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Abstract

Dynamic optical coherence elastography is used to determine in vivo skin biomechanical

properties based on mechanical surface wave propagation. Quantitative Young’s moduli are

measured on human skin from different sites, orientations, and frequencies. Skin thicknesses,

including measurements from different layers, are also measured simultaneously. Experimental

results show significant differences among measurements from different skin sites, between

directions parallel and orthogonal to Langer’s lines, and under different skin hydration states.

Results also suggest surface waves with different driving frequencies represent skin biomechanical

properties from different layers in depth. With features such as micrometer-scale resolution,

noninvasive imaging, and real-time processing from the optical coherence tomography

technology, this optical measurement technique has great potential for measuring skin

biomechanical properties in dermatology.

Index Terms

Biomechanical properties; elastography; optical coherence tomography (OCT); skin

I. Introduction

Biomechanical properties of skin are of great importance as they contribute to or are

responsible for skin health and disease, structural integrity, cosmesis, and aging. Early

studies on human skin biomechanical properties began in the 19th century [1], which mainly

focused on skin mechanical anisotropy. From this realized significance, further studies and

investigations were conducted on skin biomechanical properties in the fields of skin aging

[2], [3], plastic surgery [4], [5], sun exposure and skin cancer [6], [7], and cosmetics [8], [9].

With aging or pathological changes in human skin, thicknesses measurements and

mechanical properties will vary for different layers of skin, and at regionally distinct sites,
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making quantitative measurements more important for diagnosis and for monitoring of

interventions.

A number of methods have been used for measuring skin mechanical properties. For

example, ultrasound was used to determine skin thicknesses and mechanical properties in

vivo [10]. A tangential traction method was used to determine the biomechanics of

fingerpad tissue in vivo [11]. Young’s modulus, initial stress, and index of nonelasticity of

skin were characterized using a mechanical model under suction [12]. A twistometer was

used to determine skin-related mechanical properties of human skin in vivo [3]. Strain–stress

relationships were studied to determine the role of elastin in the mechanical properties of

skin [13]. Wave propagation methods were also used to determine skin viscoelastic

properties [14], [15]. A single-axis extension method was used to test the viscoelastic

behavior of skin in vivo, using a mechanical model [16]. For all these studies, cross-

sectional imaging-based techniques have become popular because of their added ability for

high-speed, high-resolution measurements of thickness, morphological changes in disease,

and assessment of biomechanical properties.

Among the imaging modalities, optical coherence tomography (OCT) has shown great

potential in the field of dermatology based on its micrometer-scale resolution, millimeter-

scale penetration, and noninvasive 3-D imaging ability [17], [18]. The principle of OCT is to

depth-resolve optical scattering variations within tissue using interferometric techniques, in

which the axial resolution is determined by the coherence length of the light source, and the

transverse resolution is determined by the spot size of the incident beam. The imaging

penetration of OCT in skin can be up to 1.5 mm, depending on the wavelengths of the light

sources [19], and a new interferometric synthetic aperture microscopy technique can

computationally improve the OCT transverse resolution and imaging depth-of-field

simultaneously [20]. OCT has been successfully applied in dermatology and compared with

other imaging modalities, such as ultrasound [21], [22]. In dermatology, polarization-

sensitive OCT can reveal the birefringence properties of skin and can be used to image

changes during thermal injury [23], [24].

Optical coherence elastography (OCE) is a novel technology used to determine tissue

biomechanical properties and is based on in vivo OCT imaging. In OCE, mechanical

stimulations are applied to biological tissues with simultaneous OCT scanning to detect

cross-sectional biomechanical properties of the sample [25]. With cellular-level resolution

and several millimeters of imaging penetration, OCE has the unique ability to noninvasively

measure tissue biomechanical properties in vivo. OCE has been applied in intravascular

imaging [26], [27], atherosclerotic tissue imaging [28], and imaging of engineered and

developing tissues [29]. Phase-resolved OCE methods have also been successfully used for

measuring tissue mechanical properties with increased sensitivity over amplitude-based

methods [30], [31]. Our recent work demonstrated the feasibility of dynamic OCE for

measuring and mapping biomechanical properties of tissues based on dynamic internal and

external mechanical wave excitations and solutions to wave equations [32], [33]. In this

paper, we focus on using the dynamic OCE technique to measure skin biomechanical

properties in vivo. Quantitative in vivo measurements of Young’s moduli in human skin

were obtained.

II. Materials and Method

A. Tissue Phantom Preparation

Multilayer tissue phantoms were used to calibrate the measurements of mechanical

properties by the OCE system because of their similar optical scattering and biomechanical

properties to human tissues. Silicone-based tissue phantoms were used due to their
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permanence and the ability to vary stiffness [34]. Phantoms were prepared from pure

polydimethylsiloxane fluid (50 cSt viscosity, ClearCo, Inc.), a room temperature vulcanizing

silicone, and its associated curing agent (General Electric RTV-615A and B, respectively,

Circuit Specialists, Inc.). Different concentration ratios of these three ingredients were used

to obtain layer structures with different stiffness and thickness in the samples. Titanium

dioxide powder (Sigma–Aldrich, #224227, mean size 1 μm and maximum size 5 μm) were

embedded with a concentration of 1 mg/g in the tissue phantoms to function as optical

scatterers for OCE imaging. The phantom solutions were mixed thoroughly in an

ultrasonicator for 30 min at room temperature, and then poured into 9 cm plastic Petri

dishes. Different layers of samples with different stiffness and thickness were separately

fabricated after the curing process of the previous layer, which included curing at 80 °C for

8 h, and subsequently, at room temperature for 24 h.

B. Human Subject Measurements

All in vivo experiments were done on the skin of a healthy male volunteer under room

temperature and humidity. Informed consent was obtained from the subject. The sites of skin

were chosen as relatively flat regions from the volar forearm, dorsal forearm, and palm.

C. OCE System

A spectral-domain OCT system with a center wavelength of 800 nm and a bandwidth of 100

nm was used in this study, providing an axial resolution of about 3 μm in the skin. A 12.5-

mm-diameter and 40-mm-focal length lens was used in the sample arm to provide a

transverse resolution of 13 μm. The average power incident on the skin was 5 mW. A line

camera was used to detect the spectral interference signal with an acquisition rate of 25 kHz.

A mechanical wave driver (SF-9324, PASCO scientific, Roseville, CA) was used for

external mechanical excitation and the spectral-domain OCT system was used for detection

of surface wave propagation on the skin. The mechanical wave driver was synchronized

with the OCT system and sinusoidal waves were generated on the skin surface. A schematic

of the experimental setup is shown in Fig. 1. The initial distance between the OCT sample

arm beam and the mechanical wave driver was chosen arbitrarily to be 16 mm. An M-mode

OCT image was recorded at the first position, and then the sample arm beam was moved

away from the mechanical wave driver at a step distance of 2 mm, before the next image

was taken. The step distance was chosen to be less than one-half the wavelength of the

surface wave for all frequencies to ensure the accuracy of the wave velocity calculation. Six

step-imaging positions were made for averaging data for each measurement. Phase data

from OCT images were used for detecting the skin displacement.

D. Analysis Algorithm for Skin Mechanical Properties

The skin was modeled as an infinite elastic homogeneous layer as shown in Fig. 2. Waves

generated by the harmonic excitation were polarized in the x–z plane and propagated in the

x-direction. The wave propagation was governed by the differential equations

(1)

and

(2)
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where φ and Hz are potentials in the x- and z-directions, respectively, and cL and cT are

wave velocities for the longitudinal and shear directions, respectively. The solution for the

displacement in the z-direction can be expressed as

(3)

where A, s, and q are parameters for calculation, and kR is the wavenumber of the surface

wave propagating on the surface of the skin. By recording the displacements in the z-

direction for two positions x1 and x2 in the x-direction from OCT, the sinusoidal phase delay

can be determined by

(4)

Thus, by using (4), the surface wave velocity can be calculated as νR = ωD/Δϕ, where ω is

the driving angular frequency and D = x1 − x2. In the experiments, peaks of propagating

surface waves averaged over the range of interest were recorded for each location to

calculate the surface wave velocity.

Surface wave velocity is an important parameter for material mechanical properties and by

which Young’s modulus can be determined, using the relationship of

(5)

where ν is Poisson’s ratio for skin and ρ is the mass density for skin [35]. By this method,

we can quantitatively measure the Young’s moduli of in vivo human skin by OCE.

E. Cutometer Measurements

Measured Young’s moduli of in vivo skin were verified using a commercial instrument

(Cutometer MPA 580, Courage Khazaka Electronic, Koln, Germany). The Cutometer

measurements were conducted after the OCE measurements, using a 2-mm Cutometer probe

fixed on the same skin area by a double-sided adhesive ring. The Cutometer experiments

were measured with a pressure of 450 mbar. On-time, off-time, and repetition numbers were

5 s, 3 s, and 3, respectively. The parameter Ur/Uf was used to represent the skin elastic

moduli [36], and compared with the Young’s moduli results measured by OCE.

III. Results

A. Skin Thickness Measurements by OCT

Cross-sectional brightness mode (B-mode) OCT images for skin sites on the volar forearm,

dorsal forearm, and palm are shown in Fig. 3. From the B-mode images, structural features

of human skin can be clearly discerned. For example, the skin over the palm has a thicker

stratum corneum, shown in Fig. 3(c). Optical thickness of skin can be determined by B-

mode OCT images. Physical thickness of the skin can then be simply estimated, using the

optical thickness divided by the refractive indices. By using refractive indexes of n = 1.53

and 1.39 for the stratum corneum and epidermis, respectively [37], the physical thickness of

skin layers at different sites can be determined [see Fig. 3(d)]. At sites other than the palm or

sole, where the stratum corneum is thick, the stratum corneum thickness can be difficult to

measure with OCT because the thickness is comparable to the coherence length (axial

resolution, 2–5 μm) of the OCT system.
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B. Skin Young’s Moduli Measurements by OCE

For OCE measurements, motion mode (M-mode, repetitive axial depth-scans into the tissue,

acquired at a fixed transverse position over time) OCT images were taken at one transverse

position of the skin. In Fig. 4(a), the arrow denotes the fixed location of the OCT beam, and

Fig. 4(b) and (c) denote the amplitude and phase data of the M-mode OCT image at this

position, respectively. By averaging over the range of interest [dotted line range in Fig.

4(c)], the phase of the optical data can be plotted, as shown in Fig. 4(d). The envelope

ripples in Fig. 4(d) are due to very subtle motion artifacts, which will not affect the

measurement results because our calculations are based on sinusoidal phase differences

between different measurement positions.

Using the sinusoidal phase changes from different positions of the skin measured by OCE,

along with wave equation algorithms, we can calculate surface wave velocities, and

subsequently, the Young’s moduli of human skin. The results of measured Young’s moduli

by OCE in this study are based on an average of six measurements and the error bars denote

standard deviations. Fig. 5(a) shows the results measured by OCE from different sites on

human skin. All measurements were conducted approximately orthogonal to Langer’s lines

and with a driving frequency of 50 Hz. The Young’s moduli from the volar forearm, dorsal

forearm, and palm are 101.180, 68.678, and 24.910 kPa, respectively.

As shown in Fig. 5(b), the OCE-measured Young’s moduli from different sites correspond

well with the elasticity measured by the Cutometer MPA 580, which is a well-characterized

commercial skin stiffness measurement device. Calculations assumed a skin mass density of

1.02 g/cm2 and a Poisson’s ratio of 0.5.

C. Frequency Dependence of OCE Measurements

Fig. 6 shows the OCE measurements of skin mechanical properties with different driving

frequencies and under different hydration conditions. Skin measurements were acquired

from the volar forearm of the volunteer. Skin hydration conditions include hydrated,

dehydrated, and normal. A hydrated skin condition was produced by soaking normal skin in

a water bath for 20 min, followed by a topical application of glycerin for 10 min. A

dehydrated skin condition was produced by passing heated air from a commercial hair dryer

over normal skin for 30 min. We can observe from Fig. 6 that normal skin has a Young’s

modulus of 101.20 kPa under a driving frequency of 50 Hz. This value decreases when the

driving frequency increases. The Young’s modulus increases again with a driving frequency

of more than 300 Hz. The hydrated skin exhibited a smaller Young’s modulus under a

driving frequency of 50 Hz, and when the driving frequency increased, the measured

Young’s moduli increased as well, with larger values than the normal skin. The dehydrated

skin exhibited the largest Young’s modulus under a driving frequency of 50 Hz, and the

value decreased dramatically with increasing frequency, with a Young’s moduli comparable

with the normal skin.

D. OCE Measurements on Skin Tissue Phantoms

Similar OCE experiments were also performed on multilayer tissue phantoms. Three

different tissue phantoms were fabricated with different number, thickness, and stiffness of

layers, as shown in Fig. 7. Driving frequencies for these experiments were limited to less

than 500 Hz to clearly differentiate the surface wave propagation in time. We observed from

Fig. 7 that phantom 1 has a relatively high measured Young’s modulus under low driving

frequency, and the value decreases until the driving frequency reaches 500 Hz. For phantom

2, the measured Young’s modulus decreases as the driving frequency increases. For

phantom 3, the measured Young’s modulus is low under 50 Hz driving frequency, but the
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value increases at a driving frequency of 100 Hz and increases further at a driving frequency

of 400 Hz.

E. Skin Directionality Measured by OCE

Fig. 8 shows the measured OCE results acquired from different directions along the surface

of human skin. The results were measured on the volar forearm, parallel and orthogonal to

Langer’s lines, and with driving frequencies of 50 and 600 Hz. Langer’s lines describe the

patterns of biomechanical anisotropy in human skin. Directions within skin and along

(parallel to) Langer’s lines have the least flexibility (highest Young’s modulus) [1]. We

chose the volar forearm for these measurements because the Langer’s lines are easily

defined at this site to be parallel to the long axis of the arm [38].

From Fig. 8, we can see that the measured Young’s modulus parallel to Langer’s lines can

be differentiated from the Young’s modulus from the orthogonal direction under a driving

frequency of 50 Hz. However, when the driving frequency is increased to 600 Hz, the

measured Young’s modulus parallel to Langer’s lines is significantly larger and different

than from the direction orthogonal to Langer’s lines, with a ratio of 2.21. These findings

correspond well with the anisotropy trend previously reported [37]. From these results, we

observe that OCE measurements show a larger difference in the anisotropy of skin

mechanical properties under high driving frequency rather than at lower frequencies under

50 Hz. These results suggest the ability to resolve depth-dependent biomechanical properties

in human skin based on frequency-dependent driving mechanical waves.

IV. Discussion

This study reports biomechanical measurements by dynamic OCE on in vivo human skin

and on multilayer tissue phantoms with quantitative results of measured Young’s moduli.

The results show that the measured Young’s moduli are site, direction, and frequency

dependent. Furthermore, different conditions such as hydrated or dehydrated skin also

showed significant differences between measured results.

The frequency-dependent results from dynamic OCE measurements on human skin and

multilayer tissue phantoms are significant. From the literature, it was found that Young’s

moduli measured with different frequencies correspond to the skin stiffness from different

depths [39]. At a low surface wave driving frequency, dynamic skin mechanical properties

were believed to be primarily due to the outer layer (stratum corneum), while at higher

frequencies, the properties were believed to be dominated by the deeper layer (dermis).

Based on this theory, the results can be understood as the following. For normal skin (as in

Fig. 6), the measured Young’s modulus is 101.20 kPa under a 50 Hz driving frequency,

which represents the mechanical properties of the stratum corneum. The measured Young’s

modulus decreases until a driving frequency of 200 Hz and increases again, implying that

the epidermis layer has a lower stiffness than the dermis layer. For the hydrated skin, the

measured Young’s modulus is only 23.01 kPa under a 50 Hz driving frequency, which

denotes the stratum corneum has been softened by the hydrating process. However, the

hydrating process tends to increase the stiffness of the skin in the epidermis and dermis

layers, since the measured Young’s moduli are increasing when the driving frequency

increases. From the literature, the hydration process does affect skin mechanical properties,

but whether the process makes the deeper skin layers stiffer or less stiff, is all subject

dependent [40]. For the dehydrated skin, the measured Young’s modulus is 300.41 kPa

under a 50 Hz driving frequency, but for higher frequencies, the measured Young’s moduli

remain similar to those of normal skin. These findings support the physiology that the outer

stratum corneum serves to protect the deeper skin layers against dehydrating conditions.
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The relationship between driving frequency and skin measurement depth was verified by

experiments on multilayer tissue phantoms (as in Fig. 7). Phantom 1 mimicked human skin

with four layers. The first layer has the largest Young’s modulus of about 100 kPa, while the

second layer has a lower value of 25 kPa. The third layer mimics the dermal layer in human

skin and has a rather high Young’s modulus of 75 kPa, while the fourth layer is very soft

(Young’s modulus of 8 kPa), playing the role of the hypodermal adipose layer of skin. The

experimental results show a Young’s modulus of about 50 kPa below 100 Hz, denoting the

first layer, and a rather low Young’s modulus between 200 and 400 Hz, denoting the second

layer. The measurements from the third layer under a driving frequency of 500 Hz indicate

an increase in the measured Young’s modulus. The results indicate a 500 Hz driving wave

reaches a depth around 250 μm in phantom 1. Results from phantoms 2 and 3 also follow

the trends pertaining to layer thickness and stiffness within the phantoms. We recognize that

these multilayer tissue phantoms do not fully replicate the complex biomechanical structures

and properties within living skin. Rather, their use is intended to validate the frequency-

dependent depth measurements acquired by this method. Although this dynamic OCE

method is not capable of decoupling mechanical properties from each layer, it is applicable

to measuring biomechanical properties in human skin layers, and also suitable for more

general multilayer structures.

Skin anisotropy measurements by dynamic OCE also support the findings mentioned

previously. Under a driving frequency of 50 Hz, the Young’s moduli between directions

parallel and orthogonal to Langer’s lines are comparable, but under a driving frequency of

600 Hz (corresponding to depths within the dermis), the measured Young’s modulus of skin

parallel to Langer’s lines is significantly larger than the orthogonal value. This is likely due

to the fact that anisotropic microstructure like collagen is located in the deeper dermal layer

of skin, and not in the more superficial layers. However, this frequency–depth relationship is

only relative because factors, such as thickness, stiffness, binding, and complex boundary

conditions all contribute in ways that are not currently understood.

One assumption used in this study is that the skin can be modeled as pure elastic strips.

From our experimental results, this assumption is valid because no significant decay in

amplitude of surface wave propagation over distance was noticed within the range of

amplitudes and frequencies used in this study. For specific experimental conditions, such as

with a high-frequency driving wave, a viscoelastic mechanical model could be used for

additional quantitative measurements [14], [41].

In this study, we report a dynamic OCE technique used to measure skin thickness and

stiffness quantitatively. Skin layer thickness and Young’s moduli have been measured

quantitatively on human skin in vivo with a lab-based instrument. Direction-dependent and

site-dependent mechanical properties were measured and resolved in vivo in human skin.

Surface waves with different frequencies have been utilized to mechanically drive skin and

Young’s moduli have been determined based on solutions to wave equations. A depth and

driving frequency dependence theory on surface wave propagation can be used to explain

the results, which were also verified by results on polymer tissue phantoms. Inheriting

capabilities from OCT, such as micrometer-scale resolution, noninvasive imaging, and real-

time processing, this OCE technique has been successfully applied to measuring skin

biomechanical properties in vivo with features including skin thickness, skin mechanical

anisotropy, and depth-dependent variations. Compared with other previously used imaging

technologies on human skin measurements such as ultrasound imaging, OCE can

differentiate thickness with a resolution of several micrometers, which is critical for

resolving different skin layers and their properties. With state-of-the-art OCT hand-held

probes [18], this dynamic OCE technique has potential applications in clinical dermatology,

plastic surgery, and cosmetic skin assessment. This technique may also find application

Liang and Boppart Page 7

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2013 July 02.

N
IH

-P
A

 A
u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t
N

IH
-P

A
 A

u
th

o
r M

a
n
u
s
c
rip

t



where skin thickness and stiffness measurements are critical for interventions and devices,

such as in transcutaneous microneedle applications [44]. Further studies are needed to refine

the 3-D mechanical modeling algorithms and generate high-resolution 2-D or 3-D maps of

the mechanical properties of human skin.
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Fig. 1.
Schematic of OCE on skin. The mechanical wave driver is synchronized with the spectral

domain OCT system and touching the skin surface with minimum force. The OCT sample

arm optics is moved transversely across the skin surface.
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Fig. 2.
Schematic of surface wave propagation on skin. The mechanical wave driver moves along

the x-axis by steps of D = 2 mm. At each step, an M-mode OCT image and phase shifts are

recorded which are used to calculate surface wave propagation velocity.
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Fig. 3.
B-mode OCT images of human skin from different sites. Images were acquired from the (a)

volar forearm, (b) dorsal forearm, and (c) palm. (d) Schematic showing OCT-measured

thickness of different skin layers from (a) to (c). Abbreviations: e, epidermis; d, dermis; s,

stratum corneum; V, volar forearm; D, dorsal forearm; P, palm.
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Fig. 4.
OCE images of skin measurement. (a) B-mode OCT image. (b) Amplitude data of M-mode

OCE image at the position of arrow in (a). (c) Phase data of M-mode OCE image at the

position of arrow in (a). (d) Averaged phase data from the dotted line range in (c). Unit for

the color bar is radians.
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Fig. 5.
Young’s moduli measured by OCE from different skin sites with corresponding Cutometer

results. (a) Young’s moduli of skin on volar forearm, dorsal forearm, and palm. Driving

frequency is 50 Hz and measurements were done orthogonal to Langer’s lines. (b)

Corresponding Cutometer results using the parameter Ur/Uf. Symbol “*” denotes p < 0.05.
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Fig. 6.
Young’s moduli measured by OCE under different driving frequencies and skin hydration

conditions. Blue line denotes results from dehydrated skin, brown line denotes results on

hydrated skin, and red line denotes results on normal untreated skin.
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Fig. 7.
Young’s moduli measured by OCE under different driving frequencies on three skin tissue

phantoms. (a) B-mode OCT image of four-layer phantom 1. (b) B-mode OCT image of two-

layer phantom 2. (c) B-mode OCT image of two-layer phantom 3. Each image shows

approximate layer thickness and Young’s moduli. (d) Young’s moduli measured by OCE

under different driving frequencies on phantoms 1, 2, and 3.
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Fig. 8.
Young’s moduli measured by OCE from different skin directions under 50 and 600 Hz

driving frequencies. The symbol // denotes direction parallel to Langer’s lines and ⊥ denotes

direction orthogonal to Langer’s lines. Symbol “*” denotes p < 0.05 and “**” denotes p <

0.0001.
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