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Abstract

Background Running is a popular form of physical activity with many health benefits. However, the incidence and prevalence
of running-related injuries (RRIs) is high. Biomechanical factors may be related to the development of RRIs.

Objective This systematic review synthesizes biomechanical risk factors related to the development of RRIs in non-injured
runners.

Methods PubMed, Web of Science, CINAHL, Embase, and SPORTDiscus were searched in July 2018 for original peer-
reviewed prospective studies evaluating potential biomechanical factors associated with the development of RRIs. Preferred
Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed. Two reviewers independently assessed
articles for inclusion and methodological quality. Due to methodological heterogeneity across studies, a narrative synthesis
of findings was conducted, rather than a meta-analysis.

Results Sixteen studies, including 13 of high quality and three of moderate quality, were included. A large number of bio-
mechanical variables were evaluated, producing inconsistent evidence overall. Limited evidence indicated greater peak hip
adduction in female runners developing patellofemoral pain and iliotibial band syndrome, but not for a mixed-sex population
of cross-country runners sustaining an RRI. The relationship between vertical loading rate and RRIs was inconsistent. Other
kinematic, kinetic and spatiotemporal factors were only studied to a limited extent.

Conclusions Current prospective evidence relating biomechanical variables to RRI risk is sparse and inconsistent, with find-
ings largely dependent on the population and injuries being studied. Future research is needed to confirm these biomechanical
risk factors and determine whether modification of these variables may assist in running injury prevention and management.
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1 Introduction

Physical activity positively influences physical fitness and
psychological well-being [1]. The general health benefits
of regular physical activity include reduced incidence of
obesity, metabolic syndrome, diabetes, cancer, and many
other chronic diseases [2—6]. Running is a popular form
of physical activity internationally due to its low cost and
easy accessibility [7]. From a public health perspective,
running may be a cost-effective lifestyle “medicine” by
improving health and increasing longevity [8].

One downside to running is the high risk of sustain-
ing a running-related injury (RRI). In novice runners, the
main reason to stop running is an RRI [9]. The reported
incidence of RRIs ranges from 3 to 85% [10, 11] and from
2.5-33 injuries per 1000 h of running [12]. This large
variation in incidence may be explained by differences in
running population, follow-up duration and definitions of
RRIs across studies [10, 13—15]. Frequently reported RRIs
include patellofemoral pain, iliotibial band syndrome,
medial tibial stress syndrome, Achilles tendinopathy and
plantar fasciitis [16, 17].

Most RRIs can be categorized as “overuse” injuries,
thought to occur when there is an imbalance between
repetitive loading of a tissue and its adaptive capability
[18]. These RRIs develop gradually over time [18, 19]
and are thought to be associated with a complex and mul-
tifactorial etiology [18]. Within this perspective, biome-
chanical factors may play an important role, as they are
modifiable with targeted interventions [20]. It has been
hypothesized that some biomechanical profiles could lead
to abnormal stresses on neuromusculoskeletal structures
and potentially RRIs [21, 22].

Most biomechanical research in relation to RRIs is cross-
sectional or retrospective in nature. This means it is unclear

Table 1 Search results for each database up to 1 July 2018

whether differences between groups preceded the onset of
injury or were a consequence of the injury. Previous system-
atic reviews on this topic have identified biomechanical risk
factors for specific injuries (e.g., patellofemoral pain [23]
or iliotibial band syndrome [24]), focused on biomechanics
at one anatomic region (e.g., the foot [25]), had no specific
focus on running biomechanics [25] or a running popula-
tion [25], and/or included a combination of prospective and
retrospective studies [23, 24].

The aim of this systematic review was to identify and
synthesize biomechanical risk factors related to the develop-
ment of RRIs in non-injured runners. Identifying potential
risk factors that result in RRIs will provide critical infor-
mation needed to design effective treatment and prevention
strategies.

2 Methods

A systematic review of the available literature was conducted
according to the Preferred Reporting Items for Systematic
Reviews and Meta-analyses (PRISMA) guidelines [26]. This
study was registered in the PROSPERO international pro-
spective register of systematic reviews (CRD42018100603).

2.1 Literature Search

The electronic databases PubMed, Web of Science,
CINAHL, Embase, and SPORTDiscus were systematically
searched up to July 2018 by two independent authors (LC
and RV). A combination of keywords was used to obtain
relevant articles (Table 1). The search strategy was limited
to publications in English. Reference lists from previous
systematic reviews on RRIs, complete reference lists and
citation lists (Google Scholar) of all included studies were

Databases

Embase

CINAHL

PubMed

Web of Science

SPORTDiscus

Search terms
1

Running injuries

Running injuries

“Running/injuries” [Mesh]

Running injuries

Running injuries

2 Biomechanics, Biomechanics “Biomechanical Phenomena” [Mesh]  Biomechanics, Biomechanics,
Biomechanical Biomechanical Biomechanical
3 Prospective Prospective “Prospective Studies” [Mesh] Prospective Prospective
4 Spatiotemporal Spatiotemporal “Spatio-Temporal Analysis” [Mesh] Spatiotemporal Spatiotemporal
5 Kinetics Kinetics “Kinetics” [Mesh] Kinetics Kinetics
6 Risk factors Risk factors “Risk Factors” [Mesh] Risk factors Risk factors
7 Kinematics Kinematics / Kinematics Kinematics
Combined search results
1 AND 3 AND (2 114 62 64 200 68
OR40OR50R6
OR7)
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hand searched to identify other eligible studies not identified
in the search.

2.2 Eligibility Criteria

Data from published prospective cohort studies reporting on
biomechanical risk factors associated with RRIs in runners
were considered for inclusion. Descriptors used to define an
RRI were the presence of a physical complaint (e.g., patel-
lofemoral pain, Achilles tendinopathy), the need to inter-
rupt training or seeking medical assistance [27]. Studies
were included if they met the following inclusion criteria:
(1) recruited non-injured runners who were prospectively
monitored for RRIs in the lower extremity during the follow-
up period, (2) involved participants above 16 years of age,
(3) investigated kinematic, kinetic, or spatiotemporal factors
during running, (4) investigated outcomes based on a com-
bination of kinematic and kinetic measures (joint moments,
joint impulses, joint/vertical/leg stiffness). To simplify data
reporting, these outcomes were further classified as kinetics.
Kinetics were described as the forces that govern movement
of the body (e.g., ground reaction forces, center of pressure,
joint moments, and bone loads). Kinematics were defined as
joint movements in all three cardinal planes of motion, with-
out considering forces that cause the movement (e.g., joint
or angular position, velocity, acceleration). Spatiotemporal
variables were described as global metrics of the running
gait cycle (e.g., running velocity, step rate, stance time, flight
time) [28].

We excluded (1) studies that involved individuals who
participated in sports other than running (> 6 h/week), (2)
studies among sprinters (competitive events under 800 m)
or triathletes, (3) studies among military participants or
physical education students due to the unknown effect of
concurrent training, (4) studies that involved individuals
with acute injuries or pain caused by running (e.g., muscle
strains), (5) studies where data were collected during a task
other than running, (6) studies that assessed muscle activa-
tion, muscle strength, range of motion and anthropometric
factors (unless they also assessed kinetic, kinematic, and
spatiotemporal factors during running), (7) studies focusing
on external factors like workload, shoes, surface, or fatigue,
and (8) conference abstracts.

First, titles and abstracts of the search results were inde-
pendently screened by two authors (LC and RV) for poten-
tial eligible studies. Second, the full text of the potential
eligible studies (based on title and abstract) was retrieved
and independently assessed by two authors (LC and RV).
Results were discussed in a team meeting and discrepan-
cies were resolved by consulting a third reviewer (BD) when
necessary.

2.3 Quality Assessment

Methodological quality of the included prospective stud-
ies was evaluated with two separate scales. The first one
involved 15 selected components from the “Quality Index”
developed by Downs and Black [29], and previously used
in other systematic reviews of RRIs [23, 30]. Each item
was scored as one point (“yes” =1, “no” =0, “not able to
determine” =0), except for item five, which was scored up
to two points, meaning each study could score a maximum
of 16. Studies scoring 11 or more were considered high qual-
ity, 6-10 considered moderate quality, and <5 considered
low quality [23]. The second part of our quality evaluation
consisted of a risk of bias assessment, conducted using a
10-point checklist, previously described in a systematic
review of RRIs [16]. This checklist addressed specific inclu-
sion and exclusion criteria related to RRIs (e.g., description
of the injury definition, diagnosis, running population, data
analysis) and was included because of the poor reliability
in items relating to external validity in the original Downs
and Black “Quality Index” [29]. All criteria were rated as
1 (i.e., low risk of bias) or O (i.e., high risk of bias) by two
independent reviewers. When insufficient information was
presented in the study, rating was categorized as “not able
to determine” and counted as 0. Total risk of bias was cal-
culated by counting the scores on each item and expressed
as a percentage for each study. If less than half of the quality
criteria were fulfilled (scoring <50%), the study was consid-
ered as having a high risk of bias. Two independent review-
ers (LC and RV) evaluated the methodological quality of all
included studies with both scales. Results were discussed in
a team meeting and discrepancies were resolved by consult-
ing a third reviewer (BD) when necessary.

2.4 Data Extraction and Analyses

Study characteristics were extracted from all included
papers by two authors (LC and RV), and included publica-
tion details (author and year), general information regard-
ing injury type, specific running population, duration of the
follow-up period, sample size, injury rate, data collection
procedure (running surface, shoes, motion capture system),
running speed during testing, data analysis, and biomechani-
cal outcome variables. Data relating to participant character-
istics (e.g., age, sex, body height, body weight, body mass
index) and running exposure were also recorded. A narrative
synthesis of data was performed due to the heterogeneity of
the studied populations, methodologies and biomechanical
variables. Both the significant and consistent non-significant
findings are described in Sect. 3. Non-significant findings
that were reported only once in the literature are not pre-
sented in the results, unless a non-significant finding of a
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particular variable in one study was not consistent with a
significant finding in another study.

2.5 Evidence-Based Recommendations

Qualitative synthesis was performed for similar biomechani-
cal variables and various levels of evidence were defined
based on a modified version of the following categories
described by van Tulder et al. [31]:

e Strong evidence Consistent findings among three or more
studies, including a minimum of two high-quality stud-
ies.

e Moderate evidence Consistent findings among two or
more studies, including at least one high-quality study.

e Limited evidence Findings from at least one high-quality
study or two low- or moderate-quality studies.

e Very limited evidence Findings from one low- or moder-
ate-quality study.

e [Inconsistent evidence Inconsistent findings among mul-
tiple studies (e.g., one or multiple studies reported a sig-
nificant result, while one or multiple studies reported no
significant result).

e Conflicting evidence We defined conflicting as contradic-
tory results between studies (e.g., one or multiple studies
reported a significant result in one direction, while one or
multiple studies reported a significant result in the other
direction).

e No evidence Results were insignificant and derived from
multiple studies regardless of quality.

3 Results
3.1 Search Results and Selection

The electronic database search yielded 508 articles (Table 1).
After removal of duplicates, 291 articles remained (Fig. 1).
276 articles were excluded based on title and abstract,
reducing the number of articles to 15. Primary reasons for
exclusion based on title and abstract were not investigating
any biomechanical variables, participation in sports other
than running, a non-prospective study design, or a study
not investigating RRIs. Five additional articles were added
through reference screening and citation tracking. After
full text screening, four articles were excluded because the

Fig.1 Flow diagram of litera- )
ture search -
(-] Records identified through database Additional records identified through
§ searching other sources
= (n=508) (n=5)
=
]
2
J A 4
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2 .
E .
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o and abstract > (n = 276)
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=
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results did not relate to any kinematic, kinetic, or spatiotem-
poral outcome measures, or because the article was a confer-
ence abstract. The remaining 16 articles met all inclusion
criteria and were included in the narrative synthesis.

3.2 Methodological Quality
3.2.1 Modified Downs and Black Quality Index

Quality scores of the Downs and Black Index [29] ranged
from 9 to 13 out of 16 (56-81%). Of all 16 included articles,
13 were identified as high quality and three as moderate
quality. Detailed item scores can be found in Table 2.

3.2.2 Risk of Bias Assessment

Scores on the risk of bias scale ranged from 4 to 9 out of
10. Four of the included articles received a high risk of bias
(scores <50%). Twelve articles had a low risk of bias. Item 4
relating to random inclusion of athletes and item 10 relating
to incidence or prevalence on exposure ratio displayed the
lowest scores. Items 2, 3, and 6 received the highest scores.
Scores of all included articles can be found in Table 3.

Table 2 Modified Downs and Black Quality Index results [29]

3.3 Study and Participant Characteristics

All details of study and participant characteristics are pre-
sented in Tables 4 and 5, respectively.

3.4 Biomechanical Outcomes

All significant findings with levels of evidence are presented
in Fig. 2. A summary of all outcome measures (both sig-
nificant and non-significant) with means, standard devia-
tions, and P values is presented in Electronic Supplemen-
tary Material Table S1. Effect sizes (ES) (Hedges’ g) were
established by calculating the difference between the means
of both groups, divided by the pooled standard deviation,
multiplied by a correction factor [32]. A modified version
of Cohen’s classification was used to classify ES: very small
ES: <0.2, small ES: 0.2-0.49; medium ES: 0.5-0.79; large
ES: 0.8-1.19, very large ES: 1.20-1.99 and huge ES: >2.0
[33, 34].

3.4.1 Kinematics
Inconsistent evidence was found in two studies for peak

hip adduction in relation to RRIs. Limited evidence indi-
cated greater hip adduction in female recreational runners

Included studies Criteria % Total
Hm @ & G © O O aqo dn AdA2) (16 (18 (20) (25 (26) Total
Bredeweg et al. [44] 1 1 1 0 1 1 1 1 1 0 U 1 1 1 1 12 75
Bredeweg et al. [41] 1 1 1 1 1 1 1 0 1 0 18] 1 1 1 1 12 75
Brund et al. [48] 1 1 1 2 1 1 1 1 1 0 U 1 1 0 0 12 75
Davis et al. [42] 1 1 1 2 1 1 1 1 1 U U 1 1 1 0 13 81
Dudley et al. [37] 1 1 0 2 1 1 1 1 U 0 U 1 1 U 1 11 69
Ghani et al. [46] 1 1 0 1 1 1 1 1 0 0 U 1 1 1 1 11 69
Hein et al. [38] 1 1 1 2 1 1 0 0 U U U 0 1 1 1 10 63
Kuhman et al. [40] 1 1 0 2 1 1 1 1 U 0 U 1 1 0 1 11 69
Luedke et al. [50] 1 1 0 1 1 1 1 1 0 0 U 1 1 1 1 11 69
Messier et al. [39] 1 1 1 2 1 1 0 1 U U U 1 1 1 0 11 69
Napier et al. [43] 1 1 1 2 1 1 1 1 0 0 U 1 1 1 1 13 81
Noehren et al. [36] 1 1 1 2 1 1 1 1 U U U 1 1 1 1 13 81
Noehren et al. [35] 1 1 1 1 1 1 1 1 U U U 1 1 1 1 12 75
Stefanyshyn et al. [49] 1 1 0 2 1 1 1 1 U U U 1 1 1 1 12 75
Thijs et al. [45] 1 1 0 1 1 1 0 1 0 0 U 1 1 0 1 9 56
Van Ginckel et al. [47] 1 1 0 1 1 1 0 1 1 0 U 1 1 U 0 9 56

Scoring: items 1-3, 6-26: “yes” =1, “no”’ =0, “unable to determine” =U (scored as 0). Item 5: “yes” =2, “partially” =1, “no” =0

Criteria: (1) clear aim/hypothesis, (2) main outcome measures clearly described, (3) patient characteristics clearly described, (5) distribution
of confounders described, (6) main finding clearly described, (7) random variability of main outcomes provided, (9) characteristics of patients
lost to follow-up described, (10) actual probability values reported, (11) subjects asked to participate representative of entire population, (12)
subjects prepared to participate representative of entire population, (16) clear mentioning of data dredging (unplanned analysis), (18) appropri-
ate statistical analysis, (20) valid and reliable outcome measures, (25) adequate adjustment for confounding, (26) patients lost to follow-up taken

into account

A\ Adis



L. Ceyssens et al.

Table 3 Risk of bias assessment
of included studies

Included studies Criteria % Total
Mm@ & @ 6 ®’ D B O 10 Total
Bredeweg et al. [44] 1 1 1 U 1 1 U 0 0 0 5 50
Bredeweg et al. [41] 1 1 1 U 1 1 1 0 0 0 6 60
Brund et al. [48] 1 1 1 1 0 1 1 1 1 1 9 90
Davis et al. [42] 0 1 1 1 1 1 1 1 1 0 8 80
Dudley et al. [37] 1 1 1 0 1 0 1 0 0 0 5 50
Ghani et al. [46] 1 1 1 0 1 1 1 1 0 0 7 70
Hein et al. [38] 1 1 1 u o0 1 1 1 1 0 7 70
Kuhman et al. [40] 0 1 1 0 0 1 1 0 U 0 4 40
Luedke et al. [50] 1 1 1 0 1 1 1 1 U 1 8 80
Messier et al. [39] 0 1 1 U 1 1 1 1 1 0 7 70
Napier et al. [43] 1 1 1 1 1 1 1 1 0 1 9 90
Noehren et al. [36] 0 1 1 U 0 1 1 1 1 0 6 60
Noehren et al. [35] 1 1 0 U 0 1 U 1 1 0 5 50
Stefanyshyn et al. [49] 1 1 1 U 0 1 1 1 1 0 7 70
Thijs et al. [45] 1 1 1 0 0 1 1 1 0 0 6 60
Van Ginckel et al. [47] 1 1 1 0 0 1 1 1 0 0 6 60

Scoring: ‘low risk of bias’ =1, ‘high risk of bias’ =0, ‘unable to determine’ =U (scored as 0)

Criteria: (1) definition of injury clearly described, (2) prospective design that presents incidence or preva-
lence data, (3) description of level of running (e.g., recreational or professional level), (4) the process of
inclusion of athletes in the study was random (i.e., not by convenience) or the data collection was per-
formed with the entire target population; (5) data analysis performed with at least 80% of the athletes
included in the study; (6) injury data reported by runners or by a healthcare professional; (7) same mode of
injury data collection used; (8) injury diagnosis conducted by a medical professional; (9) follow-up period
of at least 6 months; (10) incidence or prevalence rates of injury expressed by a ratio that represents both
the number of injuries as well as the exposure to running (i.e., number of injuries/hours of running expo-
sure, or number of injuries/ sessions of running exposure)

developing patellofemoral pain (ES=1.07) [35] and ilioti-
bial band syndrome (ES =0.86) [36]. However, limited evi-
dence also indicated no significant difference in hip adduc-
tion in a mixed-sex population of cross-country runners
developing any RRI [37]. Moderate evidence indicated no
significant association between peak hip internal rotation
and the development of RRIs in two studies. When divided
by population source, limited evidence of no relationship
between hip internal rotation for female recreational run-
ners developing patellofemoral pain (ES =0.26) [35] and a
mixed-sex population of cross-country runners developing
any RRI was found [37].

Limited evidence indicated greater peak knee internal
rotation in female recreational runners developing iliotibial
band syndrome in one study (ES =0.93) [36]. Inconsist-
ent evidence was found for peak knee flexion in relation
to RRIs in two studies. Specifically, very limited evidence
indicated smaller peak knee flexion in a mixed-sex popu-
lation of recreational runners developing Achilles tendi-
nopathy (ES =0.70) [38], while limited evidence indicated
no significant association between peak knee flexion and
RRI risk in a mixed-sex population of recreational runners
(ES=0.02) [39].

I\ Adis

Conflicting evidence was found in two studies for peak
ankle eversion velocity in a mixed-sex population of cross-
country runners developing any RRI [37, 40]. Specifically,
limited evidence was found for greater [37] and smaller
(ES=1.19) [40] peak ankle eversion velocity. Inconsist-
ent evidence was found in two studies for peak ankle ever-
sion angle (ES =1.02) and ankle eversion range of motion
(ES=0.03) in cross-country runners sustaining any RRI [37,
40]. One study indicated greater peak ankle eversion angle
and a smaller ankle eversion range of motion in a mixed-sex
population of cross-country runners sustaining any RRI [37],
while no significant difference was found in a similar popu-
lation (ES=1.02 and 1.18) [40]. Inconsistent evidence was
found in four studies for peak rearfoot eversion in relation to
RRIs. Specifically, very limited evidence indicated greater
peak rearfoot eversion in a mixed-sex population of recrea-
tional runners developing Achilles tendinopathy (ES=0.57)
[38]. Limited evidence indicated no significant difference in
female recreational runners developing patellofemoral pain
(ES=1.23) [35], female recreational runners developing
iliotibial band syndrome (ES =0.65) [36], and a mixed-sex
population developing any RRI (ES =0.00) [39]. Very lim-
ited evidence indicated smaller peak ankle dorsiflexion in
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=] Peak ankle eversion velocity® [37] H
E | Peak ankle eversion velocity® [40] ** "
- Ankle [ foot | 1 Peak ankle eversion angle® [40] ** ' | Peak ankle dorsiflexion angle® [38]  *
= | Ankle eversion range of motion® [40] ** :
— t Peak rearfoot eversion angle® [38] § * .
Impact- 1 Vertical (average and instantaneous)loading rate?" [41 42] **
t Verticalimpact peak” [42] **
related B il | .-
2 | Asymmetry in vertical impact peak' [44]
variables 1 Peak braking force! [43] *™*
g 1 Vertical plantar peak force (underneath MT I1)f [45] *
- 1 Vertical plantar peak force (underneath MT V) [46] **
g 1 Absolute force-time integral (underneath MT V) [46] **
[~ Plantar | Anteroposterior displacement of the center of force™' [46] **, [47] *
pressure | Velocity of anteroposterior displacement! [46] **
variables t Lateral directed force distribution™! [46] **, [47] *
1 Medial directed force distribution” [48] *
1 Lateral directed force displacement (at initial contact, forefoot contact, foot flat and heel-off) [46] **
| Velocity of mediclateral displacement' [46] **
o s | Step rate® [50] **
T-ﬁ' a | Ground contact timef[41] **
o E 1 Asymmetry in ground contact time' [44] **
[ | Time to vertical peak force (undermeath lateral heel) [45]
-

Fig.2 Visualization of significant results. Levels of evidence are
shown with the following symbols: (double asterisks) limited evi-
dence, (asterisk) very limited evidence, (double tagger) no statistical
analysis. A detailed description of all significant outcome measures
is provided using following superscripts: * in female runners devel-
oping patellofemoral pain, ® in female runners developing iliotibial
band syndrome, ¢ in a mixed-sex population of experienced runners
developing patellofemoral pain, ¢ in a mixed-sex population of cross-
country runners developing an RRI, © in a mixed-sex population of
recreational runners developing Achilles tendinopathy, " in a mixed-
sex population of recreational runners developing an RRI, € in male
novice runners developing an RRI, " in female recreational runners

tar peak force (ES=0.47) and absolute force-time integral
(ES=0.51) underneath metatarsal V in a mixed-sex popula-
tion of novice runners developing any RRI [46]. However,
very limited evidence indicated no significant difference in
vertical plantar peak force in the same study cohort develop-
ing Achilles tendinopathy (ES =0.05-0.84) [47].
Conflicting evidence was found in two studies for anter-
oposterior displacement of center of force in novice runners
developing an RRI. Specifically, limited evidence indicated
a greater anteroposterior displacement of the center of force
at forefoot flat in a mixed-sex population of novice runners
developing any RRI (ES =0.42) [46], while very limited

who required medical attention compared with female recreational
runners who never sustained an RRI before, | in male and female
novice runners developing an RRI, J in female recreational runners
developing an RRI, ¥ in a mixed-sex population of novice runners
developing patellofemoral pain, ! in a mixed-sex population of nov-
ice runners sustaining an RRI, ™ in a mixed-sex population of novice
runners developing Achilles tendinopathy, " in male runners devel-
oping Achilles tendinopathy, plantar fasciopathy and medial tibial
stress syndrome, © in a mixed-sex population of cross-country runners
developing shin injury [35-50]. MT metatarsal, RRI running-related
injury, 1 greater, | smaller

evidence indicated a significantly smaller anteroposterior
displacement of center of force in the same population devel-
oping Achilles tendinopathy (ES =0.95) [47].

Limited evidence indicated a significantly slower veloc-
ity of anteroposterior displacement of the center of force at
forefoot flat in a mixed-sex population of novice runners
developing any RRI in one study (ES =0.36) [46].

Conflicting evidence was found in three studies for medi-
olateral plantar pressure distribution. Specifically, limited
evidence indicated a significantly more lateral directed force
distribution at first metatarsal contact (ES=0.01-0.50) [46],
at forefoot flat (ES=0.46-0.82) [46] and underneath the
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forefoot at forefoot flat (ES =0.88) [47] in a mixed-sex popu-
lation of novice runners, while limited evidence indicated a
greater medial pressure in recreational male runners devel-
oping Achilles tendinopathy, plantar fasciopathy and medial
tibial stress syndrome [48]. Limited evidence from one study
indicated a more laterally directed force displacement in
the initial contact phase (ES =0.48), a more lateral directed
center of force during forefoot contact phase (ES =0.48),
foot flat phase (ES =0.37), and heel-off (ES =0.43), while a
more medial directed center of force was found during fore-
foot push-oft phase (ES =0.32) in a mixed-sex population
of novice runners developing any RRI [46].

Limited evidence indicated a slower velocity of mediolat-
eral displacement of the center of force at forefoot flat in the
same study cohort (ES =0.38) [46].

3.4.2.3 Joint Moments, Impulses, and Stiffness Inconsist-
ent evidence was found in two studies for peak external knee
adduction moment. Limited evidence indicated greater peak
external knee adduction moment in a mixed-sex population
of cross-country runners developing any RRI [37]. How-
ever, limited evidence indicated no significant difference in
internal knee abduction moment in a mixed-sex population
of recreational runners developing any RRI (ES =0.20) [39].

Limited evidence indicated greater internal knee abduc-
tion moment impulses in a mixed-sex population of expe-
rienced runners developing patellofemoral pain (ES =1.28)
[49].

Limited evidence indicated greater knee joint stiffness in
a mixed-sex population of recreational runners developing
any RRI (ES=0.07) [39].

3.4.3 Spatiotemporal Characteristics

Inconsistent evidence was found in two studies for step rate.
Specifically, limited evidence indicated lower step rate in a
mixed-sex population of cross-country runners developing
shin injury [50]. Limited evidence indicated no significant
difference in step rate in runners of the same study cohort
developing anterior knee pain [50] and in male and female
novice runners developing any RRI (ES =0.05-0.44) [41].

Limited evidence indicated shorter ground contact times
in male novice runners developing any RRI in one study
(ES=0.57-0.84) [41] and higher asymmetry between limbs
in ground contact times in male and female runners develop-
ing any RRI in one study (ES =0.02) [44].

Very limited evidence indicated a significantly lower time
to vertical plantar peak force underneath the lateral heel in
a mixed-sex population of novice runners developing patel-
lofemoral pain in one study (ES =0.56) [45].
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4 Discussion

This systematic review identified no conclusive biome-
chanical mechanism to explain the development of RRIs.
Given the limited number of published studies and the
considerable heterogeneity of the studied populations,
methodologies, and outcome variables within the included
studies, caution is warranted when interpreting or gener-
alizing the findings of individual studies within this rela-
tively novel research area.

4.1 Biomechanical Factors Related
to the Development of Running-Related Injuries
(RRIs)

4.1.1 Kinematics

Limited evidence with large ES for greater peak hip
adduction in female recreational runners developing patel-
lofemoral pain [35] and iliotibial band syndrome [36] is
supported by retrospective research, highlighting its role
in the biomechanical etiology of these injuries in female
runners. From a biomechanical perspective, the magni-
tude of hip adduction has previously been related to strain
on the iliotibial band [51] and patellofemoral joint stress
[52]. Interestingly, hip adduction was not related to RRI
risk in a mixed-sex population of cross-country runners
[37]. This inconsistency may be explained by the small
sample size, different study population and short follow-up
period used in the latter study, or the fact that the studies
by Noehren et al. [35, 36] focused on only one specific
pathology within a female population.

Limited evidence with large ES for greater peak knee
internal rotation in female recreational runners developing
iliotibial band syndrome [36] is consistent with retrospec-
tive research in a similar population [53]. Greater knee
internal rotation may lead to greater strain on the ilioti-
bial band due to its attachments to Gerdy’s tubercle, and
greater compression of the iliotibial band against the lat-
eral femoral epicondyle [36]. However, the magnitude of
difference between groups was relatively small (3.7°) and
the ability to detect transversal plane knee kinematics clin-
ically as well as in laboratory settings can be questioned.

Smaller peak knee flexion with medium ES in runners
who developed Achilles tendinopathy [38] is consistent
with cross-sectional research [54]. However, this finding
should be interpreted with caution due to the small sam-
ple size, high number of drop-outs, and lack of statisti-
cal tests. Theoretically, a smaller peak knee flexion may
indicate reduced efficiency in absorbing load at the knee
[55] and may induce more tension in the calf and Achilles
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tendon [38]. Interestingly, findings from Hein et al. [38]
are inconsistent with Messier et al. [39], who reported no
significant differences with very small ES in peak knee
flexion in recreational runners developing any RRI. This
might imply that peak knee flexion can be a risk factor for
Achilles tendinopathy, but not for all RRIs.

Conflicting evidence was reported for peak ankle ever-
sion velocity, while inconsistent evidence was identified
for greater peak ankle eversion, peak rearfoot eversion and
smaller ankle eversion range of motion. As such, current
prospective evidence does not support a persistent and wide-
spread belief that ankle and rearfoot eversion is related to an
increased risk for RRIs [56]. These findings are in line with
retrospective evidence in patellofemoral pain [23], while
contradictory findings have been reported in runners with
iliotibial band syndrome [24].

Very limited evidence with very large ES for smaller peak
ankle dorsiflexion in runners developing Achilles tendinopa-
thy [38] is not supported by cross-sectional research [54].
This prospective evidence should be interpreted with caution
given the lack of statistical analysis applied in this study.
The biomechanical rationale remains speculative and could
be related to other compensatory movement patterns across
the lower extremity (e.g., rearfoot eversion).

4.1.2 Kinetics

The role of vertical average and/or instantaneous loading
rate in the development of RRIs is inconsistent and not in
line with retrospective studies reporting greater vertical
loading rates in runners with a history of tibial stress fracture
[57, 58] and plantar fasciopathy [59]. This discrepancy could
be attributed to the fact that the prospective studies focused
on all RRIs, while the retrospective studies focused on spe-
cific RRIs. It could be possible that vertical loading rate is
only relevant to specific RRIs such as tibial stress fracture
[57, 58] and plantar fasciopathy [59]. The strong evidence
for no significant difference with very small to small ES for
vertical impact peak in relation to RRIs is in line with retro-
spective findings [60]. Methodological differences (popula-
tion, follow-up period, data analysis) between studies may
limit the ability to generalize current research findings. The
role of vertical loading rate may be variable among sexes
and injury definition. Limited evidence with large ES indi-
cates a greater vertical loading rate in male novice runners
[41], while moderate evidence for no significant difference
with very small to small ES was found in female recreational
runners [42, 43] and mixed-sex populations of cross-country
runners [37, 40]. Limited evidence with large to very large
ES indicated greater average and instantaneous loading rate
in female recreational runners developing any RRI, when
comparing runners who required medical attention with run-
ners who had never sustained an injury before, while this

effect was not observed when comparing injured and non-
injured runners [42]. The theoretical rationale behind these
findings is that musculoskeletal structures are viscoelastic
in nature and do not respond very well to more impulsive
loads compared to more gradual loads [61-63]. However,
current prospective evidence does not necessarily support
this rationale.

Inconsistent evidence for peak braking force is in line
with retrospective studies [64—68]. Differences in follow-
up duration, sample sizes, and data collection procedures
should be taken into account when interpreting these results.
Further research is needed to understand why these incon-
sistent findings exist.

The inconsistent and/or conflicting evidence identified for
most of the plantar pressure variables is in line with a recent
review by Mann et al. [69] summarizing prospective and ret-
rospective studies. The large variability in methods to make
subdivisions of plantar areas, and the enormous number of
variables included in the data analysis, could contribute to
this inconsistency.

The link between peak external knee adduction moment
and RRI risk is inconsistent [37, 39]. However, limited evi-
dence with very large ESs for greater internal knee abduc-
tion moment impulses was found in a mixed-sex population
of experienced runners developing patellofemoral pain,
supporting retrospective findings [49]. Since Stefanyshyn
et al. [49] had a low injury rate (7.5%, with only six injured
runners), the results are rather preliminary and should be
interpreted with caution. Increased frontal plane knee joint
angular impulses could lead to increased patellofemoral joint
stress across repetitive running cycles [49].

Finally, limited evidence for greater knee joint stiffness
in the sagittal plane [39] is in line with retrospective find-
ings in runners with a history of a tibial stress fracture [70].
However, the small difference in knee joint stiffness between
groups (2%) with very small ES calls into question the clini-
cal significance of this result. In addition, greater knee joint
stiffness was more common in runners with higher body
weights (> 80 kg). Greater knee joint stiffness may support
the findings of Hein et al. [38] where a reduced peak knee
flexion was found, suggesting less energy dissipation, which
could lead to excessive loading of structures of the lower
extremity [39].

4.1.3 Spatiotemporal Characteristics

Step rate was inconsistently associated with RRIs [41, 50].
It should be noted that one out of two studies [50] was
not adequately powered to demonstrate a risk relationship
between step rate and anterior knee pain. To the best of our
knowledge, no retrospective or cross-sectional studies have
compared runners with and without RRIs. Regardless, the
absence of evidence linking step rate to injury prospectively
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or retrospectively is interesting considering the large body
of work that has now evaluated the influence of altering step
rate on biomechanics [71] and pain [72-75].

Other spatiotemporal factors, such as ground contact time
[41, 44], were only supported by limited evidence with large
ES in male runners, but not in female runners. Typically,
shorter ground contact times are related to a higher step rate
[76]. Therefore, the findings associating a shorter ground
contact time in male runners with an RRI may partially
contradict the potentially beneficial effects of an increased
step rate identified in this review [50]. In combination with
the higher vertical loading rates, these shorter ground con-
tact times might suggest a stiffer landing pattern in the male
injured runners. However, to the best of our knowledge, no
study has directly evaluated the role of leg stiffness on the
incidence of RRIs.

4.2 Considerations when Interpreting the Results
4.2.1 Methodological Considerations

Most studies did not properly report their method of recruit-
ment or used convenience sampling, such as recruiting an
entire team of runners. This limits the ability to generalize
the results to a broader running population. Seventy-five per-
cent of the included studies had low risk of bias. Runners
with different age, sex, performance level, level of experi-
ence, foot strike pattern, and running exposure were included
in the 16 prospective studies of this systematic review. Cau-
tion is therefore warranted when extrapolating results from
one study to other populations of runners. Future prospective
studies should focus on clearly defining all these factors to
facilitate between-study comparisons. Multiple studies had a
limited sample size (19—400; 6/16 studies with < 100 partici-
pants), often resulting in a relatively low number of injured
runners (6—199), which reduced the statistical power of the
results. Future studies could focus on strategies (e.g., multi-
center studies with standardized methodologies) to increase
sample sizes and statistical power.

Some studies focused on RRIs in general [37, 39-44,
46], whilst others focused on specific injuries including
patellofemoral pain, iliotibial band syndrome, medial tibial
stress syndrome, Achilles tendinopathy, and plantar fascio-
pathy [35, 36, 45, 47-51]. Generic risk factors for RRIs may
exist, but findings from this review indicate that certain risk
factors may be associated with specific RRIs. Pooling all
injuries together might therefore under- or overestimate the
relevance of specific biomechanical risk factors for specific
RRIs [43]. Future prospective studies with larger sample
sizes should aim to identify risk factors for specific injuries.

Various definitions of RRIs used across studies may influ-
ence injury rates [13, 77]. Injury was defined based on physi-
cal complaints in three studies [42, 45, 49], need to interrupt
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training or competition in two studies [39, 50], and a combi-
nation of physical complaints, interruption of training, and
seeking medical assistance in eight studies [37, 38, 41, 43,
44, 46-48]. Several studies failed to adequately define an
RRI [35, 36, 40]. The lack of a uniform definition of RRIs
across prospective studies may limit the generalization of
results and therefore under- or overestimate the true burden
of RRIs, and/or the relevance of a biomechanical risk factor.
A recent Delphi study [15] has defined an RRI as “running-
related (training or competition) musculoskeletal pain in
the lower limbs that causes a restriction on or stoppage of
running (distance, speed, duration, or training) for at least
7 days or 3 consecutive scheduled training sessions, or that
requires the runner to consult a physician or other health
professional” [15]. This consensus definition may help to
bring uniformity to future prospective studies on RRIs and
facilitate between-study comparisons.

The length of follow-up plays an important role in cap-
turing RRIs in prospective research. A follow-up of at least
6 months has been recommended [15, 16], but only seven
studies in this systematic review fulfilled this criterion. Fur-
thermore, all included studies assume that biomechanical
risk factors remain constant during the time of follow-up,
which may not be the case [78]. Given the chronic pres-
entation of many RRIs, a more continuous monitoring at
regular intervals may be a better indicator to report overuse
injuries [77].

4.2.2 Methodology of Measurements

Measurements were either obtained by running barefoot [38,
45-47] or with their own or standard running shoes [35-37,
39-44, 48-50] on a treadmill [41, 43, 44, 48] or overground
on a runway [35-40, 42, 45-47, 49, 50], at preferred [37, 39,
43, 45-48], fixed [35, 36, 38, 40-42, 44, 49] or both at pre-
ferred and fixed running speeds [50]. All modalities possess
some constraints potentially influencing the final outcomes
and hampering between-study comparisons. Future studies
should attempt to replicate the real-life running situation as
much as possible when measuring running biomechanics.
To measure kinematics, all studies used three-dimen-
sional motion analysis. This is considered the gold standard
for a biomechanical running analysis, although considerable
differences might exist between models being used to meas-
ure biomechanical variables. Increasing evidence exists to
support the use of two-dimensional motion analysis [79-82]
and wearables [83, 84] as a valid and reliable alternative.
Since both methods are less complex, less expensive, and
take less time than three-dimensional motion analysis, mul-
ticenter “big data” studies could be conducted to increase
statistical power. Additionally, these methods may make it
more feasible to measure runners in their natural environ-
ment, rather than in an artificial laboratory-based setting.
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A large number of biomechanical variables were investi-
gated in the included prospective studies. However, it should
be noted that these variables are not necessarily the only
biomechanical variables that can be clinically relevant in
causing RRIs. Some variables may be easier to measure and
therefore more studies could have focused on specific vari-
ables (e.g., kinetics). Moreover, all prospective studies in
this systematic review reporting ankle or foot kinematics
considered the foot as one rigid segment, hereby neglecting
its complex multi-segmental anatomy and biomechanical
function [28]. It could be possible that the role of foot kin-
ematics in the etiology of RRIs is underestimated based on
the methodological approaches being used. Another remark-
able finding of our systematic review was that all prospective
studies focused on lower extremity kinematics, but more
proximal regions (e.g., pelvis and trunk kinematics) were not
studied. This is an important limitation of current prospec-
tive literature considering previous cross-sectional studies
have reported altered pelvis and trunk kinematics in runners
with RRIs [85, 86]. In addition, the positioning of the trunk
can have an influence on lower extremity joint loading dur-
ing running [87-89].

4.2.3 Data Analysis

All included studies used a group-based approach to statis-
tically analyze and interpret the role of the biomechanical
variables. Considering the injured and non-injured groups as
two homogeneous samples may fail to discover significant
relationships between biomechanical variables and RRIs [21,
90], as several studies have shown the existence of specific
subgroups or “clusters” based on running kinematics within
both injured [91] and non-injured runners [90]. The classical
group-based statistical approach may therefore flatten out
the presence of individual clinically relevant biomechanical
presentations [21]. Future prospective studies should explore
the validity of using more advanced statistical methodolo-
gies using subgroup analysis designs, and ensuring they are
adequately powered to do so [92].

Biomechanical data were mostly reported as peak val-
ues, representing the maximum or minimum value within
a time-varying curve during the stance phase. By reducing
multi-dimensional time-varying biomechanical data to zero-
dimensional data (peak values), our further understanding
of more subtle alterations in biomechanical data across the
whole running cycle might be compromised [21, 93, 94].

Repetitive overloading of specific tissues during running
can be the end result of a combination of movements in dif-
ferent planes at different points within the kinetic chain [21].
However, all prospective studies included in this systematic
review that evaluated kinematics focused on individual lower
extremity joints, and not on the interaction between different
adjacent and non-adjacent joints (e.g., joint coupling). A

growing body of retrospective evidence supports the theory
that a more advantageous window of movement coordina-
tive variability is essential in relation to overuse injuries of
the lower extremity [21, 95, 96]. Alterations across both
ends of this spectrum of movement coordinative variability
are hypothesized to lead to a reduction in the movement
strategies available for an individual and increase the risk
for repetitive overuse of specific musculoskeletal tissues
[21, 95]. However, this theory has not yet been validated in
prospective studies.

Finally, running injuries are not only caused by biome-
chanical factors, but also by an interaction of multiple modi-
fiable and non-modifiable factors [18, 97-100]. For example,
running exposure (workload) is an essential factor involved
in injury development [18, 101, 102], but the interaction
with biomechanical risk factors has not yet been investigated
in prospective studies. It could be hypothesized that biome-
chanical risk factors might decrease the ability to tolerate
an increase in workload before an injury occurs [21, 102,
103]. A biomechanical risk factor for RRIs should be inter-
preted within a multifactorial biopsychosocial context, and
must not be perceived as a predictor to sustain an RRI for an
individual [104]. Only Messier et al. [39] used a multifacto-
rial approach, including training behaviour, physiological,
biomechanical, and psychological factors. Although the tra-
ditional reductionist approach has significantly increased our
understanding of potential contributing risk factors, more
complex model approaches are currently recommended to
further understand the etiology of sport injuries [97].

4.3 Clinical Implications of Biomechanical Risk
Factors

Even though identifying risk factors is only one step within
a larger framework of injury prevention [105-107], an accu-
rate clinical interpretation of the findings of this systematic
review is necessary to achieve the goal of injury reduction
in runners. First, it must be noted that the identification of
biomechanical risk factors does not implicate that a gen-
eral “perfect” biomechanical running style would exist [21].
Second, there is no clear definition of what exactly is too
much or too little for any biomechanical risk factor. As a
consequence, a clinician should not try to find or use cut-
off values with a “one-size-fits-all” approach for the whole
population. The biomechanical risk factors reported in this
systematic review should therefore be interpreted within a
multidimensional biopsychosocial framework with expert
clinical reasoning when aiming to reduce injury risk with
targeted interventions in an individual runner [21, 108].
Gait retraining interventions could be considered as part
of the solution when managing or preventing running inju-
ries [72]. Tailoring running retraining strategies to each
individual is needed to optimise outcomes [72]. Primary
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injury prevention interventions for runners have only been
studied to a limited extent [109, 110], in comparison with
the larger scientific base of evidence for effective overuse
injury prevention in other sports [111]. Future studies should
further evaluate the role of specific intervention strategies to
successfully modify the biomechanical variables associated
with RRIs and decrease injury risk.

5 Conclusion

Despite persistent and widespread beliefs, current prospec-
tive evidence relating biomechanical variables with RRI risk
is inconsistent and largely dependent on the population and
injuries being studied. Existing findings related to kinemat-
ics, kinetics, and spatiotemporal variables during running
require confirmation via further high-quality prospective
studies before clinical recommendations can be made. A
balanced interpretation with comprehensive clinical reason-
ing is necessary to apply current prospective evidence in a
clinical setting.
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