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Background: For mechanically reconstructing human biomechanical function, intuitive

proportional control, and robustness to unexpected situations are required. Particularly,

creating a functional hand prosthesis is a typical challenge in the reconstruction of

lost biomechanical function. Nevertheless, currently available control algorithms are in

the development phase. The most advanced algorithms for controlling multifunctional

prosthesis are machine learning and pattern recognition of myoelectric signals. Despite

the increase in computational speed, these methods cannot avoid the requirement

of user consciousness and classified separation errors. “Tacit Learning System” is a

simple but novel adaptive control strategy that can self-adapt its posture to environment

changes. We introduced the strategy in the prosthesis rotation control to achieve

compensatory reduction, as well as evaluated the system and its effects on the user.

Methods: We conducted a non-randomized study involving eight prosthesis users

to perform a bar relocation task with/without Tacit Learning System support. Hand

piece and body motions were recorded continuously with goniometers, videos, and a

motion-capture system.

Findings: Reduction in the participants’ upper extremity rotatory compensation motion

was monitored during the relocation task in all participants. The estimated profile of total

body energy consumption improved in five out of six participants.

Interpretation: Our system rapidly accomplished nearly natural motion without

unexpected errors. The Tacit Learning System not only adapts human motions but also

enhances the human ability to adapt to the system quickly, while the system amplifies

compensation generated by the residual limb. The concept can be extended to various

situations for reconstructing lost functions that can be compensated.

Keywords: myoelectric prosthesis, artificial intelligence, biomechanical function reconstruction, motor control,

magnetoencephalography, interactive musculoskeletal modeling analysis, muscle, sensory synergy
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INTRODUCTION

When we lose a functional part in our body (e.g., reaching
out, walking, trunk control, breathing, watching, etc.), we
not only lose functional output but also sensory feedback.
Every biomechanical movement is a result of computations
in the central-nervous-system (CNS) and at the same time,
consecutive sensory feedback prediction and modification of
motor behavior goes on in the cerebellum, allowing us to
accomplish natural motion, and construct changes in response
to the external environment (Brooks et al., 2015). Therefore,
reconstruction of lost biomechanical function should not
only include fine motor control but also dense sensory
feedback that precisely, bi-directionally, and with high frequency
communicates with the CNS. However, even the most advanced
neuromotor reconstruction technology has not accomplished
this communication, and lacks appropriate feedback for
natural function. Furthermore, construction of a practical and
ergonomic mechanical system that adapts to environmental
changes within seconds is difficult due to lack of flexibility in
current artificial machine learning.

One typical challenge of reconstructing lost function is
the functional hand prosthesis. These are widely used in
reconstruction on forearm amputees and congenital forearm
deficient individuals for restoring their ability to reach and grasp.
Among these, body power and myoelectric prostheses are widely
used formotor control. In the past, body powered prosthesis were
advantageous in cost, intuitiveness and sensory feedback, but
not in function. Thus, a great effort was required to accomplish
more function and natural movement in myoelectric prosthesis
(Ciancio et al., 2016).

Developments in technology over the past few decades
has improved control on multiple functions, with a primary
focus on minimizing user burden and increasing prosthesis’
function. Nevertheless, increasing the number of myoelectric
input channels resulted in non-physiological muscle activation
that required exhaustive training (Schulz et al., 2005). Target
muscle re-innervation (Kuiken et al., 2007) may be one
solution, but is too invasive and less beneficial for trans-
radial amputees which represent the largest proportion of
individuals with upper extremity deficiency (Hahne et al., 2012).
The development of pattern recognition and machine learning
techniques of electromyography (EMG) signals increased the
number of degrees of freedom (DOFs) while keeping the
number of utilized electrodes low. However, this technique has
a critical limitation of low adaptability to environmental changes
(Ciancio et al., 2016).

Meanwhile, a large number of studies have used the brain’s
plasticity to quickly adapt and reorganize cross-modal sensory
integration for sensory feedback reconstruction. Since most of
the work focuses on tactile feedback for adjusting grip force, it
is still a challenge to reconstruct natural sensory feedback and
mimic natural control. Recently, a few studies have reported
increased sensory information density by neural implants
(Ciancio et al., 2016); however, neurophysiological studies have
indicated that position in space is estimated by integrating
information from multiple sensory inputs rather than direct

input. Moreover, as this integrated feedback is noise-robust,
useful and cost-effective, adding appropriate sensory integration
may result in better reconstruction (Alnajjar et al., 2015).

In our natural motion learning, we use two different
modes, i.e., explicit and tacit learning. The former occurs with
learner’s awareness, while the latter takes place subliminally.
When we perform a motor skill, there is a variety in the
status of our neuromotor situation, which is subliminal and
highly coordinated to express low dimensional motion. The
key to a natural control strategy is management of this
inherent redundancy in the musculoskeletal system mediated
by a high number of DOFs with low dimensional outputs
(Metzger et al., 2012).

Recently, several studies have shown that muscle synergy
is like a neural strategy that the CNS has adopted to
simplify the control of our redundant musculoskeletal system.
Additionally, the importance of integrating environmental inputs
into suitable low-dimensional signals before sending them
to the CNS for simplified control have been documented
(Alnajjar et al., 2015). Yet the neural dynamics inside the
CNS have not been investigated in detail. Shimoda introduced
a biological self-regulatory adaptive control strategy called
“Tacit Learning System” (TLS) for posture control with self-
sufficiency. This system is designed for unsupervised acquisition
of skills or creation of new behavioral structures for adapting
to environmental changes. Signal accumulation is a key factor
for “Tacit Learning” in the adaptation process and primitive
behaviors composed of several reflex actions are gradually tuned
into suitable behaviors for the environment (Shimoda and
Kimura, 2010; Shimoda et al., 2012, 2013).

Shimoda and his team have succeeded in controlling 36
DOFs in a humanoid bipedal locomotive robot using this TLS
and demonstrated a wide adaptation capability to a redundant
motor-skeletal system along with robustness to environmental
changes compared to conventional machine learning algorithms
(Shimoda et al., 2012). We thus hypothesized that introducing
TLS into the biomechanical structure as a subsystem will
integrate it with muscle synergy to control implicit motion
with adaptation to environmental changes, allowing the user to
concentrate on explicit tasks like grasping in myoelectric hand
prosthesis. Clinically, a compensatory strategy to the rotation
function of a lost wrist, involves using proximal residual limbs
to achieve the necessary motion, result in increased burden on
users that limit prosthesis usage (Metzger et al., 2012). This
rotation function of reaching is an example of implicit motion.
Consequently, we performed experiments to evaluate the efficacy
of TLS in a prosthesis hand model, by appointing the system
to regulate wrist rotation to minimize redundant compensatory
motion as a biomimetic regulatory system while performing
reaching tasks.

MATERIALS AND METHODS

In this study, a non-randomized experiment was conducted to
evaluate efficacy of the TLS and its effects on the central nervous
system during the prosthesis control tasks.
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Prosthesis Efficacy Evaluation in Bar
Relocation Tasks
Seven men and one woman participated after giving informed
consent. All participants were below elbow amputees, and
experienced users of the conventional one-degree (hand open
and close) myoelectric hand prosthesis. Table 1 shows the
participants’ demographic data.

Each participant’s prosthesis handpiece was exchanged with
the TLS handpiece and their remaining arm sockets were used
in the trials. The open/close signal detector on the handpiece
was connected to sensors in the socket to allow the participants
to control hand motions as usual. Since we could not find
adequate forearm rotation tasks for hand prosthesis in the past
literature, we placed three plastic bars (3 cm diameter and 10 cm
length with the central 3 cm part covered with Velcro tape
to increase grasp) horizontally on a table. Participants sat in
front of the table, reached out to hold the bars, placed them
vertically and then back to horizontally three times (Figure 1).
This exercise counted as one trial. Initialization of the system
was performed as a pre-trial. Participants were instructed to
stay still for 5 s with their shoulders at 0◦ flexion, rotation, and
abduction, along with elbows at 0◦ flexion. Subsequently, they
were instructed to repeat the trials until the rotational support
of hand prosthesis made no more improvement. Twenty trials
were done in approximately 10 min, and this was sufficient for
every patient to achieve convergence of the parameters. Angles
of shoulder joints derived from three goniometers placed on
the participant’s shoulder (flexion, rotation, and abduction) were
monitored and fed back to the TLS. Participants’ movements
were recorded with a computer vision based human bodymotion
capture tracking system (Section Tacit Learning Handpiece and
Data Preprocessing) First person sight video (FPV) (Video 1, 2)
recording was performed by the camera (HERO,GoPro, Inc., CA,
USA) attached to the prosthesis socket.We conducted descriptive
type questionnaires to determine participant satisfaction and
how effective the participants felt the system was.

Tacit Learning Handpiece and Data
Preprocessing
The system consisted of three goniometer sensors to measure
angles of shoulder flexion (θ1), horizontal flexion (θ2), rotation

TABLE 1 | Demographic data of participants.

No. Age

(y)

Sex Side Duration of

myoelectric

prosthesis use

Device type

1 51 Male Right 5 years Ottobock8E44=6+10S17+10V38

2 40 Male Right 8 years Ottobock8E38=9

3 46 Female Right 12 years Ottobock8E38=6

4 41 Male Right 6 months Ottobock8E44=6+10S17+10V38

5 29 Male Right 2 months Ottobock8E44=6+10S17+10V38

6 52 Male Right 3 years,

6 months

Ottobock8E38=6+10S17

7 33 Male Left 1 year Ottobock8E38=6+10S17+10V38

8 74 Male Right 32 years Ottobock8E38=6

(θ3), and a handpiece with two actuators (rotation and grip)
(Figure 2). One actuator was for handpiece wrist rotation.
Rotation angle θr was a desired angle of prosthesis wrist rotation,
controlled by a low-level controller embedded in the hardware.
The other actuator was for grip with an on-off control provided
by surface EMG sensing which is commonly used by commercial
prosthesis. When the shoulder angles exceeded pre-defined
threshold values θt (the value found at unnatural postures), the
system tuned the control gain, accumulating extremity joint
angles. The control and adaptation laws were defined as follows:

θr = kΘ − θ̇r (1)

k =

∫

qdt (2)

q =

{

Θ |Θ| ≥ θt

0 |Θ| < θt
(3)

Θ = k1θ1 + k2θ2 + k3θ3 (4)

When a linear combination of residual upper limb joint angles
Θ in Expression (4) exceeded the settled threshold angle θt

in Expression (3), primary reflex modulated rotatory assistance
angle θr depending on Θ in Expressions (1) and (2). Expression
(1) was a speed control component of rotation. A previous
mathematical study suggests that biological arm kinematics are
optimized by total energy expenditure (Berret et al., 2008), which
is positively correlated to the total joint angle Θ . Thus, we
determined the control law of system as minimization of Θ . In
this experiment, we set θt = 1, k1 = 0.1, k2 = 0.1, and k3 =

0.5 as the initial values.

Motion Capture System
Kinematic patterns of the participants’ movements were captured
with a motion capture system (Workstation 5.2.4, VICON).
Twenty-four markers (spheres covered with reflective tape) were
attached to various parts of the participant’s body and prosthesis
prior to the experiment. The motion capture system consisted of
six cameras, which tracked and reconstructed the motion of each
of the recorded markers in 3D space.

Data Analysis
We focused on the tacit learning rotational control of prosthesis
on this study.

Hence, we computed system energy consumption by using
the software for Interactive Musculoskeletal Modeling (SIMM,
MusculoGraphics, Inc., Santa Rosa, California, USA). It is
a graphical software system for developing and analyzing
models of musculoskeletal structures, and performs inverse
dynamics calculations from motion capture data (Delp and
Loan, 1995; Neptune et al., 2008). It creates a musculoskeletal
model consisting of representations of bones, muscles, and
ligaments by calculating the joint moments. In this study, we
used a standardized musculoskeletal model calculated from the
participants’ body weight, height, and sex. Pre-trial system energy
in all participants was normalized as one.
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FIGURE 1 | A schematic figure of the trial. After moving three bars vertically, the participants were instructed to place these three bars back to where they were

horizontally.

FIGURE 2 | Three goniometers were attached as shown (left) and linked to the handpiece (center) for measuring the upper extremity joint angle

(θ1, θ2, θ3, right).

RESULTS

All participants successfully completed their assigned tasks.

Online video (Video 1, 2, 3) shows participant 3 working on

his tasks. “After learning” represents 20 trials after the first one.
Adaptation advanced in both wearer and prosthesis in a short

while as shown in the videos (Video 1: Without TLS assistance.
Video 2: After twenty trials). After 20 trials, the shoulder rotation

angle (θ3) decreased in all participants as shown in Figure 3.
Total system energy estimated by SIMM decreased in five out
of six patients (Figure 4). Energy estimation was not possible in
participants 7 and 8 due to failure of the motion-capture marker.

Figure 5 shows changes in the actual estimated system energy
data during trials in participant 1. The graphs show system energy
before and after TLS learning. The compensation rotation angle
of shoulder [Θ in Section Tacit Learning Handpiece and Data
Preprocessing, Expression (4)] in participant 1 decreased after
TLS learning as shown in Figure 6. Seven out of eight participants
were comfortable with TLS assistance. No participant required
special training before the trials. After TLS learning of bar
rotational tasks, participant 8 volunteered to open two types of
drawers and turn the oven indicator (Video 4). Figure 7 shows
rotation angle of the prosthesis wrist during the tasks. Although
TLS did not experience any of these tasks, it provided good
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FIGURE 3 | The maximum shoulder rotation angle (as compensation

movement for forearm rotation tasks) decreased after trials.

FIGURE 4 | Estimated mean system energy decreased significantly in

five out of six participants.

assistance and showed generalized performance for rotational
support despite changes in arm posture. This participant was also
satisfied with the intuitiveness of TLS support as determined by
the descriptive type questionnaires.

DISCUSSION

A good hand prosthesis should reconstruct the original dexterity
of human hands. While far from complete, in this endeavor we
replicated one of the most complex biomechanical structures.
Improvements in EMG signal analysis (Tenore et al., 2009),
Targeted Muscular Reinnervation (TMR) including sensory
feedback (Kuiken et al., 2007; Ohnishi et al., 2007; Li et al.,
2010), brain interface (Yanagisawa et al., 2011), peripheral
nerve interface (Navarro et al., 2005), and new training
systems (Pilarski et al., 2011) were invented, but these methods
required a certain period of special training or special surgery
invasions. Furthermore, none of these methods satisfied the

FIGURE 5 | Estimated system energy change during trials before/after

TLS learning in participant 1.

FIGURE 6 | Shoulder rotation angle (as compensation movement for

forearm rotation tasks) during tria/FCls before/after TLS learning in

participant 1.

contrary demands for intuitiveness, multi-functionality, and cost.
Moreover, due to the lack of flexibility in present control methods
to adapt with environmental changes including complex nature
of the bio-signals, repeated calibration is often required by
patients and physiotherapists (Ciancio et al., 2016).

The present work focuses on reconstructing each joint’s
movement, but not muscle synergy. Reconstruction of muscle
synergy does not involve isolating and reorganizing bio-
kinematic outputs from residual function, but expanding muscle
synergy in a biological way. In other words, an optimization
algorithm should be introduced for mimicking human-like
motion and finding the natural output from residual limb to
cope with. Shimoda described that human kinematic output is
unpredictable formachines with amodel-based strategy that does
not represent certain posture situations (i.e., forearm rotations,
elbow flexion/extension) due to intrinsic fragility (Shimoda and
Kimura, 2008). To cope with all motions, it is necessary to
model all possible posture changes and device control actions
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FIGURE 7 | Wrist rotation angle of the prosthesis during the drawer and indicator tasks. Rotational support was efficient, even though tacit learning TLS did

not experience the tasks.

in every model. To solve these issues, various types of bio-
mimetic and self-organizing learningmethods including artificial
neural networks have been proposed, but the capability of current
learning methods to adapt to unknown situations is not sufficient
in terms of learning speed and the level of generalization.

The “Tacit Learning System” introduced by Shimoda has
two main advantages for controlling the prosthesis compared to
other control methods: learning speed and a simple, inexpensive
system with intrinsic robustness (Shimoda et al., 2012, 2013).
Furthermore, as Alnajjar described, this controller has a role in
reduction of sensory stimulus dimension. This is called “sensory
synergy” in contrast to muscle synergy. They defined “sensory
synergy” as “a group of weighted sensory inputs whose function
is to provide the quality of the resulting motion as feedback to
the CNS through a single synergy recruitment signal in order to
facilitate the generation of the next command, thus accelerating
the search time for the optimal muscle synergy.” In particular,
in TLS, the controller modulates sensory synergies contributed
by acquired sensory signals and inferred artificial sensory
synergies into motor commands. Consequently, activated motor
commands of the prosthesis enable intuitive motor control by the
wearer and simultaneous confirmation with visual feedback. In
short, the output of sensory synergy is used as an input to both
the CNS and the TLS, and control signals for the prosthesis device
are created through motor synergy that combines signals from
the CNS and the prosthesis device (Alnajjar et al., 2015).

Our results from the bar relocation experiment convinced us
that this system has high affinity toward the CNS. It was easy
to add on the conventional system, required no special training,

reduced users’ burden and is low-cost. The level of satisfaction
was high.

Recently, we reported a case report from a
magnetoencephalography study on the effect of the TLS
system on CNS. This report showed that the coherence
value among sensorimotor-related cortices in the dominant
hemisphere increased only while watching a video of oneself
using the prosthesis with TLS support and vice versa. This result
is no more than a showcase, but we are preparing for a future
clinical study evaluating the effect of the “Tacit Learning System”
prosthesis on CNS based on the evidence of this basic study.

A limitation of this study is that we tested this system
on limited tasks and thus, it is still in the prototype phase
currently. We tried several learning motions and determined
that various motions could progress the learning in a similar
way to that shown in the results. This robustness is justified
with the experiments of motion generalizations by the drawer
opening task. In cases where less extreme motions were used
in the training sessions, the learning speed was slow, and it
took many trials to learn the appropriate behaviors. For this
study, we choose a simple relocation task to control the learning
environment for all participants and to compare the differences
in the learning process. The users did not try the system in real life
tasks like cooking, housework etc. However, results of additional
tasks performed by participant 8 in an additional experiment
suggest robustness of the system in different situations. Short
battery life is also a concern. The system continuously senses
upper limb motions and tries to adjust prosthesis positions at
all times, so battery drainage is three to five times greater than
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the conventional systems. Setting the threshold adjustment may
be a solution. Higher threshold to a TLS support may increase
battery life but may result in reduced support, which needs to be
considered according to the users’ lifestyle.

In summary, we introduced a novel “Tacit Learning System,”
a self-regulatory strategy in a myoelectric prosthesis, to control
wrist rotation and confirmed its efficacy in conventional type
myoelectric prosthesis users. We infer that TLS showed the
ability to recover the lost function by adjusting compensatory
overreaction generated by residual function. Theoretically, it can
be used for recovering functions in other situations such as lower
limb amputation, palsy in association with functional electric
stimulation, or even in ventilation failure if residual function is
present.
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