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Abstract: The excellent biological properties of chitosan (CS) together with the increased oxygen
permeability of polyvinyl alcohol (PVA) were the prerequisites for the creation of a wound healing
dressing that would also function as a system for L-arginine (L-arg) and caffeine (Caff) delivery.
Using the freezing/thawing method, 12 hydrogels were obtained in PVA:CS polymer ratios of 90:10,
75:25, and 60:40, and all were loaded with L-arg, Caff, and the mixture of L-arg and Caff, respectively.
Afterwards, an inorganic material (zeolite–Z) was added to the best polymeric ratio (75:25) and loaded
with active substances. The interactions between the constituents of the hydrogels were analyzed by
FTIR spectroscopy, the uniformity of the network was highlighted by the SEM technique, and the
dynamic water vapor sorption capacity was evaluated. In the presence of the inorganic material, the
release profile of the active substances is delayed, and in vitro permeation kinetics proves that the
equilibrium state is not reached even after four hours. The synergy of the constituents in the polymer
network recommends that they be used in medical applications, such as wound healing dressings.

Keywords: L-arginine; caffeine; wound healing; entrapment efficiency; sorption isotherm; drug
release; permeation kinetics

1. Introduction

Skin is considered the largest organ and acts as a barrier against a number of physiolog-
ical and functional factors, thus preventing the invasion of microorganisms [1,2]. Normally,
skin tissue can regenerate, but deep and/or extensive tissue trauma can result in a number
of major complications, such as fungal and bacterial infections [3]. For the care of wounds,
and also for the regeneration and proliferation of tissues over time, the development of
new products containing biocompatible and desirable materials was considered [4]. The
flexibility of hydrogels allows them to be used as dressings for wound care, and their
structure allows the maintenance of optimal wound moisture, determines the absorption
of exudate, does not adhere to the wound, and is non-invasive for the patient [4,5]. The
three-dimensional structure of the polymer network in hydrogels facilitates the loading
and release of active compounds at the target site, and direct application to the skin causes
the passage of the medicinal substance through the tissue and thus avoids the first hepatic
passage [5,6]. By maintaining optimal moisture in the wound and with the delayed release
of the active pharmaceutical ingredient, the frequency of dressing replacement is reduced,
so that hydrogels can be included in the category of “smart” materials [7,8]. The perfor-
mances of hydrogels are established from the synthesis phase, and they depend not only
on the nature of the polymers, but also on the method used to obtain them [9]. The most
common hydrogels in the biomedical and pharmaceutical fields are based on polyvinyl
alcohol (PVA) and chitosan (CS) [5,9–15].
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Polyvinyl alcohol (PVA) is a biodegradable semi-crystalline synthetic polymer that has
been used in biotechnology, such as tissue regeneration, wound dressings, and drug deliv-
ery systems. PVA-based dressings have excellent properties, such as their biodegradability,
biocompatibility, lack of toxicity and low cost. PVA contains a secondary alcohol group
attached to a linear carbon chain and, depending on the degree of hydrolysis, presents
different chemical properties and different degrees of solubility and crystallinity, which
form very flexible films with increased permeability for oxygen and water vapor, which in-
creases the rate of wound healing [9,16–18]. PVA is easily mixed with other polymers such
as chitosan, a natural polysaccharide that has excellent properties such as biodegradability,
biocompatibility, non-toxicity, and antimicrobial properties, and it exhibits a hemostatic
and regenerative effect in tissue engineering [4,5,19,20]. Chitosan is one of the most impor-
tant biopolymers with applications in the industrial field (removal of contaminants from
wastewater), food (food additives, packaging, and preservatives), agriculture (coatings
for seeds and fertilizers, and controlled agrochemical discharge), paper manufacturing,
cosmetic products, tissue regeneration, wound healing, and drug transport [21–27]. The
three-dimensional structure of CS-based hydrogels allows the loading and release of the
drug through release techniques sensitive to pH and temperature [28,29]. The antibacterial
properties of CS are determined by its positive charge that causes interactions with the
negative charges of proteins, anionic polysaccharides, and nucleic acids in the bacterial
membrane [20]. Another remarkable property of CS is its interaction with mucus and
epithelial cells resulting in increased epithelial permeability [20].

The method of obtaining hydrogels is very important, especially in biomedical and
pharmaceutical applications, where the presence of residues of crosslinking agents and
solvents would increase the toxicity and unwanted effects of the pharmaceutical active
ingredient [9]. By using the freeze–thaw process through successive cycles, non-toxic
hydrogels (cryogels) are obtained, which do not require crosslinking agents, so that the
purification step is removed by their absence. Through this method, the polymer chains
exhibit much stronger interactions leading to a stable hydrogel structure and tunable
mechanical properties [9,30].

The potential of such wound dressings increases considerably by adding active in-
gredients. Caffeine is a non-selective antagonist of adenosine receptors, which through
increased angiogenesis induces wound healing [31]. Caffeine, through its antioxidant
properties, has the role of neutralizing free radicals that form on tissue lesions and, thus,
cell proliferation takes place in order to accelerate wound healing [32,33]. Research on
arginine (L-arg) has highlighted its bioactive role, which is due to its excellent biosafety
and antimicrobial properties, so arginine therapy may be a promising strategy for wound
healing [34,35]. It was reported that nitric oxygen (NO) derived from L-arg has great advan-
tages for accelerating wound healing, by enhancing angiogenesis and reducing bacterial
infections [36,37].

This study aimed to develop new dressings based on non-toxic and biodegradable
materials with antimicrobial action to be used in wound care therapy.

2. Results and Discussion
2.1. FTIR Spectroscopy

Figure 1a shows the FT-IR spectra of the three hydrogels based on PVA and CS,
loaded with L-arg. L-arg presents a characteristic signal at 3082 cm−1 which is due to
–NH stretching, and at 1681 cm−1 which corresponds to –NH2 bending. The stretching
movement of the C=O group appears in the spectrum at 1560 cm−1, and the bond due to
the O–H group is observed at 1500 cm−1 [38].
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Figure 1. FT-IR spectra of hydrogels (a) loaded with L-arginine; (b) loaded with caffeine; (c) loaded
with L-arginine and caffeine mixture, and (d) containing zeolite.

In the hydrogels, the characteristic signals of chitosan are found at 1649 cm−1, being
specific to amide I, while the one at 1560 cm−1 is attributed to amide II [39]. The main bands
of PVA are observed at 3292, 2912, 1718, 1421, 1255, 1085 and 839 cm−1 and are assigned
to the O–H stretching vibration of the hydroxyl group, the CH2 asymmetric stretching
vibration, the stretching of the carbonyl group C=O, the C–H bending vibration of the
CH2 group, the C–H bending vibration, the C–O stretching of acetyl groups, and the C–C
stretching vibration, respectively [40,41].

Additionally, the spectra of PVA–CS hydrogels show a peak at 1276 cm−1 which is
characteristic of C–N stretching. From the FT-IR spectra of PVA:CS hydrogels in different
ratios, it can be seen, as expected, that the signals of amide I (1645 cm−1) and II (1560 cm−1)
groups increases with the increase in the chitosan ratio and the signals of the C–H bending
groups of the CH2 group in PVA that initially appear at 1421 cm−1 decrease with the
decrease in PVA concentration.

For all three hydrogels loaded with L-arg in different polymer ratios, it was found
that the specific signals of the OH group in PVA from 3292 cm−1 were shifted to a lower
wavenumber, up to 3200 cm−1, which suggest the formation of additional hydrogen bonds
between PVA and L-arginine [42].

From the FT-IR spectra of the hydrogels loaded with caffeine, which are shown in
Figure 1b, a broad peak around 3300 cm−1 can be observed which is attributed to the
N–H stretching vibration; the C–H stretching signal from the aromatic structure appears at
3106 cm−1 and at 2956 cm−1, and the peak around 1700 cm−1 is due to the aromatic ring
–C=N [43]. With increasing CS concentration in the hydrogels, there is an increase in the
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intensity of the peak at 1655 cm−1 for amide I and the peak at 1560 cm−1 for amide II. The
decrease in the intensity of the peak at 3290 cm−1, which is specific to the OH group in the
polymer, is correlated with the decrease in PVA concentration in the obtained hydrogels.

Figure 1c shows the FT-IR spectra of the hydrogels loaded with the mixture of the two
drugs, so the signal around 1700 cm−1 is specific to the aromatic ring –C=N in the Caff
structure, and the one at 3082 cm−1 is due to the stretching –NH from the L-arg structure.
Peaks unmodified intensity, both for Caff and L-arg, indicates that the drugs are found
in hydrogels. The decrease in the intensity of the peak at 3290 cm−1, which is specific to
the OH group in the polymer, is correlated with the decrease in PVA concentration in the
obtained hydrogels. With increasing CS concentration in the hydrogels, there is an increase
in the intensity of the peak at 1655 cm−1 for amide I and the peak at 1560 cm−1 for amide II.

The FT-IR spectra for polymer-based hydrogels and zeolite as an inorganic material
loaded with L-arginine, caffeine, and the mixture of the two, respectively, suggest that
the interaction between the drugs and the other components is mostly related to the polar
groups (Figure 1d). In all three spectra, characteristic absorption bands specific to PVA
appear, namely, 3200–3300 cm−1 is the band specific to intramolecular and intermolecular
hydrogen bonding which is due to high hydrophilic forces. In the 2850–3000 cm−1 region,
typical alkyl C–H absorption broad bands appear (2939 and 2927 cm−1). The presence of
L-arginine in the samples is evidenced by the absorption bands at 1560 cm−1, which are
specific to the C=O group in L-arginine (1548 cm−1 and 1552 cm−1, respectively), while the
presence of caffeine in the hydrogel is noted by some characteristic vibrations of caffeine
peaks, namely those at 1700 cm−1 which are due to the aromatic ring –C=N. From the
FT-IR spectra of hydrogels based on PVA_Z:CS loaded with the mixture of the two drugs
(L-arginine and caffeine), the specific signals of the two substances, as well as signals
characteristic of the zeolite L band at 1080 cm−1 (probably Si -O-Si), can be observed [44].
By introducing zeolite L into the hydrogels, the semi-crystalline structure of PVA was
not modified.

2.2. Morphological Characterization via Scanning Electron Microscopy (SEM)

The morphological appearance of the hydrogels was determined by scanning electron
microscopy and is shown in Figure 2a–l. It can be observed from the images that all the
samples show 3D porous structures with regular interconnected areas. With the increase
in the percentage of chitosan, the porosity of the network changes and the size of the
pores increases, and this has been proven to facilitate a faster release of the drug from the
hydrogel structure [45]. The homogeneous appearance of the pores of the hydrogels can be
correlated with the homogeneous loading of the entire PVA_CS polymer network.

By introducing the zeolite L nanoparticles, (Figure 2j–l), an increase in the size of the
pores and a decrease in the number of pores can be observed. The lack of agglomeration or
phase separations of zeolite L nanoparticles denotes a uniform distribution between the
inorganic phase and the PVA_CS_drug system.
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Figure 2. SEM images of hydrogels: (a) PVA_L-arg:CS 90:10; (b) PVA_L-arg:CS 75:25; (c) PVA_L-
arg:CS 60:40; (d) PVA_Caff:CS 90:10; (e) PVA_Caff:CS 75:25; (f) PVA_Caff:CS 60:40; (g) PVA_L-
arg_Caff:CS 90:10; (h) PVA_L-arg_Caff:CS 75:25; (i) PVA_L-arg_Caff:CS 60:40; (j) PVA_Z_L-arg:CS
75:25; (k) PVA_Z_Caff:CS 75:25; (l) PVA_Z_L-arg_Caff:CS 75:25.

2.3. Dynamic Water Vapor Sorption Capacity

The dynamic water vapor sorption capacity analysis allows establishing the relative
humidity conditions of the environment that influence the stability and quality process
of the materials, and at the same time, by tracing the sorption isotherms, the hydrophilic
or hydrophobic nature of a material can be established. The sorption isotherms of the
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prepared hydrogels were recorded in the range of relative humidity (RH) of 0–90% at a
temperature of 25 ◦C.

According to the IUPAC classification, all hydrogels obtained show a Brunauer–
Emmett–Teller (BET) multilayer sorption isotherm, type V, specific to mesoporous ma-
terials [46,47]. Materials showing such isotherms are hydrophobic. Water molecules are
captured by condensation in the free meshes of the capillary network, and only a small
part of the water molecules can attach to the surface functional groups [48].

The isotherms of all samples (Figure 3a–d) show hysteresis between sorption and
desorption over the whole studied humidity range. The dry mass for the two processes
shows differences that are due to the condensation and evaporation process that takes
place in the pores of the hydrogels. To investigate the sorption process, the isotherms were
divided into two regions, one with low relative humidity, up to 50%, and one with high
relative humidity, above 50%. In the region with low humidity, it is observed that the
isotherm does not increase sharply, which indicates a lack of affinity between the hydrogel
constituents and the water molecules. At a humidity above 50%, a sharp increase in
sorption capacity was found, which was primarily due to capillary condensation occurring
in interconnected capillary channels. Moreover, in the first region, the water vapor pressure
is not sufficient to facilitate the penetration of water into the internal structure of the
hydrogels. On the other hand, with the increase in humidity, there is an increase in the
pressure of the water molecules, which facilitates the penetration into the internal structure
of the hydrogels, thus explaining the different sorption capacity in the two regions [49,50].
The sorption isotherms for all hydrogels are similar in shape and are specific to hydrophobic
mesoporous adsorbents [47].
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The hydrophilic character of chitosan, determined by the presence of amino and
hydroxyl groups, facilitates the increase in water sorption capacity, and when it is mixed
with PVA, electrostatic interactions and hydrogen bonds appear, which leads to a decrease
in the number of functional groups [47,49]. The experimental results showed that with the
increase in the amount of CS in the hydrogels, there is an increase in the water sorption
capacity. At the same time, the type of drug loaded in the hydrogel influenced the amount
of adsorbed water, thus it formed an amide bond between the carboxyl group of L-arg and
the amino groups of chitosan [50,51]. The formation of such bonds led to the decrease in the
water sorption capacity over the entire range of relative humidity, so at 50% humidity, the
maximum sorption was 0.53% d.b. (% dry basis), and at 80% humidity, the maximum was
6.56% d.b (Figure 3a). The polar nature of both chitosan and arginine prevents the release
of water from inside the crystalline network, so the desorption isotherm is different from
the sorption one, and at 50% humidity, the maximum sorption is 10.34% d.b. In this case,
the difference between sorption and desorption processes is 9.81% d.b. By combining the
hydrophilic nature of chitosan with that of caffeine, given by the four nitrogen atoms that
are able to form hydrogen bonds, the water sorption capacity increased (Figure 3b) [52].
Both in the low humidity and high humidity area, the sorption capacity increases steadily;
at 50%, it is 6.52% d.b., and after 60% humidity, the increase is sudden, reaching 29.35% d.b.
The desorption isotherm of the caffeine-loaded hydrogels overlaps the sorption isotherm,
and the % mass of the samples for the two processes show no differences, indicating only
the penetration of water into the crystal network without the formation of hydrogen bonds.
For the hydrogels loaded with a mixture of L-arg and Caff (Figure 3c), the sorption capacity
increases with the increase in the amount of chitosan added in the polymer formula of the
hydrogel. The last set of hydrogels in a PVA:CS polymer ratio of 75:25 and zeolite as an
inorganic desiccant material loaded with drugs shows increased values of the amount of
water adsorbed (Figure 3d). The results confirmed that the introduction of L-arg through
the highly polar guanidine group increases the sorption capacity, reaching a value of
22.99% d.b. at 80% humidity. For the same polymer recipe but loaded with Caff, the
maximum value, at 80% humidity, is 13.45% d.b., and for the mixture of L-arg and Caff, at
80% humidity, the value is 14.15% d.b. In these hydrogels, the isotherms of the desorption
process overlap with those of sorption, which indicates only a physical penetration of water
molecules inside the polymer network without the formation of hydrogen bonds.

2.4. Estimation of Drug Loading and Entrapment Efficiency

The entrapment efficiency (EE) and degree of loading of the drug into the hydrogel
were determined by a spectrophotometric method. The wavelength at which L-arginine
absorbs in phosphate buffer (pH 7.4) is 208 nm and shows linearity in the concentration
range 5–35 µg/mL, with regression coefficient r2 = 0.9995. Caffeine absorbs at a wave-
length of 273 nm, and the linearity is in the concentration range of 5–25 µg/mL, with
the regression coefficient r2 = 0.9999. The values of the regression coefficient indicate
that the drug release follows Beer’s law within the specific concentration range [53]. The
calculations of the drug loading and EE were based on the calibration curve. The cali-
bration curve for L-arg is absorbance = 0.0142·concentration + 0.0465, and for Caff it is
absorbance = 0.0498·concentration = 0.0119.

The results of this study are shown in Table 1 and presented a direct correlation
between drug loading and entrapment efficiency. From the L-arg and Caff mixture samples,
quantitative analysis of L-arg could not be performed because it absorbs at a shorter
wavelength than Caff, so the spectra overlap and does not allow its determination.

The entrapment efficiency varies within very small limits, of 99% for the samples that
do not contain zeolite, and up to 85.09% for the samples with inorganic material which are
loaded with the L-arginine and caffeine mixture. This decrease can be explained by the
occupation of the polymer network with zeolite, which, being inorganic in nature, makes
it difficult for the drug molecules to bind to the polymer network sites. The microporous
structure of the zeolite occupies the polymer network, which causes a decrease in the
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percentage of medicinal substance, can both penetrate inside the pores of the zeolite and be
dispersed on the surface of the material [54,55].

Table 1. Hydrogel loading capacity (LC) and entrapment efficiency.

Sample PVA:CS
%

L-arg
%

Caff
%

LCL-arg ± SD
%

LCCaff ± SD
%

EEL-arg ± SD
%

EECaff ± SD
%

PVA_L-arg:CS
90:10 2 - 1.98 ± 0.0002 - 99.05 ± 0.2 -
75:25 2 - 1.98 ± 0.0003 - 99.13 ± 0.5 -
60:40 2 - 1.99± 0.0002 - 99.05 ± 0.7 -

PVA_Caff:CS
90:10 - 2 - 1.97 ± 0.0003 - 98.84 ± 0.5
75:25 - 2 - 1.97 ± 0.0003 - 98.80 ± 0.6
60:40 - 2 - 1.98 ± 0.0002 - 99.16 ± 0.3

PVA_L-arg_Caff:CS
90:10 2 2 - 1.99 ± 0.0002 - 99.16 ± 0.3
75:25 2 2 - 1.97 ± 0.0002 - 98.89 ± 0.3
60:40 2 2 - 1.99 ± 0.0001 - 99.27 ± 0.1

PVA_Z_L-arg:CS 75:25 2 - 1.92 ± 0.001 - 95.88 ± 0.46 -

PVA_Z_Caff:CS 75:25 - 2 - 1.84 ± 0.003 - 91.80 ± 1.03

PVA_Z_L-arg_Caff:CS 75:25 2 2 - 1.70 ± 0.003 - 85.09 ± 1.02

2.5. In Vitro Drug Release and Permeation Studies

The results of the drug release from the structure of the hydrogels, shown in Figure 4a,b,
are consistent with the FTIR analysis which revealed the presence of weak drug-polymer bonds.
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The analysis of the release profile for L-arg shows an accentuated release (burst
release) of over 40% in the first 15 min regardless of the PVA:CS polymer ratio, and with
the addition of zeolite, there is a decrease in the release, reaching 21.55%, result that is due
to a slight encapsulation of L-arg in the pores of the inorganic material (Figure 4a). The
L-arg permeation through the chicken skin membrane reached the steady state after 2 h for
the formula based on PVA and CS, while in the case of PVA_Z_L-arg_CS 75:25, the steady
state could not be reached within four hours (Figure 5a).

For Caff, when it is loaded alone in the polymer material, it shows the same enhanced
release of more than 40% in the first 15 min, but when it is loaded together with L-arg
in the polymer matrix, the release is delayed, reaching a maximum of 25.05% in the first
15 min (Figure 4b). The decrease in Caff release is even more pronounced when zeolite
is also present in the polymer matrix, the release percentage being 19.60% in the first
15 min, and after 4 h, the caffeine release reaches a value of 99.2%. After 3 h, all formulas
based on polymers exclusively achieved a steady state for the permeation of Caff across the
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biological membrane (Figure 5b). Once again, the zeolite formulation in the hydrogel matrix
determined a prolonged release profile of Caff from hydrogels. The accelerated release
profile of arginine satisfies the wound healing modality, when, in the first phase, a large
amount of arginine is needed to inhibit infection, promoting angiogenesis and granulation
formation, which leads to wound healing with less scars [37]. Hydrogels prepared and
loaded with caffeine, which have a prolonged release, can be used on wounds that have
reached the second phase, namely the inflammatory phase [56].
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2.6. Analysis of In Vitro Drugs Release Kinetics

In order to correlate the data obtained from the active substance release studies with
the characteristics of the pharmaceutical form, the release profiles of L-arg and Caff from
the hydrogels were studied. The data of the in vitro release profile were studied on the four
main kinetic models and the results obtained were interpreted by means of the statistical
criteria Akaike information criterion (AIC) and correlation coefficient (R2). The results of
the release profile for L-arg are presented in Table 2, and for Caff in Table 3.

Table 2. Data fitting results of in vitro L-arg release profile from hydrogels.

Kinetic Model Model Coefficients *
Sample

PVA_L-arg:CS 90:10 PVA_L-arg:CS 75:25 PVA_L-arg:CS 60:40 PVA_Z_L-arg:CS 75:25

Zero-order
K0 (µg/h) 34.6604 33.4181 33.0437 30.0594

R2 0.7397 0.8173 0.7749 0.9400
AIC 90.4906 86.1915 89.5444 68.7646

First-order
K1 (h−1) 1.5081 1.1985 1.4667 0.7091

R2 0.9540 0.9434 0.9098 0.9893
AIC 52.0653 54.4257 59.4848 34.4222

Higuchi
KH (h−0.5) 68.4502 58.6092 60.0338 50.3189

R2 0.9207 0.9626 0.9395 0.9935
AIC 67.5030 58.0864 66.1111 36.3008

Korsmeyer–
Peppas

n 0.31 0.35 0.30 0.54
KP (h−n) 71.1471 65.8352 70.2094 48.8744

R2 0.9728 0.9890 0.9898 0.9937
AIC 47.2008 35.1684 33.1479 30.8432

* K0 = constant of zero-order release rate, K1 = constant of first-order release rate, KH = constant of Higuchi model
release rate, KP = constant of Korsmeyer–Peppas model release rate.

The values of the main statistical parameters indicate that the obtained formulations
do not follow an ideal zero-order kinetics, nor a first-order kinetics, which depends on
the initial concentration of the drug [57]. The R2 values for the Higuchi kinetic model
and the Korsmeyer–Peppas kinetic model do not differ significantly, but the lower AIC
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values from the Korsmeyer–Peppas model indicate for all hydrogels that the release of
the active substance occurs through the diffusion phenomenon [58]. At the same time, the
diffusion mechanisms are indicated by the values of the diffusion exponent (n) from the
Korsmeyer–Peppas equation.

Table 3. Data fitting results of in vitro Caff release profile from hydrogels.

Kinetic
Model

Model
Coefficients *

Sample

PVA_Caff:CS
90:10

PVA_Caff:CS
75:25

PVA_Caff:CS
60:40

PVA_L-
arg_Caff:CS

90:10

PVA_L-
arg_Caff:CS

75:25

PVA_L-
arg_Caff:CS

60:40
PVA_Z_Caff:CS

75:25
PVA_Z_L-

arg_Caff:CS
75:25

Zero-
order

K0 (µg/h) 31.7189 33.2027 32.3685 29.8304 30.4852 31.0108 29.0580 26.4436
R2 0.8904 0.8328 0.8716 0.9540 0.9480 0.9445 0.9688 0.9769

AIC 81.7390 86.3340 83.4886 69.4658 70.5143 68.7899 61.7122 49.9559

First-order
K1 (h−1) 0.9182 1.1136 1.0039 0.6955 0.7318 0.7357 0.6162 0.4852

R2 0.8788 0.8905 0.8873 0.9630 0.9658 0.9754 0.9732 0.9695
AIC 62.8648 61.9319 62.1767 49.2599 48.8112 46.1660 46.1221 47.3676

Higuchi
KH (h−0.5) 54.6274 58.0423 56.1032 49.4901 50.9705 51.2613 48.1464 43.0442

R2 0.9803 0.9651 0.9772 0.9939 0.9924 0.9855 0.9824 0.9609
AIC 51.2550 59.7086 54.0957 28.2244 30.6220 43.9314 47.4270 59.1188

Korsmeyer–
Peppas

n 0.38 0.33 0.36 0.54 0.55 0.58 0.64 0.78
KP (h−n) 60.0406 66.2640 62.3882 48.3429 48.9719 49.0189 42.6281 33.3417

R2 0.9878 0.9915 0.9903 0.9953 0.9933 0.9878 0.9925 0.9838
AIC 35.0171 30.6338 32.2345 24.5002 29.6927 39.0642 31.5291 41.1629

* K0 = constant of zero-order release rate, K1 = constant of first-order release rate, KH = constant of Higuchi model
release rate, KP = constant of Korsmeyer–Peppas model release rate.

The values of the diffusion exponent, specific to the kinetic equation of Korsmeyer–
Peppas (Table 2), indicate for L-arg a release by Fickian diffusion when the drug is loaded
alone in the polymer network, regardless of the PVA:CS ratio (n = 0.3–0.35). When the
polymer network also contains zeolite, the release of L-arg is achieved through diffusion
anomalies, with n = 0.54 (diffusion and erosion of the polymer network) [59,60].

From Table 3 it can be seen that for hydrogels loaded only with caffeine, regardless of
the polymer ratio, the release of the drug takes place by Fickian diffusion (n < 0.45) [59,60].
For the hydrogels that are loaded with a mixture of Caff and L-arg, and also for those that
have zeolite added in the formula, the values of the diffusion exponent, n, are between
0.54 and 0.78, which indicates a non-Fickian release mechanism, for which the release
occurs by diffusion coupled with erosion [59,60].

For the release of both L-arg and Caff, the Korsmeyer–Peppas model proved supe-
rior to the zero-order, first-order, and Higuchi kinetic models. The presence of zeolite
in the hydrogel structure determines a drug release mechanism through diffusion and
erosion processes.

3. Conclusions

Wound healing is a complex process that requires the best materials capable of ensuring
optimal tissue moisture, functioning as an antibacterial barrier, and being non-invasive
for the patient. The synergism given by the increased oxygen permeability of PVA, the
antibacterial, antimicrobial and hemostatic effect of CS, and the antimicrobial properties
of L-arg together with the antioxidant, anti-inflammatory, and antibacterial properties of
Caff were the prerequisites for making the 12 hydrogels by the freeze–thaw method. The
obtained hydrogels are in PVA:CS polymeric ratios of 90:10, 75:25, and 60:40 and were
loaded with L-arg, Caff, and the mixture of the two, respectively. All hydrogels have a
microporous structure, and the size of the pores increases with the increase in the amount of
CS. The experimental data showed an increased water vapor absorption capacity with the
increase in the amount of CS in the polymer network. The addition of L-arg in the polymer
network causes a decrease in the water vapor sorption capacity due to the formation of
hydrogen bonds between chitosan and L-arginine. When Caff is added to the hydrogels,
there is a sharp increase in the sorption capacity, and by superposition of the desorption
isotherm on the sorption isotherm, physical penetration of water vapor into the hydrogels
is indicated, without the formation of hydrogen bonds. The loading tests of hydrogels that
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contain only organic material show a loading efficiency of over 98.8% and those that also
contain zeolite as an inorganic material show a slight decrease in loading efficiency with
values between 85.09 and 95.88%. Release tests in phosphate buffer indicate an immediate
release of both L-arg and Caff when they are in the polymer network, and the presence
of zeolite in the hydrogel determines a modified release for both active substances. The
zeolite causes a prolonged release effect, both of L-arg and of Caff, and both due to the
phenomenon of occupying the pores of the network by the zeolite, but also due to the fact
that the zeolite delays the phenomenon of hydration of the polymer network. The release
of Caff in the presence of L-arg is a slower phenomenon that is favorable to the healing
process considering the sequence of the biological stages of scarring.

4. Materials and Methods
4.1. Reagents

Chitosan with a low molecular weight (molecular weight of 167,494 Da–determined
by the viscosimetric method) [61] and 75% of degree of deacetylation, polyvinyl alcohol
(average molecular weight of 85,000–124,000 Da and a hydrolysis degree of 99%), caffeine,
and L-arginine were purchased from Sigma-Aldrich (St. Louis, MI, USA). All other chemi-
cals and reagents were of analytical grade and used without further purification. Zeolite L
crystals (ZL) were prepared under hydrothermal conditions from a gel mixture using the
procedure described by Sadegh Hassani et al. [62]. Scanning electron microscopy (SEM)
allowed the determination of the ZL particle size to be 200 nm and the Si/Al ratio was equal
to 4. To remove water and organic debris, the ZL was heated under vacuum at 250 ◦C.

4.2. Preparation of the Samples

In a first step, nine hydrogels, based on PVA and CS in different ratios and loaded with
arginine and caffeine, were prepared by the freeze–thaw technique. A 5% solution of PVA
was prepared by mixing PVA with double distilled water at 90 ◦C for 6 h. The bioactive
component (arginine and/or caffeine 2%) was added to the aqueous PVA solution, and
later the chitosan solution (2%) was added in various reports.

A 2% CS solution was prepared by dissolving chitosan in 1N acetic acid solution
by stirring at 30 ◦C for 12 h. Based on the preliminary results obtained from the nine
hydrogels, the best APV:CS ratio was selected, and an inorganic material, zeolite (Z), was
added in order to increase the release time of the active substance. All samples were
subjected to five consecutive freezing (18 h)–thawing (6 h) cycles. During the freezing
process, the temperature was maintained at −20 ◦C, and during the defrosting process it
was +20 ◦C [63]. All the obtained hydrogels were freeze-dried over 48 h at −46 ◦C and
stored in a fridge at 5 ◦C. The composition of the samples is shown in Table 4 and the
experimental presentation of obtaining hydrogels is shown in Figure 6.

Table 4. Composition of the hydrogels.

Sample PVA
(wt%)

CS
(wt%)

L-arg
(wt%)

Caff
(wt%)

L-arg–Caff
(wt%)

Z
(wt%)

PVA_L-arg:CS 90:10 90 10 2 - - -
PVA_L-arg:CS 75:25 75 25 2 - - -
PVA_L-arg:CS 60:40 60 40 2 - - -
PVA_Caff:CS 90:10 90 10 - 2 - -
PVA_Caff:CS 75:25 75 25 - 2 - -
PVA_Caff:CS 60:40 60 40 - 2 - -

PVA_L-arg_Caff:CS 90:10 90 10 - - 2 -
PVA_L-arg_Caff:CS 75:25 75 25 - - 2 -
PVA_L-arg_Caff:CS 60:40 60 40 - - 2 -

PVA_Z_L-arg:CS 75:25 75 25 2 - - 1
PVA_Z_Caff:CS 75:25 75 25 - 2 - 1

PVA_Z_L-arg_Caff:CS 75:25 75 25 - - 2 1
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4.3. Methods
4.3.1. Attenuated Total Reflection Fourier Transform IR (ATR-FTIR) Spectroscopy

The IR absorption spectra of the analyzed samples were recorded using a Bruker Vertex
70 spectrometer (Bruker Optics, Ettlingen, Germany) equipped with a ZnSe crystal ATR
accessory in the scan range of 4000–600 cm−1 at a resolution of 4 cm−1 at room temperature.

4.3.2. Morphological Characterization Via Scanning Electron Microscopy (SEM)

The morphological characterization of the hydrogels was carried out on an environ-
mental scanning electron microscope (ESEM) type Quanta 200 operating at 30 kV with
secondary and backscattering electrons in low vacuum mode coupled with dispersive X-ray
spectroscopy (EDX) in order to perform the elemental analysis on the film surface.
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4.3.3. Dynamic Water Vapor Sorption Capacity

The hydrogels’ capacity to capture water vapor was determined by using the gravimet-
ric analyzer IGAsorp (Hiden Analytical, Warrington (UK)). The system measurements were
fully automated and controlled by a user-friendly software package running on Microsoft®

WindowsTM.
In order to study the water vapor sorption properties of hydrogels, initially the vapor

pressure was increased in 10% humidity steps, each having a pre-established equilibrium
time between 10 and 20 min. The ultrasensitive microbalance, with which the device is
equipped, measures the change in the weight of the samples as the humidity is modified.
The cycle was ended by decreasing the vapor pressure in steps to obtain also the desorption
isotherms. Before sorption measurements, the samples were dried at 25 ◦C in flowing
nitrogen (250 mL/min) until their weight was in equilibrium at RH below 1%. The water
content was calculated using the following equation:

Water content (%) =

(
Wt − Wd

Wd

)
·100 (1)

Wt—weight of the swollen samples at time t;
Wd—weight of the dry sample.

4.3.4. Estimation of Drug Loading and Entrapment Efficiency

The quantitative determination of L-arginine and caffeine, solubilized in phosphate
buffer pH 7.4, was carried out by a spectrophotometric method (SPECORD 210 PLUS-
223F2042C). The calibration curve for L-arginine was conducted in the concentration range
5–35 µg/mL and for caffeine in the range 5–25 µg/mL.

For the estimation of drug loading and entrapment efficiency, after the preparation of
hydrogels, three samples were taken from each hydrogel from different areas. Then, the
samples were placed in phosphate-buffered solution pH 7.4 and kept for 30 min in a sound
field. The obtained solutions were centrifuged, filtered and samples were taken from the
supernatant and analyzed spectrophotometrically. The experimental concentration value
of the loaded drug was calculated from the calibration curve relationship. Using relations
(2) and (3), the loading capacity (LC) and entrapment efficiency (EE) of the hydrogels were
calculated [36].

LC(%) =

(
Mactual(ca f f /L.arg)

Msample

)
·100 (2)

LC—loading capacity of caffeine or L-arginine in hydrogels;
Mactual(caff/L.arg)—actual amount of caffeine or L-arginine loaded in the hydrogel sample;
Msample—actual amount of hydrogel sample.

EE(%) =

(
Mactual(ca f f /L.arg)

Mtheoretical ca f f /L. arg

)
·100 (3)

EE—entrapment efficiency, %;
Mactual(caff/L.arg)—actual amount of caffeine or L-arginine loaded in the hydrogel;
Mtheoretical caff/L.arg—theoretical amount of caffeine or L-arginine added in the hydrogel preparation.

4.3.5. In Vitro Drug Release and Permeation Studies

To perform the in vitro diffusion study, Franz vertical diffusion cells of 1.5 cm internal
diameter were used (Orchid Scientific Ltd., Ambad, India). The assays were performed
on freshly slaughtered chicken skin that was purchased from a local slaughterhouse. In
order to obtain this biological membrane, skin was excised from chicken legs from areas
without pores, followed by the removal of fatty tissue. These membranes were cut in
areas of 5 cm2 and placed in 10% glycerin before being mounted between the donor and
receptor compartments. The temperature was maintained at 36.5 ± 0.5 ◦C by connecting
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the diffusion cells to a thermostatic water bath and the homogeneity of receptor fluid was
maintained by magnetic stirring [64]. Individually samples of hydrogels containing the
drugs (100 mg Caff and 125 mg L-arg) were placed in the donor compartment, directly on
the biological membrane. Each receptor compartment was filled with 12 mL of isotonic
phosphate buffer pH 7.4 solution [65] and the rotation was set at 100 rpm. The samples
(0.5 mL aliquots) were withdrawn from the receptor cell at a regular time interval for a
period of 4 h and replaced with the same volume of fresh medium. The amount of the drug
released and passed through the membrane was analyzed spectrophotometrically with the
methods described. The in vitro release profile and permeation expressed as the cumulative
amount of Caff and L-arg transported across the membrane per cm2 vs. incubation time
was plotted in GraphPad®.

4.3.6. Analysis of In Vitro Drugs Release Kinetics

To study the mechanism in which L-arg and Caff leave the polymeric matrix, the
in vitro release profiles were correlated with various kinetic models. The mathematical
models applied were for zero-order kinetics (the ideal case, constant release of the drug
from the polymer matrix), first-order kinetics (the release rate of the drug depends on its
concentration), the Higuchi model (the release of the drug is carried out by diffusion),
and the Korsmeyer–Peppas model (the value of n, i.e., the release exponent, indicates the
mechanism of drug release from a matrix) [59,66].

The data fitting was carried out by linear or non-linear regression using Matlab 7.1.
Akaike information criterion (AIC) and the correlation coefficient R2 were the criteria
for selecting the model that most faithfully depicted the release profile of each studied
formulation. A prediction of the model that is as good as possible requires R2 to be as close
to 1 as possible, and the AIC to have minimum values [67,68].
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