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Biomass waste utilisation in low-carbon products: harnessing a

major potential resource
Nimisha Tripathi1*, Colin D. Hills1*, Raj S. Singh2* and Christopher J. Atkinson 3

The increasing demand for food and other basic resources from a growing population has resulted in the intensification of
agricultural and industrial activities. The wastes generated from agriculture are a burgeoning problem, as their disposal, utilisation
and management practices are not efficient or universally applied. Particularly in developing countries, most biomass residues are
left in the field to decompose or are burned in the open, resulting in significant environmental impacts. Similarly, with rapid global
urbanisation and the rising demand for construction products, alternative sustainable energy sources and raw material supplies are
required. Biomass wastes are an under-utilised source of material (for both energy and material generation), and to date, there has
been little activity focussing on a ‘low-carbon’ route for their valorisation. Thus, the present paper attempts to address this by
reviewing the global availability of biomass wastes and their potential for use as a feedstock for the manufacture of high-volume
construction materials. Although targeted at practitioners in the field of sustainable biomass waste management, this work may
also be of interest to those active in the field of carbon emission reductions. We summarise the potential of mitigating CO2 in a
mineralisation step involving biomass residues, and the implications for CO2 capture and utilisation (CCU) to produce construction
products from both solid and gaseous wastes. This work contributes to the development of sustainable value-added lower
embodied carbon products from solid waste. The approach will offer reduced carbon emissions and lower pressure on natural
resources (virgin stone, soil etc.).
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INTRODUCTION

Agricultural and forestry practices produce large amounts of
wastes derived from harvestable yield. The global annual
generation of biomass waste is in the order of 140 Gt1,2 and this
presents significant management problems, as discarded biomass
can have negative environmental impacts.
Biomass waste streams are potential feedstocks for a variety of

products ranging from the production of fuel, polymers and
building products. It is the latter that is the focus of the present
work, through an investigation of biomass waste arising and its
combination with mineralised CO2 gas in the production of
sustainable construction materials.
Agricultural biomass wastes/residues are predominantly crop

stalks, leaves, roots, fruit peels and seed/nut shells that are
normally discarded or burned but are in practice a potential
valuable supply of feed-stock material. There are some challenges
in trying to determine the extent of crop-produced biomass in
relation to what is a ‘loss’ (from production, post harvesting and
processing), or a ‘waste’ (retail or consumer loss).3 One significant
issue is that the production of ‘food’ tends to be measured by the
edible components of a crop (harvest index) and does not take into
account non-edible biomass components, whether cropped or
not. Crops such as sugarcane often require processing and this
can generate secondary and tertiary waste streams in addition to
the primary biomass waste realised upon harvesting.4 Thus, we
assume that waste biomass is likely to be a reasonable consistent
by-product from agricultural production for a given crop and
geographical region. Particularly in developing countries, most
biomass residues are not utilised or treated but left in the field to
decompose naturally or be openly burned. That said, some waste

residues generated from crops such as sugarcane, rice, ground-
and coffee nuts are used as a fuel source.5 Cellulose/hemicellu-
loses and lignin-rich residues can be used for the production of
chemicals, resins and enzymes.6 Sugar bagasse, and less
commonly rice husk and wheat chaff also have uses, but despite
this, there is little valorisation of biomass waste currently
practiced,7 and this important resource remains significantly
under-utilised. Thus, as only a small amount of the biomass waste
generated becomes a feedstock for industrial applications and
electricity generation, the remaining adversely impacts the
atmosphere, surface and ground-water quality and causes
pestilence.
Of the huge quantities of annual global generation of

agricultural residue,8,9 cereal crops are a major contributor.
Globally, 66% of the residual plant biomass comes from cereal
straw (stem, leaf and sheath material), with over 60% of these
residues produced in low-income countries.10 Sugarcane stems
and leaves are the second largest contributors, with other residual
biomass including the ‘oil crops’, roots and tubers, nuts, fruits and
vegetables. It should be noted that some of these have potential
use in energy production.
In the EU, about 23 Mt/p.a. of biomass (dry) is available as

residual straw from cereals,11 whereas from example emerging
economies like India, ca. 368 Mt/p.a. straw residue is available,12

whilst China produces about 649 Mt (2009 figure).13 The major
global crops (wheat, maize, rice, soybean, barley, rapeseed,
sugarcane and sugar beet) in the selected countries/regions with
large biomass potential (EU27, Pan Europe minus the EU27, United
States of America, Canada, Brazil, Argentina, China and India)
produce almost 3.3 Gt residue (fresh weight)/p.a. (Table 1).
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Currently, the global resource for unexploited cereal crop
residues is ca. 517 Mt.5 The FAO14 projections from 1999 to
2030 suggest that the land used for agriculture in developing
countries will increase by 13% or 120 M ha. Global cereal yield is
predicted to increase in the range of 0.9% over the period 2005/
2007–2050, following a trend of long-term declining growth
yield.15,16 As agricultural intensification (producing more per unit
of land) will increase crop residues,17 agricultural productivity in
2050 is projected to be 60% higher than in 2005/2007;18 for cereal
production this equates to an increase of 1-billion tonnes (Fig. 1),
partly met by growth in the developing countries.19

Of increasing importance is the use of oil crops, which have
grown by 2.5% from 1999 to 2015.20,21 In particilar, the major
developing countries like China and India have intensified their oil
crop production to meet increasing food demand, including for
livestock.21 In Europe, the use of rapeseed for biofuel production is
also rapidly increasing.22–24

The other sector of interest is forestry, which generates woody
biomass residues from timber logging. FAO statistics show that
global forests cover 4 B ha (about 30% of total land area),
corresponding to an average of 0.62 ha/capita. There is a further 1
B ha of wooded land worldwide.25

Of the global 4 B ha of forest, around 50% falls within
developing countries.26 Residue (e.g., stumps, branches and
leaves) and processing waste (e.g., logs and sawdust) generation
and recovery depends on factors such as tree species and local
geographical conditions.27 For every cubic metre of logged
material removed, a cubic metre of waste remains in the forest.28

Harvested timber is processed to produce different wood
products. Initial processing waste includes branch trimming and
bark removal (about 12% of this material arrives at the mill), slabs/
blocks/further trimmings (about 34%) and sawdust (about 12%).
After kiln drying, shavings (about 6%) and sawdust/trimming

(about 2%) add to the total amount of waste.29,30 The global
allocation of wood biomass and its flow is shown in Fig. 2.
The global production of wood-derived biomass is around 4.6

Gt annually of which 60% goes to energy generation, 20% to
industrial ‘round wood’ and the remaining 20% being primary
production loss that remains in-field to decay. An estimated 80%
of forest tree mass is lost as waste, with about 20% of the wood
ending up in the form of kiln-dried sawn product.31 Based on
FAO29 estimations, Table 2 gives the total residue reserves in
productive forests for 21 countries, based on their production.
Industrial wood from forest felling and sawmill residues for these
countries is shown in Table 3.29,32 Of the total estimated at 715 Mt/
p.a., the potential residues produced are more than 700 Mt/p.a., a
loss that could be used, for example, as a source of fuel.11,32

Table 1. Cumulative generation potential of agricultural residues in

selected countries

Country of origin Amount of residue (Mt fresh weight)

China 716

United States of America 682

India 605

Europe 580

Brazil 451

Argentina 148

Canada 105

Total 3287

Source: ref. 100
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Fig. 1 Projected global demand for cereal crops

Fig. 2 Global allocation and flow of wood biomass

Table 2. Major global producers of forest residues

Country of origin Potential forest stock residues (46% of
total stock) (Mt)

Russian Federation 5718

Indonesia 2221

USA 2078

Brazil 1613

China 807

Sweden 316

France 308

Finland 246

India 232

Philippines 162

Poland 132

Norway 81

Austria 80

Republic of Korea 65

South Africa 52

Canada 50

Thailand 40

UK 15

Japan 0

Germany 0

Austria 0

Subtotal of 21 top selected
countries

14,218

Source: ref. 32
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BIOMASS WASTE MANAGEMENT

The increasing production of agricultural biomass waste also
poses risks to human health. Unregulated land disposal pollutes
surface and ground waters, inducing eutrophication, and when
incorporated into soil, biomass-induced microflora stimulate the
production and emission of greenhouse gases (GHG) NO and N2O,
which have considerably greater global warming potential than
CO2.

33

On a global scale, >2 Gt of crop residues are burned,34

contributing about 18% of total global emissions of CO2, plus
significant quantities of particulates/black carbon.14,35 The use of
biomass as fuel for cooking by the poorest households and
agrarian communities is included, which comprises 38% of the
global population.11,36

Notwithstanding, the complex environmental impacts, includ-
ing the positive (e.g., biomass renewability and carbon neutrality)
and negative (e.g., land use change, depletion of soil carbon and
nutrient stocks and loss of biodiversity and water scarcity)
implications, the use of biomass for energy production cannot
be overlooked.37 The nature and scale of impacts depend on
biomass type and extent of use. For example, open fires and low-
efficiency stoves are traditionally used in developing countries,
and result in poor indoor air quality.38

As developing energy policy recognises the need to reduce coal
use, renewable energy and the sustainable use of biomass
resources is of increasing importance (IEA 2002–2003).39 Indeed,
for a while in the summer of 2019, the UK did not burn coal, as
alternative energy supplies met demand (https://www.
theguardian.com/environment/2019/may/08/britain-passes-1-
week-without-coal-power-for-first-time-since-1882).40

As indicated, the major developments in the reuse of biomass
residues over the past 25 years are primarily concentrated in the
bioenergy sector, although use in specialist product development,
alternative fuels and biochar production has also increased.
The use of agricultural residues for electric power/energy is

widely reported.41–43 Renewable bioenergy includes crop-based
biohydrogen production, e.g., from maize and sweet sorghum;
herbaceous species, e.g., miscanthus, switchgrass and kenaf; from
woody plants, e.g., eucalyptus.44 Although microbial-based
biomass utilisation is also increasing,44 plant-based residues
remain the primary interest for fuel feedstocks (e.g., cotton)45

and biochar production (utilising cotton husk, sugarcane filter
cake, eucalyptus sawmill waste46 or miscanthus char).47 It is worth
noting that biomass rich in lignin and carbohydrate has also been
used to manufacture furan-based building blocks.48

In developed countries (including the OECD members), biomass
waste is either lost/unused or re-utilised, e.g., for energy and heat
production.30 In countries such as the USA, EU, Russia, Ukraine and
Belarus, sawdust-based wood pellets are used as a source of
energy and heat in domestic and industrial facilities. The European
Biomass Association reported the consumption of 18.3 Mt of
pellets (or 79% of global consumption) in the EU in 2013 with
global use projected to increase from 22 to 50–80 Mt by 2020.49

PÖYRY50 predicts wood pellet production to 2020 (Fig. 3), with
Schill et al.51 suggesting that global production will reach
77 Mt/p.a. by 2020.
In the USA, the bulk of the agricultural residues (140–350 Mt) is

used by industry. Until recently, agricultural wastes were managed
by burning or landfill, but now in many states (e.g., California,
Washington and Oregon) this is prohibited.52,53 US agricultural
residues, including corn stover (i.e., stalks and leaves) and wheat
straw, comprise 155 Mt of biomass, and have the potential for
energy production.54,55

In Europe, straw is the main agricultural crop feedstock for
bioenergy following a ban on field burning.56 The production of
European straw residues is 340 Mt, and from cereal and oil crops it
is 416 Mt.57 Denmark is the leader in utilising straw for energy
production via district heating schemes (3–5mW), industrial
processing (1–2mW) and domestic heating (10–100 kW). How-
ever, the impact of using straw for energy production has
important implications for a reduction in the supply of organic
matter to agricultural soils.56

Table 3. Global industrial wood production and calculated fresh

residue mass

Country
of origin

Residue from
forest felling and
cutting (Mt)

Residue
from saw
mills (Mt)

Total potential
residue from
industrial wood
production,
2013a (Mt)

USA 111.8 44.0 155.8

Russian
Federation

68.5 27.0 95.5

Brazil 59.1 23.3 82.3

Canada 56.2 22.1 78.4

China 5504 21.8 77.2

Indonesia 25.2 9.9 35.1

Sweden 23.8 9.4 33.2

India 19.8 7.8 27.6

Finland 18.7 7.4 26.0

Germany 16.9 6.7 23.6

Poland 12.5 4.9 17.4

France 9.8 3.8 13.6

Australia 9.2 3.6 12.8

Japan 7.1 2.8 10.0

South Africa 6.4 2.5 8.9

Austria 4.7 1.9 6.6

Norway 3.4 1.3 4.8

Philippines 1.5 0.6 2.2

Republic
of Korea

1.5 0.6 2.1

UK 1.2 0.5 1.7

Thailand 0.01 0.0 0.01

Subtotal of
sample
countries

513 202 715

Source: refs. 29,32

aExcludes losses, sawn timber, edgings and forest sawdust
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The developing countries in Africa and Asia accounted for a
25% of global biomass waste use, with China comprising
approximately 17%.57,58 This total exceeds the figure for
industrialised countries (currently 3%) due to traditional uses for
these wastes.59,60 However, as these countries including Brazil,
China and India develop, it is likely that industrial applications for
biomass waste will increase. In a number of African countries, the
use of sugar bagasse to generate heat and electricity is
increasing.61

Many countries do seek to avoid biomass waste disposal
through resource recovery and utilisation, and we have seen the
increased use of wood residues for energy generation. However,
incineration and pyrolysis generate substantial amounts of ash
that requires management. Countries such as China, Brazil, USA,
Russia and France annually generate ash from wood utilisation of
0.061–0.24 Mt and from power production, 0.03–1.91 Mt.62 The
world’s largest biomass power station, DRAX, uses 7 Mt of biomass
waste p.a., which produces about 1.2 Mt of fly ash (FA) and around
0.24 Mt of furnace bottom ash or FBA.63

Current utilisation of biomass for energy amounts to approxi-
mately 10% of global energy production, arising primarily from
cooking and heating in the developing world.49,64 Manufactured
wood pellets contribute to <1% of the energy produced29,32

despite the EU and USA [the leaders in biomass-based power
generation capacity]58 possessing a capacity of 1.2 Gt of oil
equivalent, which equates to 15% of the global energy
consumption.65

AN ALTERNATIVE APPROACH USING CAPTURED CARBON
DIOXIDE AND UTILISATION

Globally, the demand for ‘carbon efficient’ management solutions
to conserve energy, minimise the CO2 emissions and utilise wastes
is of increasing interest. The commitment of industrialised
countries to reduce atmospheric CO2 emissions through carbon
Capture and Storage initiatives is well known, but the ability to
deliver is lacking due to cost and technology readiness. Recent
technological developments have created opportunities for
carbon dioxide utilisation (CCU), where CO2 is used as a feedstock
that is transformed to produce a range of materials including
construction materials, plastics and fuels.66 However, to keep costs
low, the successful full deployment of CCU technology will be
partially reliant upon the direct use of point emissions of CO and
CO2, or where necessary, their preferential capture by using, e.g.,
low-cost sorbents,67 which may even be waste-derived.68

It should be noted that the intentional use of CO2 to condition
cementitious materials has been practiced for decades, including
for the rapid hardening of calcium silicate-based materials69 and
concrete articles, such as roofing tiles.70 A carbonation step has
been used to solidify cement-based wasteforms71,72 and to
stabilise soil contaminated with a range of heavy metals including
Zn, Cu and Pb.73 Treatment of waste by carbonation to mitigate
risk and to produce engineered materials suggests that the
managed carbonation of biomass-derived wastes may be bene-
ficial. Building on our previous endeavours, therefore, the
carbonation of biomass ash is the primary focus of the
present work.
The Gt quantities of biomass residues, generated yearly, are not

managed sustainably. If biomass wastes have the potential for
other uses and they do, their displacement should follow a ‘waste
management hierarchy’, which recognises energy recovery, and
disposal as the least favourable options.74 That said, the long-term
use of sustainably produced biomass as a substitute feedstock for
carbon-intensive products and fossil fuels, provides greater
permanent reductions in atmospheric CO2 than preservation does.
The EU Waste Framework Directive requires action to minimise

waste, reduce reliance on landfill and increase recycling.75 The US
Department of Energy (DOE) and the US Department of

Agriculture (USDA) have mandated that 5% of heat and power
energy, 20% of liquid transportation fuel and 25% of chemicals
and materials should come from biomass by 2022.76,77 The high
potential of global biomass waste with respect to material and
energy recovery is recognised,64 but the availability of novel
technologies to effectively manage waste biomass remains
wanting. This becomes more important when the wastes could
be utilised to reduce the high pressure on the virgin material
resources (e.g., soil and natural aggregates).
Our interest in CO2 is in the manufacture of value-added

products utilising solid wastes.78,79 As solid wastes are already
efficiently regulated and are managed in high volumes, they
provide an obvious substrate for the ‘mineralisation’ of carbon. A
summary of the current status is provided by the Global CO2

Initiative,80 and a case study concerning the production of
construction materials is given by the UNEP GEO-6 Pan-European
Assessment.81 Table 4 summarises waste streams that have the
potential to be treated by carbonation technology, including
biomass-derived waste ash.
The IEA projected that in 2030, both agricultural and forest

residues will be increased globally to 6.8 Gt (dry matter) from
agriculture and 0.7 Gt from forestry.60 Asia and North America are
estimated to account for two-thirds of the available potential of
biomass residue wastes from crop production.82 As developing
countries, including India look for alternative material resources to
meet their infrastructural growth needs and GHG reductions
(www.bis.org.in/other/PR_NSNR.pdf), biomass wastes will increase
in significance as potential resources.
The use of biomass residues in cement-bound composites

comprising Portland cement, fly ash and blast furnace slag to
manufacture building materials is practiced in several parts of the
world.83–85 Plant fibres, such as flax shive, hemp and straw may be
used; however, their durability is not guaranteed as these
biological materials become denatured due to high pH and
humidity environment in concrete products. Furthermore, the
effects of lime crystallisation and the dissolution of cellulose,
hemicellulose and certain lignins also contribute to denaturing of
these additives.86–89 The surface of fibre-based construction
materials is also prone to degradation by fungal growth, which
in turn, adversely impacts indoor air quality.89

The use of a low-carbon engineering approach to biomass
wastes including their ashes can involve captured gaseous CO2 to
produce construction materials. The products have potential to be
significantly carbon negative in a ‘closed loop’ manufacturing
process. In utilising CO2 directly from point sources and locking it
up in the built environment, high volumes of waste and CO2 could
be stored in manufactured products as mineral carbonates.
Described by Bertos et al.,78 the production of manufactured
carbonated aggregates for use in blocks/bricks is estab-
lished80,81,90 with these products being commercially available
(www.c8s.co.uk, www.c8a.co.uk). Table 4 lists industrial waste
streams with potential to be used as feedstock with gasesous
carbon dioxide in the manufacture of low-carbon materials.

POTENTIAL BENEFITS

The biomass ashes, derived from fruit peel, crop fibre, nut shells
and wood waste, are often reactive to CO2 and can be valorised
via a managed carbonation step as construction products. The ash
generated from biomass-based power plants can be combined
with the point-source CO2 captured directly from the incineration
process into sustainable, carbon-negative construction materials.
Waste to energy plants emits 47 Mt CO2 each year,58 and as the

ashes generated tend to be reactive to CO2 to a lesser or greater
degree, there is potential to mineralise these ashes to manufac-
ture value-added products.
In Europe, biomass waste arising from straw and other cereal

and oil crops is projected to be 756 Mt by 2030.56 As such, a
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considerable resource exists that has potential to be utilised. The
environmental and economic perspectives of the biomass
utilisation, by using a CCU approach as described, are given in
Fig. 4.
The on-site, i.e., from stack CO2 capture opportunity offered by

waste carbonation, provides a robust ‘closing of the process loop’
option to offset anthropogenic point-source CO2 emissions.91

However, from a developing country perspective, where virgin
materials use predominates, the use of biomass waste-based
products could be attractive as a supplementary sustainable
material supply. For example, India has 141 M ha of arable land
producing ~800 Mt/p.a. of agricultural/horticultural products. The
500–550 Mt/p.a. of surplus residues include ashes arising from
burning on farms (90–140 Mt/p.a.).35,92

In Europe, 276 Mt/p.a. of cereal and oil crop residues are
produced.57 This considerable potential resource informed our
study of different plant-based biomass residues, including wood,
nut shell, fibre and soft (fruit and vegetable) peel. The ashes
arising were analysed, and their potential to react with CO2 gas
was assessed (Table 5). As can be seen, the different ashes
combine with significant amounts of mineralised CO2. The results
reflect the difference in chemistry and mineralogy of the ashes.
The biomass residues studied in this work were sourced in India,

Africa and the UK. They were combusted in a Muffle furnace at
800 ± 25 °C with a residence time of 4 h. The resulting ashes were
then examined for selected physical properties (e.g., particle size,
bulk density, surface area and ash content) and their chemical
(total carbon, elemental and phase chemistry) composition. The

biomass ashes were tested for their reactivity to pure CO2 at 20%
moisture (w/w) and a pressure of ~2 bar. The ashes were exposed
to CO2 for four-separate cycles in a closed pressurised carbonation
chamber, with the first three cycles extending to 1 h each, and the
fourth cycle being 24 h. The uptake of CO2 by ashes was
determined on weight gain (% w/w) basis and correlated against
the results obtained from analysis by X-ray diffractometry with
Reitveld refinement. The dry-carbonation method employed has
been directly correlated with the CO2 uptake achieved in
commercial carbonation facilities operating in the UK.

Preparation and characterisation of products from biomass

The pure biomass ashes were combined with 10% moisture (w/w)
and then pressed into small cylindrical monolithic samples (7 ×
7mm). Five monoliths were cast for each ash and then exposed to
pure CO2 for 24 h. The CO2 uptake by the monoliths was
calculated on weight gain (w/w %) basis and also by CHN
analysis. The strength of these monolithic products is a reflection
of how well carbonate-cemented they are. Compressive strength
was obtained by applying a force until the cylinders failed by
using Eq. (1)

σc ¼
2:8 Fc

πdm2 ; (1)

where σc is the compressive strength in megapascals (MPa), Fc is
the fracture load in kilonewtons (kN), Am is the mean area of the
cylinder and dm is the mean diameter of the cylinder.

Table 4. Overview of waste streams with potential for CCU

Waste Use Country References

Alkaline residues • CO2 storage
• Biogas upgrading
• Aggregates for construction
applications

• In situ treatment of
Brownfield sites

Italy 101

Metallurgical slags (carbon steel and stainless-steel slags),
municipal solid waste (MSW) incineration ashes, mining tailings,
asbestos-containing materials, red mud and oil shale-processing
residues

• Construction materials
• CO2 sequestration

Reviewed in Romania
and Belgium

102

Stainless-steel slag • Construction aggregates
and blocks

• CO2 sequestration
• Reduced metal leaching

Belgium
Italy
Taiwan

103,104

Air pollution control residue (APCr) • CO2 sequestration
• Reduced metal leaching

UK
Italy

105,106

MSW incinerator ash (incl. bottom (B)/fly (F) ash), acidic PCr, coal
combustion by-products (B/F ash), steel slag and blast furnace slag
and construction wastes (e.g., waste cement, concrete and
asbestos-containing materials)

• CO2 sequestration
• Value-added products

Korea 107

MSW bottom ash • Granular construction
material

• CO2 sequestration

Belgium
France

108,109

Cement, paper and metallurgical wastes • Aggregate and other
construction materials

• CO2 sequestration

UK 79,91,110

Asbestos tailings, nickel tailings and red mud (bauxite) • CO2 sequestration USA
India

111,112

Cement kiln dust, cement bypass dust, construction and
demolition waste, cement/concrete waste and blended hydraulic
slag cement

• Stable carbonate minerals
• CO2 sequestration

USA 113,114

Thermal residue/coal fly ash • Low-cost CO2 sorbents India, Canada 67,68

Biomass (forestry and agricultural residues) • Construction materials
• CO2 sequestration

UK UoG 2018
(Unpublished)
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The water resistance of carbonated ‘ash only’ monoliths can be
used as a measure of moisture senstitivity, and was monitored by
immersing them into water for 30 days.
It was found that most of the wood biomass, nut shell, fibres

and soft peel had significant potential to uptake CO2 into their
ashes at up to 414 g/kg. When fabricated into small monolithic
cylindrical products, the CO2 uptaken was slightly higher, at up to
475 g/kg product (Fig. 4), due to greater exposure to CO2 gas.
With the exception of some poorly- or non-reactive ashes, the

strength of the cylindrical monolithic products exceeded the
criteria given in the European standard for light-weight aggre-
gates (Table 5), which is 1200 kg/m3.93 Incidentally, this is also the
strength requirement sufficient for ‘End of Waste’ approval for
manufactured carbonated aggregates made from other thermal
residues.94 This part of our work has been submitted for
publishing as a case study.
From our laboratory studies with a range of biomass wastes, we

can reasonably assume that 70% of these biomass wastes produce
CO2-reactive ashes. If the average ash content is 5% (w/w dry
weight) of that burned, and the CO2 mineralised is of the order of
10% (w/w) as observed, there is potential to mineralise about 1.0
Mt of CO2 in approximately 10 Mt ash produced in Europe.
Furthermore, our work indicates that these reactive ashes could be
used to carbonate-cement the remaining 30% w/w of ‘raw’
biomass residues (utilising some 83 Mt arising from cereal and oil
crops). The ash/raw biomass ratio of 1:8 (or approximately 12% w/
w) was typically high enough to produce a potentially useful
monolithic composite product. The indication that biomass ashes
can be directly used to cement ‘raw’ biomass into a hardened
composite product has not been explored elsewhere. The original
findings of this particular work have been communicated
separately.
The available residues from European cereal and oil crops are

projected to rise to 340 Mt by 2030. Their ashed residues have
potential to mineralise 1.2 Mt CO2 directly, or via the production of
carbonate-cement manufactured valorised products. On a global
scale, the projections for 2050 indicate an increase in demand for
all biomass wastes, with a larger proportion of agricultural
residues being used for energy production.15,95

Biomass fibres are used for making light-weight concretes96

bound by Portland cement and lime-based binders, which are
directly associated with CO2 emissions [e.g., arising primarily from
the ‘cooler’ end of the cement kiln, which operates at 600–900 °C].
As our work has shown that biomass ash can be used as a
substitute for hydraulic cement, or be used as a carbonateable
medium in its own right, there are important implications for the
use of ash in bound products. Not least, the cold-processing route
described has a low-energy intensity, which is unlike that of the
firing, sintering or bloating processes employed in the production
of bricks or manufactured aggregates.
As biomass ashes can be used to replace hydraulic cement to

produce carbonated biomass-based construction materials, there
is significant potential to ‘offset’ carbon. With reference to Fig. 4,
and the offsetting of CO2 from cement production, we assume
that for some applications selected, biomass ash additions can
help to promote a reduction of 10% use in Portland cement. For
clarity, we are not concerned with the ability of ashes to act as a
pozzolan, but as a ready source of CaO that can form calcium
silicate hydrate. If the ashes contain reactive silica, which some do,
then there are further possible advantages in terms of strength
and durability. Either way—whether an addition to a hydraulically-
or a carbonate-bound system, the careful use of selected ashes
could significantly lower the embodied carbon of construction
materials employing a blended PC-biomass ash binder.
The available crop residues on a global scale are considerable as

a number of modelling studies suggest that those currently

Table 5. CO2 uptake potential in biomass ashes and strength of

monolithic products

Biomass ashes CO2 uptake
(% w/w)

Monolithic product
strength (MPa)

Wood shavings and
saw dusts

18.6–41.4 0.122–0.491

Nut shell 9.9–15.6 0.169–0.183

Soft peel 4.86–29.5 0.041–0.313

Fibres 5.6–24.2 0.047–0.161

Fig. 4 Environmental and economic perspectives of biomass waste valorisation by using a CCU-based approach
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available from agriculture (including for energy) are 2.9 Gt/p.a.95,96

Table 6 gives a high-level view of the potential of biomass
residues to generate ash that is able to be reacted with CO2.
With the approach as described, biomass waste dumping could

be reduced, and the impacts of leaching of hazardous chemicals/
contaminants into surface and groundwater, and the associated
health impacts mitigated.97 The costs of these bio-waste-based
products could be higher in countries where the gate fees for
landfill are relatively low or not mandatory—thereby encouraging
reuse rather than disposal. In the United States, landfill fees can be
relatively low (US $44/t), and this may be behind why 54% of
biomass wastes went to landfill (2011). Countries paying higher
landfill gate fees and for the waste to energy already have an
incentive to valorise waste otherwise destined for final disposal.
For instance, the tipping fees in the UK for wood waste is up to
£82/t (2016 figure)98 excluding landfill tax and transport.

IMPLICATIONS

The utilisation of biomass wastes through their combination with
mineralised CO2 could help close the process ‘loop’ and reduce
the adverse environmental impacts arising from waste.
As biomass residues are increasingly burnt in power plants to

produce energy, it has been shown that their ashes and point-
source CO2 can be combined in the manufacture of carbonated
products. This circular management strategy has potential to
preserve landfill space, increase the resources available for
construction and reduce CO2 emissions, and environmental
harms.
As not all biomass ash residues are suitable for direct processing

by carbonation, our experience is that many are readily
carbonateable due to their facilitating mineral content. In this
case, those that are not CO2-reactive can be used in their ‘raw’
forms in combination with reactive biomass ashes to produce
composite products. Therefore, by the careful mixing of biomass
ashes and raw wastes, carbonate-cemented composite products
can be manufactured; findings will be reported fully elsewhere.
In developing countries where biomass residues are available in

quantity,99 and development goals are driving rapid urbanisation,
new products with potential to replace virgin materials may have
wide benefits.

DATA AVAILABILITY

The data that support the findings of this study are available from the corresponding
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