Land  use  strongly 
and systematically  accelerates  τb  across all biomes.  Because  land 
conversion  is a well-known  driver of soil carbon loss16 , and also 
management  of forests  for production  might  reduce  SOC25 , one 
might suspect that land use might also accelerate total carbon 
turnover (that is, including the soil compartment). For a robust 
quantification, however, better data are needed. 
τb  acceleration  affects all biomes, with the land-use impact of 
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biomass C stocks prevailing over the impact on C fluxes (that is, 
NPP;  Fig.  2a).  In  particular,  the  (sub)tropical  biome  is  strongly 
affected  by  reductions  in  carbon  stocks.  Land-use  effects  are 
particularly  strong in the temperate forest biome, but also in the 
tropical savannah and grassland biome. In these biomes, biomass 
stocks and productivity per unit area are similar, but τbpot  is much 
slower in the temperate forest biome (17.1 yr versus 11.6 yr). The 
conversion of pristine ecosystems to agroecosystems and other land 
uses accelerate τb in the temperate biome to a level of 6.3 yr, slightly 
slower than the τbact of the savannah biome (5.5 yr). 

Figure  2b  and  Supplementary   Table  12  show  the  turnover 
acceleration by land-use type. The harvest intensity of each land- 
use class20  (green diamonds) correlates strongly and negatively with 
actual τb . Changes resulting from agricultural land conversion (to 
cropland or grassland) are massive compared to the effects due to 
forestry or the use of natural grazing lands. τb in used forests is 
accelerated  by a factor 1.6 (1.6 in tropical,  1.5 in temperate  and 
1.3 in boreal forests). The use of savannahs or other wooded lands 
results in a τb acceleration by 2.0, while natural (tree-less) grasslands 
experience only a minor acceleration (1.0). Yet, due to the large areal 
extent of savannahs or other wooded lands, the contribution to the 
overall τ acceleration is substantial. 

The  τb   acceleration  ranges  from  1.8  to 4.0  for  world  regions 
(Table 1). On used land (globally 98.2 million km2 ), the reduction 
of carbon stocks alone would result in a τb acceleration by 2.4. 
However, the prevailing NPP-reduction effect of land use, induced 
by, for example, a massive shortening of the growing season which 
can offset an increased  productivity  per cropping  period,  results 
in a decelerating effect of −10%. Additionally, the weight of 
individual land-use types in terms of NPP shifts with land use, which 
results in an additional deceleration of −6%, so that the overall 
acceleration is 2.1 on used land (Table 1). Such partly compensating 
effects are particularly pronounced in Northern Africa and Western 
Asia  as well  as in Southern  Asia,  where  the  contribution  of SC 
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Figure 2 | Land-use-induced acceleration of biomass turnover. 
a, Acceleration in the world’s biomes. Vectors in a show the change induced 
by land use. Horizontal and vertical whiskers indicate the range of the inner 
50th percentile of all 5 arcmin grid cells for NPP (y axis) and standing crop 
(x axis), crossing at the respective medians within a biome31 . Dashed 
crosses refer to potential vegetation, solid crosses to actual vegetation. Blue 
dashed lines represent isolines with identical τb times but varying 
NPP–carbon stock combinations;  the blue numbers refer to the τb times 
(yr) of the respective lines; black arrows show the direction of combined 
changes in C stocks and NPP. b, Acceleration on individual land-use types. 
The y axis relates to the global land surface extent of each land-use unit 
(total ice-free surface is 130.4×106 km2 ) sorted along declining τbact . Dark 
blue shaded areas represent actual vegetation and dark and light blue 
shaded areas combined represent potential vegetation. Numbers indicate 
τb times (yr) and n.d. represents areas where τb is not defined 
(non-productive  land). Green diamonds indicate harvest intensity per 
land-use type in 2000 (ref. 20) and refer to the lower x axis. Underlying 
data are given in Supplementary Tables 11 and 12. 
 
reductions is highest, but relatively strong compensation  by NPP 
reductions occurs. 

The  contribution  of  individual  land-use  types  to  overall  τb 

acceleration   is  regionally  highly  variable  (Table  1).  In  overall 
terms,  cropland   contributes   31%  to  τb    acceleration.   Artificial 
grasslands (for example, pastures on potential forest sites) contribute 
25%.  However,  land  modifications  also  play  a  significant  role, 
with  a  mean   global   contribution   of  26%  from  forestry,   and 
15%  from  the  use  of  natural  grasslands,  including  savannahs 
and scrubland. 
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Table 1 | Acceleration of biomass turnover, contribution of individual major land uses and components, break-down to world regions. 

Contribution to acceleration 
Land-use types Components 

Area τ bpot     τ bact   τ baccel Infrastructure  Cropland  Forestry   Art. 
grassl. 

Natural 
grassl. 

luNPP/NPP ANPP ASC 

  (106 km2 ) (yr)  (yr)     (factor)    (%)  (%)  (%)  (%)  (%)  (%)  (%)  (%)   
N. Africa and W. Asia 2.8 11.0 6.1 1.8 3 74 −4 20 7 −10 −24 134 
Sub-Saharan Africa 19.5 12.9 6.9 1.9 1 20 25 27 26 −6 −13 119 
C. Asia and Russian Fed. 15.6 14.7 8.5 1.7 3 30 24 32 11 −10 −11 120 
E. Asia 9.0 13.7 3.4 4.0 3 36 32 13 16 −1 −5 106 
S. Asia 5.8 14.8 3.9 3.8 3 66 18 12 1 −4 −15 118 
S.E. Asia 4.4 17.1 7.1 2.4 1 35 27 22 14 −7 −13 120 
N. America 11.8 13.1 6.8 1.9 6 34 22 29 10 −6 −9 115 
Latin America 18.4 14.2 7.7 1.8 1 18 34 29 18 −5 −8 114 
E. and  S.E. Europe 2.1 18.0 6.0 3.0 6 60 4 27 3 −7 −16 124 
W. Europe 3.5 13.9 4.6 3.0 9 39 14 33 6 −1 −7 108 
Oceania and Australia 5.3 11.1 6.3 1.8 1 19 44 21 16 −5 −7 112 
 Total  98.2  14.0  6.7  2.1  3  31  26  25  15  −6  −10  116   
Natural grasslands (grassl.) include savannahs, other wooded land and grass-tree mosaics. luNPP/NPP denotes the share of NPP of a particular land-use type in the total NPP (structural component), 
�NPP denotes the change from NPPpot to NPPact , and �SC the change from SCpot  to SCact , both per land-use type. Areas without land use are excluded. The negative contribution  of forestry in the 
region N. Africa and W. Asia is due to an increased relevance of forest systems in the actual τb . τbaccel , τb acceleration; Art., artificial. 

 
Our results highlight a fundamental, yet undescribed, aspect of 

the ‘great acceleration’,  that is, the observation  that many aspects 
of the relationship between humankind and its natural world are 
moving  ever faster27 . Today,  80% of all biomass  used by human 
society  in  socioeconomic  processes  (for  example,  as  food,  feed, 
fibre or fuel) originates from ecosystems with a fast turnover21 

(Supplementary  Fig.  2).  The  land-use-induced  τb   acceleration  is 
an  integral  element  of  land  management,  bound  to  persist  due 
to increasing demand for many ecosystem services, in particular 
provisioning ones28 . Hence, the influence of land management on 
τb is likely to gain in importance. 

These first order results re-emphasize the call for the systematic 
inclusion  of  land-use  and  management  impacts  on  C  state  and 
process  variables29 .  A  significant  proportion   of  the  variability 
of  τb    within  each  type  of  land  cover  is  potentially  caused— 
besides climatic covariates1,8 —by management effects. Inclusion of 
robust land management information, including its impacts on soil 
processes, is key for assessing the fundamental trade-offs between 
carbon stocks and carbon turnover related to different biomes and 
land-use systems, and thereby better understand land–atmosphere 
fluxes of carbon. 

 
Methods 
Methods, including statements of data availability and any 
associated accession codes and references, are available in the 
online version of this paper. 
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Methods 
Our assessment of the human-induced acceleration of τb was based on a consistent 
integration of four spatially explicit data sets, all at a spatial resolution of 5 arcmin: 
stocks of carbon (SC; standing [living] biomass, that is, excluding dead wood), and 
net primary production (NPP), both for the potential and actual vegetation. For all 
components, above- (shoot) and belowground (root) processes were considered, 
but not soil carbon. For input data, we did not rely on site data (for example, 
refs 32–35) but where possible on data compilations (for example, ref. 16), which 
are less sensitive to problems of site data for large-scale studies such as lack of 
representativeness or bias towards old-grown, intact ecosystems36–38 , and on data 
from official statistics (for example, ref. 26). Supplementary Tables 1 and 2 give an 
overview on the different approaches. Supplementary Tables 5–7 display input 
data, and Supplementary Tables 6 and 8–10 show their relation to site data. 

 
Land-use data set. A comprehensive (that is, including all land uses for all grid 
cells) spatially explicit land-use data set is required for assessing the specific impact 
of land use on τb . An existing data set14 , which discerns four land-use types 
(infrastructure, cropland, forestry, grazing land) and wilderness areas in fractional 
cover representation at a resolution of 5 arcmin, served as starting point. This data 
set is consistent with national cropland and forestry statistics for the year 2000 
(published around 2005) and remote sensing (RS) information. Wilderness 
contains unproductive areas (mapped on the basis of combinations of productivity 
thresholds from ref. 20 and land-cover data on, for example, permanent snow 
cover39 ) and productive, often remote areas (mapped on basis of ref. 40). 

In a first step, the cropland and forestry layers were adjusted to reproduce to 
newly published national statistics for cropland and forests for the year 2000 (based 
on the regular updates by ref. 26,41). In ref. 14, all land not used for infrastructure, 
cropland or forestry, but which is still used, is assumed to be under grazing 
regimes, albeit at varying intensities. This layer was split into three individual layers 
of grazing land. First, artificial grasslands, that is, grasslands on potentially forested 
areas, have been identified by intersecting forest biome maps by refs 31,42,43 with 
grazing areas identified as cultivated and managed by ref. 39, but not covered by 
cropland14 . Second, grazing land with trees (for example, other wooded land, 
OWL); and third, grazing areas without trees, were separated using data from the 
MODIS global percentage tree cover map44 , available at 500 m resolution. The 
latter represents grid cells with tree cover <5%, aggregated to a resolution of 
5 arcmin. The final land-use data set discerns the following nine classes: Unused 
land, three classes: non-productive and snow; wilderness, productive, without trees; 
untouched forests; Used land, six classes: infrastructure area; cropland; forestry; 
artificial grassland; natural grassland without trees (for example, steppes); 
savannah, other wooded land, shrubs and grassland-tree mosaics. No vegetation, 
and thus no turnover, is assumed to prevail in cold and hot deserts. 

 
NPP of the potential vegetation (NPPpot ). NPPpot data were derived by combining 
three different model approaches: the Miami model based on empirical relationships 
between NPP and climate variables45 ; the model result of the dynamic global 
vegetation model LPJ46–48 , a well-established biogeochemical process model of global 
vegetation; and a vegetation-approach model. The latter was calculated by assigning 
typical NPP values for undisturbed vegetation4 (Supplementary Tables 3 and 4) to 
the global biome, using three maps31,42,43 and computing the arithmetic mean in 
each grid cell of the resulting maps. 

 
NPP of the actual vegetation (NPPact ). Cropland NPPact was taken from previous 
work, which extrapolated NPP from primary crop harvest, applying region- and 
plant-specific factors such as dry matter content and harvest indices, as well as 
factors for pre-harvest losses49,50 . For non-cropland areas, NPPact was assessed by 
calculating differences to NPPpot due to management15,20,21 . For artificial grazing 
lands NPPact was assumed to be 78% of NPPpot , to take the effects of leaf area 
reductions, shortening of the vegetation period and nutrient withdrawals into 
account20 . For natural grazing lands—that is, grazing lands located on natural 
temperate or tropical grasslands—we assume NPPact to equal NPPpot , as in many 
cases livestock is not changing the overall carrying capacity (including wild 
herbivores) of such areas20 . An exemption is human-induced degradation, which 
was assessed by combining spatially explicit maps on the extent and degree of 
degradation with factors for NPP-losses per degree51,52 (Supplementary 
Information). Additionally, NPP-enhancing effects of intensive grassland 
management, for example, due to fertilization or irrigation, were taken into 
account20 (Supplementary Information). NPPact on infrastructure areas was 
calculated as one-third of NPPpot , assuming that two-thirds of the surface are sealed 
by buildings, roads, and so on, and bear no vegetation, and the one-third bears 
vegetation with potential productivity. 

For forests, we assumed NPPact to equal NPPpot .(see below), which is 
corroborated by recent empirical evidence that found similar NPP levels for 
managed and unmanaged stands34 , as well as by regional studies of the Human 
Appropriation of NPP based on inventory data53,54 . However, the literature is not 
conclusive, describing two opposite effects of management on forest NPP. On the 

one hand, management is argued to enhance NPP through increasing soil fertility 
(increased litter flow) and declining light competition34 , as well as through the 
juvenilization effect of forest management55 that reduced the fraction of old-grown 
stands with lower NPP35,56,57 . On the other hand, the reduction of NPP due to clear 
cut areas58,59 is argued to reduce NPP, reflected in inventory- or 
process-model-based approaches that find NPP to decline by −29% to −9%. 
However, uncertainty on the magnitude of these effects is large. From these results, 
as well as from the reasoning that forest harvest is a form of disturbance which leads 
to a reduction of average residence time, we conclude that the land-use impact on 
NPP ranges between ±10%, which we use in a sensitivity analysis (see below). 

This procedure to assess NPPact has been shown to provide robust results despite 
the uncertainties related to statistical data, to assumptions underlying the applied 
estimation procedures, and to the NPP data derived from global vegetation models, 
because it is based on careful, cross-checked estimation procedures15,21 . 
 
Carbon stock of the potential vegetation (SCpot ). Potential biomass carbon stocks 
(above- and belowground) were derived following a vegetation approach that was 
based on the delineation of homogeneous vegetation units, and the attribution of 
typical potential carbon stock values to these vegetation units (Supplementary Table 
3). We followed the same procedure as with the NPPpot assessment, using three 
global biome maps31,42,43 . We used various databases for potential carbon stocks in 
vegetation4,16,60–63 . For boreal forests, a comparison with primary data from refs 64–
66 and the analysis in ref. 36 revealed overestimates in the 
above-mentioned sources. Thus, we derived maxima values from ref. 67 for 
undisturbed ecosystems for this region. Supplementary Table 5 shows potential 
vegetation units and the potential carbon stock values assigned, and Supplementary 
Tables 8–12 show results from forest site-data studies that explicitly discern natural 
from managed forests32,33 . A comparison of these data reveals that the data we use 
are well in line with the site-specific studies36,37 . SCpot  was then calculated as the 
arithmetic mean of all three maps for each grid cell. 
 
Carbon stock of the actual vegetation (SCact ). The assessment of SCact  for forests 
was based on carbon stock data from a global compilation of forest inventories 
by the Forest Resource Assessment (FRA)26 . Inventory-derived C-stock estimates 
are considered to be reliable, in particular for forest under production68,69 , they are 
available with global coverage (in contrast to, for example, RS-derived products) 
and represent the basis of many studies16 . In addition, they are considered 
more robust than landscape-scale extrapolations based purely on site data, as they 
allow one to overcome the problems of representativeness37,70,71 . We used mean tree 
height72 to downscale national carbon stock data per unit forest area to the 5 arcmin 
grid. Tree height is a central parameter for the amount of carbon stored in forests, 
and has been shown to considerably improve the performance of allometric models 
that are used to quantify tree mass by non-destructive sampling73,74 . The relative 
neglect of tree height in allometric approaches is based on the difficulties associated 
with measuring it38,74 . Simple allometric functions (for example, ref. 75) follow the 
formula tree mass = density × (0.5 diameter)2 × tree height, assuming, for example, 
near-cylindrical form of tree boles (which store most of a forest’s biomass; ref. 61), 
suggesting that tree height has decisive influence due to tree architecture (height 
is much larger than diameter). While for temperate and boreal forests, based on site-
data analyses, tree height is found to be a good indicator for carbon stocks at larger 
scales36,76 , the interrelation is less straightforward, but still strong, for tropical forests, 
due to the high structural complexity, species variability, and variations 
in wood density, stem diameter, and the number of trees per area, as well as due to 
environmental factors77,78 . As we use tree-height information only for downscaling 
national carbon stock data to the grid, rather than to calculate carbon stocks 
from allometric relationships, the related problems—that is, the heterogeneity 
of wood density and species16 —are less important sources of uncertainty 
in our study. Furthermore, a comparison of tree-height data72 with RS-based 
C-stock maps, themselves based on interpretations of lidar data by use of allometric 
functions derived from site data, reveals a strong linear correlation (R2 > 0.7; 
Supplementary Fig. 1). In the light of the considerable uncertainties between 
RS products, as well as with site data79–81 , we accepted the uncertainty we introduce 
through tree-height-based downscaling for the advantage of consistency, because 
national forest C-stock data are available with global coverage26 . Other approaches 
that have been proposed for downscaling national carbon stock information, 
for example, following the pattern of NPP82 , would result in one national τbact value 
for forest. Note that such downscaling techniques would affect the spatial pattern 
of τb acceleration (for example, Fig. 1), but not significantly change the overall 
result at higher spatial aggregates such as world regions, biomes or land-use types. 

Minimum carbon stocks for forests were set to 3 kgC m−2 , a value below typical 
values for scrublands4 , to avoid SCact  of forests falling below SCact  of savannahs and 
other wooded land (OWL). For this land-cover type literature data is inconsistent 
(Supplementary Table 6). FRA26 , however, provides data on growing stock (woody 
stems >10 cm diameter, in m3 ) for some countries. For these countries, growing 
stock of OWL ranges between 0.4% and 21% (inner quartiles) of forest carbon 
stocks, with a global, stock-weighted, average of 23% (Supplementary Table 7). 
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To take non-woody and belowground components into account, which are of 
larger importance for this vegetation type compared to forests, as well to produce 
a conservative estimate, we assumed OWL carbon densities to be 50% of forest 

components, for example, C-stock changes or individual land-use types. Thus, we 
performed a decomposition analysis using the following identity for τb : 

biomass in each grid cell, which we modulated in a sensitivity analysis (see 
τ = 

    NPPi 1 SCi 

× below). We calculated the national carbon stock per OWL area and downscaled 
it to the grid using the same procedure as with forest SCact . To avoid implausible 

NPP × NPPi (2) 
1 

results, in each grid cell the resulting SCact  was corrected where necessary not to 
surpass SCact  of forests. For other vegetation, for example, natural grasslands 
without trees, we assumed SCact  to equal SCpot . For natural grazing lands with a 
tree cover <5% we assumed SCact  equal to the minimum of SCpot  and SCact  of OWL 
in each grid cell. 

For cropland and artificial grasslands, SCact  was set to NPPact , assuming 
biomass turnover to be 1 yr (ref. 8). SCact  on infrastructure areas was assumed to be 
one-third of SCpot , in line with the assumption for NPPact in this land-use class20 . In 
the absence of information on the effect of land-use-induced degradation on τb , we 
neglected this effect, reducing SCact  on grazing land with the same factor used to 
derive the NPP loss due to degradation (see above). Cropland and forest 
degradation is reflected in the data, as their SCact  was derived from statistics. 

 
Consistency adjustments. To provide a consistent account, in grid cells where SCact  

was larger than SCpot , SCpot  was raised to SCact  levels. SCact  and SCpot  values were not 
allowed to fall below NPPact and NPPpot values, respectively, to avoid τb falling below 
the minimum temporal resolution (1 yr). Turnover times were capped at 50 yr to 
avoid a typical small number problem, as usual biomass turnover times for slow 
vegetation forms ranges between 20 and 30 yr (refs 4,9,83,84). τb acceleration, as the 
ratio between two intensive variables, was particularly prone to small number 
problems, and capped at a factor of 20. 

 
Uncertainty assessment. To evaluate the robustness of our results, we performed 
an analysis that used alternative, independent data sets for NPPpot , NPPact , 
SCpot  and SCact  for constructing a sample space for τb of the potential and 
actual vegetation. 

For SCact , we compiled or calculated five alternative maps. Two maps were 
based on a combination of three RS products30,85,86 , which cover woody biomass 
only30,79 . We used two different land-cover maps to discern woody from 
non-woody vegetation (reclassifications of the GLC200039 , available at the 
resolution of 1 km, and the MODIS continuous field data set for tree cover44 , 
available at the resolution of 500 m). For areas not covered by woody vegetation 
according to these sources, we used NPP data from MODIS87 , assuming a turnover 
of one year on these areas8 . As the spatial extent of the RS maps overlaps 
considerably, we used the minimum and maximum value in each grid cell to derive 
two SCact  maps. A third and fourth SCact  map were constructed using the same data 
sources and assumptions as in the best-guess approach for all vegetation units, but 
assuming OWL to be at 25% and 75% of forest SCact . A published SCact  map63 was 
used as fifth map in the uncertainty assessment. 

For SCpot , we calculated three different maps. For the first two maps we followed 
the vegetation approach used for the best guess estimated (three biome maps 
combined with typical SCpot  values for the individual vegetation types), using SC 
values from alternative literature sources4,60,62 (Supplementary Table 5) and 
calculating a minimum and maximum map. We did this by using the minimum and 
maximum value per grid cell of the three biome maps and our best-guess map. A 
published carbon stock map88 was used as a third SCpot  map. 

For NPPpot , we calculated the grid-based minimum and maximum of the three 
input layers, that is, the result of the Miami Model45 , the LPJ-DGVM20,21,46 , and the 
vegetation-approach based map using data from ref. 4 (see Supplementary Table 1) 
resulting in two alternative NPPpot maps. 

For NPPact we used two independent maps, that is, the RS-based NPP map 
from MODIS87 as well as the NPPact layer from ref. 20. 

The combination of all results, including the best-guess estimates, resulted in 
216 τb acceleration combinations. Each combination was adjusted individually to 
avoid inconsistencies. SCpot  was adjusted to SCact  in cases SCact > SCpot , and SCact 

and SCpot  were adjusted in order not to fall below NPPact and NPPpot , respectively. 
We calculated the ratio between maximum and minimum for all four τbacc input 
variables (SCpot , SCact , NPPpot , NPPact ) separately, and used the sum of the four 
quotients as the estimate of overall uncertainty. Supplementary Fig. 3 shows the 
spatial uncertainty pattern, as well the contribution of the four individual quotients 
(log-transformed), aggregated to a fishnet with a side length of 1.4 × 106 m. 

In a sensitivity analysis we assessed the effect of different assumptions on SCact 

for OWL and of natural grasslands without trees, by assuming OWL to reach a 
SCact  of 25% and 75% of forest SCact . The effect of assumptions on forest NPPact was 
quantified by setting this value to 90% and 110% of NPPpot (Supplementary 
Tables 14 and 15). 

 
Assessment of the contribution of land-use types and components to τb 

acceleration. τb acceleration is the ratio of two variables, τbpot and τbact , which 
themselves are ratios of two variables, SCpot  and NPPpot and SCact  and NPPact , 
respectively. This hampers the simple assessment of the contribution of individual 

Formula (2) distinguishes the following factors: NPPi /NPP is a structural factor, 
denoting the share of NPP of a land-use type i in the total NPP. 1/NPPi , expresses 
the influence of the NPP of land-use type i. SCi /1 expresses the influence on the SC 
of land-use type. We applied the additive Logarithmic Mean Divisia Index (LMDI) 
decomposition method89 to actual and potential τb values to assess the contribution 
of changes in the three factors, as well as of the five land-use types (infrastructure, 
cropland, forestry, artificial grassland, natural grassland and savannah) to overall τb 

acceleration. Areas without land use were excluded from this analysis 
(Supplementary Table 4). 
 
Code availability. The code is not available due to the multitude and complex 
computation steps performed in different software environments—that is, GIS 
environments (ESRI ArchGis), Matlab and Microsoft Excel. 
 
Data availability. Results are available from http://www.uni-klu.ac.at/socec/ 
inhalt/1088.htm. Data and maps can be obtained at http://www.uni-klu.ac.at/socec. 
Underlying data, for example, data from other sources, which support the findings 
of this study are available from the corresponding author upon request. 
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