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Chapter 1 

 
GENELAL BACKGROUND 

 

1-1 Necessity for modeling the structural hierarchy of wood 

 

Wood is a biological material that is formed during the tree secondary growth. Differently 

from non-biological materials, e.g. stone, metal, synthesized polymer, etc., the wood shows 

very complicated and hierarchical structure from the constituent macromolecules to the 

macroscopic xylem. We often find a precisely designed structure in each hierarchical order, 

which is one of the most outstanding properties of the biological materials. Material 

properties of the wood at the macroscopic level are evolved when such the structural 

hierarchy takes shape. Therefore, it is indispensable to clarify the various qualities of wood in 

relation to the structural hierarchy of the wood not only for maximizing the mechanical 

performance of the structural member in the building or furniture but also for developing the 

novel engineering materials. 

 

  Studies to analyze the mechanical properties of wood from the viewpoint of its 

morphological properties were started with recognizing the wood as a heterogeneous and 

anisotropic material. Many scientists have attended to formulating and designing the 

mechanical behaviors of the timber or the wood-based material with a development of the 

general theory of anisotropic elasticity. Those efforts came to fruition as various new 

technologies, e.g. innovations in the material testing methods, invention and prevalence of 

various engineered woods and novel constructions, etc. In those investigations, scientists 

considered the wood as a macroscopic continuum body, that is, a three dimensional 

orthotropic body or a polar anisotropic material. However, they had no cognizance of the fact 

that the wood is the biomaterial with hierarchical structure.  

 From 1950s to 1960s, the techniques for the microscopic observation were rapidly 

improved, which enabled the plant anatomists to reveal the fine composite structure of the 

wood cell wall. As the result, they concluded that each layer in the wood cell wall consists of 

“the two-phase structure”, comprising the bundle of rigid polysaccharide microfibrils and the 

embedding matrix of lignin-hemicellulose compounds. At the same time, micromechanical 

method for analyzing the mechanical properties of the composite materials at the microscopic 

level were developed, which led the material scientists to analyze the mechanical interaction 

between the inclusions (e.g. rigid polysaccharide microfibrils) and the matrix (embedding 

compounds of hemicellulose and lignin). Under those efforts, trials to clarify the origins of 
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mechanical properties peculiar to the wood were started on the basis of the idea of “the 

two-phase structure”. Those trials brought important and novel knowledge on both research 

fields of the wood mechanics and cell wall anatomy. Moreover, some of the obtained results 

were applied to the technique of the wood modification, e.g. the bentwood, surface 

consolidation, dimensional stabilization, etc. Thus, it can be said that the idea of “the 

two-phase structure” successfully filled up a gap which once existed between the situation to 

develop the novel engineering materials and that to investigate the fine structure of the wood 

cell wall, and its formation. 

 

 Investigation based on the structural hierarchy is not necessarily confined to 

understanding the mechanical properties of the wood as an assembly of behavior of each 

constituent in the cell wall. In many cases, it is still difficult to measure the internal property 

and structure of each constituent material directly as it exists in the composite material. If we 

could formulate the generation mechanism of the mechanical properties of the wood 

theoretically on the basis of the concept of the structural hierarchy of the wood, it is 

anticipated to compare the predicted behaviors of the wood with the observed ones. Through 

such comparisons, it is expected to extract the information on the interfacial structure between 

the cell wall constituents in addition to the property and fine structure in each cell wall 

constituent as it exists in the cell wall. In other words, it is considered that the modeling of the 

fine composite structure of the biomaterial often plays as if it were a virtual micro-testing 

instrument or a nondestructive microscope. 

 

1-2 Necessity for affirmative use of the forest resources 

 

Let our eyes turn to the present affairs in the earth and the human society. Fossil fuel and 

metal resources have been almost exhausted while modern society based on the consumer 

economy becomes overripe after the Industrial Revolution. Moreover, irreversible destruction 

of the forest environment has been progressing in the tropical countries, and the atmospheric 

carbon dioxide is still increasing with mass consumption of the fossil fuel. Those are the most 

crucial problems that the human society has ever experienced before (Hosokawa et al. 2002). 

If we leave those problems off as they are, it would be the ruin of the modern civilization in 

the near future. Then, our urgent countermeasure is to find substitutes for the fossil and metal 

resources, and to mitigate the increasing atmospheric carbon dioxide as soon as possible.  

 Under those situations, some people believe that “the forest biomass” can solve the 

above-mentioned crises because the forest products are sustainable resources based on the 

repetition of afforestation and harvesting. Another reason is that the forest biomass plays an 
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important part as a massive storage of the fixed carbon dioxide. However, it may be rather 

belated to device a countermeasure. Large-scale exploitation of the forest resource has been 

executed since the Industrial Revolution, causing an irreversible destruction especially in the 

tropical forest region. As the result, many of commercial species were almost exhausted, 

which provokes serious undersupply of the useful species in the world timber market. Even if 

we would take a policy to protect the forest by prohibiting any deforestation in the natural 

forest from now on, it may take several hundred years or more to recover the fallen forest 

environment as it were.  

 As one of the countermeasures to avoid the above crises, some scientists recommend the 

afforestation of the fast-growing species and its utilization as the industrial materials. In fact, 

the plantation activity of the fast-growing species recently becomes very popular in the 

tropical and subtropical countries. The growing rate of the fast-growing species often 

becomes several times faster or more than that of the commercial species in the temperate 

zone, therefore, it is anticipated that the plantation of the fast-growing species plays an 

important part not only in mitigating the increasing atmospheric carbon dioxide rapidly but 

also in supplying the forest products to the world market. Some people agree that whether or 

not we can sustain the modern civilization in the future depends largely on the success of the 

afforestation of the fast-growing species.  

 

 The plantation program can be executed under a fundamental premise that the products 

from the plantation are purchased as the economical-valued materials, such as construction, 

furniture, pulp and paper, and so forth. A part of the profits is reinvested in the plantation 

activity. Plantation of the fast-growing species is no exception to that premise. On the useful 

species, which has been used in the usual wood industry, people have accumulated abundant 

knowledge on the material properties and processing conditions. On the other hand, there is 

very little information on the material properties of the fast-growing species, because many of 

those species are very new materials in the modern wood industry, and people have never had 

a chance to use them except as the fuel or charcoal. Moreover, not a few people believe that 

those species cannot be used besides fuel or charcoal because they often contain the reaction 

woods, the juvenile woods, and other low-grade woods. However, if we succeed in turning 

those materials to advantage as the industrial material by developing the novel processing 

techniques, we can increase the demand for those materials in the world market, which 

encourages the plantation activity of those species from the economical point of view.  

Scientists also point out the importance of the silvicultural management even in the 

natural forest, because an appropriate management, e.g. thinning of old trees, and removal of 

windfall trees, can keep the ability of carbon fixation in the forest at a higher level. Many of 
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obtained resources from the natural forest are lesser-known or lesser-used species that we 

have never used in the wood industry. Also in this case, what is important is to transform 

those products into the commercial-valued materials by developing the appropriate techniques, 

which gives an economical necessity to the silvicultural activity in the natural forest. 

From the above discussions, we recognize that affirmative use of the lesser-used species, 

including the fast-growing species, saves the global crises that humankind is now confronted. 

For this purpose, we must urgently develop advanced techniques to utilize those lesser-used 

resources as the industrial materials.  

 

1-3 Wood biomechanics – aim and scope of the present paper 

 

Now is the time to establish a fundamental theory that makes us possible to develop advanced 

techniques to utilize the forest biomass including lesser-used resources. One of the best ways 

is to find a general principle that describes the origins of material properties of various wood 

species in relation to its higher-ordered structure. The author tries to find it from the 

biomechanical properties and its structural hierarchy of the wood cell wall.  

The territory of “biomechanics” covers the research field whose goal is to clarify the 

origins of various biological phenomena on the basis of the mechanical viewpoint, and to 

apply obtained fruits to the human welfare. The subject of biomechanics hitherto has been 

focusing largely on the animal behaviors, because its fruits are practically useful in the field 

of medical sciences. However, from the above-mentioned reason, people are getting more 

alive than they once were to the importance of the wood biomechanics. The author of the 

present dissertation has been exploring the general theory to explain the origins of some 

biomechanical properties of wood especially in relation to its hierarchical structure, hoping 

that obtained fruits would be used for developing the novel functions of the forest products in 

the future. 

 

In this dissertation, the author discusses the origin of the biomechanical properties of 

wood focusing on the following four topics that will be practically important when we use the 

forest products as the industrial materials.  

The first topic is concerned with the general theory of the elastic behavior of the single 

wood fiber having multi-layered cell wall (= a homogenized model of the clear wood 

specimen). In this topic, with reference to the theory of micromechanics, mechanical 

properties of the single wood fiber is mathematically formulated.  

The second topic is the biomechanical problems concerned in maturing xylem. This 

includes (1) the generation mechanism of the abnormal growth stress in the reaction wood 
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xylem, and (2) its role in controlling the negative-gravitropic behavior and the pattern 

formation of the growing tree shoot. In (1), the growth strain of maturing wood fiber is 

simulated by the formula derived in the first topic, and in (2), time-dependent evolution of the 

growing shoot is simulated on the basis of the structural mechanics. Future scopes of this 

topic are to develop the technique for detecting the reaction wood tissue formation and 

reducing the residual stress distributed inside the logs, and to predict and design the 

vegetation landscapes of the forest or the plantation.  

The third topic is concerning the biomechanics of sawn wood. The simulation using the 

formula derived in the first topic plays an important role also in this topic. Aim of this topic is 

to understand the hygromechanical behaviors peculiar to the sawn wood in relation to its 

hierarchical structure. Especially in this paper, we focus on the hygroexpansive behavior and 

moisture-dependent elasticity of softwood. Future scope of this topic is to develop the 

technique for turning the low-grade materials, such as the reaction wood, the juvenile wood, 

and the naughty species, to advantage as the industrial material that can be used for 

wood-based materials or construction members.  

The last fourth topic is on the biomechanics of tension wood properties. Tension wood 

formation is an indispensable tropism for inclined arboreal dicot shoot to evolve the 

negative-gravitropic response, while it often causes uncomfortable problems in the wood 

industry. Some researchers point out that the fast-growing species often contains the tension 

wood tissue. The time will come when we confront the processing problems caused by the 

tension wood in the fast-growing species, because we expect that plantation of the 

fast-growing species becomes very popular in the near future. Some researchers believe that 

the characteristic properties of the tension wood can be attributable to the appearance of 

gelatinous layer consisting of the pure cellulose crystal. Then, in this topic, we discuss the 

role of the gelatinous layer on the abnormal properties of the tension wood, i.e. high tensile 

growth stress, high axial shrinkage, and large axial Young’s modulus. The protagonist in this 

topic is the simulation using the formula derived in the first topic. In the same way as the 

other topics, future scope in this topic is to develop the technique for turning the materials 

containing the tension wood to advantage for building or furniture materials.  

 

 

References in Chapter 1 
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Chapter 2 

 

MICROMECHANICS ON THE MULTI-LAYERED STRUCTURE  

OF THE WOOD CELL WALL 
 

2-1 Reinforced-matrix theory 

 

2-1-1 Model of the hierarchical structure of the wood from the macroscopic xylem to the 

single wood fiber 

Wood consists of numerous fibrous elements. Those elements can be divided into two groups 

according to their morphological aspects, i.e. axial and radial elements. Most part of the 

softwood xylem consists of the axial elements, that is, numerous axial tracheids, and some 

parenchymae. The ray tissue is also differentiated in the softwood xylem, however its volume 

fraction is quite smaller than that of the axial elements. In the hardwood xylem, the vessel 

element is well developed, and the ray tissue generally becomes quite complicated as well as 

the axial parenchyma. Nonetheless, the wood fiber (i.e. libriform fiber, fiber-tracheid, and 

tracheid) often occupies the most part of the xylem. 

 Every xylem fiber (i.e. tracheid in softwood and hardwood, libriform wood fiber in 

hardwood, and fiber-tracheid in hardwood) shows very high aspect ratios, and it is arranged in 

the direction parallel to a common orientation in xylem, that is, the fiber direction. From this 

fact, it can be easily understood that the fiber properties largely influences the physical 

properties of the macroscopic wood especially in its longitudinal direction. 

 Among the longitudinal properties of the wood, the longitudinal Young’s modulus and 

strength become very important material indicators when we use the wood as engineering 

materials, and those indicators are generally desired to take higher values as possible. The 

shrinkage coefficients and the growth stress levels are also both very important indicators, 

which are desired to be smaller as possible in the light of the wood industry. Those indicators 

or properties are macroscopic reflections of the properties or behaviors of each xylem fiber 

having a stiff and thick lignified cell wall. In this section, we intend to discuss such xylem 

characteristics from the viewpoint of the classical rule of mixture.  

 First, let us notice a homogeneous block of the wood as shown in Fig.2-1(a). Next, we 

transmute this block into a three-layered sandwich panel. It is assumed that a layer 

constituting the sandwich panel corresponds to each tissue in the wood as the parallel 
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composite consisting of xylem fiber, vessel element, and ray tissue (see Fig.2-1(b)). 

 If we apply the simple law of mixture to the three layered sandwich panel, the 

longitudinal Young’s modulus of the panel (EL) can be formulated as the following formula : 

( )  ,
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where EL
F
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V
, and EL

R
 are Young’s modulus of respective tissues, and F, V, R stand for the 

area composition of domain of each tissue in the crosscut surface, e.g., wood fiber, vessel, and 

ray tissue, respectively. And, we assume F+V+R=1. Considering EL
V
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F
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R
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F
<<1, 

we obtain  

EL
F
 = EL/F .       (2-1’) 

In this approximation, we regarded EL
R≈ 0 since the ray tissues are thin-walled tubes which 

are sparsely distributed inside the wood. In a certain hardwood species, the amount of the 

axial parenchyma becomes larger as compared with that of the other tissue. In such a case, we 

cannot ignore the effect of the axial parenchyma on the mechanical properties of the 

macroscopic wood. However, in the present analysis, we exclude such species as nontarget 

cases.  

The longitudinal shrinkage of the parallel composite panel (αL) can be formulated as 

the following formula : 
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F
 = αL.       (2-2’) 

The wood fiber, the vessel element, the ray parenchyma, and the axial parenchyma in 

the differentiating xylem tend to deform during their secondary wall maturation. Thus, the 

growth strain is generated in the maturing xylem. The longitudinal growth strain of the xylem 

at the macroscopic level (εL) can be expressed as the following formula: 
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 are the longitudinal growth strain in respective tissues. Assuming 
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εL
F
  = εL.       (2-3’) 

Thus, it is concluded that the longitudinal shrinkage and the growth strain generated in a 

single wood fiber almost coincide with those generated in a macroscopic wood as a 

homogeneous aggregation of numerous wood fiber. In other words, we can formulate the 

hierarchical property in the mechanical behaviors of the wood from the single fiber to the 

macroscopic xylem on the bases of eqs.(2-1’), (2-2’), and (2-3’).  

 

 

 

2-1-2 Model of the hierarchical structure of the wood  from the cell wall constituents to 

the single wood fiber 

A single wood fiber consists of the thick secondary wall (S), and the compound middle 

lamella (CML). Every wood fiber is glued to each other through the CML (Fig.2-2). The S is 

divided into three sub layers, i.e., outermost (S1), the middle (S2), and the innermost layers 

(S3). The S2 is the thickest among those three layers, which occupies the volume of 80~90 

percent in the whole cell wall. In a case of the tension wood, the gelatinous layer (G) is 

formed as the innermost layer in the tension wood fiber. Some researchers consider that 
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xylem properties peculiar to the tension wood are caused by the G-layer, which will be 

discussed in Chapter 5. In either case, a single wood fiber can be approximated as the 

multi-layered tube having a very large aspect ratio. Then, in the present paper, we use the 

multi-layered tubular cylinder having three layers (CML+S1+S2), or four layers 

(CML+S1+S2+G) as the model of the single wood fiber (Fig.2-2). Three-layered tubular 

cylinder (CML/S1/S2) is a model of the softwood tracheid or the normal hardwood fiber, on 

the other hand, four layered one (CML/S1/S2/G) is a model of the tension wood gelatinous 

fiber. 

 Each layer can be approximated as a "two-phase structure", specifically the 

unidirectionally reinforcing element of polysaccharide bundle as the framework and the 

encrusting or embedding substance of lignin-hemicellulose compound as the matrix (MT). 

The former is mainly composed of highly crystallized cellulose microfibril (CMF), which is 

oriented in a certain direction to the fiber axis in each layer except the CML. This makes the 

secondary wall, including the G-layer, mechanically anisotropic. On the other hand, the 

orientation of the CMF is randomly distributed in the CML, then, we consider it to be 

mechanically isotropic.  

 In the case of the softwood secondary wall, oriented but non-crystalline polyose, such 

as (acetyle-) glucomannan, is often arranged along and around the CMF, forming the 

polysaccharide framework with the highly crystallized CMF, while non-oriented polyose has 

been detected in the matrix region of the cell wall (Liang et al. 1960, Fushitani 1973, Salmen 

2000). Disoriented polyose, that is mainly xylan, is blended with lignin, forming the isotropic 

skeleton of the MT substance. 

 Behavior of each cell wall layer is controlled by the mechanical or physical properties 

of constituent materials in addition to their volumetric proportions and conjugation mode. It is 

comparatively easier to correlate the mechanical or physical properties of constituting cell 

wall layers to the behavior of the whole wood fiber on the basis of theory of polar-anisotropic 

elasticity (e.g. Lekhnitski 1960). However, it is not so easy task to formulate the behavior of 

each cell wall layer with a cognition that the cell wall layer should be treated as an assembly 

of constituent materials. If we succeed in such a task, then, we can formulate the mechanical 

hierarchy of the wood from each constituent material to the macroscopic xylem (Fig.2-3). It is 

anticipated that the reinforced matrix theory originally proposed by Barber and Meylan 

(1964) gives a useful approach to complete the above task. 
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2-1-3 Method of modeling the two-phase structure by the reinforced-matrix theory 

In this study, we define the term “modeling” as a following meaning. First, we elucidate what 

kind of components constitutes “the wood at each hierarchical level”. Second, we transform 

morphological or physical properties of the components into observable parameters. Lastly, 

we combine those parameters into the mathematical formula that describes the behaviors or 
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properties of the wood at that hierarchical level. 

 

(a) Application of micromechanics 

We start our discussion from the mathematical formulation of “the two-phase structure” of the 

cell wall layer with reference to the micromechanics developed by J. D. Eshelby, T. Mura, T. 

Mori, K. Tanaka, et al. Every layer is approximated by “the two phase structure” of the 

crystalline polysaccharide bundle as the reinforcing phase and the lignin-hemicellulose 

compound as an isotropic matrix phase. The reinforcing phase consists of numerous fibrous 

crystal, and each crystal can be regarded as an “inclusion” or an “inhomogeneity” immersed 

in the matrix phase.  

Eshelby (1957) supposed a material which contains an ellipsoidal inclusion in the 

matrix, and develop a mathematical theory to predict the stress field inside and around the 

inclusion when the material is subjected to a certain external stimulation, e.g., heating, 

cooling, or induction of an external load. The coefficient of thermal expansion is generally 

different between the inclusion and the matrix, and the same can be said for the elastic 

modulus. In those senses, we recently call such the inclusions “inhomogeneities”. Then, a 

certain dimensional misfit is caused between the inhomogeneity and the matrix, which 

induces an inhomogeneous stress disturbance inside the material. In order to calculate such 

stresses disturbance concretely, Eshelby (1957,1959) proposed a convenient method called 

“the equivalent inclusion method”. He replaced the inhomogeneity by the “equivalent 

inclusion” that has same elastic modulus as the matrix substance, and same shape as the 

inhomogeneity. He supposed that an inelastic strain (eigen-strain) is induced in the equivalent 

inclusion. And, he carried out the stress analysis in the material on the basis of the suitably 

supposed eigen-strain (see APPENDIX [1] and [2]). Eshelby’s method essentially should be 

applied to the cases that the inclusion exists at an enough distance from the free boundary of 

the material, and that the volume of the inclusions is quite smaller than that of the material. If 

the present inclusion is placed near the free surface of the material, or if the another inclusion 

exists near the present one, the stress disturbance from those situations would affect the stress 

field in the present inclusion and the matrix around it. This stress disturbance is called “the 

background stress” (Mura&Mori 1976, Hal&Klein 2003). 

In the case that a background stress exists in the material, Eshelby’s idea can be 

developed as follows (Mori&Tanaka 1973). If the inclusion is “an equivalent inclusion” 

having same elastic modulus as the matrix, the background stress is uniformly distributed 
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inside the material whether the inclusion exists or not. In such a case, we can use the 

following formula as the stress equilibrium (see APPENDIX [2]): 

(1− φ)σb
 + φ(σF + σb

) = 0       (2-4) 

where φ is the volume fraction of the inclusions in the material, σb
 is the field of background 

stress generated in the equivalent inclusion, and σF
 is a stress disturbance induced by the 

eigen-stress of the equivalent inclusion. It is impossible to know accurate distribution of the 

background stress in the material. However, it is natural to assume that background stress in a 

domain containing an inclusion would be identical everywhere in the material. We call this 

assumption “the mean field approximation”. According to this assumption, we can identify 

the background stress σb
 in eq.(2-4) with the mean stress in the matrix region (as denoted by 

〈σM〉), on the other hand, σF
+σb

 is regarded as the mean stress in the inhomogeneity (as 

denoted by 〈σF〉). Then, eq.(2-4) is rewritten as  

  (1− φ) 〈σM〉 + φ〈σF〉 = 0.      (2-5) 

 Next, we try to apply Mori and Tanaka’s method (1973) to the case that the material 

containing the inhomogeneity is subjected to the external load. Also in such a case, eq.(2-5) is 

basically proper, provided that the field of external load σA
 must be superimposed on the 

mean stresses 〈σM〉 and 〈σF〉 in eq.(2-5) as follows:.  

 [σM
] = 〈σM〉 + σA

,  and   [σF
] = 〈σF〉 + σA 

   (2-6) 

Therefore, eq.(2-5) is rewritten as the following expression: 

(1− φ) [σM
] + φ[σF

] = σA
.      (2-7) 

 

(b) Reinforced-matrix hypothesis 

In the present study, an infinitely long rod-like polysaccharide fibril embedded in the matrix 

substance corresponds to the ellipsoidal inclusion with infinitely large long axis. [σM
] in 

eq.(2-7) is regarded as the mean stress generated in the matrix substance, and [σF
] is also 

mean stress in the single polysaccharide crystalline fibril. We introduce the stresses σm
 and σf

 

as follows: 

σm
 =(1− φ) [σM

] ,     σf
 = φ [σF

] .     (2-8) 

Then, eq.(2-7) can be rewritten as 

σm
 + σf

 = σA
.      (2-9) 

We try to give the following explanation as the physical interpretations of eqs.(2-9) and the 

tensorial quantities σm
 and σf

.  

 Under lower magnification, the reinforcing element of the polysaccharide framework is 
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spatially dispersed uniformly in each cell wall layer forming the framework bundle. Similarly, 

the lignin-hemicellulose compound is diffused in each layer forming the isotropic MT 

skeleton. Therefore, it is considered that both the framework bundle and the MT skeleton 

occupy the same domain in the macroscopic limit (Yamamoto 1998, 1999). Thus, σm
 is 

regarded as the stress in the matrix as the skeleton, and σf
 is the stress in the polysaccharide 

framework as a bundle. Eq.(2-9) gives the condition that σm
 and σf

 should satisfy. We call this 

interpretation on the physical meanings of σm
 and σf

 “the reinforced-matrix hypothesis” 

hereinafter. N.F. Barber and B.A. Meylan intoduced a prototype of this hypothesis in their 

study on the mechanism of the shrinking anisotropy of the drying wood (Barber&Meylan 

1964). 

 We introduce the elastic constant of the crystalline rope of the polysaccharide 

framework C
F
 and that of the matrix substance C

M
, which are respectively related to [σM

] and 

[σF
] in eq.(2-7) as follows: 

[σM
] = C

M
(εM

 − αM
),  [σF

] = C
F
(εF− αF

),    (2-10) 

where εM
 and εF

 are strains of the dimensional changes, and αM
 and αF

 are the eigen-strains 

occurring in the respective components. Furthermore, we introduce the elastic constants C
m

 

and C
f
 as follows: 

C
m

 = (1−φ)C
M

,    C
f
 = φ·C

F
      (2-11) 

C
m

 and C
f
 can be regarded as the elastic constants of the matrix skeleton and the 

polysaccharide framework bundle, respectively. Then, from eqs.(2-8), (2-10), and (2-11), the 

following constitive relations are derived for both phases:  

σm
 = C

m
(εM

 – αM
),  σf

 = C
f
(εF

 – αF
) .    (2-12) 

Thus, we obtain the constitutive relations which describe the elastic behaviors of the matrix 

skeleton and the framework bundle. By the way, it is natural to consider that εM
 and εF

 

become identical at the macroscopic limit if no detachment occurs between the crystalline 

rope of the polysaccharide framework and the matrix substance. In the present paper, we 

adopt the following supposition a priori, then, 

εM
 (= εm

) = εF
 (= εf

) = ε ,       (2-13) 

where ε is the strain of the dimensional change which is observed at the level of the layer. 

Based on this assumption (2-13), eqs.(2-12) can be rewritten as follows: 

σm
 = C

m
(ε – αM

),  σf
 = C

f
(ε – αF

) .      

These equations clearly means the constitutive equations of a matrix as a skeleton and the 

polysaccharide framework as a bundle, respectively. Therefore, we can consider  
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αM
 = αm

 ,     αF
 = α f.      (2-13’) 

We can derive the following equations in place of eqs.(2-12) accordingly: 

 σm
 = C

m
(ε – αm

),  σf
 = C

f
(ε – α f) .    (2-12’) 

Eqs.(2-9) and (2-12’) are mathematical expressions of the reinforced-matrix hypothesis 

originally proposed by Barber and Maylan (1964).   
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2-2 Mechanics of the single wood fiber having multi-layered structure 

 

How does a wood fiber behave inside the xylem, when a certain change occurs in the physical 

state of the cell wall? In the present section, on the basis of the reinforced matrix hypothesis 

which is formulated by eqs.(2-9) and (2-12’), we try to calculate the dimensional change of 

the isolated single wood fiber which is caused by the physical state change caused in the cell 

wall. In the present discussion, examples of the physical state change in the cell wall are (1) 

depositions of the matrix substance and the maturation of the polysaccharide framework 

during the cell wall formation (see Chapter 3), (2) moisture adsorption during the wood 

drying or swelling (see Section 4-1), and (3) elastic deformation due to the action of the 

external force (see Section 4-2).  

 

2-2-1 Wood fiber model and coordinate system 

 

(a) Coordinate system 

As shown in Fig.2-4, two kinds of coordinate systems are used in the present analysis. One is 

the O-ltr local Cartesian coordinate system which is set at an arbitrary point (O) in the cell 

wall, provided that this system must satisfy the general conditions of the cylindrical 

coordinate system. “l” is the coordinate in the direction along the central axis of the cylinder, 

and “t” is the one in the direction along the tangent, which corresponds to the azimuthal angle 

in the cylindricall coordinate system. “r” is the one in the radial direction, which is equivalent 

to the radius from the central axis of the cylinder.  

The other one is the O-xyz Cartesian coordinate system which is set at an arbitrary 

point (O) in the small plane element cut from each layer. The direction of x-axis is arranged in 

the direction parallel to the axis of the polysaccharide microfibril, and that of y-axis is the 

normal to the x-axis. z-axis is taken so that its positive direction coincides with r-axis of the 

O-ltr system. We assume that the polysaccharide microfibril in the S2 layer takes “S-helix”, 

and that the O-ltr and the O-xyz coordinate systems are both right-handed as displayed in 

Fig.2-4. 
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(b) Constitutive equations 

We start our discussion in the present section from eqs.(2-12’) and (2-13’). αkl
m

 in eq.(2-12’) 

is a tensor of internal expansion which is caused by a certain biomechanical change. αkl
m

 is 

observed that in each layer, αkl
m

 = εmδkl, where δkl is Kronecker's symbol. εm
 is a scalar. We 

must take care not to confuse the present εm
 with the same sign used in eq.(2-13). Cijkl

m
 and 

αkl
m

 are both assumed to be isotropic. The elastic constants of the isotropic MT skeleton (non 

zero terms) Cijkl
m

 are denoted as follows: 

( )

( )  
2

1
  , 

3

1

  , 2
3

1

m
tt

m
rr

m
trtr

m
rrtt

m
rr

m
rr

m
tt

m
ttrr

m
tt

m
rrrr

m
tttt

m

SCCCSKCC

CCCCSKCCC

llllll

llllllllll

===−===

===+===
   (2-14) 

where K = 3λ + 2µ, S = 2µ. λ and µ are Lame's constant. 

 In Fig. 2-4, a small flat-board element of the framework bundle in the S2 layer is shown, 

provided that the positive direction of normal axis (z-axis) is coincident with the radial 

direction (r-axis) of the fiber model. In this model, the CMF and other oriented polyose in the 

S2 layer are assumed to be oriented in a S-helix at an angle of θ, and the one in the S1 layer is 

assumed to be aligned normally to the fiber axis. The relationship between stress (σij
f
) and 

strain (εij) components induced in the framework bundle of each layer of the secondary wall 

can be written in eq.(2-12). We again show the constitutive equation of the framework bundle 
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in the O-xyz orthogonal coordinate system, 

σab
f
 = Cabcd

f
(εcd− αcd

f
),      (2-15) 

where Cabcd
f
 is the elastic constant of the framework bundle in each layer in the 0-xyz 

coordinate system. αab
f
 is an internal expansive strain originating in a fibril-like structure 

consisting of the CMF and other oriented polyose, caused by a certain biomechanical change. 

αab
f
 is expressed as a diagonal tensor whose components are 

     diag (αab
f
) = {εf

, εf '
, εf '

} , 

where εf
 and εf'

 are the internal expansive strains induced in the polysaccharide framework in 

the directions parallel and perpendicular to the cellulose molecular chain, respectively. In the 

same way as the case of the matrix substance, we must pay attention not to confuse present 

“εF
” with the same sign used in (2-13). 

 We supposed that each fibril-like structure of the oriented polysaccharide in the 

framework bundle is not so strongly connected to each other. Therefore, we can consider that 

the framework bundle is considerably compliant in its transverse direction, and all shear 

moduli, Poisson's ratios, and the Young's modulus in the transverse direction are small enough 

to be neglected. This means that the CMF including other oriented polysaccharide cannot be 

kept in a bundle shape without a reinforcing agent. The reinforcing agent is considered to be 

the lignin-hemicellulose isotropic matrix. Then, we may consider the stiffness components 

Cabcd
f
 are all nil except Cxxxx

f
 (=E). 

 By transforming the coordinate system from 0-xyz into 0-ltr system, eq.(2-15) is 

rewritten into new expression as follows: 

σij
f
 = Cijkl

f
 (εkl – αkl

f
),      (2-16) 

where Cijkl
f
 = RiaRjbRkcRld Cabcd

f*
 , αij

f
 = RiaRjb αab

f*
 . Rij is a transformation matrix between 

both coordinate systems. Under the coordinate system O-ltr, the non-zero terms of the 

stiffness components of the framework bundle (Cijkl
f
) are expressed as follows: 

Cllll
f
 = c

4
E,  Clltt

f
 = Cttll

f
 = c

2
s

2
E,  Clllt

f
 = Cltll

f
 = −c

3
sE, 

Ctttt
f
 = s

4
E,  Cttlt

f
 = Clttt

f
 = −cs

3
E,  Cltlt

f
 = c

2
s

2
E, 

αll
f
 = εf

c
2
 + εf’

s
2
 ,  αtt

f
 = εf

s
2
 + εf’

c
2
 ,  αlt

f
 = −(εf

 − εf’
)cs ,     (2-17) 

provided that we considerd Cijkl
f
= Cjikl

f
= Cijlk

f
 and Cijkl

f
= Cklij

f
, where c = cos ϕ, s = sin ϕ, and 

E is Young's modulus of the framework bundle in the direction along the cellulose molecular 

chain. E, S, εm
, εf

, ρ (= rout/rin ), and ϕ take respective values in each layer as assumed in Table 

2-1. They are not unknown values to be solved but known constants to be given in advance.  

 By substituting those derived equations in eq.(2-9), moreover considering the 
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compatibility of strains for the axisymmetrical deformation without torsion,  

dr

d
r t

tr

ε
=ε−ε ,        (2-18)  

we obtain the following constitutive equation for each layer of the secondary wall. 
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where σl ≡ σll, σt ≡ σtt,σr ≡ σrr, εl ≡ εll, εt ≡ εtt,εr ≡ εrr. r is a radial distance from the central 

axis. Among the shear stress components, only σlt is not null, which is an inevitable 

consequence from the assumption of the axisymmetrical deformation, i.e. γlt = 0.  

 

 

 

 

 

 

2-2-2 Deriving the basic equations 

 

(a) Assumptions 

The dimensional change of the complex tubular cylinder can be expressed as a set of normal 
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strains, namely, εl in the longitudinal direction, and εt(r)|r=r0, εt(r)|r=r1, εt(r)|r=r2, εt(r)|r=r3, and 

εt(r)|r=r4 in the tangential directions at respective radius. As described in our previous report 

(Yamamoto et al. 2002, Yamamoto 2004), based on Eqs.(2-19), we solve εl, εt(r)|r=r0, εt(r)|r=r1, 

εt(r)|r=r2, εt(r)|r=r3, and εt(r)|r=r4 under the following conditions (C1), (C2), (C3) and 

assumptions (A1), (A2), (A3): 

(C1) εｌ is constant for all r. This is based on the assumption that the wood fiber model is an 

infinitely long cylinder in the l-direction. We denote εl as εL hereinafter. 

(C2) [σr(r)]r=r4 = −P4, [σr(r)]r=r0 = −P0. P0 =P4 = 0. These boundary conditions mean there are 

no internal and external pressures acting on the wood fiber model. 

(C3) The external force (PL) induced parallel to the wood fiber model satisfies the following 

equation: 

.d)(2  dd  d2
0

4
L ∫∫∫ σπ=θσ=σ=π=

r

r
l

surface
crosscut

l

surface
crosscut

l rrrrrALP    (2-20) 

(C4) The deformation of the wood fiber model is assumed to be symmetric with respect to the 

central axis. Thus, we can express the fact that torsional deformation of individual fiber is 

completely restricted by the force of binding fibers inside the wood specimen. 

Besides those conditions, the following assumptions (A1) ~ (A3) were added at 

processing; 

(A1) K >>S, then S/K is enough small to be negligible in each layer. This hypothesizes that 

the bulk modulus of the MT skeleton (K) is quite larger than S. This postulates that the 

Poisson's ratio of the matrix skeleton is almost 0.5 like a kind of elastomers. 

(A2) It is considered that E, S, εm
, εf

, and ρ (= rout/rin ) tend to change their values during a 

certain bio-physical change, however, those changes can be neglected in the case that 

biomechanical changes were infinitesimally small.  

(A3) E = 0 in eq. (7) in the CML. Namely, E0 = 0. This does not mean that there is no oriented 

polysaccharide framework in the CML, but means that mechanical contribution of the 

randomly distributed polysaccharide framework in the CML should be isotropic. For 

convenience, we assume that S0 means the shear modulus (× 2) of the CML itself. Moreover, 

(h/r1)
2
 ~ 0, ε0

f
 = 0 and ε0

m
 = 0 in the CML. Those assume that the thickness of the CML is 

quite smaller than the S1 and the S2 layers.  

 

(b) Basic formula [A] 
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In this study, stress equilibrium for axisymmetrical deformation was given as follow: 

dr

d
r r

rt

σ
=σ−σ  .        (2-21) 

Solving the second and third formula in the eqs.(2-19) for εt and rdεt/dr, and eliminating the 

term of σt using the equilibrium condition (2-21), we obtain  
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where, u = S/K. Moreover, combining them by eliminating the term of εt, we obtain a 

differential equation of r: 
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General solution of eq.(2-23) is given as, 
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(2-24) 

where C1 and C2 are integral constants, and α is described as follows (see also APPENDIX 

[3]): 

,
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31 44
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where G=E/S. Based on the assumption (A1) , we impose the following conditions: 

u → +0   then   α → 1 + 0 

which yields 

.ln
1

1
lim

1

01
r

r
→

−α
−−α

+→α
 

Then, we can simplify the solution (2-24) as follows: 
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( ){ } rsEssEsErCC ln3223
2

1
L

22f2m42
21r ε⋅−+ε⋅−ε⋅++′=σ − . 

Under the boundary conditions [σr(r)]r=rin = −Pin and [σr(r)]r=rout = −Pout, we can decide the 

integral constants C1' and C2, then, we obtain the following solution: 
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(2-26) 

Then, we substitute the above solution into the first equation of (2-22), and we obtain the 

following equation [Basic formula A]:  
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Coefficients, Γ, Λ, Χ, and ∆ are dependent on G (=E/S), ϕ, r, rout, and ρ, provided that those 

variables take their respective values in each layer as shown in Table 2-2. 

 

(c) Basic formula [B] 

We solve the eqs.(2-19) for εL, and integrate it over the crosscut area of each layer. When 

integrating it, we assume that εm
 and εf

 are independent of r in the respective layer, and εl 

takes a constant value (=εL) over the crosscut surface of the cell wall because of condition 

(C1). As the result, we obtain the following equation [Basic formula B]: 
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where 
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Coefficients, Ω, Φ, and Σ are dependent on G (=E/S ), ϕ, and ρ  provided that those 

coefficients take their respective values in each layer as shown in Table 2-2. 

 

 

 

(d) Formulae to describe the deforming single G-fiber (four-layered circular tube) 

In the G-fiber model as the whole, we obtain twelve equations based on the basic formulae 

[A] and [B]. Those are as follows: 

Basic form.[A] in CML at r = r0 (a0),  Basic form.[A] in CML at r = r1  (a0'), 

Basic form.[B] in CML    (b0), 

Basic form.[A] in S1 at r = r1  (a1),  Basic form.[A] in S1 at r = r2   (a1'), 

Basic form.[B] in S1    (b1), 

Basic form.[A] in S2 at r = r2  (a2),  Basic form.[A] in S2 at r = r3   (a2'), 
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Basic form.[B] in S2    (b2), 

Basic form.[A] in G at r = r3  (a3),  Basic form.[A] in G at r = r4   (a3'), 

Basic form.[B] in G    (b3). 

Those equations constitute simultaneous equations whose unknown valuables are 

εL, εt|r=r0, εt|r=r1, εt|r=r2, εt|r=r3, εt|r=r4 ;  P0, P1, P2, P3, P4 ;  L0, L1, L2, L3 . 

According to the assumption (A3), eq.(a0) and (a0') are degenerated each other, which yields 

εt|r=r0 ≈ εt|r=r1 . 

Therefore, unknown variables become finally as follows;  

εL, εt|r=r1, εt|r=r2, εt|r=r3, εt|r=r4 ;  P0, P1, P2, P3, P4 ;  L0, L1, L2, L3 .  

To solve eqs.(a0'), (a1), -----, (a3'); (b1), ---, (b3) for those unknown variables, we impose the 

following conditions on the basis of the conditions (C2) and (C3): 

 P0 = 0  (c1),  P4 = 0   (c2), L = L0 + L1 + L2 + L3   (c3). 

The unknown variables explicitly required in our study are εL, εt|r=r1, εt|r=r2, εt|r=r3, and εt|r=r4 . 

Thus, by eliminating the unknown variables P0, P1, P2, P3, P4, L0, L1, L2, L3, and L4 in the 

following manner, we degenerated the simultaneous equations (a0'), (a1), -----, (b3), (c1), (c2), 

and (c3) into the simpler ones of which unknown variables are εL, εt|r=r1, εt|r=r2, εt|r=r3, and 

εt|r=r4. 

 

− The first equation − 

 

From eqs.(a0'), (b0), (a1'), (b1), (a2'), (b2),(b3), (c1), (c2), and (c3), we eliminate P0, P1, P2, 

P3, P4, L0, L1, L2, L3, and L4. Thus, we obtain the first equation, 
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where coefficients a11, a12, a13, a14, a15 , b11, b12, b13, c11, c12, c13, and d11 are respective 

functions whose concrete forms are composed of θ, ρ1, ρ2, ρ3, Q, G1, G2, G3, M, and N. 

Detailed shapes of those coefficients are described in the APPENDIX [4]. PL stands for the 

external force induced parallel to the wood fiber model, which is related with L0, L1, L2, and 

L3 as follows: 
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. 

εL, εt|r=r1, εt|r=r2, εt|r=r3, and εt|r=r4 are unknown variables to be solved as solutions of an 

algebraic equation (2-29-1).   

 

− The second ~ the fifth equation − 

 

To solve the equations for εL, εt|r=r1, εt|r=r2, εt|r=r3, and εt|r=r4, we must have at least four 

necessary equations which are constituted by the same unknown variables. Those equations 

can be derived from the basic formula [A] as follows. 

 

(The second equation) 

 

From eqs.(a0'), (a1'), (a2'), (a3), (c1), and (c2), we eliminate P0, P1, P2, P3, and P4. Thus, we 

obtain 

.+                     L21
f
323

f
222

f
121

m
323

m
222

m
121

4
t25

3
t24

2
t23

1
t22L21

Pdcccbbb

aaaaa
rrrrrrrr

ε+ε+ε+ε+ε+ε=

ε+ε+ε+ε+ε ====
   (2-29-2)  

 

(The third equation) 

 

From eqs.(a0'), (a1'), (a2), (a3), (c1), and (c2), we eliminate P0, P1, P2, P3, and P4. Thus, we 

obtain 
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(The fourth equation) 

 

From eqs.(a0'), (a1), (a2), (a3), (c1), and (c2), we eliminate P0, P1, P2, P3, and P4. Thus, we 

obtain 
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(The fifth equation) 

 

From eqs.(a0'), (a1'), (a2'), (a3'), (c1), and (c2), we eliminate P0, P1, P2, P3, and P4. Thus, we 

obtain 
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  (2-29-5) 

where coefficients a21, a22, a23, --- , a55, b21, b22, ---, b53, c11, c12, ---, c53, and d11, ---, d51 are 

respective functions of whose concrete forms are described in the APPENDIX [4]. 

Equations (2-29-1~5) constitute the simultaneous algebraic equations whose 

unknown variables are εL, εt
r1

 (= εt|r=r1), εt
r2

 (= εt|r=r2), εt
r3

 (= εt|r=r3), and εt
r4

 (= εt|r=r4), on the 

other hand, the values of ε1
m

, ε2
m

, ε3
m

, ε1
f
, ε2

f
, ε3

f
, and PL should be given as eigen-strains and 

external load in advance. From those simultaneous equations, the solutions can be derived as 

following forms: 
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(2-30) 

where coefficients f11, f12, ....., f57 are functions of p, and p is a parameter vector whose 

components are θ, ρ1, ρ2, ρ3, Q, G1, G2, G3, M, and N Among the solutions, εL stands for the 

strain of the G-fiber model in the axial direction. According to the condition (C4), the wood 

fiber model deforms axisymmetrically, then, εt
r1

(=εt
r0

), εt
r2

, εt
r3

, and εt
r4

 are equivalent strains 

to the diametral deformations at their respective radii. Those strains are induced by a certain 

biomechanical change in the G-fiber. The thickness of the CML is enough small to be 

negligible if compared to those of the S1 and S2 layers. Therefore, εt
r1

 can be regarded as the 

strain of the diameter in the wood fiber model (=εT). 

 

− Developing the eqs.(2-30) into the differential equations − 

 

According to the assumption (A2), eqs.(2-30) are valid under the duration that the 
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biomechanical change is infinitesimally small enough to be neglected. This means that εL, εt
r1

, 

εt
r2

, εt
r3

, and εt
r4

 in addition to ε1
m

, ε2
m

, ε3
m

, ε1
f
, ε2

f
, ε3

f
, and PL in eqs.(2-30) should be 

replaced as differential quantities, i.e. dεL, dεt
r1,

 dεt
r2

, dεt
r3

, dεt
r4

, dε1
m

, dε2
m

, dε3
m

, dε1
f
, dε2

f
, 

dε3
f
, and dPL. Then, each equation in (2-30) should be rewritten as a simple differential form, 

moreover, they are divided by dt, and are converted into following differential equations:
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(2-31) 

provided that a dot on each of εL, εt
r1

, εt
r2

, εt
r3

, εt
r4

, ε1
m

, ε2
m

, ε3
m

, ε1
f
, ε2

f
, ε3

f
, and PLstands for 

the derivative by t. Furthermore, ρ1, ρ2, and ρ3 among the components of p should be 

rewritten into differential quantities, dρ1, dρ2, and dρ3, since they depend on the elapsed time 

during a certain biomechanical change. Due to the assumption of axisymmetrical deformation, 

the following relations are required among respective layers: 
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Since dρ3·dεt
r4

, dρ2·dεt
r3

, and dρ1·dεt
r2

 are regarded as higher order infinitesimal quantities, we 

can obtain the following differential forms: 

dρ1 = (dεt
r1

 − dεt
r2

)ρ1,  dρ2 = (dεt
r2

 − dεt
r3

)ρ2,  dρ3 = (dεt
r3

 − dεt
r4

)ρ3.   

These equations can be rewritten as differential equations of t as follows: 

 ρ
.

1 =(ε
.

t
r1

 − ε
.

t
r2

)ρ1,  ρ2 = (ε
.

t
r2

 − ε
.

t
r3

)ρ2,  ρ
.

3 = (ε
.

t
r3

 − ε
.

t
r4

)ρ3.    (2-32) 

Solutions of eqs.(2-32) are included as components of parameter vector p in eqs.(2-31). 

Therefore, eqs. (2-31) and (2-32) constitute a system of simultaneous differential equations 

whose unknown functions are εL, εt
r1

, εt
r2

, εt
r3

, εt
r4

, ρ1, ρ2, and ρ3. On the other hand, ε1
m

, ε2
m

, 

ε3
m

, ε1
f
, ε2

f
, ε3

f
, and PL are the functions whose t-dependent shapes should be given in 

advance.  

 

(e) Solving the simultaneous differential equations (2-31) and (2-32) 
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We assume that change of the physical state in the cell wall starts at t = 0 and ends at t = Z. By 

integrating simultaneous equations (2-31) and (2-32) from t = 0 to t = Z under the proper 

initial condition, we can solve them for εL, εt
r1

, εt
r2

, εt
r3

, εt
r4

, ρ1, ρ2, and ρ3. Or, we can express 

those solutions as functions of t if we stop the integration at t (>0). As the initial conditions at 

t = 0, we assume 

εL(0) = εt
r1

(0) = εt
r2

(0) = εt
r3

(0) = εt
r4

(0) = 0,  ρ1 0( )= ˆ ρ 1, ρ2 0( )= ˆ ρ 2, ρ3 0( )= ˆ ρ 3 .  

Then, we divide the integral interval into n small parts, and denote the integrals of eqs.(21) in 

the i-th small interval ( (i−1)Z/n < t < iZ/n, i = 1, 2, ..., n ) as ∆iεL, ∆iεt
r1

, ∆iεt
r2

, ∆iεt
r3

, and ∆iεt
r4

. 

For example, ∆iεL is calculated as 
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(2-33) 

  

In each small integral interval, the functions ε1
m

(t), ε2
m

(t), ε3
m

(t), ε1
f
(t), ε2

f
(t), ε3

f
(t), and 

respective components in p, including ρ1, ρ2, and ρ3, must be given in advance. However, ρ1, 

ρ2, and ρ3 are unknown functions to be solved from the simultaneous differential equations 

(2-31) and (2-32). The values of ρ1, ρ2, and ρ3 which should be used in the i-th small interval 

can be estimated as the following process. At first, we integrate eqs.(2-32) in the (i-1)-th small 

interval. Then, we obtain 
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If n is taken as an enough large number, this equation gives 

  ∆i−1ρ1 =(∆i−1εt
r1−∆i−1εt

r2
)·ρ1

i−2
 ----------   etc.     

where ρ1
i-2

 is equal to ρ1(t) at t=(i-2)Z/n. Thus, the value of ρ1
i-1

, which is ρ1(t) in the i-th 

small interval, is given as 

ρ1
i−1

 = ρ1
i−2

 + ∆i−1ρ1 = (1 +∆i−1εt
r1−∆i−1εt

r2
)·ρ1

i−2
  ----------   etc.  (2-34) 

By using simultaneous recurrence euations (2-33) and (2-34), we can integrate simultaneous 

differential eqs.(2-31) and (2-32) numerically. 

 Thus, the natural strain of the deforming wood fiber model at a certain time t (=j·Z/n, j 
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is positive integer smaller than n ) can be derived as follows: 

( ) ( ) .  lim,lim
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  (2-35) 

Strains εL
-(t) and εT

-(t) give natural strains of the dimensional changes induced in the wood 

fiber model. However, the released strain of the growth stress and the swelling due to water 

sorption are measured as the nominal strains in the deforming wood specimen. Then, we need 

to solve eqs.(2-33) and (2-34) so as to give anisotropic dimensional changes of the wood fiber 

model as nominal strains.  

  The nominal strain of the deforming wood fiber model at a certain time t (= j·Z/n) in 

respective directions can be derived as follows, 
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  (2-36) 

If the values of α(Z) and β(Z) are smaller than 1%, changes of ρ1, ρ2, and ρ3 are small enough 

to be neglected. In that case, we can obtain the α(t) and β(t) from the first and the second 

formulae of the eqs.(2-31), which simplifies eqs.(2-36) as follows: 
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APPENDIX 

 

[1] Outline for the micromechanics of “the two-phase structure” introduced by Eshelby (1957, 

1959). 

 

Equivalent inclusion method (1): 

We consider a situation that a composite material covers the domain D, and inhomogeneity 

occupies a bounded region Ω inside D. Then, D−Ω stands for the matrix substance. Elastic 

constant in D−Ω is assumed to be C
M

, and that in Ω is C
I
. Moreover, we assume that heating 

will cause an eigen-strain (a coefficient of thermal expansion) εM
 in D−Ω, and εI

 in Ω. If 

thermal expansion occurs without any external load, a misfit of the dimensional change would 

be induced between both phases. By using the misfit strain εT
 (≡ εI−εM

), we can describe 

stress-strain relation in the inhomogeneity Ω as follows: 

  σ = C
I
 (ε – εI

) = C
I
 (ε – εM

 − εT
) ,     (3-A1) 

where ε is the compatible strain which is calculated from the observed displacement.  

 Let the region Ω be not inhomogeneity but an inclusion which has the same elastic 

constant as the matrix, that is, C
M

. In such a case, we could calculate the elastic strain energy 

of the composite material directly from the strain field (or from the stress field), since the 

elastic constant would become homogeneous everywhere in the composite material. Thus, it 

is expected that the stress analysis becomes quite simplified one. On the basis of such an idea, 

Eshelby (1957, 1957) developed a convenient procedure to predict the mechanical behaviors 

of the composite material. His theory was called “the equivalent inclusion method” afterward. 

 He imaginarily replaced the inhomogeneity Ω with “the equivalent inclusion” whose 

elastic constant is C
M

, and introduced the equivalent transformation strain εT*
 (≡ εI*−εM

), 

where εI*
 is the unknown eigen-strain of the equivalent inclusion. He assumed that the strain 

of the displacement in the equivalent inclusion (ε) takes the same value as that in the 

inhomogeneity. Then, the stress-strain relationship in the equivalent inclusion becomes as 

follows: 

  σ = C
M

 (ε – εI*
) = C

M
 (ε – εM

 − εT*
) ,     (3-A2) 

Esheby (1957, 1959) pointed out that the stress and the strain in the equivalent inclusion 

(3-A2) become identical with those in the actual inhomogeneity (3-A1) if the value of εT*
 (or 

εI*
) is properly chosen.  

C
I
 (ε – εM

 − εT
) = C

m
 (ε – εM

 − εT*
)      (3-A3) 
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Moreover, he proved that the strain of the displacement (ε) is related to the value of εT*
 by the 

following formula if the inclusion (inhomogeneity) is ellipsoidal: 

ε = SεT*
 ,         (3-A4) 

where S is called “Eshelby tensor” that is determined from the shape of the ellipsoidal 

inhomogeneity and the Poisson’s ratio of the matrix substance (Mura& Mori 1976). 

 Thus, we determine the value of εT*
 so as to satisfy the formulas (3-A3) and (3-A4) 

simultaneously. Afterward, by using the determined value of εT*
, we can handle the composite 

material as the homogeneous field of the elastic constant. 

 

Equivalent inclusion method (2): 

We consider the matrix substance with elastic constant C
M

, covering the domain D [model A], 

and the composite material having an inhomogeneity with elastic constant C
I
. We assume this 

inhomogeneity covers the closed region  Ω inside D [model B]. Let us give a load σ0
 to those 

materials. A uniform stress σ0
 and a uniform strain ε0

 are distributed in model A. On the other 

hand, in model B, a stress disturbance σ’ is superposed on the stress field σ0
 since an 

inhomogeneity exists. The same situation can be said for the strain field in model B (provided 

that we consider σ’=C
Iε’ in Ω, and σ’=C

Mε’ in D−Ω).  

We can determine the stress disturbance σ’ (or strain disturbance ε’) on the basis of “the 

equivalent inclusion method” (Eshelby 1957). We replace the inhomogeneity Ω with the 

equivalent inclusion (model C). In model C, we imaginarily induce an eigen-strain ε*
 in the 

equivalent inclusion without giving any external load. And, we calculate the strain of the 

dimensional change ε and the stress σ which are induced by the eigen-strain in the equivalent 

inclusion. The stress σ in model C is called “the eigen-stress”. The eigen stress σ in model C 

satisfies as the following formula  

σ = C
M

(ε−ε*
)   in Ω ,   σ = C

M ε  in D−Ω.    (3-A5) 

If the inclusion is ellipsoidal, ε and ε* can be related by the following formula: 

ε = Sε*
    in Ω,        (3-A6) 

where S is Eshelby’s tensor of the inhomogeneity. Then, the eigen-stress in the equivalent 

inclusion Ω is given as 

σ = C
M

(Sε*
 −ε*

)   in Ω .          (3-A7) 

According to the idea of “the equivalent inclusion method”, eigen-strain ε*
 in the region Ω of 

model C should be determined so as to satisfy the following relation: 

σ [in Ω of model B] = σ [model A] + σ [in Ω of model C], 
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that is to say,  

   C
I
(ε0

+ε’) = C
Mε0

 + C
M

(ε−ε*
) ,        (3-A8) 

provided that ε in model C is identified with ε’ in model B, which is also identified with Sε*
.    

Thus, the problem is attributed to the simultaneous algebraic equation whose unknown 

values are ε11*, ε12*, ε13*, ε22*, ε23*, and ε33*. Substituting the solution ε*
 into eq.(3-A6), we 

can determine the strain disturbance ε’ in model B (= ε in model C). Afterward, we obtain the 

stress disturbance σ’ in model B by the formulas, σ’ = C
Iε’ (in Ω) or σ’ = C

Mε’ (in D−Ω). 

 

[2] Homogenization of the stress field in the composite material by the mean field method 

 

We consider a situation that matrix covers the finite domain D, and numerous 

inhomogeneities are uniformly distributed inside D. We denote the elastic constant of the 

matrix substance by C
M

, and that of the inhomogeneity by C
I
. Our problem is to determine the 

stress field in this composite material. In this problem, we consult “the mean field method” 

developed by Mori and Tanaka (1973). Outline of “the mean field method” is given in the 

textbook written by Mura and Mori (1976).  

Since the volume of the domain D is finite, some inhomogeneity exists near the free 

surface of the material. Stress field in such an inhomogeneity is more or less disturbed by the 

free boundary of the material. To solve the stress field in this composite material, we first 

consider a special case that only one inhomogeneity exists inside the matrix. On the basis of 

the equivalent inclusion method, we can determine the stress field in the infinitely large 

material having one inhomogeneity. We call this stress field “Eshelby’s solution”, and denote 

it by σ∞
. Next, we find a correction term (called an image stress) σi

 that makes the stress field 

null on the free surface of the material, and superpose it on Eshelby’s solution σ∞
. Thus, σ = 

σ∞
+σi

 is the stress field in the finite body including one inhomogeneity.  

Second, we consider a general case that many inhomogeneities are distributed inside 

the finite body. In this case, Eshelby’s solution from one inhomogeneity would be affected not 

only by the image stress but also by Eshelby’s solutions from the other inhomogeneities. We 

call the sum of the image stress and Eshelby’s solutions from the other inhomogeneities “the 

background stress”, and denote it by σb
. Regardless of in the inhomogeneity or in the matrix, 

the background stress σb
 is widely distributed in the material.  

Let a point x be set inside the material. If the point x exists in any inhomogeneity Ω, the 

stress σ at the point x can be given as the sum of Eshelby’s solution σ∞
 and the background 
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stress σb
. If the point x does not belong to any inhomogeneity, the stress at the point x is the 

background stress σb
, which is nothing but the stress generated in the matrix substance. In 

such a sense, we identify the background stress with the stress in the matrix substance, and we 

sometimes denote σb
 by 〈σM〉.  

Our next question is to find the relationship between Eshelby’s solution σ∞
 and 〈σM〉. 

Before giving an answer to this question, we prove the following lemma: 

 

[Lemma] Volume integral of the internal stress field in the finite body becomes null, 

i.e.   ,0d

D

ij =σ∫ V          (3-A9) 

provided that dV=dx1dx2dx3. And, subscripts i, j mean tensorial suffices. 

 

- - - Proof - - - - 

By using Gauss’ theorem for divergence and the method of integration by parts, 

eq.(3-A9) can be deformed as follows: 

  ,ddddd

D

jkik,kj

D

ik

D
k

j
ik

D

jkik

D

ij ∫∫∫∫∫ σ−σ=
∂

∂
σ=δσ=σ

∂

VxSnxV
x

x
VV  

where δij is Kronecher’s symbol, and ∂D stands for the boundary surface of the 

domain D, and σik,k≡(∂σi1/ ∂x1)+ (∂σi2/ ∂x2)+ (∂σi3/ ∂x3). By the way, stress field σ 

must satisfy σijnj=0 on ∂D (Cauchy’s boundary condition), and σik,k=0 in D 

(equilibrium condition), then, the last side in the above equation becomes 0.  (q.e.d.) 

 

If there are n inhomogeneties in the composite material, we obtain the following expression 

from eq.(3-A9): 

  

    

σijdV

D

∫ = σ ijdV

n Ω
∫ + σ ijdV

D−nΩ
∫ = 0 .      (3-A10) 

The first term in the middle side can be written as nΩ(σ∞
+ 〈σM〉), and the second term can be 

replaced by (D−nΩ)〈σm〉. Thus, we obtain 

〈σM〉 = −φ·σ∞
,       (3-A11) 

where φ is the volume fraction of the inhomogeneities to the composite material. This formula 

can be expressed as the following equation:   

(1−φ)〈σM〉 + φ(σ∞
+ 〈σM〉) = 0.     (3-A12) 
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If we denote the mean stress in each inhomogeneity by 〈σI〉, it is obvious that 〈σI〉=σ∞
+〈σM〉, 

then, we can obtain the following formula: 

(1−φ)〈σM〉 + φ〈σI〉 = 0.      (3-A13) 

In Section 2-2, eqs.(3-A12) and (3-A13) are used as eqs.(2-4) and (2-5), respectively. 

 

 

[3] A note on the solution of the differential equation (2-23) 

 

Differential equation (2-23) is categorized into the nonhomogeneous linear ordinary 

differential equation of the second order with variable coefficients whose independent 

variable is r, and the unknown variable to be solved is σr. The equation (2-23) is called 

Euler-Caucy’s equation, and its solution and property have been well investigated before now.    

 We assume σr
h
 = r

m
, and substitute it into the corresponding homogeneous equation of 

(2-23), then, we can decide the characteristic root m. As the result, we obtain two functions 

ϕ1(r) (= r
−1+α

) and  ϕ2(r) (= r
−1−α

) as the bases of solutions of the homogeneous equation. 

Thus, we obtain the general solution of the corresponding homogeneous equation of (2-23): 

    σr
h = ˜ C 1 ⋅ϕ1 r( ) + ˜ C 2 ⋅ ϕ2 r( ) ,       (3-A14) 

where C1
~ and C2

~ are arbitrary constants.  

Next, we try to find a particular solution of nonhomogeneous equation (2-23) in the 

following manner called the method of variation of parameters. We try to determine the 

functions C1(r) and C2(r) in the following expression so that the σr
p
 becomes a particular 

solution of the nonhomogeneous equation (2-23), 

σr
p
 = C1(r)·ϕ1(r) + C2(r)·ϕ2(r) ,     (3-A15) 

provided that C1(r) and C2(r) must satisfy the following condition: 

C1´(r)ϕ1(r) + C2´(r)ϕ2(r) = 0      (3-A16) 

By substituting (1) into the differential equation (2-23), and considering the relation (3-A16), 

we derive the following relation: 

C1´(r)·r
2 
·ϕ1´(r) + C2´(r) ·r

2 
·ϕ2´(r) = A/(1 +2u)      (3-A17) 

where the superscript “´” on C1, C2, ϕ1, and ϕ2 means that the first derivative by r is taken for 

each function. We can regard eqs.(3-A16) and (3-A17) as the simultaneous algebraic 

equations having C1´(r) and C2´(r) as unknown variables, then, we can determine them as 

follows: 
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C1

′
r( ) = A

2α 1+ 2u( )r
−α

, C2
′

r( )= − A

2α 1+ 2u( )r
α

. 

We can easily obtain the indefinite integral of C1´(r) as follows: 

  

C1(r ) = A

1+ 2u
⋅ r

1−α

2α 1− α( ) + k 1 = A

1+ 2u
⋅ 1

2α
⋅ r

1−α −1

1− α
+ 1

1− α
 

 
 

 

 
 + k 1 .  

 (3-A18) 

We should look after the behavior of the right hand side of the above equation in a case of 

α→1+0. In such a case, the first term inside the bracket converges on “ln r”. However, the 

second term obviously diverge to negative infinity. Then, we require the following condition 

so that C1 (r) takes a certain finite value also in a case of α→1+0. 

    
k 1 = − A

1+ 2u
⋅ 1

2α 1− α( ) + k1 , 

where k1 is an arbitrary constant. Thus, C1(r) can be rather expressed as the following form: 

C1 r( )= A

1+ 2u
⋅ 1

2α
r

1−α −1

1−α
 

 
 

 

 
 + k1 .  

C2´can be easily integrated, then, the indefinite integral becomes 

  C2 r( )= − A

1+ 2u
⋅ r

1+α

2α 1+ α( ) + k2 . 

Thus, we obtain a particular solution of the nonhomogeneous equation (2-23)  

    

σp = A

1+ 2u
⋅ 1

2α
r

1−α −1

α −1

 

 
 

 

 
 −

A

1+ 2u
⋅ 1

2α
⋅ 1

1 + α
+ k1 ⋅ r

−1+α + k2 ⋅ r
−1−α

.   (3-A19) 

The sum of the general solution of the corresponding homogeneous equation (σr
h
 in 

eq.(3-A14)) and the particular solution of the nonhomogeneous equation (σr
p
 in eq.(3-A19)) 

gives a general solution of the nonhomogeneous equation (2-23), which becomes 
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[4] Detailed expressions of coefficients a11, a12, ----, a55; b11, b12, ---, b53; c11, c12, ---, c53; d11, 

d21, ---, d51 in eqs.(2-29-1~5). 
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a11 = Ω2α + A + B + C , a12 = D , a13 = E , a14 = −
1

6

α
ρ2

2 Λ2 Λ2 − 2Γ2( ), a15 = 0,  

b11 = H −
αΧ1

6M
Λ2 − 2Γ2( ) 1

ρ2
2 −1

 

 
  

 
 ρ1

2 −1

ρ1
2

 

 
  

 
 , b12 = α ⋅Φ2 −

1

6

Χ2

ρ2
2 α Λ2 − 2Γ2( ),  

b13 =
1

2
NαΛ2

1

ρ2
2 −1

 

 
  

 
 ρ3

2 −1

ρ3
2

 

 
  

 
 , c11 = I −

α∆1

6M
Λ2 − 2Γ2( ) 1

ρ2
2 −1

 

 
  

 
 ρ1

2 −1

ρ1
2

 

 
  

 
 ,  

c12 = α ⋅ Σ2 −
1

6

∆2

ρ2
2 α Λ2 − 2Γ2( ), c13 =

1

3
NαΛ2

1

ρ2
2 −1

 

 
  

 
 ρ3

2 −1

ρ3
2

 

 
  

 
 G3 ,  

d11 =
2

3

Λ2

M
α

ρ2

2

ρ2

2 −1

 

 
  

 
 1

S1r2

2

1

2π
,  

a21 = G1Q +
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Γ1 +

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 Γ2 +

1

2
MN ρ3

2 −1( ), a22 = 2G1Q ,  

a23 =
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Λ1 , a24 =

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 Λ2 + MN ρ3

2 −1( ), a25 = 0 ,  

b21 =
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Χ1 , b22 =

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 Χ2 , b23 =

3

2
MN ρ3

2 −1( ),  

c21 =
1

2

ρ1

2 −1

ρ1

2

 

 
  

 
 ∆1 , c22 =

M

2

ρ2

2 − 1

ρ2

2

 

 
  

 
 ∆2 , c23 = 0, d21 = 0  ,  

a31 = G1Q +
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Γ1 +

M

2
ρ2

2 −1( )Γ2
′ +

1

2
MN ρ3

2 − 1( ), a32 = 2G1Q ,  

a33 =
1

2

ρ1
2 − 1

ρ1
2

 

 
  

 
 Λ1 +

M

2
ρ2

2 −1( )Λ2 , a34 = MN ρ3
2 −1( ), a35 = 0 ,  

b31 =
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Χ1 , b32 =

M

2
ρ2

2 −1( )Χ2
′ , b33 =

3

2
MN ρ3

2 −1( ),  

c31 =
1

2

ρ1

2 −1

ρ1

2

 

 
  

 
 ∆1 , c32 =

M

2
ρ2

2 − 1( )∆2

′
, c33 = 0, d31 = 0  ,  

a41 = G1Q +
1

2
ρ1

2 −1( )Γ1
′ +

M

2
ρ2

2 −1( )Γ2
′ +

1

2
MN ρ3

2 −1( ), a42 = 2G1Q +
1

2
ρ1

2 −1( )Λ1 ,

 

a43 =
M

2
ρ2

2 − 1( )Λ2 , a44 = MN ρ3
2 −1( ), a45 = 0 ,  

b41 =
1

2
ρ1

2 −1( )Χ1
′ , b42 =

M

2
ρ2

2 −1( )Χ2
′ , b43 =

3

2
MN ρ3

2 −1( ),  
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c41 =
1

2
ρ1

2 −1( )∆1

′
, c42 =

M

2
ρ2

2 −1( )∆2

′
, c43 = 0, d41 = 0  ,  

a51 = G1Q +
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Γ1 +

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 Γ2 +

1

2
MN

ρ3
2 − 1

ρ3
2

 

 
  

 
 , a52 = 2G1Q ,  

a53 =
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Λ1 , a54 =

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 Λ2 , a55 = MN

ρ3
2 −1

ρ3
2

 

 
  

 
 ,  

b51 =
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 Χ1 , b52 =

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 Χ2 , b53 =

3

2
MN

ρ3
2 − 1

ρ3
2

 

 
  

 
 ,  

c51 =
1

2

ρ1
2 −1

ρ1
2

 

 
  

 
 ∆1 , c52 =

M

2

ρ2
2 −1

ρ2
2

 

 
  

 
 ∆2 , c53 = 0, d51 = 0  .  

 

Provided that detailed shapes of functions A, B, C, D, E, H, I, α, and β are as follows: 

 

A =
1

M

Γ2
′

Γ1

 

 
 

 

 
 

ρ2
2

ρ2
2 −1

 

 
  

 
 ρ1

2 −1( )Ω1 +
2

3
ρ1

2G1G0 −Γ1
′ + 2Λ1( )   

   
  ,  

B =
1

M

Γ2
′

3

 

 
 

 

 
 

ρ2
2

ρ2
2 −1

 

 
  

 
 β 2G1Q +

ρ1
2 − 1

ρ1
2 Γ1

 

 
  

 
 , α =

Γ2
′

Γ1

 

 
 

 

 
 

Λ1

Λ2

 

 
  

 
 , β =1 − α =1 −

Γ2
′

Γ1

 

 
 

 

 
 

Λ1

Λ2

 

 
  

 
 ,  

C = −α Λ2 − 2Γ2( ) 1

6

Γ2

ρ2
2 +

1

6

Γ1

M

 
 

 
 

1

ρ2
2 −1

 

 
  

 
 ρ1

2 −1

ρ1
2

 

 
  

 
 +

1

3

1

M

 
 

 
 

1

ρ2
2 −1

 

 
  

 
 G1Q

 
 
 

 
 
 

+ 1

2
N ⋅ Λ2 ⋅ α 1

ρ2
2 −1

 

 
  

 
 ρ3

2 −1

ρ3
2

 

 
  

 
 1+ 2

3
G3

 
 

 
 ,

 

D =
2

3

1

ρ2
2 −1

 

 
  

 
 1

M

 
 

 
 ρ2

2Γ2
′ 2β +

Λ1 − 2Γ1
′

Γ1

ρ1
2

 

 
 

 

 
 + α 2Γ2 − Λ2( )

 
 
 

 
 
 
G1Q  ,  

E =
1

6

Λ1

M

 
 

 
 

1

ρ2
2 −1

 

 
  

 
 ρ1

2 −1

ρ1
2

 

 
  

 
 2Γ2

′βρ2
2 − α Λ2 − 2Γ2( )( )  ,  

H =
Γ2

′

M

 

 
 

 

 
 

ρ2
2

ρ2
2 −1

 
 
  

 
 ρ1

2 −1

ρ1
2

 
 
  

 
 Φ1

Γ1

ρ1
2 +

1

3
β ⋅ Χ1

 
 
  

 
 ,

I = Γ2
′

M

 

 
 

 

 
 

ρ2
2

ρ2
2 − 1

 
 
  

 
 ρ1

2 −1

ρ1
2

 
 
  

 
 Σ1

Γ1

ρ1
2 + 1

3
β ⋅ ∆1

 
 
  

 
  .
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Chapter 3 
 

BIOMECHANICS OF WOOD FORMATION AND TREE GROWTH 
 

3-1 Mechanism of growth stress generation 

 

3-1-1 Background 

 

(a) Measurement of tree growth stresses 

Xylem fiber, including gymnosperm tracheid and angiosperm wood fiber, becomes mature 

after completion of the secondary wall followed by its lignification. During the secondary 

wall maturation, each xylem fiber tends to deform in its axial and diametral directions. Those 

dimensional changes are completely restricted by the neighboring tissues inside the actual 

xylem, which induces a mechanical stress in the cell wall of newly-formed xylem fiber. 

Consequently, two-dimensional stress distribution is set on the outermost surface of the 

secondary xylem of the tree stem. This is called the surface growth stress or the growth stress. 

The surface growth stress provokes a counteractive stress distribution in the older xylem, 

which is superimposed inside the stem after the repetition of the thickening growth. Thus, a 

three-dimensional residual stress distribution is formed inside the stem. 

We can detect the surface growth stress as follows on the basis of the strain-gauge 

method. In a standing tree, we remove the phloem and the immature xylem at each measuring 

position, and exposure the surface of the mature xylem. Thereafter, we paste two 

strain-gauges in the directions parallel and perpendicular to the grain, respectively, with a 

quick-dried glue, and connect them to the electric strain meter (see Fig. 3-1). Then, we release 

two-dimensional surface stress by making grooves of 1 – 2cm in depth around the 

strain-gauges with a handsaw and a chisel. Soon, we detect the released strains εL and εT in 

the longitudinal and tangential directions, respectively. After obtaining the released strains, we 

take wood blocks from each measuring position, and convert them into the samples for 

measuring the Young’s moduli, EL and ET, and the Poisson’s ratios, νLT and νTL. Thus, we can 

determine the surface growth stress by using following formulas (Sasaki et al. 1978): 

( ) ( )LLTT
LTTL

T
TTTLL

LTTL

L
L

1
,

1
εν+ε

νν−
−=σεν+ε

νν−
−=σ

EE
 .    (3-1) 

We must put “−” in front of right hand side of each equation since strains εL and εT are 
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obtained as the released strains of the residual stress σL and σT. By the way, νTL×νLT is quite 

smaller than 1, moreover, νTLεT is also smaller as compared with εL, then, we can simplify the 

first formula of eqs.(3-1) into the following formula. 

LLL ε×−≅σ E        (3-2) 

In the case that the divergence of EL among the measuring positions is thought to be 

negligible, we can use the value of εL as an indicator of the longitudinal growth stress σL 

(Archer 1987). From eq.(3-2), it is reasonable to consider that σL would be tensile 

(compressive) if εL was negative (positive). However, it is improper to use the value of εT as 

an indicator of σT since νLTεL is not exactly smaller than εT.  

 

Fig.3-1. Measurement of the released strains of two-dimensional surface 

growth stress on the outermost surface of the xylem by the strain-gauge 

method. 

 

 

(b) Examples of experimental results 

 

Normal wood (NW): 

Sasaki et al.(1978) collected many experimental data on the surface growth stress of 15 

Japanese domestic trees, including 13 species, on the basis of the strain-gauge method. As the 

result, they induced a conclusion that σL takes the value of 1~10 MPa (3.62 MPa in average), 

on the other hand, σT takes –0.2 ~ −1 MPa (0.38 MPa in average) in a straight trunk. Those 
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values correspond to the value of –0.02 ~ −0.1 % (−0.042 in average) for εL, and the value of 

0.04 ~ 0.15% (0.091 % in average) for εT. 

  

Compression wood (CW): 

In the CW region, the microfibril angle (MFA) in the middle layer of the secondary wall (S2) 

becomes larger, and the lignin content also becomes higher than in the NW region (Yamamoto 

et al. 1991, Yamamoto & Okuyama 1993, Sugiyama et al. 1993). From the observation using 

ultra-violet photomicroscope, some researchers clarified that the increase in the lignin 

concentration occurs at the secondary wall of the tracheid in the CW region (Fujita et al. 1978, 

Okuyama et al. 1998).  

 

 

 

The longitudinal growth stress is always tensile in the NW region, while it becomes 

large compressive in the CW region. The compressive growth stress in the longitudinal 

direction tends to increase with the MFA and the lignin content. Figure 3-2 shows the 

distribution of the longitudinal released strain of the surface growth stress (εL) along the 

height of the standing stem of an 18-year-old tilted Hinoki (Chamaecyparis obtuse) 

(Yamamoto et al.1991). In this case, the stem was crooked up to the height of 80 cm from the 

ground, where the values of εL were all expansive along the convex side (lower side of the 

leaning stem). Especially, at the nearest position to the ground, εL took the largest value of 

0.38 %. In each measuring position along the convex side of the inclined trunk, anatomical 

properties peculiar to the CW xylem were observed, of which intensity was proportional to 
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the magnitude of the expansive released strain. In this example, even in the concave side, 

expansive but small released strains were observed at the positions near the ground, which is 

attributed to the property of the opposite wood. 
 

Tension wood (TW): 

Most arboreal angiosperm produces the gelatinous fiber (G-fiber) in the upper side of the 

inclined stem or branch. We call the xylem containing the G-fiber “tension wood (TW)”. The 

G-fiber has a gelatinous layer (G-layer) as the innermost layer in its cell wall. The G-layer 

consists of highly crystallized and less-lignified polysaccharide microfibril, of which 

orientation is almost parallel to the fiber axis. In the TW region, the longitudinal growth stress 

becomes very large tensile stresses. Figure 3-3 shows peripheral distributions of the 

longitudinal released strain of the surface growth stress (εL) and the area fraction of the 

G-layer (g) in the outermost annual ring at the beast height of an inclined stem of a 

23-year-old Blacklocust (Robinia pseudoacacia) (Yamamoto & Okuyama 1994). The azimuth 

angle 0° corresponds to the uppermost side of the inclined stem. As can be seen from Fig.3-3, 

the maximum value of the contractive released strain amounts to –0.49% on the uppermost 

side of the leaning stem, where the area fraction of the G-layer to the total xylem area locally 

becomes highest. On the other hand, the value of εL becomes very small in the opposite wood 

region, where no G-fiber was formed. It is reported that the area fraction of the G-layer to the 

total xylem area is proportional to the contractive value of the longitudinal released strain in 

several angiosperm species (Okuyama et al. 1990, 1994, Yamamoto et al. 1992, Yamamoto et 

al. in press).  
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From those observations, it is rather reasonable to consider that the G-layer produces 

high tensile stresses in its axial direction, which induces very large tensile stress generation in 

the TW region. However, more than few researchers believe that the G-layer is mechanically 

too compliant to bear a large stress generation. They base their argument on the fact that the 

detached G-layer is often convoluted in the lumen of the transverse section that is sampled 

from the water swollen block, and it is easily peeled off the lignified layer in the same 

direction during microtoming. This gives an impression that the G-layer is attached only 

loosely to the remainder of the cell wall. On the other hand, Okuyama et al.(1990), Yamamoto 

et al. (1992), and Yamamoto et al.(in press) reported that the Young’s modulus of the G-layer 

in the direction parallel to the fiber axis becomes 1.5−3 times as large as that of the lignified 

wall. Lately, Clair et al. (in press) clarified that the G-layer in a small wood portion is not 

peeled off from the lignified wall even after the drying process besides the nearest positions to 

the crosscut end. Thus, they concluded that detachment of the G-layer often observed in the 

transverse section would be caused by the extremely high stress concentration from the 

microtome blade. Those evidences well support an idea that the cellulose microfibril (CMF) 

in the G-layer produces a high tensile stress in its axial direction.  

In the species belonging to the family Magnoliaceae, such as Liriodendron tulipifera, 

Magnolia obovata, or Magnolkia kobus, etc., a large longitudinal tensile stress is generated on 

the upper side of the leaning stem, where no G-fiber is formed. In such a region, the MFA 

becomes significantly lower, and the cellulose content becomes quite larger, furthermore, the 

lignin concentration is more or less smaller than in the regions on the lower side of the 

leaning stem or the straight stem (Okuyama et al.1990, 1994, Sugiyama et al.1993). From the 

observation using the ultra-violet photomicroscope, Yoshida et al. (2002) confirmed that the 

decrease in the lignin concentration in the TW xylem of Liriodendron tulipifera occurs in the 

secondary wall of the wood fiber in the region where a large tensile growth stress is measured. 

Such xylem properties become more remarkable in the G-layer, i.e. a pure cellulosic 

component, a high degree of crystallinity, a very small MFA. As mentioned above, it is 

considered that those characteristics in the G-layer induce the generation of the extremely 

high tensile growth stress in the TW xylem. In the case of rather primitive angiosperm, e.g. 

Magnoliaceae, a large cellulose content and a low MFA produce the similar effect as the 

formation of clear G-layer in the highly evolved eudicot species. However, the magnitude of 

the tensile growth stress in the “TW” region of those primitive species is more or less inferior 

to that of the eudicot species. For example, Okuyama et al. (1994) reported that the 
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longitudinal growth stress was 20 MPa at the largest in the TW region of a 51-year-old 

Liriodendron tulipifera, which is equivalent to –0.15 % in the released strain.  
 

(c) Previous theory on the mechanism of the growth stress generation 

 

Lignin swelling hypothesis: 

Based on numerous experimental observations, M.R. Jacobs (1938), an Australian scientist, 

induced a conclusion that the tree growth stress is generated in the secondary xylem during 

the secondary growth. Thereafter, not a few scientists in this field have proposed various 

hypotheses to explain the mechanism of the growth stress generation (see, Timell’s (1986) 

review). Up to present, two hypotheses have survived; one is “Cellulose tension hypothesis” 

and the other is “Lignin swelling hypothesis”. The first one was proposed by A.B. Wardrop 

(1965) who studied the formation of the G-layer and the rightning force in the tilted tree. 

Thereafter, Wardrop’s idea was strongly developed by R.K. Bamber (1978). The second one 

was proposed by H. Watanabe (1965) and J.D. Boyd (1972) who noticed the compressive 

stress generation in the CW xylem.  

The compellation “swelling” does not necessarily mean that the cell wall matrix swells 

by the impregnated lignin or other materials. However, some researcher used the expression 

“the lignin swelling” since the cell wall looks like more or less swollen during its lignification 

in their observations (Munch 1938, Onaka 1949, Wardrop 1965, Watanabe 1965, Boyd 1972 ). 

Among those pioneers’ works, Munch (1938) and Onaka (1949) discussed the cause of the 

rightening movement in the tilted gymnosperm in relation to two-phasic structure of the cell 

wall ( especially, in relation to the MFA in the S2 layer). Their ideas were developed into a 

more sophisticated theory, “the lignin swelling hypothesis” by H. Watanabe and J.D. Boyd. 

Wardrop (1964) also pointed out the possibility that the lignification often makes the cell wall 

swollen, however, he did not develop this fact into the mechanism of the growth stress 

generation.  

 Watanabe (1965) and Boyd (1972) applied their “lignin swelling hypothesis” to explain 

not only the origin of the longitudinal compressive stress in the CW xylem but also the origin 

of the tensile stress generation in the NW and the TW xylem. Their theory can be summarized 

as the following:  

During the cell wall maturation, the lignin precursors are staffed into the gaps of the 

polysaccharide framework and the matrix region, that had already been deposited, and 
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they polymerized immediately. After repeating this process, the amount of the matrix 

substance increases irreversibly inside the matrix region of which volume is spatially 

limited. As the result, the matrix tends to swell isotropically, however, free expansion of 

the matrix skeleton is restricted by the rigid framework of the polysaccharide bundle. 

Thus, the cell wall tends to expand largely in the direction perpendicular to the cellulose 

microfibril orientation, which causes the deformation of the wood fiber that is 

dependent on the MFA in the S2 layer. Free dimensional change of the wood fiber is 

fully restricted inside the actual stem, thus, anisotropic growth stress is generated in the 

newly-formed xylem. 

Based on this idea, Boyd (1972) made a theoretical calculation on the observed relationship 

between the longitudinal growth stress and the MFA. In his calculation, he adopted a 

mechanical model that Barber & Meylan (1964) introduced to explain the anisotropic 

shrinkage of drying S2 element. His calculation succeeds in qualitatively explaining the fact 

that the longitudinal compressive stress tends to increase with the MFA and the lignin content 

in the S2 layer. However, his calculation often underestimates the magnitude of the tensile 

stress generated in the region of the small MFA. Furthermore, his theory never explain a large 

tensile growth stress generation in the TW xylem with a very small MFA, since his model 

always gives compressive stress in the region of very small MFA, which seriously contradicts 

the experimental fact.   

 

Cellulose tension hypothesis: 

The idea on “the cellulose tension hypothesis” was originally proposed by Wardrop (1965) 

who investigated the relation between the tensile stress generation and the G-layer formation 

in the TW fiber.
(1)

 Thereafter, R.K. Bamber (1978) developed Wordrop’s idea into a new 

theory which explains the origin of the growth stress not only in the TW region but also in the 

NW and the CW regions. As an opponent of “the lignin swelling hypothesis”, Bamber has 

strongly propagated this theory, therefore, it is widely believed that he is the most devoted 

polemist of “the cellulose tension hypothesis”. His theory is summarized as the following: 

The CMF generates a high tensile stress in the direction parallel to its molecular chains 

during the cell wall maturation, which is converted into a very large longitudinal tensile 

growth stress in the TW fiber with a small MFA, and a large longitudinal compressive 

growth stress in the CW fiber with a large MFA. The lignin deposition does not take 

part in the growth stress generation, which only contributed to the increase in the 
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compressive strength of the CW xylem   

He presumed that an increase in the CMF crystallinity causes a contractive force in the CMF 

bundle in the same manner as Wardorop’s early idea. His theory can explain the origin of the 

longitudinal tensile growth stress in the TW and the NW fiber with small MFAs, however, it is 

more or less meaningless for the compressive stress generation in the CW region. Afterward, 

he improved his early theory so as to explain the longitudinal compressive stress generation in 

the CW region without any vagueness, that is, as the following (Bamber 2001):  

In the CW region with a large MFA, the CMF bundle behaves as a helical spring which 

was formed in a compressed state, then, it exerts a large compressive growth stress in 

the longitudinal direction.  

If he presumes that the CMF behaves as a pre-compressed helicoidal spring, he must explain 

what is the original force to compress the helical spring of CMF. As for the explanation on the 

compressive stress generation in the CW xylem, his new idea is no more “the cellulose 

tension hypothesis”, and he implicitly recognize that one should presume an other additional 

mechanism than “the cellulose tension hypothesis” so as to explain the origin of the growth 

stress generation over a wide range of the MFA.  

B.F. Wilson (1981) had already pointed out that neither of above two theories alone 

seems adequate to explain the experimental phenomena over a wide range of the MFA. He 

suggested that integration of those two theories could possibly solve the discrepancy in each 

theory. On the other hand, progress in the strain-gauge technique enabled us to collect the 

numerous data on the surface growth stress both in the NW, the TW and the CW regions 

(Kikata et al.1972, Kikata & Miwa 1977, Sasaki et al. 1978, Okuyama et al. 1981, 1983). This 

developed Wilson’s suggestion into a more sophisticated theory, i.e. “the unified hypothesis” 

proposed by Okuyama and his associates afterward.
(2)

  

 

Unified hypothesis:  

On the basis of numerous data on the released strains of the growth stress over a wide range 

of the MFA, Okuyama and his associates clarified that both the value of the released strain 

and the intensity of the reaction wood anatomy vary monotonously and continuously from the 

NW region to the CW or the TW regions. This means that the common mechanism should 

control the magnitude and the sign of the growth stress in the NW, the CW, and the TW 

regions. Moreover, they revealed that the mechanism of “the lignin swelling hypothesis” 

becomes actualized in the region with a large MFA, on the other hand, the mechanism of “the 
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cellulose tension hypothesis” becomes effective in a small MFA region. Then, Okuyama et 

al.(1986), and Yamamoto and Okuyama (1988) considered that both theories are 

indispensable for explaining the origin of tree growth stress, and they developed Wilson’s 

(1981) idea into a new theory that can explain the observed relationship between the 

anisotropic surface growth stress and the MFA in the S2 layer. They call their new theory “the 

unified hypothesis”, which is summarized as the following:  

Just after completion of the CMF framework as a bundle, the irreversible lignin 

deposition starts in the gaps between the CMF bundles. As the result of it, the matrix 

skeleton tends to expand isotropically. The CMF bundle in the secondary wall 

simultaneously tends to contract in its axial direction by a certain biomechanical change 

caused in the CMF framework. Thus, in a short period ∆t, expansive inelastic strain ∆εm
 

and the contractive one ∆εf
 are generated in the matrix skeleton and the CMF bundle, 

respectively. These two inelastic strains cause the wood fiber to deform isotropically. 

However, free deformation of each fiber is fully rectricted inside an actual stem. Thus, 

anisotropic growth stresses, σL and σT, are generated in the newly-formed xylem. Signs 

and intensities of σL and σT are controlled by the MFA and the magnitudes of ∆εm
 and 

∆εf
.  

 

 

 

Figure 3-4 shows the observed relationships between the released strains, εL and εT, and 

the MFA in the S2 layer of 9- and 34-year-old sugi trees (Cryptomeria japonica) having tilted 

stems (Yamamoto & Okuyama 1988, Yamamoto 1998). As can be seen from the figure, εL and 

εT are highly dependent on the MFA in the S2 layer. This result can be naturally understood 
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on the basis of “the unified hypothesis”.  

To make this hypothesis more scientific one, it is indispensable to confirm the 

mechanical propriety and the biogenetic consistency of “the unified hypothesis” by a 

quantitative discussions using a continuum mechanics model that imitates fine composite 

structure of the multi-layered wood fiber and its differentiating process as true as possible. 

This is the main object in the present section. 

 

3-1-2 Mechanical model of differentiating wood fiber 

 

(a) Parameters used for the modeling 

It is considered that the released strain of the surface growth stress is equivalent to “the 

growth strain” which is defined as the elastic component in the strain of the free dimensional 

change that a virtually isolated wood fiber would produce during its secondary wall 

lignification. This is almost true in case of the longitudinal strain, which was already proved 

in Chapter 2 by the discussion based on the application of the simple mixture law to a 

homogeneous wood specimen that consists of a large amount of same shaped and same sized 

wood fibers. In this section, we will simulate the generation process of the growth strain of a 

single wood fiber. 

In the present simulation, we adopt a complex circular cylinder model having three 

layers, the compound middle lamella (CML), the outer layer of the secondary wall (S1), and 

its middle layer (S2), for calculating the dimensional change of maturing wood fiber.
(3)

 As 

described in Chapter 2, each layer is composed of the polysaccharide framework as a bundle 

and the lignin-hemicellulose matrix as a skeleton. The framework bundle consists of cellulose 

microfibril (CMF) and non-cellulosic polyose which is oriented in the direction along the 

molecular chain of the cellulose. The matrix skeleton is composed of lignin and non-oriented 

polyose e.g. xylan. According to “the reinforced-matrix theory”, they occupy the same 

domain of the cell wall elsewhere in the macroscopic limit.  

 In each layer of the secondary wall, the CMF is oriented in a certain direction, which is 

the microfibril angle (MFA), 5° ~ 50° in the S2 layer, and 90° in the S1 layer. In the CML, the 

CMF is randomly oriented, which makes the CML mechanically isotropic. The S3 is not taken 

into consideration in the present model since its volume is quite smaller than those in the S1 

and the S2. 

 By using eqs.(2-37) which was derived in Section 2-2, we can calculate the growth 
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strains εL and εT. In the present case, eqs.(2-37) is derived from the following differential 

equations: 

dεL = f11(p) dε1
m

 + f12(p) dε2
m

 + f13(p) dε3
m

 + f14(p) dε1
f
 + f15(p) dε2

f
 + f16(p) dε3

m
 

dεT = f21(p) dε1
m

 + f22(p) dε2
m

 + f23(p) dε3
m

 + f24(p) dε1
f
 + f25(p) dε2

f
 + f26(p) dε3

m
 

(3−3) 

Divided by a short period dt, eqs.(3-3) become  
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where f11, f12, - - - -, f26 are functions of p, and p is a parameter vector whose components are 

θ, ρ1, ρ2, ρ3, Q, G1, G2, G3, M (=S2/S1), N (=S3/S2). Several components in p depend on 

elapsed time t, while θ, ρ1, ρ2, ρ3, are independent of t.
(4)

 In either case, each component in p 

should be given in advance as a known function of t or a constant.  

 ε1
m

, ε2
m

, ε3
m

, ε1
f
, ε2

f
, ε3

f
 in the right hand side of eqs.(3-3) or (3-4) are functions of t, 

and these quantities are eigen-strains generated in the frameworks or the matrix substances 

during the secondary wall maturation. Superscripts “f” and “m” refer to the framework and 

the matrix, respectively. Subscript in each quantity stands for number of the wall layer (1 for 

S1, 2 for S2, and 3 for G). Functional shapes of ε1
m

, ε2
m

, ε3
m

, ε1
f
, ε2

f
, and ε3

f
 should be given 

in advance as known functions of t when integrating the differential equations (3-4). 

 In this section, we discuss the behavior of the softwood tracheid or the hardwood 

normal wood fiber. Then, we eliminate the terms of ε3
m

 and ε3
f
 in addition to ρ3, G3, and N in 

eqs.(3-3) and (3-4). The values of θ, ρ1, ρ2, and h are determined from the microscopic 

observation and the image analysis. We can calculate Q (=S0·h/(r1·E1)), G1 (=E1/S1), and G2 

(=E2/S2) after determining the values of S0, E1, S1, E2, and S2.  

It is considered that the framework bundle in each layer of the secondary wall is a 

parallel composite of the uni-directionally oriented polysaccharide consisting of the 

crystalline cellulose and non-crystalline polyose, and the void. Non-crystalline polyose is a 

mixture of non-crystalline cellulose, (acetyle-)glucomannan, and so forth. Similar idea is 

applied to the case of the isotropic matrix skeleton which is a blended compound of lignin, 

xylan, and the void. To determine the values of E1, S1, E2, and S2, applying the simple mixture 

law to the polysaccharide framework bundle and the matrix skeleton, we derive the following 

formulas:  

Ei = Ai·Ci·Ecry + Ai·(1−Ci)·ψ(τ)·Epoly ,   
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 Si = {1−Ai + (1−Ci)·Ai·(1−ψ(τ))}·Ematr/(1+νi) ,  (i = 1, 2)  (3-5)  

where Ai and Ci are respectively the weight ratio of the polysaccharide framework and its 

crystallinity in each layer of the secondary wall. In eqs.(3-5), we introduced a function ψ(τ) 

whose independent variable τ is the moisture content normalized by the moisture content at 

the FSP. We assumed that ψ(τ) monotonously decreases with increase of τ, and satisfies 

ψ(τ)|τ=0=1 and ψ(τ)|τ=1=0. In our study, we assume the matrix skeleton behaves as an 

incompressive material like an elastomer, then, we use 0.5 for the value of ν. 

The values of Ecry, Ematr, Epoly, and the weight ratio of polysaccharide framework in 

each layer become important factors when calculating eqs.(3-5). We adopt 134 GPa as the 

value of Ecry, which is not affected by the water adsorption (Sakurada et al. 1962). On the 

other hand, Ematr is highly dependent on the moisture content as proved by Cousins (1976, 

1978). In the present simulation, we use 2 GPa for Ematr at the humid state, and 4 GPa at the 

oven-dried state. When we derived eqs.(3-5), we assumed that only dried part among the 

oriented polyose takes part in constituting the framework bundle, however, humid polyose is 

integrated into the isotropic matrix skeleton. This is why we assume that ψ(τ) is 

monotonously decreasing function of τ in its definition. We used 8 GPa as the axial Young’s 

modulus of dried polyose (Epoly) with reference to Cousins’s (1976) report.
(5)

  

Values of A1, C1, A2, and C2 in the completed secondary wall are hypothesized in Table 

3-1(a) in addition to the values of A0 and C0 in the CML. In this simulation, we will simulate 

the generation of the growth strain in the late wood tracheid of sugi. Then, being conscious of 

the anatomical properties of sugi late wood, we hypothesized the values of ρ1, ρ2, and h. The 

values of ρ1, ρ2, F, E1, E2, S0, S1, and S2 used for the present simulation are calculated as 

displayed in Table 3-1(b). The value of S0 can be obtained as described in Footnote.
(6) 
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(b) Modeling the maturation process of the secondary wall 

By using the autoradiography, Terashima and his associates came to a conclusion that cell 

wall maturation, that is lignification, proceeds in the three distinct stages preceded by 

deposition of carbohydrates (e.g. Terashima 1990). In the softwood tracheid, the lignification 

starts almost concurrently with the formation of the polysaccharide framework of the 

secondary wall. The first lignification occurs at the cell corner and the intercellular layer. 

After that, the second slow lignification proceeds at the primary wall and the S1 layer in 

parallel with the formation of the S2 and the S3 layers. Finally, the third main lignification 

occurs in the secondary wall just after the carbohydrate framework are deposited in the 

secondary wall in order of the CMF and other polyose. Some researcher commented that the 

lignification proceeds centripetally (e.g. Takabe et al.1992).  

 In the present simulation, we divided the lignification process of the secondary wall 

into two steps. On the first step, completion of the matrix skeleton in the S1 layer proceeds by 
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deposition of the matrix substances, preceded by completion of the polysaccharide framework 

in the S1 and the S2 layers. On the following step, the matrix skeleton in the S2 layer is 

deposited, and the formation of a xylem cell wall is finished. Matuation of the matrix skeleton, 

that is, lignification, starts at t = 0, and ends at t = T1 in the S1 layer. And, that in the S2 layer 

starts at t = T1, and ends at t = T2. During the lignification process in each layer, values of the 

parameters Si, εi
m

, and εi
f
 (i = 1, 2) tend to vary their values monotonously with increase of the 

lignin content, and reach the terminal values at the end of the process. On the other hand, it is 

considered that the values of Ei (i = 1, 2) are constant during the lignification process in each 

layer, since the polysaccharide framework has been already completed before the lignification 

starts. For the similar reason, we suppose the parameters θ, ρ1, ρ2, and Q are constant for t. In 

this process, a virtually isolated wood fiber tends to deform in its axial and diameter 

directions, which is the growth strain of the newly-differentiated wood fiber. The growth 

strain is calculated as follows by integrating eqs.(3-4) along the lignification process of the 

secondary wall (0 ≤ t ≤ T2). 
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It is natural to assume the initial condition, εL(0) = 0. εT(0) = 0. 

 

(c) Integral conditions – assumed for time-dependent parameters  

From the above-mentioned discussion, we obtained rough images on the functional shapes of 

time-dependent parameters S1(t), ε1
m

(t), ε1
f
(t), S2(t), ε2

m
(t), ε2

f
(t). They are controlled by the 

lignin content which varies smoothly and monotonously in each layer, then, we can postulate 

the following condition on the functional shapes of the parameters S1(t), ε1
m

(t), ε1
f
(t), S2(t), 

ε2
m

(t), ε2
f
(t): 

 

[Condition 3-1] The t-dependent parameters Si(t), εi
m

(t), and εi
f
(t) (i =1, 2) can be 

expressed as follows by introducing the functions ϕ1 and ϕ2 which vary from 0 to 1 

in the range of 0≤t≤T2. 

    Si(t ) = ki ⋅ϕ1(t), εi
m

(t) = mi ⋅ϕ i(t ), εi
f
(t ) = ni ⋅ ϕi(t ) .   (i = 1, 2)    (3-7)  
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where ki, mi, and ni are constants, and P(t) and Q(t) are monotonously increasing and 

differentiable functions which vary from 0 to 1 smoothly in respective domains. // 

 

Condition (3-1) assumes that the functional shapes of S1(t), ε1
m

(t), and ε1
f
(t) become similar 

one another in 0  ≤ t ≤ T1, the same holds for S2(t), ε2
m

(t), and  ε2
f
(t) in T1  ≤ t ≤ T2. We deduce 

the following proposition: 

 

[Proposition 3-1] If we assume Condition (3-1), the integration (3-6) does not 

depend on either the functional shapes of ϕ1(t) and ϕ2(t) (or P(t) and Q(t)), nor the 

times T1 and T2. It depends on only ki, mi, and ni (i = 1, 2).  //  

 

Proof for Proposition (3-1) is described in Footnote (7). 

 

 

3-1-3 Simulated result and discussion  

 

When we integrate eqs.(3-6) under the condition (3-1), we have only to give care to the 

terminal values of t-dependent parameters S1(t), ε1
m

(t), ε1
f
(t), S2(t), ε2

m
(t), ε2

f
(t), which were 

introduced as k1, m1, n1, k2, m2, and n2 in this order (see equations (3-7)). The values of k1 and 

k2 are shown in Table 3-1(b) in addition to the values of S0, which can be determined from the 

weight ratio of the polysaccharide framework to whole cell wall substance and the degree of 

crystallinity in each layer. The quantities m1, m2, n1, and n2 are the terminal values of the 

internal expansive terms, i.e. eigen strains of the matrix skeletons and the framework bundles 

which are generated during the secondary wall lignification. From the concept of “the lignin 

swelling hypothesis”, m1 and m2 become positive values. On the other hand, from the concept 

of “the cellulose tension hypothesis”, n1, and n2 would take negative values.  

Here, supposing various values as m1, m2, n1, and n2, we integrate eqs.(3-6), and 

compare the simulated result with the experimental one. Thus, we can verify the physical 

proprieties of both concepts, i.e., “the lignin swelling hypothesis” and “the cellulose tension 

hypothesis”. By the way, as shown in Fig.3-4, the growth strain generated in the 
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newly-formed xylem is strongly affected by the MFA in the S2 layer. Thus, in the present 

sub-section, we will try to explain the observed relationship between the released strains of 

the anisotropic surface growth stress and the MFA of a sugi tree having a crooked stem by 

integrating eqs.(3-6) under Condition (3-1).  

 

(a) Effect of “the Lignin swelling hypothesis” 

We firstly discuss the physical propriety of “the lignin swelling hypothesis”. Here, we assume 

various positive values as m1 and m2 on the basis of the concept of the lignin swelling 

hypothesis. In the present simulation, we suppose m1 (= ε1
m

(t)t =T1) is more or less larger than 

that of m2 (= ε2
m

(t)t =T2) since the content of the matrix substance (lignin) is higher in the S1 

layer than in the S2 layer. On the other hand, we suppose n1 (= ε1
f
(t)t =T1) = n2 (= ε2

f
(t)t =T2) 

= 0. 

 Figure 3-5(a) are the calculated results on the relationships between εL, εT, and θ (MFA 

in the S2 layer). Dots are the experimental results of sugi trees already shown in Fig.3-4. 

Calculated εL takes positive value over all ranges of the MFA, that is, the wood fiber model 

tends to expand in the direction of fiber axis for all MFAs. Moreover, as the values of m1 (= 

ε1
m

(t)t =T1) and m2 (= ε2
m

(t)t =T2) become larger, the curve of εL tends to shift upward from a 

to d in the figure. Thus, “the lignin swelling hypothesis” can explain the mechanism of the 

longitudinal compressive stress generation in the CW region with large MFAs, however, it 

cannot explain the origin of tensile stress generation in the TW or NW region with small 

MFAs. Furthermore, εT becomes considerably larger than the experimental one. 

 

(b) Effect of “the cellulose tension hypothesis” 

In this case, we integrate eqs.(3-6) supposing various negative values as n1 (= ε1
f
(t)t =T1) and 

n2 (= ε2
f
(t)t =T2), on the other hand, we supposed m1 (= ε1

m
(t)t =T1) and m2 (= ε2

m
(t)t =T2) are 

all nil during the secondary wall lignification. Figure 3-5(b) shows the simulated results 

calculated on the basis of “the cellulose tension hypothesis”. Over a wide range of the MFAs, 

the wood fiber model tends to contract in its axial direction, and the curve of εL tends to shift 

downward from α to δ as the values of n1 (= ε1
f
(t)t =T1) and n2 (= ε2

f
(t)t =T2) become larger. 

These can explain the generation of the longitudinal tensile stress in the region of small MFAs, 

however, it cannot explain the mechanism of the longitudinal compressive stress generation in 

the CW region with large MFAs. Besides, the calculated value of εT becomes negative over all 

ranges of the MFAs which is seriously contradictory to the observed fact that the tangential 
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released strain takes almost constant positive values of 0.1%. 

 

 

 

(c) Effect of “the unified hypothesis” 

The last simulation concerns the effect of “the unified hypothesis” which takes both 

hypotheses into consideration. In this simulation, we supposed that m1 (= ε1
m

(t)t =T1) and m2 

(= ε2
m

(t)t =T2) take positive values of 1.0% and 0.5% respectively, on the other hand, we 

assumed various negative values for n1 (= ε1
f
(t)t =T1) and n2 (= ε2

f
(t)t =T2). According to the 
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simulation, εL takes negative value in the region of less than 30° of MFAs, and εL is nearly 

compatible with the observed one. In the region of more than 30° of MFAs, positive value of 

εL tends to increase with increase in the MFA. Those results well represent the observed data 

quantitatively as shown in Fig.3-5(c). In a case of n1 = n2 = −0.0015 (= −0.15%), the curve of 

εL can well represent the experimental tendency. On the other hand, calculated value of εT 

becomes pretty larger expansion than the observed value. It is considered that the residual 

stress in the transverse direction is easy to decrease due to stress relaxation in comparison 

with that in the longitudinal direction inside an actual xylem, then, the observed value of 

released strain in the tangential direction is considered to become slightly smaller than the 

value calculated by means of elastic analysis. 

 

(d) Discussions  

As we have seen, “the unified hypothesis” can explain clearly the observable relations 

between released strains of the surface growth stresses and the MFAs. This leads us to the 

following conclusions: 

The anisotropic growth stresses in tree xylem are generated in wood cell walls by an 

interactive effect between the increase in the contractive stress generated in the 

polysaccharide framework bundle and the increase in the expansive stress generated in the 

matrix skeleton of the secondary wall by the irreversible deposition of lignin. The CMF 

orientation in the S2 layer, i.e. MFA, is one of the most important factor which control the 

magnitudes and the signs of the growth stress in the cell wall.  

 However, we have not yet discovered conclusive evidences to prove that contractive 

stress is spontaneously generated in the framework bundle. The same may be said of the 

expansive stress generation in the matrix skeleton. We must explain how the tensile stress 

originates in the polysaccharide framework bundle, and how the compressive stress is 

generated in the matrix skeleton during the secondary wall maturation, on the basis of the 

experimental and theoretical verifications. 

 

3-1-4 Summary and concluding remarks 

 

In Chapter 2, we showed that the wood fiber tends to deform in its axial and the diameter 

directions by the generation of the eigen-strains in the polysaccharide framework bundle and 

the lignin-hemicellulose matrix skeleton when a certain biomechanical state change occurs in 
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the cell wall. In this chapter, we discussed the important roles of those eigen-strains on the 

generation of the growth stress in the differentiating xylem fiber. Here, we postulated the 

secondary wall maturation (lignification) as a biomechanical state change occurring in the cell 

wall. 

 The simulation using the softwood tracheid model deduced that expansive eigen-strains 

are generated in the matrix skeleton during the secondary wall lignification, which finally 

amount to 0.5~1%. At the same time, contractive eigen-strains are generated in the 

polysaccharide framework bundle, which become –0.15% during the secondary wall 

lignification. This result strongly supports the unified hypothesis as a possible theory to 

explain the origin of the surface growth stress. 

 In the TW region, the G-fiber is often formed, where a very large contractive growth 

stress is generated in its longitudinal direction. However, the analytical model presented here 

is not applicable to the G-fiber property. In Chapter 5, we will analyze the origin of the very 

large growth stress in the TW region by using the G-fiber model which is an improved version 

of the tracheid model presented here. 

 

 

Footnote:  

 

(1) Wardrop (1965) observed a phenomenon that the G-layer often tends to shrink in its 

volume during the cell wall maturation. This observation led him to a conception that the 

shrinking CMF in the G-layer causes a very large tensile stress in the G-fiber. To explain 

the origin of the contractive stress of the CMF, he proposed a hypothetical mechanism as 

the following (Wardrop 1956): 

“If cellulose is initially deposited wholly or partly in this condition (= 

paracrystalline condition) then it is reasonable to assume that subsequent 

crystallization would involve a contraction in volume and it is suggested that 

this phase of crystallization may be the source of the contractile forces 

generated during differentiation. In general the crystallinity of cellulose seems 

highest when the lignin content is low and it may be that crystallization is 

facilitated by the absence of lignin. Such a hypothesis remains to be proved, 

since it has been shown in this laboratory (= Division of Forest Products, 

CSIRO, Australia) (unpublished data) that the cellulose of fresh undried 



 57

tension wood is highly crystalline although this in itself does not preclude the 

possibility that contraction takes place as a result of crystallization of the 

cellulose.”  

In short, the CMF is deposited in only a partly crystalline state, subsequent 

crystallization proceeds when lignification starts, and further lignification serves inhibit 

the endless increase of crystallization of the CMFs. According to his idea, CMF 

crystalinity becomes very low in the CW xylem having a high content of lignin, while it 

takes a high value in the TW xylem containing a very low lignin. Those idea was partly 

verified by himself on the basis of the observation of the X-ray diffraction pattern from 

the TW, the NW, and the CW xylem, which showed that the intensity of non-crystalline 

scattering from the TW is clearly lower than that of the NW, and the CW. Moreover, he 

reported that the computed crystalline size becomes larger by the delignification, which 

is more prominent in the NW region, while less prominent in the TW region. However, 

no one has not succeeded in detecting either the significant increase in the CMF 

crystallinity or generation of the contractive stress in the CMF framework during the 

cell wall maturation. 

 

(2) The first reference that the terminology “the unified hypothesis” was used is Okuyama’s 

(1993) review article on the tree growth stress, in Japanese, “統一仮説 (Toh-itsu 

kasetsu)”. English terminology has been used from Yamamoto et al. (1995). 

 

(3) The wood fiber model, consisting of the CML the S1, and the S2 layers, describes 

mechanical properties of the CW, and the NW tracheid, the hardwood NW fiber, and the 

TW fiber in Magnoliaceae which belongs to a primitive angiosperm without forming 

clear G-fiber in the TW xylem. In Chapter 5, we will discuss the mechanical properties 

of the TW xylem by using the G-fiber model having the CML, the S1, the S2, and the G 

layers.  

 

(4) Correctly speaking, thickness in each layer tends to vary with the elapsed time during 

the cell wall maturation, of which behaviors are described as the differential equations 

(2-32). Eqs.(2-32), having ρ1, ρ2, ρ3 as solutions to be solved, are coupled with 

eqs.(2-31), having εL, εT
r1

 (=εT), εT
r2

, εT
r3

 as unknowns to be solved. If we can assume 

that εL and εT would not exceed 1%, we may eliminate the differentials of ρ1, ρ2, and ρ3 
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as very small quantities. In such a case, coupling between eqs.(2-31) and (2-32) are 

dissolved into eqs.(3-3) (or (3-4)). For the present, no one has reported that observed 

values of εL and εT become larger than 1%, then, the above assumption is enough valid.  

 

(5) Srinivasan (1941) measured the elastic modulus of the electrochemically prepared 

lignin and molded lignosic preticipate, and obtained 2GPa at the humid state, which is 

taken equal to the value of Ematr. Afterward, Cousins (1976) tried to measure the elastic 

modulus of the rod of chemically isolated lignin in relation to the moisture 

dependencies. He concluded that elastic modulus of the molded lignin takes 4~8 GPa at 

the fully dried state, and it linearly decreases with the moisture content, and it becomes 

2~3 GPa at the humid state. Cousin (1978) also reported that elastic modulus of the 

isolated hemicellulose takes a value of 8 GPa at a low moistute content, and it decreases 

to 0.01 GPa by moisture saturation. Besides, Ishikawa et al.(1998) estimated the elastic 

modulus of the amorphous region in the cellulose microfibril of bleached ramie fiber, 

and she obtained 8~10 GPa at the fully dried state. In the actual cell wall, it is 

considered that there are covalent and/or hydrogen bonds among hemicellulose, lignin, 

and amorphous cellulose, and some kind of hemicellulose is oriented along the cellulose 

microfibril, and the other is isotropically blended with lignin (Liang et al. 1960, 

Fushitani 1973, Salmen 2000), which prevents a flow of hemicellulose that Cousins 

(1978) found. If some flow of hemicellulose would occur in the cell wall, the elastic 

modulus of the matrix substance should become more or less smaller than that of 

isolated and purified lignin. This is why the elastic modulus of the isolated matrix 

substance at the humid state given by Srinivasan (1941) was a little smaller than that of 

isolated lignin. 

 

(6) In the actual compound middle lamella (CML), the CMF is oriented randomly in the 

matrix skeleton so that the elastic property of the CML is rather isotropic, and the value 

of S0 is considered to be slightly larger than the value of Smatr. To calculate the value of 

S0, we assume that the CML is a quasi-isotropic material which is made of four 

unidirectional continuous fiber laminae with an equal angle between each adjacent 

lamina. In this model, we should pay attention that each lamina is not a plate of the 

framework bundle but the composite consisting of the framework bundle and the matrix 

skeleton. We denote the elastic constants of each lamina in the direction along the 
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principal axis as EL and νLT, and those in the transverse direction as ET and νTL. Those 

constants can be calculated from the following Uemura and Yamada’s formulas (1975) 

on the basis of the ratio of chemical constituents in the CML and the degree of 

crystallinity in the polysaccharide framework as assumed in Table 3-1(a).  
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where EL
framework

 and ET
framework

 are substantial Young’s modulae of the polysaccharide 

as the complex of the cellulose crystal and the polyose in its axial and transverse 

directions, respectively.  

Double shear modulus of a quasi-isotropic sheet consisting of [0°/+45°/−45°/90°] 

can be given as the following formula: 
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(7) If we substitute (3-7) and (3-8) into eq.(3-6), we obtain the following expression:  
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where functions g1 , g2 , g3, and g4 are defined as the following relations: 
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provided that we consider here, p = (θ, ρ1, ρ2, h, E1, E2, S0, S1(t), S2(t)). The quantities k1, m1, 

n1, k2, m2, and n2 are constants which have no relation with the integration variable t. P(t) and 

Q(t) vary from 0 to 1 smoothly and monotonously for elapsed time t in respective integration 

intervals. Therefore, we can rewrite eqs.(3-A2) and (3-A2’) as follows under the condition 

(3-1): 
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This result indicates that the integration value in eq.(3-6) does not depend on the concrete 
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values of T1 and T2, furthermore, it is not affected by the functional shapes of t-dependent 

variables S1, S2, ε1
m

, ε2
m

, ε1
f
, and ε2

f
 if we assume the condition (3-1).  

(q.e.d.) 
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3-2 Growth stress controls negative gravitropism in woody plant stems 

  

3-2-1 Background 

Various tropic behaviors serve to maintain a plant’s ideal shape, thus optimizing 

photosynthetic efficiency and relaxing the bending stress at the base of an inclined stem or 

branch (Timell 1986; Yoshida et al. 1991, 1992a, 1992b; Fournier et al. 1994; Hangarter 

1997).  

Shortly after the main axis of a young, growing herbaceous plant is inclined from the 

vertical by the weight of added tissue, differential growth is induced in the stem, resulting in a 

renewal of upward growth (Iwami and Masuda 1974; Silk 1984; Mueller et al. 1984; Kohji et 

al. 1995; Cosgrove 1997). This behavior is called negative gravitropism. In the case of woody 

plant stems, however, differential growth does not occur because of the restrictions imposed 

by the rigid secondary xylem. Thus, the recovery of the orientation of the inclined stem must 

be attained by mechanical bending of the thick, rigid secondary xylem (Wardrop 1965; 

Hejnowicz 1997). 

 Woody plants generate a two-dimensional stress distribution in the outermost layer of 

the secondary xylem during the deposition of secondary cell wall components (Boyd 1972; 

Okuyama et al. 1981; Archer 1987; Hejnowicz 1997). This stress, called the growth stress, has 

an axial tension component of several MPa in the case of a vertically oriented trunk (Sasaki et 

al. 1978; Archer 1987; Hejnowicz 1997). In an inclined trunk or branch of an angiosperm, 

tension wood (TW) fiber is often formed in the secondary xylem on the upper side of the 

inclined stem as mentioned in Section 3-1, where the axial growth stress becomes extremely 

large (Okuyama et al. 1990, 1994; Yamamoto et al. 1992). In contrast, compression wood 

(CW) tracheids are formed on the lower side of the inclined trunk or branch of gymnosperms 

where a large compressive growth stress is generated in the axial direction (Okuyama et al. 

1983; Yamamoto et al. 1991). The growth stress in the region opposite to the TW or CW is 

reduced, resulting in an upright bending moment (recovery moment) in the inclined trunk or 

branch (Okuyama et al. 1990, 1994; Yamamoto et al. 1991). These behaviors suggest that 

formation of the TW or CW enables the woody plant stem to exhibit the observed negative-

gravitropic responses. 

 In woody plant shoots, the higher-ordered branches grow thicker with each growing 

period, and after many years the weight of the xylem becomes huge. It remains unclear 

whether the growth stresses in the TW or the CW regions could compensate for the bending 
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moment resulting from the increasing mass of the shoot. Furthermore, some other as yet 

unknown factor could control the negative-gravitropic behavior in woody plant stems. To 

investigate these questions, the growth behavior of the woody plant shoot was examined using 

a structural mechanics model. Pioneer works by Archer and Wilson (1970, 1973, 1982) 

describing the graviresponse of the woody plant stem were augmented by Castera and Morlier 

(1991), Fournier et al. (1994), and Fourcaud and Lac (1996) who proposed mathematical 

models to describe the righting movement of tilted young woody shoots. Some of the models 

contain parameters whose physical meanings are not clearly defined, or which neglect the 

action of the growth stress. Fine-tuning the models should result in a more accurate 

understanding of the mechanism responsible for negative-gravitropic behavior in woody plant 

shoots.  

 With the goal of formulating a model to describe the time-dependent change in spatial 

shape of inclined tree trunks or branches, we proposed that the spatial shape of the inclined 

growing shoot could be calculated mathematically as the interactive balance between the 

bending moment due to weight growth of the shoot, the recovery moment caused by the large 

growth stress generation in the TW or CW regions, and the directional angle of the terminal 

shoot (Yamamoto et al.2002). Using the model to simulate observable responses permitted 

evaluation of the contribution of growth stress generation in the TW or CW regions to the 

degree of gravitropic movement and shoot shape control. 

 

3-2-2 Basic equation 

 

(a) Model and assumption 

 

Modelling the shoot growth: 

In the current study, a zigzag elastic cantilever consisting of several straight members is used 

as a model of the growing woody plant shoot, as shown in Fig.3-6. Each member is rigidly 

connected in series. It is assumed that no higher-ordered long shoot is formed during the shoot 

growth. Foliage grows at each node through the higher-ordered short shoot and at the shoot 

apex.  

 Shoot growth is achieved by repeating the following growth step: each growth step 

consists of two processes, the primary growth and the secondary growth, as shown in Fig.3-7. 

Primary growth is considered to be the elongation of the primary tissue at the shoot apex. In 
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this process, a small elastic cylinder, whose diameter and length are respectively r0 and ∆l, 

appears at the shoot apex. This newly formed tissue, represented by an additional member, is 

called the elongation zone. 

Secondary growth occurs in the stem as primary growth begins. In this process, each member 

of the stem, with the exception of the elongation zone, increases its radius by ∆r. 

Concurrently, new foliage appears at each node and shoot apex. 

 During each growth step, the shoot increases in weight, and the growth stress is 

generated in the newly formed secondary xylem, or thickening zone, during cell wall 

formation. Each member tends to be deflected by the bending moment of the weight increase 

in the shoot and the recovery moment of growth stress generation. After each growth step, 

each nodal point moves, and it is renamed the new node. 

 

 

 

Assumption of structural mechanics: 

To analyze shoot growth mechanically, we assumed the following structural and mechanical 

properties of the growing shoot. 

Assumption 1: The angle between two neighboring members is constant during each 

growth step.  

Assumption 2: When growth starts, each member in the stem is considered to be a straight 

member connecting neighboring nodes. 
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Assumption 3: The deformation caused by the axial component of the external load acting 

on each member is often smaller if compared to the one due to the bending component. 

Thus, axial expansion or contraction due to external loading is considered to be negligible 

when calculating the deflection of the growing shoot. 

Assumption 4: The foliage acts as a concentrated load at each node. However, it does not 

contribute to the bending or torsional moment of the main axis through the leafstalk or the 

short shoot. 

 

(b) Structural mechanics of the growing shoot 

 

Initial setting; appearance of the shoot, and the first growth step: 

We begin our discussion from an initial setting at the 0th member, that is, an inclined 

cantilever whose radius and length are respectively r0 and ∆l, as shown in Fig.3-7. The 

supporting and the free ends are respectively denoted as "the 0th node" and "the 1st node". 

The directional angle of the 0th member is θ0, which is measured in a clockwise direction 

from the x-axis to the radial direction of the 0th member.  

 

 When the 1st growth step is performed in the 0th member, a new elongation zone 

appears from the 1st node in the direction of θ1, whose length and radius are respectively 

denoted by ∆l and r0. At the same time, the radius in the 0th member increases by ∆r, and the 

new foliage appears at the 1st and 2nd node. The growth stress is generated in the thickening 

zone, whose peripheral distribution often becomes uneven in the inclined stem.  
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 As the result of the 1st growth step, the 0th member is deflected, and the 1st node is 

strained to other coordinates. The new coordinates of the 1st and the 2nd nodes after 

completion of the 1st growth step can be calculated by the beam theory. 

 

Load and moment at each node just after completion of the k-th growth step: 

We denote the xy-coordinates of the i-th node just after completion of the (k−1)-th growth 

step as  
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where i = 0,1, 2, - - - - - ,  k−1. For simplification, we often denote li
(k−1)

 as li, hereinafter.  

 As the result of the k-th growth step, each member from the 0-th to (k−1)-th, increases 

in radius by ∆r. At the same time, a cylinder, whose diameter and length are respectively r0 

and ∆l, appears at the shoot apex. As the result of the weight growth during the k-th growth 

step, the load acting on the i-th node increases by ∆pi
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, which is given as 

  ( ) (k)
1k

k

ij

(k)
j

2
00

1k

ij

j
(k)
i )1i2k2(2 +

=

−

=

+∆+∆ρπ+∆−−+∆ρπ=∆ ∑∑ hhlrrrlrp   , (3-10) 

where i = 0, 1, 2, - - - - - , k−1. The first term on the right-hand side is the sum of the weight 

of the newly formed thickening zone in the j-th member, the second term is the weight of the 

elongation zone, and the third term is the sum of the weights of the newly appeared foliages in 

the i-th through k-th nodes. The last term is the weight of the new foliage at the shoot apex. 

When i=k,  
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And, when i=k+1,  
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 During the k-th growth step, the weight of the i-th member increases by ∆Ωi
(k)

, which is 

given as  
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The normal component of the weight increment to the central axis of the i-th member is 
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where θi
(k−1)

 is the directional angle of the i-th member just before starting the k-th growth 

step, as measured in a clockwise direction from the x-axis to the radial direction of the i-th 

member as shown in Fig.3-8. θi
(k−1)

 is calculated automatically from the coordinates of the i-th 

and the (i+1)-th nodes after completing the (k−1)-th growth step. θk
(k−1)

 is the directional 

angle of the elongation zone when the k-th growth step starts, which must be given a value in 

advance. In the case that θk
(k−1)

 = θC (= constant) for any k, the extension zone always appears 

with a certain directional angle (θC ). However, if the elongation zone has no specific 

directional angle, a relation of θk
(k−1)

 = θk-1
(k−1)

 should always be established. Similarly, when 

li
(k−1)

, we often denote θi
(k−1)

 as θi. 

 

 

As the result of the weight increase during the k-th growth step, the bending moment in the i-

th member increases by 
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( i = 0, 1, 2,- - -, k)         (3-15) 
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where ηi is the distance from the i-th node to an arbitrary point in the i-th member. ∆Mi+1
o(k)

 is 

an increment of the nodal moment at the (i+1)-th node, and ∆Mi
s(k)

 is an internal bending 

moment which is generated in the i-th member during the k-th growth step. The growth stress 

is distributed peripherally in the newly formed secondary xylem, which induces the internal 

bending moment ∆Mi
s(k)

 in each member. ∆Mi
s(k)

 is calculated from the peripheral distribution 

of the growth stress generated in the thickening zone in each member as discussed later. 

  By assuming ηi = 0 in eq.(3-15), we obtain the following recurrence equation 

( )k -, - 2,- 1, 0,=i.cos
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1 (k)
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2
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(k)
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Considering that ∆Mk+1
o(k)

 = 0, eq.(3-16) can be solved as 
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This equation leads to an increment of the nodal moment at the i-th node during the k-th 

growth step. 

 

Coordinates of each node just after completion of the k-th growth step: 

In the i-th member just before starting the k-th growth step, we measured the distance ηi from 

the i-th node toward the (i+1)-th node along the central axis. A cartesian coordinate system O-

ηIγi is introduced, as shown in Fig.3-9. The i-th member is deflected by the weight increase 

during the k-th growth step. We adopt the differential equation describing the deflection γi(ηi) 

as 
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where Ii
(k)

 is the moment of inertia of the cross section of the i-th member, that is, 
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We introduce the following conditions to solve eq.(3-18): 
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where Ci
(k)

 is the displacement of the (i+1)-th node to the direction of γi-axis. The coordinates 

of the (i+1)-th node just after completion of the k-th growth step may be calculated as 

 ( )(k)
i

1)(k
i , Cl

−
,         (3-20) 

in the O-ηiγi coordinate system. In the O-xy coordinate system, as introduced in Fig.3-6, this 

point is expressed as 
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These two coordinates are related by the following transformation rule: 
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This recurrence equation can be solved as follows: 
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provided that the following condition exists: 
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Eq.(3-23) gives the xy-coordinates of the i-th node just after completion of the k-th growth 

step. Ultimately, we must solve for αi
(k)

 and Ci
(k)

 in eq.(3-19). According to assumption 1, the 

angle between neighboring members is invariant during each growth step. When assumption 1 

is applied to eqs.(3-18,19), the following relationship is obtained: 
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i −α=β .        (3-24) 

From eqs.(3-18,19, 24), the following recurrence equation is obtained. 
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Moreover, the following equation is obtained from eq.(3-18),  
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provided that the condition, dγ0
(k)

/dη0 = 0 at η0=0, was used to derive the equation above.  

Finally, the following solution is obtained from eq.(3-25). 
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( i = 0, 1, 2, - - - - , k )  (3-26) 

From the solution of eq.(3-18) and the conditions (3-19), we obtain 
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( i = 0, 1, 2, - - - - , k )   (3-27) 

For each growth step, we calculate ∆pi
(k)

 by using eqs.(3-10,11,12), and calculate ∆ωi
(k)

 

by using eqs.(3-13,14), and calculate ∆Mi
o(k)

 by using eq.(3-17). We calculate Ci
(k)

 by using 

eqs.(3-25,26). Thus, from eq.(3-23), we obtain the coordinates of the i-th node just after 

completing the k-th growth step, (mi
(k)

, ni
(k)

). Connecting those coordinates from i = 0 to i = 

k+1, we can obtain the skeleton form of the stem just after completing the k-th growth step. 

 

3-2-3 Determination of parameters 
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(a) Characteristics of the branches of tree species  

 

Materials: 

In the present study, the stem shapes of the branches listed below were simulated. 

Characteristics of the individual branches were recorded in advance of the simulations. 

Apparently healthy, smoothly shaped branches were selected, while those having higher-

ordered long shoots or color-changed leaves were avoided. Similarly, branches with an arc 

deviating from the vertical plane were also avoided.  

 Sampling and measurements were performed in early September, except for a Prunus 

spachiana branch, which had already shed its leaves. Materials tested included: 

1. A 4-year-old-, sinusoidally-shaped, weeping branch of Magnolia kobus DC 

2. A 5-year-old, hyponastic branch of Juniperus chinensis L. 

3. A 9-year-old, hyponastic branch of Abies saccharinensis Fr. Schum. 

4. A 1-year-old, epinastic branch of Prunus spachiana Kitamura f. spachiana cv. 

Plenarosea. 

The stem shapes of these materials in the vertical plane are shown in Figs.3-12 and 3-13. The 

trees from which the materials were sampled were growing on the Furo campus of Nagoya 

University, and were individual specimens. 

 

Items measured: 

The living branches were photographed in natural light with a yardstick reference prior to 

sampling, to provide an accurate tracing of the stem shapes in the vertical plane from the 

pictures. Immediately after sampling, the branch stems were divided into small bolts of 10~to 

approx.20 cm in length. For every bolt, the arc length from the shoot apex to the bottom end 

(s), the diameter at the bottom end (D), the weight of living leaves and short shoots (H), the 

specific weight of the stem (ρ), and the longitudinal elastic modulus of the stem (E) were 

measured in the laboratory. 

 

Determination of the values of ∆l, ∆r, and r0 : 

The D-s relationship of each sample is shown in Fig.3-10 for four material species. Every 

case can be approximated by the linear regression,  

   D = ξ·s + ζ          (3-28) 

as follows: 
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 a  M. kobus branch:    D = 0.00420s + 0.309   (r = 0.971**) 

 a J. chinensis branch:    D = 0.00961s + 0.251  (r = 0.967**) 

 an A. saccharinensis branch:  D = 0.00897s + 0.413  (r = 0.975**) 

 a P. spachiana branch:   D = 0.00852s + 0.226  (r = 0.977**) 

         (units; cm for D and s) 

In the stem model, just after completion of the k-th growth step, the relationship 

between the diameter at the bottom end of the i-th member (Di) and the arc length from the 

shoot apex to the bottom end of the i-th member (si) is given by 

{ } { } )(22)1ik(2)ik(2 0i00i rrs
l

r
rrrrrD ∆−+








∆
∆

≅∆−+∆+−=∆−+=  (3-29) 

provided that ∆l, r0, and ∆r are assumed to be constant. From the comparison between eqs.(3-

28,29), ∆r and r0 must satisfy  
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+∆⋅ξ=∆⋅ξ=∆ lrlr       (3-30) 

Only ∆l is unknown in eqs.(3-30). At the current time, there is no way to suppose an arbitrary 

value for ∆l. In this simulation, we supposed ∆l = 5 cm, regardless of tree species. Thus, we 

can calculate the values of ∆r and r0 that should be used for the simulations, as follows: 

 a  M. kobus branch :  r0 = 0.165 cm, ∆r = 0.0105 cm, 

 a J. chinensis branch:  r0 = 0.150 cm, ∆r = 0.0241 cm, 

 an A. saccharinensis branch: r0 = 0.229 cm, ∆r = 0.0224 cm, 

 a P. spachiana branch:  r0 = 0.134 cm, ∆r = 0.0213 cm. 
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Determination of the values of ∆hi
(k)

, hk+1
(k)

 : 

In Fig.3-10, the H-s relationships are shown for three tree species. In the J. chinensis branch, 

the foliage is produced homogeneously in the longitudinal direction. In the M. kobus branch, 

the distribution of the foliage is rather irregular compared to the J. chinensis branch, but it can 

be regarded as homogeneous enough in practice. In the A. saccharinensis branch, the amount 

of foliage appears to increase linearly with increasing s, since the higher-ordered branches 

hanging from the main axis (main branch) grow thicker with increased s. 

 From these observations, it can be said that hk+1
(k)

 takes a constant value for every 
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species regardless of the value of k, and that ∆hi
(k)

 takes a null value for the J. chinensis and 

M. kobus branches, but takes a non-zero constant value for the A. saccharinensis branch. 

When simulating the growing process of the branch stem for each species, we gave concrete 

values to hk+1
(k)

 and ∆hi
(k)

 in order to regenerate the observed H-s relationships.  

 It was impossible to measure the weight of the foliage produced by the stem of the P. 

spachiana branch, as it was sampled after defoliation. When foliated, the foliage is distributed 

homogeneously along the central axis of the stem, similar to that on a M. kobus branch. In the 

case of the P. spachiana branch, it is assumed that hk+1
(k)

 takes a constant value, and that ∆hi
(k)

 

is null for any k. 

 
Preferred angle of the elongation zone: 

It is difficult to measure the preferred angle of the elongation zone as well as proving its 

existence. If a certain value is required for θC in order to re-create the shape of the branch 

stem, it can be considered that such a stem had a preferred angle θC. On the contrary, if the 

relation of θk
(k−1)

=θk-1
(k−1)

 is always required for every k, we can propose that the elongation 

zone has no specific directional angle during branch growth. 

 

(b) Recovery moment generated in the thickening zone 

When simulating branch growth, it is necessary to assign a concrete value to ∆Mi
s(k)

 in 

advance. As displayed in Fig.3-11, the γ-ζ Cartesian coordinate system and the r-φ polar 

coordinate system are introduced in the cross-section of the i-th member just before starting 

the k-th growth step. ∆Mi
s(k)

 is calculated by the following equation, 

 ϕϕθϕσ−=∆ ∫
∆

drdrrM cos),,( 2
i

A

(k)
i

s(k)
i   ,     (3-31) 

where σi
(k)

 is the longitudinal growth stress generated in the thickening zone of the i-th 

member (∆A) during the k-th growth step, provided that σi
(k)

 is assumed to be independent of 

the position (ηi) of the individual member. Of course, θi means θi
(k-1)

. 

 To calculate eq.3-31, we needed to measure the functional shape of σi
(k)

 as precisely as 

possible. However, it was practically impossible to measure the peripheral distributions of the 

growth stresses in the material branches, as their diameters were too thin to facilitate 

measurement by the usual strain-gauge method (Okuyama et al. 1981, 1983). Consequently, 

we presumed that the functional shape of σi
(k) 

 would be similar to that previously described 

and useful for calculating the value of ∆Mi
s(k)

. 
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 The following assumptions were used to calculate the functional shapes of σi
(k)

: 

   i)  σi
(k)

 is generated in the newly-formed secondary xylem during secondary cell wall 

maturation, and remains in the secondary xylem of the stem. 

   ii) The reaction wood tissue is formed on the upper or lower side in the inclined stem. σi
(k)

 

shows a peak there, and its magnitude tends to become larger with any increase in the 

inclination of the stem.  

   iii) σi
(k)

 is independent of r, therefore, σi
(k)

 is a function of ϕ and θi. Then, σi
(k)

 = f (ϕ, θi). 

 

 

The propriety of assumption i) is based on several publications on the relationship between 

growth stresses and xylem formation in trees (Archer and Byrnes 1974; Okuyama and Kikata 

1975; Fournier et al. 1990). Assumption ii) is based on recent experiments by several 

researchers (Wilson and Gartner 1996; Yoshida et al. 2000), who investigated the 

relationships between growth stress, reaction wood tissue formation and stem inclination by 

using an inclined juvenile trunk or a mature branch. Assumption iii) postulates that the 

magnitude of growth stress is not affected by the stem diameter and/or the rate of thickening. 

This assumption has already been verified for a vertically growing trunk (Wahyudi et al. 

1999, 2000), but its applicability to inclined stems or branches is unknown. 

 The following sinusoidal curve is described as σi
(k)

 [= f (ϕ, θi)]. 
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where σ0 in eq.(3-32) is a constant and θP is the preferred angle in the lignified stem. For the 

time being, it is assumed that θP is constant during branch growth, and is independent of the 
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position on the stem. If it were assumed that θi = θP−π/2, the longitudinal growth stress would 

become M1 on the uppermost side (ϕ =π, −π) of the i-th member, and m1 on the lowermost 

side (ϕ = 0). Therefore, M1−m1 is the maximum difference between the growth stresses of the 

uppermost and lowermost sides of the branch stem. When ∆r is sufficiently small, eq.3-31 can 

be expressed as follows: 

 ( ) ϕϕθϕ∆⋅≅∆ ∫
π

π−
dfrrM cos,

2

2
i

2
i

s(k)
i ,     (3-33) 

where ri
-
 is calculated by 
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By substituting eqs.(3-32,33), we obtain the recovery moment Mi
s(k)

 by  
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This formula postulates that the recovery moment ∆Mi
s(k)

 , which returns the member from a 

position of deviation to equilibrium, is generated in each member as in the case of θi=θP. 

 

 

3-2-4 Simulated results 

 

(a) Simulation 1 (Fig.3-12) 

In simulation 1, the general roles of M1−m1 and θC in the generation of the negative 

gravitropic movement of a woody plant stem were examined to determine whether negative 

gravitropic movement could be caused by factors other than the generation of a large growth 

stress.  

 The conditions described in Table 3-2(a) were used for the simulation. The values 

applied to E, ρ, ∆r, and r0 were those of a 1-year-old branch of P. spachiana, when the value 

of ∆l was assigned as 5 cm. The observed value of θ0 was 0 degrees in the P. spachiana 

branch stem; however, a value of 30 degrees was used for θ0 in the simulation. According to 

the authors' previous studies, almost no reaction wood tissue is formed in the vertical part of a 

crooked tree trunk, where the peripheral distribution of the longitudinal growth stress 

becomes evenly distributed (Yamamoto et al. 1991; Okuyama and Yamamoto 1992). In those 

studies, a value of 90 degrees was used for θP. The values of ∆hi
(k)

 and hk+1
(k)

 were also 
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hypothesized.  

 

Table 3-2(a). Conditions for simulation 1. 

 

 

Number of the growth step N (Condition 1-A): 

Two conditions were assumed: M1− m1 = 0; and θk
(k−1)

 = θk-1
(k−1)

 at the k-th growth step. The 

first assumption means that there is no difference in the growth stresses between the 

uppermost and the lowermost sides of the inclined stem. The second supposes that the 

elongation zone has no specific directional angle when it appears at the shoot apex. 

As the branch stem grew from the early stage (N = 10) to the middle (N = 40) or late 

(N = 80) stages, the woody stem gradually began to weep downward due to the increased 

weight of the biomass.  

 

Preferred angle of the elongation zone (Condition 1-B): 

To determine the preferred angle of the elongation zone, we assumed that θk
(k−1)

=θC at the k-th 

growth step, and that M1−m1 = 0. Some researchers think that the inclined woody stem can 

continue growing upward if the elongation zone has an upward preferred angle (Castera and 

Morlier 1991). According to our model, the inclined woody stem would grow upward during 

the early growth stage (N = 10) even though M1−m1 = 0. As the shoot growth progressed in the 

model, the new tissue elongated laterally, showing a characteristic sinusoidal shape (N = 40, 
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80); this shape can be observed in the mature branches of maritime pine (Pinus mariana), as 

described by Castera and Morlier (1991), who indicated the importance of the preferred angle 

in the elongation zone in controlling the shape of the branch stem. With prolonged growth, 

however, the branch eventually hung downwards. 

 

Growth stress generated in the reaction wood region (Condition 1-C): 

To examine growth stress in the reaction wood region, we assigned various values to M1−m1, 

while supposing that the elongation zone had no specific directional angle when it appeared at 

the shoot apex. When M1−m1 = 0, the woody stem did not generate a negative gravitropic 

movement, and the stem shape became epinastic, as demonstrated by the P. spachiana branch. 

With increasing values for M1−m1, the woody stem grew upward, and became hyponastic. The 

results suggest that it is reasonable to propose that the large growth stress generated in the 

reaction wood region causes the negative gravitropic movement in an inclined woody stem. 
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 (b) Simulation 2 (Fig. 3-13) 

Conditions 2-A, 2-B, and 2-C in Table 3-2(b) were extracted, respectively, from a 4-year-old 

branch of M. kobus, a 5-year-old branch of J. chinensis, and a 9-year-old branch of A. 

saccharinensis. The values applied to ∆r, r0, ∆hi
(k)

, and hk+1
(k)

 were estimated from each 

branch in order to explain the D-s and H-s relationships shown in Fig.3-10, when the value of 

∆l was set at 5 cm.  The values applied to E and ρ were those of each branch. As in 

Simulation 1, θP was set at 90 degrees. 
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Table 3-2(b).  Conditions for simulation 2. 

 

 

A 4-year-old branch of M. kobus (Condition 2-A): 

In this simulation, it was assumed that θC= 0 deg. This describes an elongation zone at the 

shoot apex with a horizontal directional angle. The actual material branch, however, hung 

downward, with a sinusoidal shape. The best-fitting simulation was obtained by assuming 

M1−m1= 12 kgf/cm
2
. When larger values were assumed for M1−m1, the branch stem tended to 

rise with the characteristic sinusoidal curve. The result suggests that the growth stress 

difference (M1−m1) was not sufficient to generate the negative gravitropism in the M. kobus 

branch. 

 

A 5-year-old branch of J. chinensis (Condition 2-B): 

In this case, it was assumed that the elongation zone had no preferred angle. The actual J. 

chinensis branch was hyponastic, and was elongated in an obliquely upward fashion. The 

best-fitting simulation was obtained by assuming M1−m1=56 kgf/cm
2
. When smaller values 

ranging from 0 to 28 kgf/cm
2
 were assigned to M1−m1, the branch stem would not rise above 

the horizontal axis, and the stem shapes became epinastic.  

 

A 9-year-old branch of A. saccharinensis (Condition 2-C): 

Similarly, it was assumed that the elongation zone had no preferred angle. The actual A. 
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saccharinensis branch tended to extend obliquely downward near the base, and it was bent 

upward near the apex, tracing a circular arc. The actual stem shape was best fitted by 

assuming M1−m1= 28 kgf/cm
2
. As with the J. chinensis branch, smaller values of 0 to 14 

kgf/cm
2
 assigned to M1−m1 resulted in a branch stem that was incapable of generating 

negative gravitropism, hung downwards, and became epinastic. 

 

 

 

3-2-5 Discussion 

 

(a) The role of growth stress generation in negative gravitropic movement in woody 

plant shoots 

In this study, we analyzed the growth behavior of woody plant shoots using a structural 

mechanics model, and compared living samples to simulations of anticipated, time-dependent 

spatial change in inclined trunk or branch stems. Consequently, our interest became more 

sharply focused on the preferred angle of the elongation zone and growth stress generation in 

the reaction wood region. 

 Simulations 1-(B) and 2-(A) failed to show a positive correlation between the preferred 

angle of the elongation zone and generation of a negative gravitropism response in woody 

plant stems. As stem rigidity (EI) increased, the degree of weeping was more or less reduced, 
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yet such a property would not independently cause negative gravitropic movement. When an 

appropriate value was chosen for M1−m1, however, the negative gravitropic movement of the 

inclined woody stem could be simulated quantitatively, as shown in Simulations 1-(C), 2-(B), 

and 2-(C). These results show that the large growth stress generated in the reaction-wood 

region positively correlates with the observed negative gravitropic movement of the woody 

plant shoot. The simulations that best fitted the natural plant materials collected were 

calculated when M1−m1=56 kgf/cm
2
 for a 5-year-old branch of J. chinensis [Simulation 2-

(B)], and M1−m1= 28 kgf/cm
2
 for a 9-year-old branch of A. saccharinensis [Simulation 2-(C)].  

 Recently, Okuyama and his associates have offered corrected data on the peripheral 

distribution of growth stresses in the secondary xylem of an inclined stem.  From their results, 

we calculated the difference between the growth stresses on the uppermost and lowermost 

sides of each inclined stem as follows: 

 a) Inclined part of a mature trunk (Okuyama et al. 1983, 1990, 1994). 

 A very crooked, 31-year-old sugi (Cryptomeria japonica D. Don.), 20 cm in diameter at  

 breast height. Growth stress difference: 120 kgf/cm
2
. 

 A slightly inclined, 42-year-old Acer mono Sieb. et Zucc., 12 cm in diameter at 

breast height. Growth stress difference: 186 kgf/cm
2
. 

 Three slightly inclined, 51-year-old Yellow poplars (Liriodendron tulipifera L.), 28 - 

30 cm in diameter at breast height. Growth stress differences: 167, 206, 362 kgf/cm
2
. 

 b) Basal part of a mature branch (Yoshida et al. 1992b). 

 A 14-year-old Chamaecyparis obtusa Endl., inclination angle 80 degrees to the 

vertical, 6 cm in diameter at the base. Growth stress difference: 127 - 290 kgf/cm
2
. 

 A eucalyptus (Eucalyptus grandis L.) of unknown age, inclination angle 55 degrees 

to the vertical, 8 cm in diameter at the base. Growth stress difference: 107 - 382 

kgf/cm
2
. 

The predicted values of M1−m1 for the behaviors of the J. chinensis and the A. saccharinensis 

branches seem to be considerably smaller than those measured from the trunks or branches 

described above. We offer the following explanation: 

 From Eqs.(3-23,24,25,26), we derive the following equation: 
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where ∆(ρi
s(k)

) is the increment of the curvature induced in the neutral axis of the i-th member 
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at the k-th growth step by the generated recovery moment ∆Mi
s(k)

. In order to compensate for 

weeping due to the increasing weight of the shoot, ∆(1/ρi
s(k)

) must be kept constant or more 

throughout secondary growth. Likewise, (M1−m1)/ri
2
 must be kept at least constant or more. 

Thus, a larger value would be required for M1−m1 as thickening progressed, resulting in an 

increase of ri. The diameter of each sampled branch stem was smaller than that of a trunk or 

mature branch. We suspect that a lower value of M1−m1 is sufficient to generate the negative 

gravitropic movement in thin stems. 

 

(b) The role of the specific directional angle (preferred angle) in the elongation zone in 

determining the spatial shape of a branch stem 

The results do not support a positive correlation between the specific directional angle 

(preferred angle) in the elongation zone and negative gravitropic behavior in woody plant 

shoots. Nevertheless, by assuming a suitable value for the preferred angle of the elongation 

zone, Simulation 2-(A) explained the sinusoidal stem shape of a weeping M. kobus branch. 

Moreover, by assuming that the elongation zone of a branch stem had no preferred angle 

when it appeared at the shoot apex, a quantitative explanation for the hyponastic stem shapes 

of the J. chinensis and the A. saccharinensis branches could be made.  

 The results of Simulations 1-(C) and 2-(B) suggest that the epinastic shapes of woody 

branch stems are induced by a balance between the weeping due to increased shoot weight 

and the recovery moment caused by the unevenly distributed growth stress. The presence of a 

preferred angle may be species- or individual-specific.  

 

(c) Tropic behavior of the elongation zone 

The elongation zone in a woody plant shoot is histologically similar to that of a mature 

herbaceous shoot, and consists of primary tissues; its gravitropic movement is controlled by 

differential growth on the upper and lower sides of the inclined shoot (Silk 1984; Mueller et 

al. 1984; Cosgrove 1997), or by asymmetric tissue stresses occurring in the turgid herbaceous 

stem, as discussed by Hejnowicz and Sievers (1996), and Hejnowicz (1997).  

In either case, a particular angle of the elongation zone could be predicted by a 

distribution of curvature, which is produced by the differential growth pattern distributed over 

the elongating shoot. When analyzing the kinematics of plant development, we need to 

distinguish properties associated with spatial regions from those associated with the plant 

elements which move through the regions during the plant development (see the formulation 
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by Silk 1984). 

 Researchers have used terms such as plagio-gravitropism or diagravitropism to explain 

the origin of the preferred angle of the axilliary axis (branch stem) in the higher plant-shoot, 

and some have considered the properties of the behaviors to be intrinsic to such organs (see 

Timell 1986). Others attribute this behavior to the balance between the forces of negative- and 

positive-orthogravitropism (Rufelt 1962), or to the balance between negative gravitropism 

and epinasty (Palmer 1985).  Our observations show that the elongation zone of a mature 

woody branch often grows vertically as it emerges from the dim and crowded crown into the 

sunlight. Further evidence supporting an important role for the emerging elongation zone 

comes from the well-documented fact that apical dominance is controlled by the apical 

tissues, and that their removal stimulates axillary growth. The demonstration of a preferred 

angle of elongation may well arise from the concerted effects of negative gravitropism, 

phototropism, and response to plant growth hormones, such as auxins.   

 

3-2-6 Summary and concluding remarks 

In this section, beam theory (structural mechanics) was used to describe the negative (plagio-) 

gravitropic behavior of woody plant stems. Through simulating the observable shapes of 

various tree branches, the following conclusions were deduced. 

1. Growth stress is generated in the secondary xylem of woody plant stems. In reaction wood 

tissue, growth stress is sufficiently large as to bend the leaning shoot upward against the 

weeping caused by increasing weight, and thus is responsible for the negative gravitropic 

movement of the inclined woody stem. 

2. The specific directional angle of the shoot apex (preferred angle of the elongation zone) 

plays an important role in controlling the spatial shape of branch stems that is peculiar to 

different species, for example, the sinusoidal shapes of the M. kobus branch presented in this 

study and the maritime pine branch studied by Castera and Morlier (1992).   

The interactive effect between the large growth stress generated in reaction wood tissue 

and the preferred angle in the elongation zone controls the time-dependent morphogenesis of 

the woody plant shoot. 
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Chapter 4 

 
HYGROMECHANICS OF WOOD IN RELATION TO  

THE COMPOSITE STRUCTURE OF THE CELL WALL 
 

4-1 Swelling and shrinking anisotropy of wood – microscopic mechanism 

 

4-1-1 Background 

For better utilization of wood as the members of the building and the furniture materials, or 

raw materials for the paper, there is a need to understand the origin of its mechanical 

properties from the viewpoint of its composite structure. Studies on such topics have been 

conducted mainly from two standpoints. The first considers the macroscopic composite 

structure of the woody materials as heterogeneous but a continuum body, and the other is 

based on the fine composite structure of the lingo-cellulosic cell wall. 

 From the former standpoint, early authors succeeded in formulating the mechanical 

behavior of wood as an anisotropic body based on the general theory of continuum mechanics 

(Timoshenko & Goodier1970, Fun 1965, Lekhnitskii 1963). Thereafter, various behaviors of 

the solid wood and other woody materials were clarified (Guitard 1987, Gibson & Ashby 

1988, Bodig & Jayne 1982). 

 As for the latter standpoint, from 1950’s to the 1960’s, progress in microscopic 

techniques enabled wood anatomists to clearly describe the ultimate structure of the wood cell 

wall. They showed that each cell wall lamella can be approximated by a “two-phase 

structure,” namely, the reinforcing element of cellulose microfibril (CMF) and the matrix 

(MT) substance of lignin-hemicellulose compound (Mark 1967, Tsoumis 1991). However, an 

exact image of the fine structure and functions of each cell wall component have yet to be 

obtained. To better understand the origin of various properties of the woody material, it is 

indispensable that such wall characteristics should be revealed. Therefore, it is our goal to 

clarify these features including their role on the evolution of the mechanical and physical 

properties of the wood. 

 In this chapter, certain hygro-mechanical properties peculiar to the wood are formulated 

on the basis of the “latter standpoint,” because it is very important to clearly describe the 

moisture-related properties of the wood and the wood-based materials when we use them 
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under various environmental conditions. Through those formulations, the fine structure and 

internal property of each cell wall constituent will be estimated. This includes anisotropic 

shrinkage due to wood drying, the change of the increase in the longitudinal Young’s modulus 

due to moisture adsorption, and the change of the mechanical properties of the paper after 

repetition of the recycling process. The basic equation derived in Chapter 2 is used for those 

analyses. In the section 4-1, we firstly discuss the relationships between anisotropic shrinkage 

and the microfibril angle in the S2 layer (MFA) (Yamamoto et al. 1999, 2001). In the 

following section 4-2, we try to clarify the reason why the longitudinal Young’s modulus of 

wood changes its value with moisture adsorption (Yamamoto&Kojima 2002, Yamamoto et al. 

2002, Kojima&Yamamoto 2004). In that section, we simultaneously try to give an 

explanation to the question why the recyclability of the paper differs among material trees but 

same species. 

 

4-1-2 Mechanical description 

 

(a) Wood fiber model 

The model used for analyzing the shrinking wood is a complex circular tube having three 

layers that was used for simulating the growth stress generation in Chapter 3. It consists of the 

compound middle lamella (CML), the outermost layer of the secondary wall (S1), and its 

middle layer (S2). The microfibril angles (MFA) take 90 degrees in the S1 layer, and a value 

between 0 – 60 degrees in the S2 layers.  

When a certain change occurs in the physical state of the cell wall, internal expansive 

terms, ε1
f
 and ε2

f
, are often generated in the polysaccharide framework bundles, and  ε1

m
 and 

ε2
m

 are also induced in the matrix skeleton. As the result, the wood fiber tends to deform in its 

axial and the diameter directions. We denote the strains of the free deformation of the wood 

fiber by εL and εT in the longitudinal and the diameter directions, respectively. In this case, εL 

and εT must satisfy the following simultaneous differential equations of elapsed time t: 
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where and p is a parameter vector whose components are θ, ρ1, ρ2, Q (=S0·h/(r1·E1)), G1 

(=E1/S1), G2 (=E2/S2), and M (=S2/S1) (see Section 3-1). In this simulation, we regard the 

elapsed time t in the same light with the increasing moisture content. And, we integrate the 

simultaneous equations (4-1) from 0 to t under the initial conditions;  

εL(0) = 0, εt
r1

(0) = 0, εt
r2

(0) = 0, εt
r3

(0) = 0, ρ1(0) = ρ1
0
, ρ2(0) = ρ2

0
. 

Now, we integrate eqs.(4-1) in a small interval of t, that is, (i−1)·T/N ≤ t ≤ i·T/N, then we 

obtain 
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where, i =1, 2, - - - , N, and N is a enough large integer. T is the moisture content at the fiber 

saturation point (FSP). Finally, we calculate the free swellings of the wood fiber model as the 

nominal strains in its axial and diameter directions, which are given as the following formula 

(see eqs.(2-36) in Chapter 2) : 

( ) ( ) ( ) ( )  11limt,11limt

j

1i

1
t

i

j

1i

L
i













−ε∆+=β












−ε∆+=α ∏∏
=

∞→
=

∞→

r

nn
      (4-3) 

where α(t) and β(t) are the predicted values of the swelling strains of a single wood fiber 

model in the longitudinal and the diameter directions, respectively, when the moisture 

content (t) increases from 0 to t (= i/Ν). If the hysteresis in the dimensional change between 

the swelling and the shrinking processes are supposed to be small enough to be neglected, we 

can use the following formulae to predict the shrinking strains α’(t) and β’(t):  

1)(

)()(
)(,

1)(

)()(
)(

+β
β−β

=β′
+α
α−α

=α′
T

tT
t

T

tT
t .     (4-4) 

As to deriving above equations, we should refer eqs.(2-31) ~ (2-36) in Chapter 2.  

 

(b) Qualitative properties of t-dependent variables 

To integrate eq. (4-1), proper functional shapes had to be given to the several t-dependent 

variables in advance, i.e. ε1
f
, ε2

f
,  ε1

m
, ε2

m
, E1, E2, S1, and S2. Thickness ratios, ρ1 and ρ2, were 

also functions of t, however, those were given as the unknown functions, which should be 

solved in the basic equations (4-1). The MFA in the S2 is also an important factor controlling 

shrinkage of the wood (Meylan 1968, 1972, Cave 1972, Barrett et.al.1972, Koponen 
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et.al.1989, Watanabe et.al.1996), however, it can be considered to be almost independent of 

the moisture content. 

It is difficult to determine the functional shapes of each t-dependent variable 

experimentally. We have no way except to presume them based on previous information given 

by various researchers. It is well recognized that both the Young’s modulus and the shear 

modulus of the solid wood tend to decrease monotonously as the moisture content increases 

below the fiber saturation point (Carrington1922, Kollmann et.al.1960, 1968). Cousins (1976, 

1978) attributed this phenomenon to the moisture-dependent properties of the matrix 

substances, such as the lignin and the hemicellulose. He measured the relationships between 

the relative humidity and the elastic moduli of the molded lignin and the hemicellulose which 

were chemically isolated from the wood cell wall, obtaining an evidence that the elastic 

moduli of these substances decrease monotonously with the increase of the relative humidity 

(see Footnote (5) in Section 3-1, Chapter 3). With reference to those investigations, it was 

assumed that the variables E1, E2, S1, and S2 decrease monotonously with the increase of t 

below the fiber saturation point T, and become constant above T. 

It is well known that the hygroexpansion of wood occurs below the fiber saturation 

point except for a certain abnormal case, such as the collapse. To explain this phenomenon, it 

may be quite natural to assume that ε1
f
, ε2

f
,  ε1

m
, and ε2

m
 are monotonously increasing 

functions in the moisture content region below T. In the present wood fiber model, the 

swelling potential of the polysaccharide framework bundle in the direction perpendicular to 

the cellulose molecular axis has no effect upon the swelling behavior of the framework bundle 

due to the property of the stiffness tensor of the polysaccharide framework bundle (see 

Section 2-2, Chapter 2). 

Those t-dependent variables were transformed into the functions which do not 

explicitly depend upon T by transforming the parameter t into τ (=t/T). The parameter τ (=t/T) 

is arbitrarily called the normalized moisture content of wood.  

 

(c) The values of the t-dependent variables at τ=0 and τ=1 

 

The values of S0, E1, S1, E2, and S2: 

The values of θ, ρ1, ρ2, and h are determined from the microscopic observation and the image 

analysis. We calculate Q (=S0·h/(r1·E1)), G1 (=E1/S1), and G2 (=E2/S2) after determining the 
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values of S0, E1, S1, E2, and S2. The values of E1, S1, E2, and S2 can be determined from 

eqs.(3-5) derived in Section 3-1. We show them again as follows: 

Ei = Ai·Ci·Ecry + Ai·(1−Ci)·ψ(τ)·Epoly ,   

Si = {1−Ai + (1−Ci)·Ai·(1−ψ(τ))}·Ematr/(1+νi) ,  (i = 1, 2)    (4-5) 

where Ai and Ci are respectively the weight ratio of the polysaccharide framework and its 

crystallinity in each layer, which are hypothesized in Table 4-1. ψ(τ) is a monotonously 

decreasing function of τ which satisfies ψ(τ)|τ=0=1 and ψ(τ)|τ=1=0. Quantity νi is Poisson’s 

ratio of the matrix skeleton in each layer. In our study, we use 0.5 as the value of νi.  

We assume that Ecry takes a constant value of 134 GPa regardless of the moisture 

content (Sakurada et al. 1960, Nishino et al 1998), since the crystalline cellulose does not 

absorb water molecule. With reference to Cousins (1976, 1978), we assume that Ematr is a 

function of τ and it takes a value of 2 GPa at the humid state (i.e. τ=1), and it tends to increase 

monotonously as the moisture content decreases, and it takes 4 GPa at τ=0. As described in 

Section 3-1, we consider that only dried part among the oriented polyose takes part in 

constituting the framework bundle, on the other hand, humid polyose is integrated into the 

isotropic matrix skeleton. Then, we assume that ψ(τ) satisfies ψ(τ)|τ=0=1 and ψ(τ)|τ=1=0. As 

the value of the axial Young’s modulus of dried polyose (Epoly), we use 8 GPa (see Footnote 

(5) in Section 3-1).  

To estimate the value of F (= S0 · h/r1), we need to calculate the value of S0, which can 

be obtained as described in Footnote (6) in Section 3-1. The CML is reinforced by the rigid 

crystalline CMFs whose orientations are randomly distributed, therefore, the change of the 

stiffness of the matrix skeleton in the CML has almost no effect upon the value of S0. 

Moreover, the change of h induced by the water adsorption is quite smaller than the value of 

r1. Then, we assumed that F is not affected by the moisture content τ.  

Thus, we can determine the values of F, E1, E2, S0, S1, and S2 at τ=0 and τ=1, which are 

displayed in Table 4-3. 
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Table 4-1. Composition for chemical constituents in each layer.  
      

         Polysaccharide framework (A)  

Layer 
Crystalline cellulose 

( A×C ) 

Oriented polyose (non- 

 Crystalline  ( (1−C)×A )

Matrix substance Crystallinity in the  

Polysaccharide 

 framework  (C) 

CML    15 (%) 0 85 0 

S1 15 5 80 75 

S2 30 10 60 75 

S3 - - - - - - - - - - - - - - - - - - - - 

 

The values of ρ1, ρ2, and h : 

The values of ρ1, ρ2, and h at τ=0 can be determined from the oven-dried density of the wood 

specimen by using eqs.(4-9). Determined values of ρ1
0
 (=ρ1(τ)|τ=0 ), ρ2

0
 (=ρ2(τ)|τ=0 ), and 

h/r1|τ=0 are displayed in Table 4-3. 

 

The values of ε1
m

, ε2
m

, ε1
f
, and ε2

f
 at τ=0 and τ=1 : 

According to the definition of the swelling ability of every cell wall component, we can 

consider that the values of ε1
m

, ε2
m

, ε1
f
, and ε2

f
 at τ=0 are all nil, however, we do not know the 

values of ε1
m

, ε2
m

, ε1
f
, and ε2

f
 at τ=1. We calculated the eqs.(4-6~8) by supposing various 

values as ε1
m

(τ), ε2
m

(τ), ε1
f
(τ), and ε2

f
(τ) at τ=1, and compared the simulated results with 

experimental ones.  

 

(d) Formula for describing the shrinking process of the wood fiber model 

The integral term in eqs. (4-2) and (4-3) is rewritten by using the normalized moisture content 

τ ( ≡ t/T ). For example, the longitudinal component becomes 
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provide that 
  
ε L τ( ) ≡ εL t( )

t=T ⋅τ  . Thus, the following formulae are obtained:  
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α(τ) and β(τ) are the predicted values of swelling strains of the wood fiber model in the 

longitudinal and the diametral directions, respectively, when the normalized moisture 

content increases from 0 to τ (= i/N).  

When calculating the shrinking process of the wood fiber model α’(τ) and β’(τ), one 

can deduce following relations, which are essentially equivalent to eq. (4-4): 

1)1(

)()1(
)(,

1)1(

)()1(
)(

+β
τβ−β

=τβ′
+α

τα−α
=τα′     (4-8) 

where α(1) and β(1) mean α(τ)τ=1 and β(τ)τ=1 , respectively. α’(τ)τ=0 ( ≡α’(0) ) and 

β’(τ)τ=0 ( ≡ β’(0) ) mean the oven-dried shrinkages in the longitudinal and the transverse 

directions, respectively.   

 

4-1-3 Experimental procedure 

 

(a) Specimen 

It is indispensable for this discussion to compare the predicted results derived from the eqs. 

(4-7) or (4-8) with the experimental data obtained from a single wood fiber. However, it is 

almost impossible to isolate a wood fiber without any damage, since all fibers are strongly 

bound each other strongly through the compound middle lamella inside the actual xylem. 

Therefore, it is difficult to measure the shrinking behavior of the intact wood fiber.  

 Softwood species have a simple structure consisting almost only of tracheids. Thus, thin 

and small rectangular flat-sawn specimen from the earlywood or latewood region were taken, 

which may be homogeneous enough in the radial direction. Moreover, it is considered that the 

shrinking behavior of the thin specimen is approximately equal to that of the single wood fiber. 

In the present study, a 14-year-old sugi (Cryptomeria japonica D.Don) with a leaning 

stem was used. A rectangular block was taken from the sapwood region, and was saturated with 

hot water. Thereafter, by using a sliding microtome and a thin-plate circular saw, a flat-sawn 

specimen was prepared from the earlywood region. The size of the specimen for measuring the 

longitudinal shrinkage was 50×10×2-5mm in the longitudinal, the tangential and the radial 

directions, respectively. In case of the measurement of the tangential shrinkage, the size of the 

specimen was 10×20×2-5mm in the respective directions. 

 

(b) Measurement of the shrinking process 
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The specimen was dried step by step inside a small desiccator with saturated solutions of 

different kinds of salts. The weight (w) and length (l) of the specimen were recorded at each 

equilibrium condition. An electric scale of 0.1mg reading accuracy was utilized. A comparator 

with a dial-gauge of 0.001mm reading accuracy was used for the measurement of the length. 

Fresh water, saturated solutions of NH4H2PO4, KCl, NaCl, NH4NO3, K2CO3, CaCl26aq, 

CH3COOK, and powders of NaOH, P2O5 were used in turn for regulating the relative humidity 

inside the desiccator. After being dried with the P2O5 powder, the specimen was dried for 24 

hours inside a high temperature oven (105˚C), thereafter, the oven-dried weight (w0) and the 

oven-dried length (l0) were measured. The moisture content of the specimen, t, at every drying 

step, was calculated by the following formula, 

(%)100
0

0 ×
−

=
w

ww
t  

and the shrinkage of the specimen at every moisture content, α’(t), was calculated by the 

following formula. 

( ) ( )
(%)100

g

g ×
−

=α′
l

tll
t  

where lg is the length of the specimen in the green condition. 

 

(c) Oven-dried density and average microfibril angle 

After measuring the weight and the length of the oven-dried specimen, a small fraction was 

removed from the central part of the specimen, and the oven-dried density and the average 

microfibril angle were measured. The oven-dried density was used for determining the values 

of ρ1 and ρ2 at the oven-dried state. 

 The oven-dried density of the small fraction, m0, was measured by the mercury 

impregnating method, thereafter, several flat-sawn sections of 0.1-0.2mm in thickness were 

prepared from the small fraction by using a sliding microtome, and the microfibril angle in 

every section was determined by using the improved Cave’s method (Cave 1966, Meylan 1967, 

Yamamoto et.al. 1993b), and the arithmetic average was used as the microfibril angle for the 

specimen. 

 

(d) Initial values of ρ1, ρ2, and h 
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The moisture dependencies of the values of ρ1 and ρ2 were given as eqs. (2-32) in Chapter 2. 

Therefore, the initial values at τ = 0 have to be selected for them. The initial values, ρ1
0
 

(=ρ1(τ)|τ=0 ) and ρ2
0
 (=ρ2(τ)|τ=0 ), are dependent not only on the species, but also on the 

individual tree, and the location within an annual ring (Saiki 1970). The small early wood 

specimen used for the measurement of the shrinking process can be regarded as a 

homogeneous aggregate of many tracheids, therefore we can use the isolated wood fiber model 

as an equivalent model of the wood specimen. Based on these assumptions, we estimated the 

values of ρ1
0
, ρ2

0
 and h

0
 by introducing the following formulae.  
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where, m0 is the density of the oven-dried specimen, V is the volume ratio of the S2 layer to the 

S1 layer, and T is that of the S2 layer to CML layer in the oven-dried conditions, respectively. 

With reference to the studies made by various researchers, Koponen (1989) proposed a value 

of the volume ratio of each lamella to the whole cell wall in a typical softwood tracheid as 

displayed in Table 4-2. The oven-dried density of the early wood specimen of the sugi used in 

the present study was 0.4 on an average, therefore by substituting m0=0.4 in eqs.(4-9), we 

obtain, 

ρ1
0
 =1.015, ρ2

0
 =1.122, h

0
 =0.025·r1τ=0 

 

Table 4-2. Volume ratios of layers to the whole cell wall of typical 

early wood tracheid. (Koponen 1989)    
 

CML 17.5(%) 

S1 10.0    

S2 67.5    

S3 5.0    

 100.0    

 

Thus, we can decide all values of the parameters, which are required for calculating the eqs. 

(4-7) and (4-8), as displayed in Table 4-3. 
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Table 4-3. Values of the τ (normalized moisture content) dependent variables used in the 

simulation. 
            

 S1 S2 E1 E2 F ρ1 ρ1 ε1
f ε2

f ε1
m ε2

m

τ=0 2.09 1.57 20.5 41.0 0.098 1.015 1.122 0 0 0 0 

τ=1 1.11 0.915 20.1 40.2 0.098 >1.015 >1.122 * * * * 

Note. (1) ρ1(τ) and ρ2(τ) must satisfy the eqs.(2-32) in Chapter 2. In fact, we can suppose 

h/u2 is constant for τ. 

(2) Functional shapes and terminal values of ε1
f
(τ), ε2

f
(τ), ε1

m
(τ), and ε2

m
(τ) remain 

unknown for the time being. 

(3) Units of the values of E1, E2, S1, S2 , and S0 are GPa.  

 

4-1-4 Result and discussion 

 

(a) Experimental results 

 

Dependency of the shrinking anisotropy upon the MFA: 

Fig.4-1 shows the experimental relationships between the oven-dried shrinkages and the 

MFAs. In this figure, the data from a 32 year-old Pinus jeffreyi reported by Meylan (1972) are 

displayed besides our results obtained from a 14-year-old sugi. In the region of the MFA below 

30 degrees, the transverse shrinkage reaches 7~9 %, on the other hand, the longitudinal one is 

less than 1%. However, in the region of the MFA over 30 degrees, the longitudinal shrinkage 

becomes larger with the increase of the MFA, and the transverse one decreases abruptly as the 

MFA increases. Consequently, the transverse shrinkage of Pinus jeffreyi sometimes becomes 

smaller than the longitudinal one in the region of the extremely large MFA, where the 

longitudinal shrinkage reaches more than 6 %, and that of the sugi sometimes exceeds 3%. 

Thus, the shrinking anisotropy of the wood is highly dependent upon the MFA. 
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Shrinking process during water desorption: 

Dots in Fig.4-2 (a) show the longitudinal shrinking processes of four different specimens of 

sugi, whose MFAs in the S2 layers are 31, 38, 41, and 48 degrees, respectively. Each specimen 

started to shrink around a moisture content of almost 30%. The shrinkage curve tends to shift 

upwards in the figure as the MFA increases. Each shrinkage curve can be approximated by a 

straight line in the region of the moisture content between 5 and 20%, however, its gradients 

seem to reduce in the region of the moisture content smaller than 5% and larger than 20%. 

Thus, it may be rather natural to consider that each shrinkage curve is not so much linear as 

sigmoidal as pointed out by Sadoh et.al. (1967), Meylan (1972), and Abe and Yamamoto (in 

contribution), provided that those three investigations reported that the gradient in the 

longitudinal shrinking processes became rather higher in the region of the moisture content 

smaller than 10%.    

Fig.4-2(b) shows the tangential shrinking processes of three different specimens of sugi, 

whose MFAs are 27, 45, and 50 degrees, respectively. In the same way as in the case of the 

longitudinal shrinking process, each specimen started to shrink around a moisture content of 

almost 30%, and the shape of the curve of the tangential shrinkage becomes not so much linear 

as sigmoidal. The curve of tangential shrinkage tends to shift downward in the figure as the 

MFA increases in contrast with the longitudinal case.  
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(b) Simulated results 

 

Conditions for the simulation: 

For calculating eqs.(4-7) and (4-8), we need to give proper functional shapes to τ-dependent 

variables, e.g. ε1
m

, ε2
m

, ε1
f
, ε2

f
, E1, E2, S1, and S2 in advance. Then, we tentatively supposed 

following sinusoidal curves as the functional shapes of ε1
m

(τ), ε2
m

(τ), ε1
f
(τ), ε2

f
(τ), Ematr(τ), and 

ψ(τ) with reference to the above-mentioned discussions on the shrinking process of the wood 

specimen of sugi.  
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where, ε1
m

(1) ≡ ε1
m

(τ)|τ=1 , ε2
m

(1) ≡ ε2
m

(τ)|τ=1, ε1
f
(1) ≡ ε1

f
(τ)|τ=1 , ε2

f
(1) ≡ ε2

f
(τ)|τ=1, Ematr(0) ≡ 

Ematr (0)|τ=0, Ematr (1) ≡ Ematr (τ)|τ=1. Functional patterns of E1(τ), E2(τ), S1(τ), and S2(τ) can be 
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estimated from Ematr(τ) and ψ(τ) through calculating eqs.(4-5), however ε1
m

(1), ε2
m

(1), ε1
f
(1), 

and ε2
f
(1) are still unknown values. Then, we set the following two cases as the values of 

ε1
m

(1), ε2
m

(1), ε1
f
(1), and ε2

f
(1). 

[CASE 1] The polysaccharide framework bundle would not swell in any direction during water 

sorption, namely, ε1
f
(1) = ε2

f
(1) = 0%. However, the matrix skeleton tends to swell isotropically 

by water sorption. Then, we set the cases of (a) ε1
m

(1) = ε2
m

(1) = 0.1 (10%), (b) ε1
m

(1) = ε2
m

(1) 

= 0.15 (15%), and (c) ε1
m

(1) = ε2
m

(1) = 0.2 (20%). 

[CASE 2] Not only the matrix skeleton but also the polysaccharide framework bundle tend to 

swell in the direction along the cellulose molecular chain during water sorption. In this case, 

0.15 (15%) were adopted as the values of ε1(1) and ε2(1), and the following three values were 

assumed for ε1
f
(1) and ε2

f
(1), namely, (α) ε1

f
(1) = ε2

f
(1) = 0%, (β) ε1

f
(1) = ε2

f
(1) = 0.005 

(0.5%), and (γ) ε1
f
(1) = ε2

f
(1) = 0.01 (1%). 

 

Dependency of the shrinking anisotropy upon the MFA: 

The curves in Fig. 4-3(a) stand for the simulated results on the relationships between the 

MFAs and the anisotropic oven-dried shrinkages. “CASE 1” was employed as the conditions 

for calculating eqs.(4-7) and (4-8). In the cases of ε1
m

(1)=ε2
m

(1)=10~20%, the experimental 

results can be well simulated over a wide range of the MFA. According to the simulated results, 

it is obvious that the value of β’(τ)τ=0 ( ≡ β’(0) ) is largely affected by the swelling potentials 

of the matrix skeletons, namely ε1
m

(1) and ε2
m

(1), especially in the region of comparatively 

small MFA. On the other hand, the value of α’(τ)τ=0 (≡α’(0)) is highly affected by the 

swelling potentials of the matrix skeletons in the region of the large MFA. The best fitting 

curves can be obtained in the case of ε1
m

(1)=ε2
m

(1)=15%, however the simulation tends to 

overestimate the longitudinal shrinkage of the specimen especially in the region of the MFA 

larger than 40 degrees. The same is true for the transverse shrinkage in the region of the large 

MFA. 
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 Fig. 4-3(b) shows the simulated results derived from CASE 2. The value of β’(0) is 

unaffected by the swelling potentials of the polysaccharide framework bundle, namely the 

values of ε1
f
(1) and ε2

f
(1), except in the region of extremely large MFA. On the other hand, the 

value of α’(0) varies sensitively with increase in the swelling potentials of the polysaccharide 

framework especially in the region of comparatively small MFA. Judging from the simulated 

results, the best fitting can be obtained in the cases of ε1
m

(1)=ε2
m

(1)=15%, and ε1
f
(1)=ε2

f
(1)=0 

~ 0.5%. It is rather natural to consider that the polysaccharide framework bundle would not 

swell in the cellulose chain directions during the water sorption, since it consists of the highly 

crystallized cellulose as supposed in the wood fiber model.  

 In Chapter 5, we will report that the longitudinal oven-dried shrinkage of the gelatinous 

layer becomes several times larger than that of the lignified layer in the gelatinous fiber. From 

those investigations, we know that the gelatinous layer tends to shrink largely in its axial 

direction during the water desorption despite the fact that it consists of highly crystallized 

cellulose microfibril. This sounds rather contradictory to our present speculation that the 

crystalline framework of polysaccharide bundle almost never shrinks by water desorption. 

Regarding this phenomena, as reported by Okuyama et.al.(1990) and Yamamoto et.al.(1992), 

there are interesting facts that the Young’s modulus of the gelatinous layer in green condition 

takes a value of 40-50GPa, which is about two or three times as large as that of the lignified 

layer, however, it is considerably smaller than that of the cellulose crystals. This means that the 
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gelatinous layer is composed not only of pure cellulose crystal but also of matrix substances, 

such as hemicellulose or amorphous cellulose. Thus, if we assume that the CMF as a crystal 

framework would not shrink due to the water desorption, one could say that “the matrix 

region” in the gelatinous layer has a considerably large shrinking ability which causes a high 

shrinkage in the gelatinous layer during water desorption. 

 

 

 

Shrinking process during water desorption: 

From the above discussions, the values of ε1
f
(1) and ε2

f
(1) are considered to be almost nil. And, 

we tried to simulate the shrinking process of the wood fiber model on the basis of “CASE 1 - 

condition (b)”. Curves in Fig. 4-4(a) show the simulated results of the longitudinal shrinking 

process. The dots in the figure stand for the experimental results of the small wood specimens 

as already shown in Fig. 4-1(a). In the case of comparatively small MFA region (a and b), the 

experimental tendency of the wood specimens can be simulated under the condition ε1
m

(1) = 

ε2
m

(1) = 15%. In the case of MFA =41 degrees, the value of the oven-dried shrinkage can be 

derived from using this condition, however, the shape of the shrinkage curve cannot be 

simulated by the given condition. In this case, the simulation tends to over-estimate the 

experimental tendency except in the region of the moisture content below 5 %. It is considered 

that this discrepancy arises from the supposition that the τ-dependent variables are expressed 

by the sinusoidal curves as defined in eqs.(4-10). Of course, it cannot be considered that all the 
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τ-dependent variables should be approximated by eqs.(4-10), however it can be said, at least, 

that some of those variables vary non-linearly with the moisture content change, therefore, the 

sugi wood specimen tends to shrink sinusoidally by the water desorption. In the case of 

extremely large MFA ( = 48 degrees), a serious discrepancy occurs between the predicted value 

and the experimental one if the same condition, namely ε1
m

(1) = ε2
m

(1) = 15%, are used for the 

simulation. In such a large MFA region, it is considered that both the magnitude and the shape 

of each τ-dependent variable are more or less different from those in other MFA region. 

 Curves in Fig. 4-4(b) show the calculated values of the transverse shrinking process. In 

the same way as in the longitudinal cases, the experimental tendency of the wood specimens 

can be simulated under the condition ε1
m

(1) = ε2
m

(1) = 15% especially in the case of 

comparatively small MFA region (27 degrees), however in the case of extremely large MFA ( = 

45 and 50 degrees), serious discrepancy occurs between the predicted value and the 

experimental one. As discussed in the longitudinal cases, it may be considered that the value 

and the behavior of each τ-dependent variable in the region of extremely large MFA is 

somehow different from that in the region of ordinary MFA. 

 

 

 



 106

 

 

Moisture content at the fiber saturation point (FSP): 

It is considered that the values of ε1
m

(1), ε2
m

(1), ε1
f
(1), and ε2

f
(1) have some relation with the 

moisture content at τ=1, namely, the fiber saturating point (FSP). To verify this idea, we try to 

derive the moisture content of wood at τ=1 from the values of ε1
m

(1), ε2
m

(1), ε1
f
(1), and ε2

f
(1). 

We denote the volume of the matrix skeleton in the secondary wall at τ=0 as V0 and the 

volumetric change of the matrix skeleton attendant upon the water sorption as ∆V, provided 

that the dimensional change of the matrix skeleton would not be restricted by surroundings. 

Supposing ε1
f
(1) = ε2

f
(1) = 0 and ε1

m
(1) = ε2

m
(1) = ε, we obtain ∆V=((1+ε)

3−1)V0. If the 

volumetric increase of the matrix skeleton related to the water sorption is equal to the volume 

of absorbed bound water, the weight of the water in the element at the FSP becomes ρ∆V, 

where ρ is the density of the absorbed water. On the other hand, if we consider that the volume 

of the secondary wall substance in oven-dried condition is equivalent to that of the matrix 

skeleton, the oven-dried weight of the secondary wall substance is w0=ρ0V0, where ρ0 is the 

oven-dried density of the secondary wall substance. Therefore, the moisture content of the 

secondary wall at the FSP, tFSP, can be obtained as ρ∆V/w0, thus, we obtain tFSP = 

ρ((1+ε)
3−1)V0 /(ρ0V0)= ((1+ε)

3−1) ρ/ ρ0. Generally speaking, the value of ρ0 is considered to 

be about 1.5g/cm
3
 regardless of the species and age of the tree. If we assume ρ=1g/cm

3
 and ε = 

15%, we obtain tFSP =35 (%), which is close to the experimental values of the moisture content 

at the FSP. From this result, it is quite reasonable to consider ε1
m

(1) = ε2
m

(1) = 15% and ε1
f
(1) 

= ε2
f
(1) = 0 if we simulate the shrinking/swelling process of the single wood fiber by using 

eqs.(4-7) and (4-8). 

 

4-1-5 Summary and concluding remarks 
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In this section, we aimed to make clear the origin of the shrinking anisotropy of softwoods or 

hardwoods without gelatinous layers, as well as to give a first step for elucidating the 

interaction between moisture and the cell wall components. A multi-layered circular cylinder, 

having the CML, the S1, and the S2 layers, was used as an analytical model of the 

ligno-cellulosic (wood) fiber, and we successfully simulated the shrinking process of a single 

wood fiber, and compared the results with the experimental ones. The following results and 

conclusions were obtained. 

 

1. The relationship between the oven-dried shrinkage and the MFA can be predicted 

quantitatively by using the wood fiber model, if the magnitudes and the functional shapes of 

the τ-dependent variables in the wood fiber model are suitably selected. The most fitting 

simulation can be obtained by supposing ε1
m

(1) (=ε1
m

(τ)|τ=1) = ε2
m

(1) (=ε2
m

(τ)|τ=1) = 15% and 

ε1
f
(1) (=ε1

f
(τ)|τ=1) = ε2

f
(1) (=ε2

f
(τ)|τ=1) = 0 ~ 0.5%. The same is true for the simulation of the 

shrinking processes during the water desorption.  

 

2. The moisture content at the fiber saturation point was estimated from the values of ε1
m

(1), 

ε2
m

(1), ε1
f
(1) and ε2

f
(1). If the values of ε1

m
(1) and ε2

m
(1) are assumed to be 15%, and those of 

ε1
f
(1) and ε2

f
(1) are assumed to be 0%, the moisture content at the fiber saturation point is 

calculated to be 35 (%), which is close to the experimental value. 

Those indicate that the hygroexpansion of the wood cell wall is controlled by the 

mechanism of the reinforced matrix hypothesis. 

From these results, we can conclude that the matrix substance as a skeleton in the 

secondary wall of the softwood tracheid tends to swell isotropically up to 15% by the water 

sorption, however, the CMF as a crystalline framework of polysaccharide bundle almost would 

not swell by the water sorption.  
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4-2 Origin of hygroelasticity of wood – microscopic mechanism 

 

4-2-1 Background 

In Chapter 2, perceiving Barber’s (1968) circular cylinder model consisting of the S2 layer 

which is a developed version of Barber and Meylan's (1964) original one, we generalized it 

into the new one having a multi-layered cell wall consisting of the CML, S1, S2, and G layers. 

And, we formulated the dimensional change of the single wood fiber model that is caused by 

a certain physical state change occurring in the cell wall. By using the newly-derived 

formulas, we simulated the dynamics of the growth stress generation in the softwood fiber (in 

Section 3-1, Chapter 3), and the anisotropic drying shrinkage of the softwood fiber due to 

moisture desorption (in Section 4-1, present chapter).  

In this section, we formulate elastic deformation of the single softwood fiber caused by 

the action of the axial traction, and we discuss the contribution of each constituent material to 

the elastic properties of the clear wood specimen through simulating the relationships between 

the moisture content (t), the microfibril angle in the S2 layer (MFA) and the longitudinal 

Young’s modulus (EL). The formula that predicts the dimensional change of elastically 

deformed wood fiber has various parameters which represent mechanical or physical 

properties of the constituent materials, however, some of them are impossible to be measured 

by the observation despite that their physical meanings are clearly defined. Values of those 

parameters can be optimized through the comparison between the simulated results and the 

observed phenomena, which enables us to estimate the microscopic structure and internal 

properties of each cell wall constituent as it exists in the cell wall layer. Deep understanding 

of the microscopic information on each cell wall constituent tends to develop a new 

technology or destination when we use the forest resources as the raw materials for timber or 

paper. 

  

4-2-2 Formulas describing the longitudinal Young's modulus and the Poisson's ratio of 

the wood fiber model  

 

(a) Behaviors of the softwood fiber model 

The simultaneous equations (2-29-1~5) derived in Chapter 2 can be used for the present 

analysis. In the present chapter, we assume the steady moisture condition, therefore, dε1
m

, 

dε2
m

, dε3
m

, dε1
f
, dε2

f
, and dε3

f
 must be all nil, and S1, S2, and S3 in p should take constant 
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values. Thus, we can simplify eqs.(2-29), and the following equation were derived from them: 

 EL = (1/πr0
2
)(dPL/dεL) =1/( πr0

2 
f17(p)) ,   νLT = −(dεt

r1
/dεL) = −f27(p)/f17(p) .   (4-11) 

In the present analysis, we formulate the elastic deformation of the single softwood fiber 

model, which consists of the CML, the S1, and the S2 layers. The value of ρ3 must be null. 

Average moisture content t is an implicit parameter in eqs.(4-11). Here, we will examine the 

effect of the moisture content on the value of EL and νLT. 

 

(b) Determining the values of the parameters in the equations 

When calculating the values of EL and νLT by using formulas (4-11), we need to give proper 

values to the parameters, E1, E2, S0, S1, S2, ρ1, ρ2, h/r1, and θ in advance.  

 When we determine the values of E1, E2, S0, S1, and S2, the axial Young's modulus of 

the cellulose crystal (Ecry), that of the dried oriented polyose in the framework bundle (Epoly), 

and the isotropic Young's modulus of the MT substance (Ematr) become important factors in 

addition to the weight ratio of the framework polysaccharide to the matrix substance in each 

cell wall layer (A) and its crystallinity (C). In the same manner as in the previous sections, we 

assume Ecry=134 GPa, Epoly=8GPa, Ematr|t=FSP=2GPa, and Ematr|t=0=4GPa. We adopt eqs.(4-10) 

as t-dependent shapes of Ematr(t) and ψ(t). Moreover, we assume the values of A and C in each 

layer as shown in Table 4-3. Based on those assumptions, we determine the values and t- 

dependent patterns of E1(t), E2(t), S1(t), and S2(t) by using eqs.(4-5). The value of S0 is 

determined from eq.(3A-1’).  

 The values of the parameters ρ1, ρ2, and h can be estimated by the formulas on the 

relationships between the oven-dried density of the specimen and the volume ratio of each 

layer to the whole cell wall (see eqs.(4-9)). Parameters ρ1, ρ2, and h depend on the moisture 

content, however, their changes due to the moisture adsorption are so small. In the present 

analysis, we assume ρ1(τ)≈ρ1
0
, ρ2(τ)≈ρ2

0
, and h≈h

0
.  

 

4-2-3 Case studies 

 

(a) Moisture content dependency of the longitudinal Young's modulus 

The longitudinal Young's modulus of the wood (EL) often decreases as the moisture content 

increases up to the FSP, and becomes constant above the FSP (Kollmann and Krech 1960). 

Many researchers have reported that EL tends to decrease to 60 - 70% of the initial value from 

the oven-dried state to FSP. 
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 It is generally believed that the reduction of the elastic modulus of the wood due to the 

increase of the moisture content is caused mainly by the hygro-softning of the matrix 

substance which is an isotropic mixture of lignin, hemicellulose, and amorphous domain of 

the polysaccharide framework bundle. In this section, we try to verify this explanation on the 

basis of the mechanical analysis using eq.(4-11).  

EL in eq.(4-11) are controlled by various parameters, and some of them depend on the 

moisture content (τ) as mentioned before. In the present simulation, the author examines the 

effect of the moisture content in the cell wall upon the value of EL, and then adopt 2 GPa and 

4 GPa as the standard values for Ematr at FSP and the oven-dried state, respectively. Moreover, 

as the value of Ematr at the oven-dried condition, various values besides 4 GPa are assumed, 

and thus the relationship between EL and the moisture content is calculated. In this section, we 

analyze the experimental result on the moisture dependency of the longitudinal Young’s 

modulus of clear wood specimen of black spruce revealed by Kollmann and Krech (1960). 

The weight ratio of the polysaccharide framework to whole substance in each layer and its 

crystallinity are supposed in Table 4-4.  

 

Table 4-4. Weight ratio of the polysaccharide framework to whole substance in each layer of 

the secondary wall (A), and the relative crystallinity of the framework (C).* 
       

 Polysaccharide 

framework (A) 

Oriented Polyose in the 

framework 

Crystallinity of the 

framework (C) 

CML    15 (%)     0 (%)    100 (%) 

S1 26  6 76.9 

S2 52 12 76.9 

S3 - - - - -  - - - - - 

* supposed values for spruce (Picea sp.) mature wood. 

Table 4-5. Values of the parameters used for the simulation. 
      

Moisture 

condition 
E1 E2 S1 S2 F ρ1 ρ2 

Oven-dried ## ## ## ## 0.122 # # 

Fiber satu- 

ration point 
26.8 * 53.6 * 1.04 * 0.784 * 0.122 *   

* units: GPa,  
##

 estimated from eq.(4-5) and Table 4-4.  
#
 spruce, early wood tracheid, 

estimated from oven-dried wood density and eqs. (4-9).  

 

Table 4-5 shows the values of the parameters E1, E2, S1, S2, F (=S0·h/(E1·r1)), ρ1, and ρ2 which 
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are used in the simulation. 

 

 

 

The simulated results are shown in Fig.4-5. Dots represent experimental data of spruce 

specimens whose density is 0.48g/cm
3
 (Kollmann and Krech 1960). Moreover, the MFA in 

the S2 layer of the experimental specimen had been left unknown. However, considering the 

specimen used in Fig.4-5 is composed of sufficiently matured tracheids, 10 degrees as the 

MFA may be assumed when calculating eq.(4-11). In order to obtain a reasonable simulation, 

we need to assume 24~28 GPa as the value of Ematr at the oven-dried state. This is quite larger 

as compared to the standard value of 4GPa, furthermore, it is in excess of the value of Epoly 

which is the elastic modulus of the dried polyose. According to the present calculation, the 

content of non-crystalline oriented polyose in the framework has a quite small effect on the 

relationship between the moisture content and EL. Accepting both Cousins’ (1976, 1978) 

experiments and the reinforced-matrix hypothesis, one cannot help regarding this result as an 

unreasonable crux. As the origin of such crux, the following possibilities (1), (2), and (3) are 

referred to: 

(1) Inside the actual wood cell wall, Ematr takes on a value of 2 GPa at FSP, however, it 

takes several times as large a value as that of isolated MT substance at the oven-dried 

condition.  

(2) Inside the actual wood cell wall, Ematr takes on several times as large a value as that of 

isolated MT substance not only at the oven-dried condition but also within a large range of 

moisture content. However, if the properties of the compound middle lamella (CML) 

become very compliant with water sorption, then shear or slipping deformations will be 

caused between adjoining fibers by the tensile load. Thus, EL becomes considerably small 

with increasing moisture content.  
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(3) Inside the actual wood cell wall, Ematr takes on values of 2 GPa at FSP, and 4 GPa at 

oven-dried condition. On the other hand, the polysaccharide framework as a bundle 

becomes more stiff as the moisture content decreases.  

 At present, it is not sure which possibility holds, however, an experiment can be 

proposed so as to verify the possibility (1). If this possibility would be the right one, the 

reduction of the EL due to water sorption should become more remarkable in specimens with 

large MFA than in the one with small MFA. Therefore, it is planned to examine the possibility 

(1) through an experiment using samples prepared from normal wood and compression wood. 

However, Kojima and Yamamoto (2004) recently showed that this reduction becomes less 

distinct as the MFA increases by using specimens of sugi early wood specimen having 

different MFAs. If the result reported by Kojima and Yamamoto (2004) would hold in general, 

the possibility (1) is rather disputable for explaining the moisture content dependency of EL.  

 It is quite difficult to admit possibility (2) because of the following reasons: First, the 

wood can be regarded as a continuous parallel fiber lamina consisting of numerous tracheid, 

thus, it is expected that the contribution of the elastic modulus in the CML to EL becomes 

quite small according to the simple rule of mixture (Mallick 1988). Second, if shear or 

slipping deformations would occur in the CML between adjoining fiber at high moisture 

content, we expect that many tracheids would have pulled out from one another along the 

CML when the specimen was broken in tension. On the basis of the scanning electron 

microscopic observation, Saiki (1976) revealed that separation of the tracheid frequently 

seems to occur along the CML in the late wood zone, on the other hand, failure in the early 

wood zone takes the form of brittle tension with separation occurring across the cell walls. 

Moreover, several researcher, including Saiki (1976), have demonstrated that what appeared 

to be a pull-out failure in the CML was actually a failure in the outer region of the secondary 

wall even in the case of high moisture content (e.g. Mark 1967). 

 As to the possibility (3), the author can propose possible two ideas as follows. One is 

that the stiffness of the crystal part in the cellulose microfibril becomes higher with the 

decrease of moisture content. This may sound more or less strange since the pure crystal part 

would not react with the water molecule. The other is that the content of the cellulose crystal 

in the polysaccharide framework tends to increase with the reduction in the moisture content. 

As to this idea, it is required to review the mechanical contribution of the noncrystalline 

oriented polyose in the framework bundle to the cell wall elasticity. Then, to discuss this idea 

while still accepting 4GPa as the standard value of Ematr at the oven-dried state, the following 
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hypothesis is assumed on the mechanical property of the polysaccharide framework bundle:  

From a mechanical point of view, there is an intermediate domain between rigid 

crystal and completely disordered amorphous domains in the wood CMF in the 

polysaccharide framework bundle, and that such a domain fluctuates between 

crystal-like and amorphous-like states in accordance with the moisture adsorption. 

The crystal-like state, which is mechanically close to the complete crystal domain, 

tends to increase with water desorption. Therefore, the axial Young's modulus of the 

oriented polysaccharide framework as a bundle tends to increase as the moisture 

content decreases. Transformation from amorphous-like to crystal-like states is more 

or less reversible. This is a main reason why the longitudinal Young's modulus of 

wood becomes higher with drying.  

Based on this idea,
(1), (2)

 the moisture dependency of the EL was simulated. Results are shown 

in Fig.4-6. A reasonable simulation is obtained assuming that the oriented polyose in the 

polysaccharide framework (as assumed in Table 4-4) is regarded as the unstable domain in the 

wood CMF, thus, it is expected that the content of the unstable domain in the secondary wall 

reaches about one-third as much as the content of the stable crystal domain. This result is also 

effective for simulating the behaviors of specimens with the densities other than 0.48 g/cm
3
 

(see Fig.4-7). In those cases, it is assumed that non-cellulosic oriented polyose, e.g. 

acetyle-glucomannan, and stable amorphous cellulose in the framework bundle should be 

regarded as the matrix substance, for convenience. 

On the basis of above discussion, we propose an imaginative model of the fine structure 

of the wood cell wall as shown in Fig.4-8 (see also Yamamoto 2000). It is imagined that 

deposition of the matrix substances, especially the cellulose-affinitive polyose, e.g. 

acetyle-glucomannan, induces the stable amorphous domains here and there on the surface of 

the CMF, and the unstable domain as an intermediate state is formed around each stable 

amorphous domain in the CMF.
(3) 
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(b) MFA dependency of the longitudinal Young's modulus 

Many researchers have reported that the longitudinal Young's modulus of the clear coniferous 

wood specimen tends to decrease as the MFA in the S2 layer increases (Cave 1968, Sobue and 

Asano 1976). Their conclusions were confirmed also by the experiment using an isolated 

softwood fiber (Page et.al. 1977). Furthermore, many authors have tried to explain its origin 

by using the theoretical models having unidirectionally reinforced cell walls (Norimoto et.al. 

1967, Cave 1968, 1972, 1978, Sobue and Asano 1976, Salmen 1982, Salmen and De Ruva 

1985, Koponen 1991). Then, based upon the wood fiber model introduced in the present study, 

it is tried to simulate the MFA-dependency of the substantial Young's moduli of the wood in 

the longitudinal direction (EL
W

), which is defined as follows: 

 
EL

W = EL

ρW

ρ0

 , 

where ρW
 is the density of the cell wall, and ρ0 is the density of the wood in the oven-dried 

condition. When using the formulae (4-2) and (4-3), the weight ratio of the polysaccharide 

framework (A) and its crystallinity (C) in each layer is assumed as shown in Table 4-6. 

 

Table 4-6. Weight ratio of the polysaccharide framework to the whole substance 

in each layer (A), and its crystallinity (C). 

 (Case 1) (Case 2) (Case 3) (Case 4) 

 A C A C A C A C 

CML 15 100 15 100 15 100 15 100 

S1 30 40 30 60 30 80 30 100 

S2 60 40 60 60 60 80 60 100 

S3 --- --- --- --- --- --- --- --- 

 

 Simulated results were plotted with the observed ones in Fig.4-9. The observed ones 

were obtained at the air-dried condition (20-25˚C, 50-65% RH), and the simulated results 

were given under the supposition that the moisture content is 12%. And, it was assumed that 

unstable cellulose in the crystal-like state, if there were, is integrated into the crystal part of 

the polysaccharide framework, for convenience. Fig.4-9 demonstrates that the observed result 

can be quantitatively simulated when the ratio of the polysaccharide framework and its 

crystallinity in each layer are chosen adequately, which suggests that the elastic properties of 

the wood can be formulated on the basis of the reinforced-matrix model.  
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 From Fig.4-9, it becomes obvious that the relationship between the MFA and EL
W

 is 

dependent upon tree species. Regarding the dependency of the relationship between MFA and 

EL
W

 on species origin, the following possibilities (1), (2), and (3) can be referred to:  

(1) The content of the polysaccharide framework and its crystallinity is different among 

species, or between the mature wood and juvenile wood in the same trunk. This is a 

problem concerning the biosynthesis of the secondary xylem. 

(2) Crystallinity of the polysaccharide framework tends to vary with time, which changes 

the ratio of the cellulose crystal to non-crystalline components. This presents a problem 

regarding the time-dependent properties of the material mechanics after lumbering.  

(3) Drying and heating processes give an irreversible change to the cohesion state of each 

cell wall component as pointed out by Furuta et.al. (1998). In such cases, the value of Ematr 

is different from the original value. 

At present, the proprieties of the above-mentioned possibilities (1), (2), and (3) cannot be 

examined, since we have no information on the sampling positions and ages of the materials 

used for the experiment in Fig.4-9. Thus, a proper experiment needs to be planed in order to 

make clear which possibility among (1), (2), and (3) is the most reasonable.  

 

(c) Role of the S1 layer on the Poisson's ratio of the wood fiber model 

In authors’ previous papers, by using a three layered wood fiber model, it was pointed out that 
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the S1 layer plays an important part in the growth stress generation and the transverse 

dimensional stability (Yamamoto et.al. 1995, 2001). However, regarding the influence of the 

S1 layer on the mechanical properties of the wood, many problems have remained unsolved. 

Thus in the present paper, the contributions of the S1 layer to the longitudinal Young's 

modulus EL and the Poisson's ratio νLT are discussed. 

 As an indicator of the thickness of the S1 layer, the author adopts the thickness ratio of 

the S1 layer to the S2 layer , which is defined as 

λ = (r1−r2)/(r2−r3) = ρ2(ρ1−1)/( (ρ2−1) . 

Then, supposing the various values of λ, the longitudinal Young's modulus and the Poisson's 

ratio of the wood fiber model whose oven-dried density is 0.48 g/cm
3
 were calculated. It is 

assumed that the moisture content is 12 %, and the MFA in the S2 layer is 10 deg. Simulated 

results are shown in Fig.4-10. According to the simulation, the longitudinal Young's modulus 

EL becomes almost constant regardless of the value of λ. On the other hand, the longitudinal 

Poisson's ratio νLT becomes abruptly larger with decrease of λ, and with increase of the 

weight ratio of the cellulose crystal to the MT substance.   

 

 

 

 According to the formulae described in our previous section, the values of ρ1 and ρ2 in 

the typical early softwood whose oven-dried density is 0.48 are estimated as 1.015 and 1.187 

respectively, hence, the most reasonable value of λ is calculated as 0.0952. When λ is equal to 

0.0952, νLT tends to converge on 0.5 - 0.6 regardless of the weight ratio of the cellulose 

crystal to the MT substance. Such values closely coincide with the Poisson's ratio of the actual 

normal wood.  
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 It may be a little hasty to deduce the conclusion obtained from a single fiber model to 

the macroscopic wood, however, it seems quite reasonable to consider that the longitudinal 

Poisson's ratio of the wood is highly affected and controlled by the S1 layer. 

 

(d) Recyclable properties of the paper and the fine structure of the wood cell wall 

Deterioration of the global environment due to increasing atmospheric carbon dioxide has 

been a serious problem since 20th century. Many scientists consider that biological mitigation, 

e.g. protection and conservation of the forest environment, becomes one of the most effective 

solutions to stop the increase of the atmospheric carbon dioxide. On the other hand, excessive 

exploitation had irreversibly deteriorated the natural forest in many tropical countries. Some 

scientists recommend the afforestation of the man-made forest of the fast-growing species in 

order to recover the collapsed green environment in the tropical countries. They consider that 

the fast-growing species having a very high growth rate can quickly mitigate increasing 

atmospheric carbon dioxide. If the plantation activity of those species could be supported 

from the economical viewpoint, it would be realized and become diuturnal one.  

Another way to stop the increase of atmospheric carbon dioxide is to develop the 

technique to prolong the lifetime of the forest products. For example, Ona et al. (2004) notices 

the necessity of recycle use of the paper resources. Then, they tried to make clear the 

recyclable properties of the paper by retracing the properties of raw material.  

The fibers in the dried paper sheet are glued each other by the force of hydrogen bond. 

However, once the dry paper is immersed in the water, the cell wall swells again, then, the 

paper is disjointed into the fibers in the water. After several repetitions of the drying and 

wetting process, deterioration of each fiber wall gradually progresses, coincidently, the 

strength of the recycled paper becomes lower. Okayama et al. (2004) found that the tensile 

index of the paper manufactured from Acacia spp. rapidly decreases with the repetitions of 

the recycle treatment, however, the zerospan tensile index of the paper, which is an indicator 

of the strength of individual fiber, does not decrease with the repetitions of the recycle 

treatment. From this result, they considered that a decrease in the strength of the recycled 

paper is attributable not to the decrease in the tensile strength of the fiber but to the decrease 

in the coherence between the fibers in the sheet, and they hypothesized that such a decrease in 

the cohesion between fibers is induced by the “cornification” of the fiber wall. They explained 

that cornification gradually progresses in the fiber wall after several repetitions of the drying 

and wetting process. As the result, the swelling ability of the fiber wall decreases with the 
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number of recycle use, thus, the ability of the hydrogen bond in the fiber wall remarkably 

decreases. This is a reason why the tensile index of the paper sheet tends to decrease with the 

number of recycle use. 

Ona et al. (2004) reported that the recyclable index of the papers manufactured from 

9.5-year-old plantation trees of Eucalyptus globulus are scattered unevenly in spite that the 

strengths of the virgin papers become uniform. Moreover, they found that the recyclable index 

of the paper showed a high positive correlation with the percentage of hemicellulose 

(specifically, oriented polyose), on the other hand, a high negative correlation with the 

cellulose percentage in the raw material. Those results suggest that the oriented polyose in the 

fiber wall plays a certain part in inhibiting the progress of the cornification in the fiber wall, 

that is to say, further crystallization of the cellulose microfibril due to the repetitions of the 

recycle treatment. 

It is considered that their discoveries are highly related to the author’s prediction on the 

fine structure of the wood cell wall. It is expected that an irreversible crystallization occurs in 

the unstable domain of the CMF with the repetition of the drying and wetting process, which 

is a major cause of the cornification of the fiber wall in the recycled paper.  

 

4-2-4  Summary and concluding remarks 

In this section, on the basis of the reinforced-matrix hypothesis, the elastic deformation of the 

isolated wood fiber was formulated. Thereafter, some case studies on the elastic behaviors of 

the wood were analyzed by using the newly-derived formulas. As a result, following 

conclusions were obtained: 

1. On the origin of the moisture dependent change of the longitudinal Young’s modulus of the 

clear wood specimen −  

There is an intermediate domain between rigid crystal and completely disordered amorphous 

domains in the CMF in the polysaccharide framework bundle, and that such a domain 

fluctuates between crystal-like rigid state and amorphous-like compliant state in accordance 

with the moisture adsorption. This is a main reason why the longitudinal Young's modulus of 

wood becomes higher with drying.  

 

2. On the origin of the species dependency of the Young’s modulus of the cell wall in the 

direction along the fiber axis −  

We derived following three possibilities as the reason to explain the origin of the species 
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dependency of the relationship between the MFA and EL
W

: 

i) Content of the polysaccharide framework and its crystallinity is different among species, or 

between the mature wood and juvenile one in the same trunk.  

ii) Crystallinity of the polysaccharide framework tends to vary with time, which changes the 

ratio of the cellulose crystal to non-crystalline substance as the time goes on.  

iii) Drying and heating processes give an irreversible change to the cohesion state of each cell 

wall component in the tested specimens. In such a case, the value of Ematr would be different 

from the original one. 

 

3. On the role of the S1 layer in the longitudinal Young's modulus EL and the Poisson's ratio 

νLT − 

The S1 layer almost does not affect the value of EL, however, the thickness ratio of the S1 to 

the S2 layer highly affects the value of. νLT. When λ (=(r1−r2)/(r2−r3)) takes the realistic value, 

νLT tends to converge on 0.5 - 0.6 regardless of the weight ratio of the cellulose crystal to the 

MT substance. Such values closely coincide with the Poisson's ratios of the actual normal 

wood. On the other hand, νLT becomes unreasonably larger when λ is assumed to be nearly 0. 

Thus, the S1 layer takes an important role in determining the longitudinal Poisson’s ratio of 

the wood fiber. 

 

4. Recyclable properties of the paper and the fine structure of the wood cell wall −  

Decrease in the strength of the recycled paper is attributable not to the decrease in the tensile 

strength of the fiber but to the decrease in the coherence between the fibers in the paper sheet, 

which is induced by the cornification of the fiber wall. It is expected that an irreversible 

crystallization occurs in the unstable domain of the CMF with the repetition of the drying and 

wetting process, which is a major cause of the cornification of the fiber wall in the recycled 

paper. 

 

 

Footnote 

 

(1) Salmen (1982) pointed out possibility that a hygro-plasticization occurs in the disordered 

non-crystalline regions of the polysaccharide framework of the wood pulp fiber, and 

successfully explained the drastic reduction of the elastic modulus of the wood pulp fiber 
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and the paper when the are immersed in water. At the same time, by using the laminate 

plane model of the cell wall, and he showed that the observed reduction of EL in the wood 

fiber due to moisture adsorption can be predicted by the softening of the hemicellulose 

(Salmen & De Ruvo 1985). Then, he deduced that no noticeable hygroplasticization due 

to water impregnation takes place in the CMF of the wood cell wall. Thus, he considered 

that hygroplasticization of the hemicellulose causes the drastic reduction of the elastic 

moduli of the wood pulp fiber and the paper when they absorb much moisture. 

 

(2) If one consider the possibility (3) is proper, it may be regarded that the conclusion 

deduced from Section 4-1 in this chapter was more or less meaningless, since the 

simulations in Section 4-1 was carried out based on the wood fiber model which produces 

no unstable domain in its framework bundle. As a trial, taking the above-mentioned 

hypothesis (i.e. possibility (3)) into consideration, the author calculated the relationship 

between the MFA and the oven-dried shrinkage. However, there was almost no difference 

in deduced conclusions between before and after considering the effect of unstable 

domain in the framework bundle. 

 

(3) Recently, Tokoh et al. (1998) observed that the cellulose microfibrils of Acetobacter 

xylinum formed in medium containing acetyle-glucomannan are loosely arranged in 

contrast to the stiff ribbon-like fibrils formed in the control medium. They further noticed 

that with the glucomannan, drop-like structures of hemicellulose are developed around the 

base of the microfibrils. It was therefore concluded that the deposition of the matrix 

substance, that is, cellulose-affinitive polyose, into the CMF aggregates would not only 

induce the stability of bundle shape but also assist in the formation of the heterogeneous 

configuration in the polysaccharide bundle. 
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Chapter 5 

 

BIOMECHANICS OF TENSION WOOD PROPERTIES 

 

5-1 Background - Dispute on the role of gelatinous layer in generation of the tension 

wood properties  

Tension wood (TW) often shows characteristic behaviors differently from the normal wood 

(NW). A high tensile growth stress is generated in the differentiating xylem in the TW region, 

which often becomes ten times as large as that in the NW region (Okuyama et al. 1990, 1994). 

The longitudinal Young's modulus of the TW becomes significantly higher than that of the 

NW (Okuyama et al. 1990, Yamamoto et al. 1992). Moreover, the axial shrinkage of the TW 

tends to exceed more than 1% during water desorption, while the one in the NW becomes 

only 0.1~ 0.5% (Yamamoto et al. 1992, Yamamoto & Okuyama 1994). Therefore, formation 

of the TW in the log or the lumber often causes serious processing defects when the forest 

products are used for the timber or the raw material for furniture.  

The TW often contains a large amount of abnormal fiber that is called gelatinous fiber 

(G-fiber) since it contains a gelatinous layer (G-layer) as the innermost layer of the secondary 

wall. Some authors attribute abnormal properties of the TW xylem to the intrinsic properties 

of the G-fiber (Okuyama et al.1990, 1994, Yamamoto et al. 1992, Clair et al. 2003). On the 

other hand, not a few researchers believe that the G-layer is mechanically too compliant to 

bear a large stress generation. They base their argument on the facts that the G-layer is often 

convoluted in the lumen of the transverse section which is sampled from the water swollen 

block, and it can be easily peeled off from the lignified layer in the same direction during 

microtoming. This gives the impression that it is attached only loosely to the remainder of the 

secondary wall (Kollman & Cote 1984). From those observations, they consider that the 

various characteristics of the TW should be attributed not to the "compliant G-layer" but to 

relatively thicker S1 layer (Boyd 1977), and/or to relatively thinner S2 layer whose 

microfibril angle (MFA) is expected to be more or less different from the one in the NW fiber 

(Norberg & Meier 1966, Scurfield 1973). 

 It is impossible to adjudge which possibility holds until we succeed in measuring 
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directly the mechanical and physical properties of the G-layer and the lignified layer by 

isolating them each other. However, it is still difficult to obtain the G-layer cylinder without 

inflicting any damage. No matter how a G-layer cylinder is obtained, it is almost impossible 

to provide an accurate measurement because the G-layer cylinder is too small to be analyzed 

by a conventional mechanical testing machine.  

By the way, there is no specific difference on the anatomical and chemical aspects in the 

lignified layer between in the NW and in the TW fibers as pointed by Okuyama et al (1990). 

It may be quite natural to consider that the lignified layer in the G-fiber would be essentially 

same as that in the NW fiber, thus, the author expects that the G-layer is attributable to the 

origin of characteristic behaviors peculiar to the TW. In any case, to verify such an 

expectation, it is required to observe the behaviors or physical properties of the G-layer by 

isolating it directly from the lignified secondary wall, which is still impossible as mentioned 

above.   

 Simulation using a wood fiber model is one of the most convenient approaches to 

estimate the internal properties and fine structures of each constituent material as it exists in 

wood cell wall (Yamamoto et al. 2002, Yamamoto & Kojima 2002). In Chapter 2, we 

formulated mechanical behaviors of the wood fiber model, consisting of the compound 

middle lamella (CML), the outer layer of the secondary wall (S1), its middle layer (S2), and 

the innermost gelatinous layer (G), and derived a basic formula to simulate the deformation 

process of an isolated wood fiber when a certain biomechanical change occurs, such as cell 

wall maturation, the water adsorption, and the external load induction (Yamamoto 2004). The 

basic formula contains several parameters which are derived from the composite structure of 

the cell wall layer. When we simulate the observed phenomena by using this formula, we need 

to optimize those parameters so as to give a reasonable result. We consider that optimized 

values of those parameters should reflect intrinsic information on the internal properties and 

fine structure of cell wall constituents.  

 Objective in the present chapter is to clarify the role of the G-layer on the origin of 

characteristic behaviors of the TW xylem. Then, several TW properties from a 70 year-old 

Kohauchiwakaede (Acer sieboldianum Miq.) will be analyzed by using the analytical formula 

given in Chapter 2. 
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5-2  Experiment 

 

5-2-1  Material and method 

A 70-year-old kohauchiwakaede (Acer sieboldianum Miq.), grown on a steep slope at a 

private mountain in hikodani-river (彦谷), Kiyomi-cho, Gifu prefecture, Japan, 14 cm in 

DBH, having a leaning stem, was used for the experiment At breast height, ten measuring 

points were set peripherally on the xylem surface of the leaning stem. At each point, the 

released strain of the longitudinal growth stress on the xylem surface (εL
X
) was measured 

using the ordinary strain-gauge method in early April 1988. Thereafter, rectangular portions, 

70×10×5 mm and 50×10×5 mm in the longitudinal (L), tangential (T), and radial (R) 

directions, respectively, were sampled away from the upper or lower positions at each 

measuring point of the released strain. Then, respective portions were used to obtain the 

tensile Young’s modulus under the green condition (EL
X
) and the longitudinal shrinkage (αL

X
) 

from green to the oven-dried condition (Yamamoto et al. 1992). 

After that, a transverse section, 10µm in thickness, was cut from each measuring point 

of the released strain by a sliding microtome, and the section was stained by safranin and 

ferric hematoxylin. The section was then mounted on a slide glass with the jelly-like 

compound of gelatin, glycerin, and water. By using a light microscope connected to an image 

processor, microscopic images at large and small magnification were photographed within the 

outermost annual ring of the mounted section. From the images at small magnification, the 

area composition of domain of each tissue, e.g. vessel element (V), ray tissue (R), and wood 

fiber (F), was computed. From the images at large magnification, the area ratios of the 

lignified layer (s), the G-layer (g), and the cell lumen in the domain of the wood fiber were 

determined. Frequency of the G-fiber per unit area (Ng) in the domain of the wood fiber and 

that of the normal wood fiber (N-fiber) (Nn) were also counted.  

Flat-sliced samples, 5×5×0.015 mm in L, T, and R respective directions, were cut 

from the outermost annual rings of both the NW xylem and the highly developed TW xylem. 

Sampled specimens from the TW xylem were quickly dried with ethanol, and were 

ultra-sonicated in water to remove the G-layers from the lignified layer (Norberg & Meier 

1966). Thereafter, the microfibril angles in the middle layer of the secondary wall (MFA) 

were measured by the iodine-staining method (Saiki et al.1989). 
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5-2-2 Observed Results  

Obtained results are overviewed in Table 5-1, which was already reported in our previous 

paper (Yamamoto et al. 1992). From Table 5-1, it can be clearly understood that the TW 

xylem shows quite distinctive properties when compared with the NW xylem. It is considered 

that either of the G-layer formation or the relatively small MFA in the S2 layer of the G-fiber 

would cause the distinctive xylem properties in the TW. However, it is still unknown which 

possibility is more concerned with the origin of the TW properties, or whether there is 

something other factor that causes the TW properties. In the present chapter, we attempt to 

answer this question through simulating the mechanical behaviors of the G-fiber on the basis 

of the formula derived in Chapter 2. 
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5-3 Simulation 

5-3-1 G-fiber model 

A schematic model of the typical G-fiber, consisting of the compound middle lamella (CML), 

the S1 and S2 layers, and the G-layer, are shown in Fig.5-1.  

 

 

 

(a) Parameters in the basic formula 

In this paper, we focus on three biomechanical processes in the TW xylem: (1) cell wall 

maturation, (2) elastic deformation due to action of an axial traction under a steady moisture 

condition, and (3) moisture adsorption. The G-fiber tends to shrink or expand in its 

longitudinal or transverse directions when the biomechanical processes occur. We denote the 

strains of the dimensional changes of the single G-fiber in the longitudinal and the diametral 

directions by εL and εT, respectively, which were simulated by the formula derived in Chaper 

2. Correctly speaking, it is not a model for the behaviors of an isolated fiber, because the 

boundary condition imposed in the present formulation considers the shear restraint imposed 

by neighboring fibers (see eq.(2-19)). A basic formula to calculate εL and εT contains several 

parameters, which can be categorized into the anatomical structure, the mechanical properties, 

and the internal expansive strains of the constituent materials (see Nomenclatures). 

 

(b) Basic equations to calculate the dimensional changes of the single G-fiber 

The basic equations that gives εL and εT were derived as follows (see eq.(2-31) in Chapter 2): 
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where a dot over a character represents the derivative by an elapsed time t. Coefficients f11, f12, 

- - - , f27 are functions of p, and p is a parameter vector whose components are ρ0, ρ1, ρ2, ρ3, θ, 

E1, E2 , E3, S0, S1, S2, and S3. Some parameters depend on t during the cell wall maturation, or 

the moisture adsorption. PL represents an axial traction that acts on both ends of the G-fiber. 

We can calculate the dimensional change of the single wood fiber by integrating the 

differential eqs. (5-1) along the physical state change of the cell wall. 

 

(c) Time -dependent or moisture-dependent behaviors of parameters 

 

Maturation process of the cell wall: 

The amorphous constituent, such as xylan and lignin, are irreversibly accumulated among the 

gaps of the polysaccharide bundle after the completion of the polysaccharide framework of 

the cellulose microfibril (CMF) and other non-cellulosic but oriented polyose. In this process, 

the amorphous constituent hardens into the matrix skeleton. Thus, S1, S2, and S3 tend to 

increase monotonously from very small values to their final values. Moreover, the amount of 

the substance increases irreversibly inside the matrix skeleton whose volume is spatially 

limited. As the inevitable consequence, internal strains ε1
m

, ε2
m

, ε3
m

 are induced in the S1 and 

S2 layers, and the G-layer, respectively. 

In the same way as in Chapter 3, it is considered that time-dependent changes in E1, E2, 

and E3 are somewhat smaller than in S1, S2, and S3 since the polysaccharide framework had 

been already completed before the matrix substance began to deposit. However, we should 

not ignore the possibility that aging effects, such as an increase in the crystallinity of the CMF, 

would generate internal strains ε1
f
, ε2

f
, ε3

f
 in the polysaccharide framework bundle (Yamanoto 

& Okuyama 1988, Yamamoto et al.1992, 1995, Yamamoto 1998). In such a case, we need to 

assume a certain value for each of them. 

 

Drying process in the cell wall: 

Because the completed xylem (i.e. green wood) contains much water, drying is required 

before converting the wood into natural resources for building or for producing furniture 

timber. In this process, the water molecule is discharged from the absorption site in the matrix 

skeleton, after which the matrix skeleton tends to shrink and harden. This means that S1, S2, S3, 

ε1
m

, ε2
m

, and ε3
m

 tend to change their values monotonously in accordance with the moisture 

desorption. At the same time, a certain physicochemical change may occur in the bundle of 
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the polysaccharide framework. However, it is natural to consider that changes of E1, E2, E3 

and values of ε1
f
, ε2

f
, and ε3

f
 are somewhat smaller than those of S1, S2, S3, ε1

m
, ε2

m
, and ε3

m
 

because the crystal domain, which is a main component of the polysaccharide framework, 

almost does not participate in the adsorption of the water molecule. 

 

(d) Determination of the values to be assumed for parameters in eqs.(5-1) 

 

Anatomical factors ρ0, ρ1, ρ2, ρ3, and θ: 

In the present chapter, to determine the values of ρ0, ρ1, ρ2, and ρ3, the following formulas 

was derived (see APPENDIX [1]). It is required to know the ratio of the area of each layer to 

the total crosscut area of a single wood fiber when we use formulas (5-2). 
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where s and g represent the area ratios of the lignified layer (= CML+S1+S2) and the G layer 

in the domain of the wood fiber, respectively. f and Ng represent the numbers of the wood 

fiber and the G-fiber per unit area in the domain of the wood fiber. These are experimentally 

determined values. To determine the values of ρ0, ρ1, ρ2 by using the eqs.(5-2), we need to 

give at least two of them. In the present calculation, and with reference to the authors’ 

previous studies (Yamamoto et al. 2001, 2002), we hypothesized 0.025 as the value of h/r1, 

and 1.1 as the value of ρ1. Thereafter, for each measuring point of the released strain, we 

calculated the values of ρ2 and ρ3 by using eqs.(5-2). The estimated values of ρ2 and ρ3 are 

displayed in Table 5-2.  
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θ is one of the anatomical factors in p. In the present simulation, we used the measured 

values of the MFA in the S2 layer of the N- and the G-fibers, which are displayed in Table 

5-1. 

 

Mechanical factors E1, E2, E3, S1, S2, S3, S0 : 

The S1 and S2 layers, and the G-layer can be regarded as the parallel composites of the 

framework bundle of polysaccharide and the matrix skeleton. It follows that the simple 

mixture law can be applied to calculate the values of E1, E2, E3, S1, S2, and S3 as follows (see 

eqs.(3-5) in Section 3-1): 

Ei = Ai·Ci·Ecry + Ai·(1−Ci)·ψ(τ)·Epoly ,   

Si = {1−Ai + (1−Ci)·Ai·(1−ψ(τ))}·Ematr/(1+ν) ,  (i = 1, 2, 3)  (5-3) 

where ν is Poisson ratio, which is hypothesized to be 0.5 in the same way as in the previous 

chapters (Yamamoto 1998, 1999, Yamamoto et al. 2001), C1, C2, and C3 are crystallinity 

indices of the polysaccharide framework in the S1 and S2 layers, and the G-layer, respectively. 

A1, A2, and A3 are weight ratios of the polysaccharide framework in the respective layers. ψ(τ) 

is a monotonously decreasing function of τ, which was introduced in eqs.(3-5) in Section 3-1. 

It satisfies ψ(τ)|τ=0=1 and ψ(τ)|τ=1=0. However, in the present chapter, we tentatively assume 

ψ(τ) =0 for all τ for convenience. The values of A1, A2, and A3 are assumed in Table 5-3.  

 Ematr is Young’s modulus of the molded matrix substance, which clearly depends on the 

elapsed time during the cell wall maturation (or moisture content during the moisture 

adsorption). With reference to Cousins’ experiments (Cousins 1976, 1978), it is assumed that 

Ematr= 2 GPa in the green condition, and Ematr= 4~6 GPa in the dried condition. On the other 

hand, it is considered that the Young’s modulus of the cellulose crystal along the direction 

parallel to the molecular chain (Ecry) is not affected by moisture adsorption. With reference to 

Nishino et al’s study (Nishino 1996), we assume Ecry = 134 GPa regardless of the moisture 

content. 

 Then, we assumed the values and t-dependent patterns of E1, E2, E3, S1, S2, S3 as 

displayed in Table 5-3 on the basis of the above-mentioned discussions and the subsidiary 

conditions described after, provided that the non-crystalline region in the framework bundle 

was regarded as being integrated into the matrix substance from the mechanical point of view. 

The value of S0 was calculated by the method described in Footnote (6) in Section 3-1. 
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Internal expansive terms ε1
f
, ε2

f
, ε3

f
, ε1

m
, ε2

m
, ε3

m
: 

Neither of the values nor t-dependent patterns can be experimentally measured for ε1
f
, ε2

f
, ε3

f
, 

ε1
m

, ε2
m

, ε3
m

. However, we can optimize their values and t-dependent patterns so as to obtain a 

reasonable simulation. 
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5-4 Results 

 

5-4-1 Young’s modulus of the green G-layer 

 

(a) Experimental results  

Matured secondary xylem of kohauchiwakaede consists of four domains of tissues, i.e. the 

wood fiber, the vessel element, the ray parenchyma, and the axial parenchyma. It is 

considered that those tissues are arranged in a row in the direction parallel to the axis of wood 

fiber, and the following formula can be used for calculating the longitudinal Young’s modulus 

of the TW xylem (EL
X
) by the simple law of mixture.  

( )   ,
1 P

L
R
L

V
L

F
L

X
L EPEREVEF

PRVF
E ⋅+⋅+⋅+⋅

+++
=   (5-4) 

where EL
F
, EL

V
, EL

R
, and EL

P
 are Young’s moduli of the wood fiber, vessel element, ray 

parenchyma, and axial parenchyma, respectively, under the green condition, and F+V+R+P=1. 

Considering EL
V
/EL

F
<<1, EL

R
/EL

F
<<1, and EL

P
/EL

F
<<1, we conclude EL

F
 = EL

X
/F. In the case 

of Kohauchiwakaede, the amount of the axial parenchyma is somewhat less than that of the 

other tissues, and its morphological features are similar to the wood fiber cell apart from the 

fact that the wall thickness of the axial parenchyma is smaller than that of the wood fiber. In 

this study, for the simplification, we did not distinguish the axial parenchyma from the wood 

fiber when we determined the values of F, V, R, and P. 

According to the observations, there was no significant difference among the 

measuring points on the periphery for the morphological properties of the G-fiber, e.g. the 

thickness of the lignified layer, that of the G-layer, and their morphological appearance. The 

same can be said in the case of the N-fiber. Then, by applying the simple mixture law to the 

fiber domain that is regarded as a parallel composite of the G-fiber and the N-fiber, we derive 

the following formula: 

( ) fNNfNEEEEEE
n
L =+=φ+φ−=φ−+⋅φ= ngg

n
L

g
L

n
L

g
L

F
L ,/ where,)1( .  (5-5) 

EL
g
 and EL

n
 are the axial Young’s modulus of the green G-fiber and that of the green N-fiber, 

respectively, and φ is the relative frequency of the G-fiber in the fiber domain. On the other 

hand, we obtained the relationship between φ and EL
F
 (= EL

X
/F) in Table 5-1, which was 

approximated by the following linear regression: 
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  EL
F
 = 7.74 φ + 8.50  ( r = 0.857**) .     (5-6) 

Then, comparing eqs.(5-5) and (5-6) directly, we obtain 

  EL
g
 = 16.24 [GPa] , EL

n
 = 8.50 [GPa] ,    (5-7) 

provided that we do not use the data obtained from measuring point 5 when deriving eq. (5-6). 

This is because the observed value of the longitudinal Young’s modulus at measuring point 5 

was larger regardless of having very small amount of G-fiber formation, and therefore the 

estimated value of EL
g
 becomes abnormally large at position 5 in comparison with that at the 

other positions. It is reasonable to assume that some error occurred in measuring the elastic 

modulus of the specimen at point 5. 

 

(b) Simulation using the wood fiber model 

 

In this simulation, we assumed the condition of the steady moisture state (green condition, i.e. 

the state at t = T3 in Table 5-3). Then, every component in p must be constant, and both dεi
m

 

and dεi
f
 (i = 1, 2, 3) should all be nil. Then, from eqs.(5-1), we obtain the following formula to 

calculate the longitudinal Young’s modulus of the wood fiber (EL): 

  EL = {1/(πr0
2
)}dPL/dεL =  {1/(πr0

2
)}/f17(p) .    (5-8) 

The values assumed in Table 5-3 were used for the simulation using eq.(5-8). Firstly, we 

optimized the values of C1 and C2 in eqs.(5-3) so as to give the experimentally determined 

value of EL
n
 (= 8.50GPa). In this simulation, we assumed that the degree of crystallinity in the 

framework bundle of the oriented polysaccharide was identical between in the S1 and the S2 

for convenience, because there is no reason for considering that properties of the CMF are 

different in the S1 and in the S2 layers. Thereafter, we applied the optimized values of C1 and 

C2 to the simulation of EL in the green G-fiber, and optimized the value of C3 to obtain the 

experimentally determined value of EL
g
 (= 16.24GPa). Finally, the optimized values of C1, C2, 

and C3 became: 

C1 (= C2 ) = 0.494,  C3 = 0.221.     (5-9) 

From this result, we calculated the longitudinal Young’s modulus of the lignified layer in the 

N-fiber (EN
n
), that of the lignified layer in the G-fiber (EN

g
), and that of the G-layer (EG

g
) as 

follows: 

   In the N-fiber :   EN
n 
= 13.13 [GPa] 

In the G-fiber :   EN
g 
= 16.28 [GPa] , EG

g 
= 28.27 [GPa] .   (5-10) 
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5-4-2 Growth strain in the G-layer 

 

(a) Experimental Results 

The wood fiber, vessel element, ray parenchyma, and axial parenchyma in the differenciating 

xylem tend to deform during their secondary wall maturation. Thus, the growth strain is 

generated in the maturing xylem. The infinitesimal increase in the longitudinal growth strain 

of the xylem at the macroscopic level (εL
X
) can be expressed by the following formula by the 

simple mixture law: 
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where dεL
F
, dεL

V
, dεL

R
, and dεL

P
 are infinitesimal increses of the longitudinal growth strain in 

the respective tissues. Assuming EL
V
/EL

F
<<1, EL

R
/EL

F
<<1, EL

P
/EL

F
<<1, and F+V+R+P=1, we 

obtain 

F
L

X
L ε≅ε dd . 

Moreover, we obtain the following formula:  
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ε⋅+φ⋅ε⋅−ε⋅
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⋅φ−+⋅φ

ε⋅⋅φ−+ε⋅⋅φ
=ε≅ε  (5-12) 

where dεL
g
 and dεL

n
 are respective increments in the longitudinal growth strain of the G-fiber 

and that of the N-fiber, respectively. By integrating the eq.(5-12) along the cell wall 

maturation, we can obtain the growth strain of the newly-formed xylem (εL
X
).  

In order to integrate the eq.(5-12), we also need to know the changes of EL
g
 and EL

n
 

during the process of secondary wall maturation. It is considered that deposition of the matrix 

constituents have almost no effect on the increases of EL
g
 and EL

n
 because the stiffness of the 

matrix substance is somewhat smaller than that of the framework bundle. Therefore, it is 

natural to consider that increases in EL
g
 and EL

n
 are caused by a certain qualitative change of 

the CMF, such as further crystallization of cellulose (Wardrop 1965). Unfortunately, it is still 

quite difficult to know the time-dependent change of the CMF crystallinity in the cell wall. In 

the present study, for convenience, we assumed that the crystallinity in each layer is almost 

unchanged during cell wall maturation. We then hypothesized that the EL
g
 and EL

n
 becomes 

constant through the cell wall maturation. 
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Growth stress generation is a biomechanical process during the maturation 

(lignification) of the secondary wall (Wardrop 1965, Boyd 1972, Archer 1987, Yamamoto 

1998). Thus, we integrate eq.(5-12) along the cell wall maturation in the G-fiber. As the result, 

we obtain the following formula: 

( )
( ) n
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L
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ε⋅+φ⋅ε⋅−ε⋅
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⋅φ−+⋅φ

ε⋅⋅φ−+ε⋅⋅φ
=ε≅ε    (5-13) 

where  . ,           

process
Maturation

n
L

n
L

process
Maturation

g
L

g
L ∫∫ ε=εε=ε dd  

Results from eq.(5-7) were used as the values of EL
g
 and EL

n
 in this formula. The 

observed relationship between φ and εL
X
 (=εL

F
), which was shown in Table 5-1, was 

approximated by the following curvilinear regression: 

)956.0(.
098.1

6003.0
5554.0 ***F

L =
+φ

+−=ε r               (5-14) 

By comparing the eqs.(5-13) and (5-14) directly, we obtained the growth strains of G-fiber 

(εL
g
) and the N-fiber (εL

n
) as follows: 

  εL
g
 = −0.2693 [%] , εL

n
 = −0.0087 [%] .                (5-15) 

 

 

(b) Simulation based on the G-fiber model 

We integrated the basic formula of eq.(5-1) during the G-fiber wall maturation under the 

assumption of dPL=0. As initial conditions, we adopted εL(t)|t=0=0, εT(t)|t=0=0. Results from 

eq.(5-9) were used as the values of C1, C2, and C3. Values of the parameters assumed in Table 

5-3 were also used for the calculation. We then optimized the increments and t-dependent 

patterns of ε1
f
, ε2

f
, ε3

f
, ε1

m
, ε2

m
, and ε3

m
 to obtain the results in eq.(5-15). However, before 

integrating eqs.(5-1), we need to know how the maturation of the G-fiber wall proceeds.  

Some scientists clarified the lignification process in the secondary wall of the softwood 

tracheid and the hardwood normal-fiber (Terashima 1990, Donaldson 1992). On the other 

hand, maturation of the G-fiber has remained unclear. Recently, based on the technique of 

immuno-TEM observation, Kim et al. discovered that the activity of the peroxidase is 

localized in the secondary wall rather after the completion of the G-layer (Kim et al. 2002). 

This suggests that lignification proceeds in the secondary wall after the formation of the thick 
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G-layer. With reference to those investigations, we assumed the following conditions 

regarding the maturation of the G-fiber.  

 

Subsidiary Condition 1: Lignification in the S1 layer starts at t = 0 after the formation of the 

frameworks of the cellulose and the other oriented polysaccharide in the secondary wall and 

the G-layer, and ends at t = T1. This is the first integration interval. Lignification in the S2 

layer starts at t = T1, and ends at t = T2. This is the second integration interval. In the G-layer, 

deposition of a certain matrix substance should proceed, however, no lignification occurs. In 

this study, as the third integration interval, the deposition of the matrix substance in the 

G-layer starts at t = T2 and ends at t = T3. Then the G-fiber maturation is completed at t = T3. 

S1, S2, and S3 tend to increase monotonously and smoothly from very small values to their 

final values in their respective integration intervals. 

 

We integrate eqs.(5-1) as follows: 
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  (5-1’) 

We need to impose certain subsidiary conditions on values and t-dependent patterns of 

ε1
f
, ε2

f
, ε3

f
, ε1

m
, ε2

m
, and ε3

m
 to simulate the observed values of εL

n
 and εL

g
. In the case of the 

softwood latewood tracheid, the observed relationship between the longitudinal growth strain 

and the MFA can be simulated by supposing [increment in ε1
m

] = 1%, [increment in ε2
m

] = 

0.5%, and [increment in ε1
f
] = [increment in ε2

f
] = −0.15% (Yamamoto 1998). Where, 

[increment in ε1
f
], etc., are defined as follows: 

[ ] .,in increment 
3

0

f
1f

1 etcdt
dt

dTt

t∫
=

= 








 ε
≡ε  

With reference to this result, we assumed the following subsidiary conditions. 

 

Subsidiary Condition 2: ε1
m

 and ε2
m

 take positive values. Each of them increases 

monotonously and smoothly from 0 to a certain value (= increment) as lignification 
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proceeds in each integration interval (Yamamoto 1998). It is natural to consider that 

increments in ε1
m

 and ε2
m

 depend on the lignin content in the respective layers. This is based 

on the lignin swelling hypothesis (Boyd 1972). However, we assume ε3
m

 = 0, because no 

lignification occurs in the G-layer. On the other hand, ε1
f
 and ε2

f
 take negative values. Each 

of them tends to change monotonously and smoothly from 0 to a certain value (= increment) 

with the maturation in each integration interval. This postulates the cellulose tension 

hypothesis, which considers that the CMF framework tends to contract in the direction 

parallel to the cellulose molecular chain with the aging of the CMF (Wardrop 1965, Bamber 

1978). 

 

Firstly, we simulated the generation of the growth strain in the N-fiber by integrating 

eq.(5-1’) under the above subsidiary conditions, and optimized the increments in ε1
f
 and ε2

f
 so 

as to obtain the observed value of εL
n
 (= −0.0087%). Thereafter, we tried to simulate the 

generation of the growth strain of the G-fiber (εL
g
 = −0.2693%) and optimized the increment 

ε3
f
. In this simulation, we assumed the following subsidiary condition in addition to the above 

two conditions: 

 

Subsidiary Condition 3: According to the observations using the light microscope or 

ultraviolet microscope, there is no specific difference in the morphological appearance of 

the secondary wall between the N-fiber and the G-fiber (Yoshida et al. 2002). From this fact, 

we assumed that t-dependent patterns and increments in each of ε1
m

, ε2
m

, ε1
f
 and ε2

f
 take 

identical values between in the N-fiber and in the G-fiber. 

 

S1, ε1
f
, and ε1

m
 are all expressed as monotonously increasing (or decreasing) functions 

of t in the first integration interval. S2, ε2
f
, and ε2

m
 are also monotonously increasing (or 

decreasing) functions of t in the second integration interval. The same can be said for S3, ε3
f
, 

and ε3
m

 in the third integral interval. Each of these monotonously increasing (decreasing) 

functions can be transformed into function that do not contain explicitely T1, T2, and T3 by 

transforming the integral variable t into γ (= t/T1; 0<t<T1), ξ (= (t−T1)/(T2−T1); T1<t<T2), and κ 

(= (t−T2)/(T3−T2); T2<t<T3). Moreover, we know these variable transformations alter 

corresponding integration intervals in eq.(5-1’) into an identical one that is from 0 to 1. Thus, 

the concrete value of eq.(5-1’) does not depend on T1, T2, and T3. Furthermore, we should 
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note that integration of eq.(5-1’) is not affected by the functional shapes of t-dependent 

variables if each variable changes its value very smoothly in each integration interval. This is 

quite reasonable because we consider the t-dependent changes of those variables gradually 

proceed with the maturation of the matrix skeleton in the respective layers (see APPENDIX 

[2]). 

Thus, we can optimize the value of the increment in ε3
f
 as displayed in Table 5-5 

which became quite larger than those in ε1
f
 and ε2

f
 as shown in Tables 5-4. 

 

 

 

 

5-4-3 Drying shrinkage of the G-layer 

 

(a) Experimental results 

We can describe the shrinking process of the wood as a function of the moisture content τ that 

is normalized by the moisture content at the fiber saturation point (FSP). We denote the 
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longitudinal shrinking process of the wood as αL
X
(τ). According to the definition, the 

longitudinal shrinkage αL
X
(τ) must satisfy the following boundary condition, αL

X
(τ)|τ=1=0.  

αL
X
(τ)｜τ=0 (= αL

X
) means the oven-dried shrinkage of the wood. An infinitesimal increase of 

the moisture content (dτ) causes an infinitesimal change in the shrinkage of the wood (dαL
X
), 

which is described in the following formula: 
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where dαL
F
, dαL

V
, dαL

R
, and dαL

P
 stand for infinitesimal changes of the longitudinal 

shrinkage in respective tissues. P
L

R
L

V
L

F
L  and,,, EEEE are respective Young’s moduli at the 

moisture content τ. Assuming ,1/ F
L

V
L <<EE ,1/ F

L
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L <<EE ,1/ F

L
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L <<EE and F+V+R+P=1, we 

obtain 

.F
L

X
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We apply the simple mixture law to the fiber domain consisting of the N-fiber and G-fiber in 

parallel, then, we obtain the following formula: 
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(5-17) 

where dαL
g
 and dαL

n
 are infinitesimal changes in the shrinkage of the G-fiber and that of the 

N-fiber, respectively, and 
g
LE and n

LE are axial Young’s moduli of G-fibers and N-fiber, 

respectively. 

We obtain an oven-dried shrinkage of the wood fiber domain αL
F
 (=αL

X
(τ)| τ=0) by 

integrating eq.(5-17) from an arbitrary τ to FSP (τ =1) and extrapolating τ → 0, provided 

that we need to know the t-dependent patterns of 
g
LE  and n

LE  in advance. Then, we 

tentatively expressed 
g
LE  and n

LE  as follows: 

( ) ( ) ,,
g
L

g
L

n
L

n
L τζ⋅=τξ⋅= EEEE     (5-18) 

where ξ(τ) and ζ(τ) are monotonously decreasing functions for τ, and they satisfyξ(τ)|τ=1 =1, 

and ζ(τ)|τ=1 =1. EL
n
 and EL

g
 are constants, which stand for the axial Young’s moduli of the 

green N-fiber and the green G-fiber, respectively. For simplification, we assumed ξ(τ) = ζ(τ) 

for all τ, which means the decreasing pattern of the longitudinal Young’s modulus in the 

G-fiber is similar to that in the N-fiber. Then, eq.(5-15) becomes 
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Under these assumptions, we substituted the results from (5-7) to EL
g
 and EL

n
 in

 
eq.(5-19). As 

the initial conditions, αL
g
(τ)|τ==αL

n
(τ)|τ=1=0, were required. Thus, eq.(5-19) can be integrated 

over the moisture content (from an arbitrary τ to τ=1). We obtain the oven-dried shrinkage of 

the wood fiber domain αL
F
 ( =αL

F
(τ)|τ=0) as the following formula.  
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The observed relationship between φ and αL
F
, which is shown in Table 5-1, was approximated 

by the following curvilinear regression: 

)867.0(.
098.1

363.2
429.2 ***F

L =
+φ

+−=α r    (5-21) 

Then, comparing eqs.(5-20) and (5-21) directly, we obtain the oven-dried shrinkage of the 

N-fiber (αL
n
) and the G-fiber (αL

g
) as follows: 

  αL
n
 = 0.2771 [%] ,      αT

g
 = 1.3026 [%] .    (5-22) 

 

(b) Simulation based on the G-fiber model 

Free dimensional change of the single wood fiber due to moisture adsorption was simulated 

on the basis of the conditions assumed in Table 5-3. Thus, dPL should be null in eqs.(5-1). For 

convenience, we calculated the swelling deformation of the wood fiber model εL(τ)  by 

integrating eqs.(5-1) from τ=0 to τ=1. The relationship between swelling εL (=εL(τ)| τ=1) and 

oven-dried shrinkage αL (=αL(τ)|τ=0) are related to each other by the following formulas: 

.
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,
1 L

L
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L

L
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α
=ε

+ε
ε

=α       (5-23) 

The integral interval for calculating εL (=εL(τ)| τ=1) is from the oven-dried state (t=T4; τ=0) to 

the fiber saturation point (t=T3; τ=1). It is regarded that increasing moisture content τ is 

equivalent to the reciprocal elapsed time t. The results from (5-9) were used as the values of 

C1, C2, and C3 in this simulation. Then, we optimized the increments in ε1
m
, ε 2

m
, ε 3

m
, ε 1

f
, ε 2

f
, 

and ε 3
f
 to obtain the observed values of αL

n
 and αL

g
 .  

 Swelling of the softwood tracheid cell wall is mainly caused by swelling of the matrix 

substance, e.g. hemicellulose, lignin, and noncrystalline cellulose (see Section 4-1, Chapter 4) 



 144

(Yamamoto et al. 2001, Barber & Meylan 1964, Barrett et al. 1972, Cave 1972, Koponen et al. 

1989). Therefore, it is quite reasonable to postulate that ε1
m

, ε2
m

, and ε3
m

 take positive values 

with the increase of the moisture content, and increase monotonously from 0 to the final 

values, that is to say, increments. 

 Firstly, we simulated the swelling of the N-fiber (εL
n
 = 0.2779%). In doing so, we 

optimized the values of increments in ε1
m

, ε2
m

, ε 1
f
, and ε 2

f
 to give the observed value of the 

oven-dried shrinkage αL
n
 (= 0.2771%). In the present simulation, we assumed that ε1

m
 = ε2

m
 = 

ε3
m

, and ε1
f
 = ε2

f
 for convenience.  

 Optimized values of the increments in ε1
m

, ε2
m

, ε1
f
, and ε2

f
 were obtained by the 

simulation as displayed in Table 5-6. In our previous report, we succeeded in simulating the 

observed relationships between the longitudinal and the tangential swellings, and the MFA in 

the clear wood specimen of sugi (Cryptomeria japonica) by supposing that ε1
m

 = ε2
m

 = 12 ~ 

15%, and ε1
f
 = ε2

f
 = 0~1% (Yamamoto et al. 2001). In the present simulation, optimized ε1

f
 

and ε2
f
 became very small but negative, which means that the polysaccharide framework 

bundles in the S1 and the S2 layers tend to contract in the direction parallel to the cellulose 

molecular chains in spite of increasing moisture content in the cell wall. It is impossible for 

the author to provide any comment on such strange results at this stage. However, their 

absolute values were vary small compared with the increment in ε1
m

 and ε2
m

.  

We also simulated the oven-dried shrinkage of the G-fiber (αL
g
 = 1.3026%), and 

optimized the value of the increment in ε3
f
. In this simulation it is assumed that increment in 

each of ε1
m

, ε2
m

, ε1
f
, and ε2

f
 takes an identical value between in the N-fiber and in the G-fiber 

(see Subsidiary Condition 3). For convenience, we assumed that ε1
m 

= ε2
m 

= ε3
m

 in this 

simulation. Thereafter, we optimized the value of the increment in ε3
f
 to obtain the observed 

value of αL
g
. Results are displayed in Table 5-7. The optimized value of the increment in ε3

f
 

became a large positive value which is quite different from those in ε1
f
 and ε2

f
.  
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5-5 Discussion and concluding remarks 

 

5-5-1 Young’s modulus of the green G-layer (EG
g) 

According to the results from (5-7), (5-9), and (5-10), the predicted Young's modulus of the 

green G-layer (EG
g
) became 2.15 times as large as that of the lignified layer in N-fiber (EN

n
), 

and 1.74 times as large as the one in the G-fiber (EN
g
). In any case, we can say that the 

longitudinal Young's modulus of the G-layer becomes larger than that of the lignified layer in 

the G-fiber and N-fiber. The predicted value of the Young's modulus of the lignified layer in 

the G-fiber (EN
g
) became slightly larger than the one in the N-fiber (EN

n
). This is because we 

calculated the value of EN
g
 in due consideration of an experimental fact that the MFA of the 

S2 layer in the G-fiber was a little smaller than in the N-fiber. This may be one of the factors 

to increase the Young's modulus of the TW xylem. 
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  It is well known that the TW becomes very stiffer in the longitudinal direction as it 

dries. The increase of the Young's modulus of the TW xylem due to drying is highly correlated 

with the percentage of the G-fiber in the fiber domain (e.g. Clair et al. 2003). This suggests 

that the G-layer becomes abruptly rigid as the water molecule is released. However, the 

validity of this suggestion remains to be confirmed. 

 Strangely, the predicted value of the relative crystallinity in the framework bundle of the 

oriented polysaccharide in the G-layer was somewhat smaller than that in the secondary wall 

(see results from (5-9)). According to the formula (5-3), the Young's modulus of the G-layer is 

highly dependent on the ratio of the cellulosic component. In the present simulation, we 

assumed it to be 90% in the G-layer, which may be a little larger than the true value in the 

green G-layer. It is likely that the G-layer contains a substantial amount of non-crystalline 

polyose, e.g. hemicellulose. As another possibility, we note the fact that the green G-layer is 

highly swollen by the water, which causes an apparent decrease in the relative crystallinity of 

the cellulose in the green G-layer. Hitherto, we have referred to the classical data of Norberg 

and Meier (1966) on the chemical and physical properties of the G-layer in aspen. However, 

we need to critically verify their conclusion for various species. 

 

5-5-2 Growth strain in the G-layer (ε3
f) 

Simulated value of ε3
f
 is more negative than that in the lignified layer (ε1

f
 and ε2

f
). This 

indicates that a large contractive internal strain originates in the polysaccharide framework of 

the G-layer in the direction of the cellulose molecular chain, which causes a high longitudinal 

tensile growth stress in the TW xylem.  

 

5-5-3 Shrinkage and swelling of the G-layer due to moisture adsorption  

Many authors have considered that the polysaccharide framework does not swell or shrink by 

the action of moisture adsorption. However, the present simulation shows that the value of ε3
f
, 

which is the swelling ability of the polysaccharide framework in the G-layer, becomes a large 

positive value. Conversely, the polysaccharide framework in the G-layer tends to shrink in the 

direction parallel to the cellulose molecular chain during the moisture desorption. This means 

that the high longitudinal drying shrinkage in the TW xylem is induced by the drying 

shrinkage of the G-layer in its axial direction. Recently, Clair and Thibaut (2001) observed by 

scanning electron microscopy that the dried G-layer tends to be depressed from surrounding 
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lignified layer in a crosscut surface of the TW of Populus sp., which supports the predicted 

results in the present simulation. 
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APPENDIX [1]  Deriving eqs. (5-2) 

 

We denote the number of the G-fiber in the wood fiber domain with an area of A as G and that 

of the N-fiber as N, provided that G + N = X. We set the following assumption. 

 

(Assumption A) The thickness of the lignified layer in the G-fiber is identical to that of the 

N-fiber regardless of the measuring position.  

 

This assumption is not so inappropriate to the wood fiber domain in the real xylem because 

the observed values of s and X/A (= f ) become almost unchanged regardless of measuring 

positions as seen from Table 5-1. Moreover, we set the following assumptions. 

 

(Assumption B) The diameter of the G-fiber is similar as that of the N-fiber.  

(Assumption C) Cellular arrangement in the crosscut surface of the xylem takes a 

tessellation structure consisting of a polygonal cell. 

 

Then, we can connect the area ratio of the lignified layer [s], and that of the gelatinous layer 

[g] to ρ0, ρ1, ρ2, and ρ3 under the assumptions (A), (B), and (C).  

It may be a little hasty to apply calculated values of ρ0, ρ1, ρ2, and ρ3 to the simulation 

using eqs.(5-1) because the crosscut shape of the G-fiber model used in the present simulation 

is closely circular. However, we know that the hexagon is the most closely allied to the circle 

in shape among the polygons that constitute the tessellation arrangement. Then, we set the 

following assumption 

(Assumption D) Crosscut shape of the wood fiber in the cellular arrangement is a hexagon 

with an area of ( ) 2
0233 r  as displayed in Fig.5-2. 

We denote the thickness of the lignified layer as ( )( )3023 rr − , and that of the 

G-layer as ( )( )4323 rr − . Distances from the central point of the hexagon to the lignified 

and gelatinous layers are denoted as ( ) 323 r  and ( ) 423 r , respectively. s can be given 

as the following formula: 

( ) .3
2

3
13

2

3 2
3

2
3

2
0 frAXrrs ⋅⋅−=−=    (5-A1) 

In a similar manner, g is given as the following formula: 
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X/A, G/A, s, and g can be determined experimentally as displayed in Table 5-1. From 

eqs.(5-A1) and (5-A2), we can obtain r3 and r4 as follows: 
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If we denote r0/r1, r1/r2, r2/r3, r3/r4 as ρ0, ρ1, ρ2, ρ3 respectively, we obtain the following 

equation: 

( )
( ) ,)0for  (1,)0for  (
1

1
,
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NN
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(5-A4) 

where f = X/A, and Ng = G/A. 

 

 

 

APPENDIX [2]  Integration (5-1’) is not affected by the functional shapes of 

t-dependent variables, S1, S2, S3, ε1
m

, ε2
m

,ε3
m

,ε1
f
,ε2

f
, andε3

f
. (See also Footnote (7) in 

Chapter 3, section 3-1) 

 

We introduce functions ϕ1, ϕ2, and ϕ3 which vary from 0 to 1 in the range of 0 ≤ t ≤ T3  as 
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follows: 
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 (5-B1) 

where P(t), Q(t), and R(t) are monotonously increasing and differentiable functions, which 

vary from 0 to 1 smoothly in respective domains. With reference to Subsidiary Conditions 1 

and 2, we assume the following condition as the functional shapes of t-dependent variables 

Si(t), εi
m

(t), and εi
f
(t) (i =1, 2, 3): 

)()(,)()(,)()( ii
f
iii

m
i1ii tnttmttktS ϕ⋅=εϕ⋅=εϕ⋅= .   (i = 1, 2, 3)    (5-B2) 

where ki, mi, and ni are constants. It is reasonable to assume this condition if these t-dependent 

variables change the values smoothly during the maturation of the matrix skeleton in their 

respective integration intervals. Then, by substituting eq.(5-B2) into eq.(5-1’), we obtain the 

following expression:  
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provided that we consider here, p = (θ, ρ1, ρ2, ρ3, h, E1, E2, E3, S0, S1(t), S2(t), S3(t)). By the 

way, P(t), Q(t), and R(t) change their respective values from 0 to 1 monotonously and 

continuously for elapsed time t, then, we can rewrite eq.(5-B3) as the following expression:  
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This result indicates that the integration value in eq.(5-B4) does not depend on the concrete 

values of T1, T2 and T3. Furthermore, it is not affected by the functional shapes of t-dependent 

variables S1, S2, S3, ε1
m

, ε2
m

, ε3
m

, ε1
f
, ε2

f
, and ε3

f
 if we assume the condition described by 

eq.(5-B2).  

    

APPENDIX [3]  Trial to reduce the growth stress and residual stress in logs. 

 

In this chapter, the author focused his interests on the characteristic properties of tension 

wood from the viewpoint of wood engineering, since many of plantation species in tropical or 

sub-tropical countries are hardwood species where the tension wood formation is more or less 

unavoidable. For better utilization of those resources as the timber materials, how to diminish 

the tension wood formation and how to avoid the processing defects due to high tensile 

growth stress are very important problem. As well known by many scientists and engineers, 

the occurrence of heart splitting during logging or lumber crooking during sawing have been 

very serious problem when we use forest products as timber materials. Many scientists 

attribute origins of those defects to release of elastic energy from the residual stress gradient 

at logging and lumbering. Those phenomena reduce the yield of the forest products, therefore, 

residual stress is considered as an obstacle to wood processing. It is well recognized that the 

larger becomes the growth stress the higher is the residual stress gradient; hence, in order to 

solve the problems caused by the growth stress (or residual stress), it is necessary to improve 

genetic and silvicultural techniques by breeding trees with low growth stress and to develop 

the operation that reduces the residual stress inside logs. 

 Several techniques have been proposed to reduce the residual stress in logs. The 

girdling and the direct heating techniques are both practical trial, and not a few scientists 

agree their effectiveness on reducing the residual stress especially in the commercial species. 

Besides those physical treatments, an effective method using a chemical solution was tried by 

Rigesa Ltd, Santa Catarina, Brazil. They use “Chopper” as the chemical to reduce the residual 

stress inside standing stem. “Chopper” is a kind of hormone drug that is commercially used 

for inhibiting sprouting out from harvested stumps of planted Eucalyptus trees. They inject a 

small amount of “Chopper” solution (5ml) to the sapwood of standing trees, and leaving it for 

one month or more, they cut the treated trees. They noticed that “Chopper treatment” is 
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effective not only for stopping the occurrence of sprout from stumps of harvested trees, but 

also for increasing the yield of timber. Then, author of the present dissertation tried to check 

the effectiveness of “Chopper treatment” on reducing the surface growth stress of planted 

10-year-old Eucalyptus dunnii. Chopper injection (5ml) was carried out in mid August 2003 

in the plantation of Rigesa Ltd, and treated trees of were harvested in mid September 2003. in 

Santa Catarina, Brazil. In addition to treated trees, non-treated trees were also harvested from 

the same plantation. After harvesting, each first log, 2 m in length, was soon transferred to the 

laboratory of Federal University of Parana, Curitiba. At the breast height, four points were set 

peripherally, and the strain-gauges were put on the surface of exposed xylem. Soon after, the 

longitudinal release strain were measured by stress-release method. Moreover, the severity of 

heart splitting at the upper end of the first log was photographed. 

 Figure 5-3 shows end split of the harvested log. We notice that “Chopper treatment” 

is more or less effective to reduce the occurrence of end split.   

 

Fig. 5-3. Endsplit of the harvested log, and the effect of Chopper treatment on reducing the 

occurrence of endsplit. A: Trees treated by Chopper injection for 1 month.   N: Trees 

without treatment. 
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Table 5A-1 shows the difference of the longitudinal released strain of the surface growth 

stress between “Chopper treated” and non-treated trees, and Table 5A-2 is the released strain 

averaged in each log. Those results clearly show the effectiveness of “Chopper treatment” on 

reducing the growth stress of planted Eucalyptus dunnii. 
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Chapter 6 
 

SUMMARY AND GENERAL CONCLUSION 
 

Fossil fuels and metal resources have been almost exhausted while modern society based on 

the consumer economy becomes overripe after the Industrial Revolution. Moreover, 

irreversible destruction of the forest environment has been progressing especially in the 

tropical countries, and the atmospheric carbon dioxide is still increasing with mass 

consumption of the fossil fuel. Our urgent countermeasure is to find substitutes for the fossil 

and metal resources, and to mitigate the increasing atmospheric carbon dioxide as soon as 

possible. Under those situations, many people believe that “increase of the forest 

environment” and “utilization of the forest biomass” can solve the above-mentioned crises 

(Hosokawa et al. 2002). However, many of forest environment disappeared by the 

overexploitation since the Industrial Revolution, which provokes serious undersupply of the 

traditional species in the world timber market. Even if we would take a policy to protect the 

natural forest, it may take several hundred years or more to recover the fallen forest 

environment as it were!  

Some researchers then consider that the expeditious afforestation of the tropical 

fast-growing species can save the global crises that humankind is now confronted. In this case, 

what is important is to transform those resources into the commercial-valued products 

especially as timbers for the construction and the furniture by developing the appropriate 

techniques, which gives an economical necessity to the silvicultural activity in those species. 

However, many of resources obtained from those forests are lesser-known or lesser-used 

species, therefore, we have very little information on the material properties of those species 

in comparison with that of the traditional species. Before everything else, we need to clarify 

the material property in each lesser-used species as well as to establish a fundamental theory 

that makes us possible to develop advanced techniques to utilize the forest biomass as 

commercial-valued materials. The present study was carried out mainly from the latter 

standpoint. One of the best ways is to find a general principle that describes the generation 

mechanism of material properties of various wood species in relation to its higher-ordered 

structure.  

In this dissertation, the author tried to find a general theory to describe the material 

properties of wood in relation to its hierarchical structure covering from the microscopic 
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constituents to the macroscopic wood, focusing on the following four topics that will be 

practically important when we use the forest products as the industrial materials.  

 

[1] The first topic is concerned with the general theory of the elastic behavior of the single 

wood fiber having multi-layered cell wall (=a homogenized model of the clear wood 

specimen). In this topic, with reference to the theory of micromechanics, mechanical 

properties of the single wood fiber is mathematically formulated. First, the reinforced-matrix 

hypothesis was mathematically formulated base on “the mean field theory (Mori and Tanaka 

1973)”, and its physical meanings were clearly defined. Second, the reinforced-matrix theory 

was applied to formulating the dimensional change of the single wood fiber which is caused 

by a certain physical state change induced in the cell wall.  

 

[2] The second topic is the biomechanical problems concerned in the growth stresses and 

strains in trees. This includes (1) the generation mechanism of the abnormal growth stress in 

the reaction wood xylem, and (2) its role in controlling the negative-gravitropic behavior and 

the pattern formation of the growing tree shoot.  

 

In (1), generation process of the growth strain in the softwood tracheid was simulated by the 

formula derived in the first topic. As the result, the simulation deduced that expansive 

eigen-strain is generated in the matrix skeleton of each layer of the secondary wall during the 

lignification, which finally amounts to 0.5~1%. At the same time, contractive eigen-strain is 

generated in the polysaccharide framework bundle in each layer, which becomes –0.15% 

during the secondary wall lignification. The magnitudes and signs of the longitudinal growth 

strains are controlled by the microfibril angle in the middle layer of the secondary wall. This 

result strongly supports the unified hypothesis as a possible theory to explain the origin of the 

surface growth stress. 

 

In (2), time-dependent evolution of the spatial shape of a growing shoot was simulated on the 

basis of the structural mechanics. In this simulation, beam theory (structural mechanics) was 

used to describe the negative (or plagio-) gravitropic behavior of woody plant stems, and the 

interaction between bending moment due to increasing self-weight and recovery moment 

resulting from asymmetric growth stress was examined, and a hypothesis that describes the 

relationship was tested based on the structural mechanics “beam theory”. Simulations of 
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observed tree branch morphology of M. kobus DC., J. chinensis L., A. saccharinensis Fr. 

Schum., and P. spachiana Kitamura f. spachiana cv. Plenarosea showed that (i) the growth 

stress generated in the reaction wood is sufficient to counteract the gravitropic response to 

increasing self-weight, and (ii) the specific directional angle of the shoot apex or preferred 

angle of the elongation zone plays an important role in controlling the spatial shape of the 

branch stem that is peculiar to plant species with large growth stress generated in the reaction 

wood tissue. 

 

[3] The third topic is concerned with the biomechanics of sawn wood. The simulation using 

the formula derived in the first topic plays an important role also in this topic. Aim of this 

topic is to understand the hygro-mechanical behaviors peculiar to the sawn wood in relation to 

its hierarchical structure. Especially in this paper, we focus on (1) the hygroexpansive 

behavior, and (2) the moisture-dependent elasticity of softwood.  

 

In (1), to elucidate the origin of the shrinking anisotropy of wood during the drying process, 

as well as to begin to gain an understanding of the interaction between the moisture and the 

cell wall components, the shrinking process of a single wood fiber regarding water desorption 

was simulated by using an analytical wood fiber model which was developed in the first topic. 

Resulting data were compared with the experimental ones. The following conclusions were 

obtained: (i) The matrix substance, as a skeleton in the secondary wall, tends to shrink 

isotropically up to about 15 %. However, the polysaccharide microfibril, as a rigid framework 

of the cell wall, almost did not shrink at all due to the water desorption (less than 1%). As the 

result, wood shrinks anisotropically during a drying process. (ii) The microfibril angle in the 

S2 layer is one of the most important factors related to the degree of shrinking anisotropy of 

the wood while drying.  

 

In (2), the elastic deformation of the isolated wood fiber and its moisture dependency were 

analyzed by using the formula derived in the first topic. As the result, following conclusions 

were derived: (i) An intermediate domain, which is contained between rigid crystal and 

completely disordered amorphous domains in the wood CMF, fluctuates from an 

amorphous-like compliant state to a crystal-like rigid state in accordance with the moisture 

desorption. This is a main reason why the longitudinal Young's modulus of wood becomes 

higher with drying. 
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(ii) There are three possible hypotheses to explain the species dependency of the longitudinal 

Young’s modulus of the wood cell wall. The first is that the content of the polysaccharide 

framework and its crystallinity are inherently different among species. The second is that the 

crystallinity of the polysaccharide framework tends to change with elapsed time. And, the last 

is that an irreversible change is caused in the cohesion state of each cell wall component by 

the drying and heating processes. 

(iii) Decrease in the strength of the recycled paper is induced by the cornification of the fiber 

wall. It is expected that an irreversible crystallization tends to proceed in the unstable domain 

of the CMF after the repetition of the drying and wetting process, which is a major cause of 

the cornification of the fiber wall in the recycled paper. 

 

[4] The last fourth topic is on the biomechanics of the tension wood properties. To discuss the 

role of the gelatinous layer (G-layer) on the origins of the physical properties peculiar to the 

tension wood fiber (TW fiber), the tension wood (TW) properties of a 70 year-old Acer 

sieboldianum Miq were analyzed on the basis of the simulation using the G-fiber model 

which was formulated in the first topic. The roles of the G-layer on the origins of (1) a high 

large tensile growth stress, (2) a large longitudinal Young’s modulus, and (3) a high 

longitudinal drying shrinkage in the tension wood xylem were discussed. The results conclude 

that the G-layer generates a high tensile stress in the longitudinal direction during the xylem 

maturation; the longitudinal Young’s modulus of the green G-layer becomes significantly 

higher than that of the lignified layer; furthermore, the G-layer tends to shrink extraordinarily 

higher than that of the lignified layer during the moisture desorption. 
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