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Abstract

This review provides a comprehensive overview on the biomedical applications of electrical stimulation (EStim). EStim has 

a wide range of direct efects on both biomolecules and cells. These efects have been exploited to facilitate proliferation and 

functional development of engineered tissue constructs for regenerative medicine applications. They have also been tested 

or used in clinics for pain mitigation, muscle rehabilitation, the treatment of motor/consciousness disorders, wound healing, 

and drug delivery. However, the research on fundamental mechanism of cellular response to EStim has fell behind its appli-

cations, which has hindered the full exploitation of the clinical potential of EStim. Moreover, despite the positive outcome 

from the in vitro and animal studies testing the eicacy of EStim, existing clinical trials failed to establish strong, conclusive 

supports for the therapeutic eicacy of EStim for most of the clinical applications mentioned above. Two potential directions 

of future research to improve the clinical utility of EStim are presented, including the optimization and standardization of 

the stimulation protocol and the development of more tissue-matching devices.

Keywords Electrical stimulation · Tissue engineering · Clinical trial · Ocular drug delivery · Iontophoresis · Wound healing

Introduction

EStim is a non-invasive and non-pharmacological physi-

cal stimulus. EStim has a broad range of biomedical efects 

(Fig. 1). At the molecular level, it can facilitate the transport 

of both charged and uncharged biomolecules through bio-

logical membranes via electrophoresis and electroosmosis. 

These two processes collectively are called iontophoresis 

[1]. At the cellular level, EStim can interact with a variety of 

cellular components, such as ion channels, membrane-bound 

proteins, cytoskeleton and intracellular organelles [2]. These 

interactions alter cellular activities and functions, such as 

contraction, migration, orientation and proliferation [3, 4].

Due to these direct efects on biomolecules and cells, 

EStim has been utilized in a wide range of biomedical and 

clinical applications. EStim is frequently utilized in tissue 

engineering and regenerative medicine to provide electrical 

cues to facilitate cell proliferation, stem cell diferentiation, 

tissue regeneration, as well as remodeling and maturation 

of engineered tissue constructs [2]. For example, EStim has 

been widely used in neural tissue engineering. The efects 

of EStim include the accelerated and directional neur-

ite and axon growth, and the diferentiation of embryonic 

stem cell into the neural fate [5]. Many diferent types of 

EStim have been tested, and the eicacy for neural tissue 

engineering, including direct current (DC), alternating cur-

rent (AC), pulsed current (PC) and pulsed electromagnetic 

ields (PEMF), has been demonstrated. EStim has shown 

eicacy in muscle tissue engineering. In skeletal muscle tis-

sue engineering, EStim has shown to be able to promote the 

proliferation of myoblasts, the fusion of myoblasts to myo-

tubes, and the expression of myosin heavy chain [6–8]. In 

cardiac tissue engineering, EStim has been frequently used 

to facilitate the functional maturation of stem cell-derived 

or fetal cardiomyocytes (CMs), including the alignment and 

elongation of CMs, the increased expression of connexin 

43 and troponin-I, as well as the synchronous contractions 

of CMs within constructs [9]. PC EStim is usually used for 
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the stimulation of muscle tissue constructs. EStim has been 

used to stimulate bone regeneration [10–12]. In vitro studies 

have shown that EStim can stimulate calcium signaling and 

increase bone formation [11]. EStim can also upregulate the 

production of bone growth factors [11]. When DC EStim is 

used, the cathode electrochemical reactions generate hydrox-

ide ions and hydrogen peroxide, which have been shown to 

stimulate osteoblast and VEGF production by macrophages 

[11]. DC, AC, PC and PEMF EStim modes have been tested 

and shown eicacy for bone tissue regeneration. EStim has 

also been shown to facilitate wound healing [13–15]. EStim 

contributes to healing wounds by enhancing the proliferation 

of skin cells, inducing directional migration of skin cells, 

providing bacteriostatic and bactericidal efects, and increas-

ing blood perfusion [13]. DC, AC, PC and PEMF have all 

been utilized in wound healing.

Besides the regenerative medicine, EStim has also been 

proposed as an alternative treatment modality to conven-

tional pharmacological interventions and an efective drug 

delivery method for a variety of diseases. The utility of 

EStim on pain management has been extensively studied. 

Some evidence has shown that EStim has the potential to 

reduce neck pain [16], post-operative pain [17], cancer pain 

[18], chronic pain [19, 20], diabetic peripheral neuropathy 

[21], and osteoarthritic knee pain [22, 23]. Moreover, it has 

been reported that EStim is capable of improving muscle 

contraction force and maintaining muscle mass and strength 

after nerve injuries, which is particularly useful in sports 

medicine and rehabilitation after injury [24]. Transcranial 

direct current stimulation (tDCS) has been used to treat 

Parkinson’s disease [25], aphasia [26], multiple sclerosis 

[27], epilepsy [28], Alzheimer’s disease [29], tinnitus [30], 

depression [31], addiction and craving [32]. It has received 

level B recommendation (i.e., probable eicacy) for ibromy-

algia, depression and craving/addiction in a recent literature 

survey on the state-of-the-art of the therapeutic use of tDCS 

[33]. In addition, a large number of studies have shown that 

iontophoresis can signiicantly increase the drug delivery 

eiciency through tissue barriers, such as skin and cornea 

compared to passive difusion [34–36]. As mentioned pre-

viously, iontophoresis consists of two physical processes, 

electrophoresis and electroosmosis (Fig. 1, left panel) [1]. 

Electrophoresis alters the mobility of charged drug mol-

ecules through the Coulomb force that the electrical ield 

exerts on those molecules. Electroosmosis induces a solvent 

low across ionized membranes due to tht the electrical force 

exerted on the thin electric double layers. The direction of 

the low depends on the charge in the biological membrane. 

For skin and cornea, the low is from the anode to the cath-

ode. The drug molecules in the solvent low in the same 

direction due to luid drag force. Therefore, neutral drug 

molecules can be transported by electroosmosis. Electro-

phoresis and electroosmosis always happen simultaneously, 

and their relative strength determines the net low direction 

of the drug molecules.

The EStim conditions commonly used for each type of 

application and the typical efects of EStim are summarized 

in Table 1.

The hardware for EStim application has been revolution-

ized over the last several decades due to the development of 

novel materials and new device architectures. Macroscale 

rod- or wire-shaped electrodes are conventionally inserted 

in tissue culture medium to deliver EStim [40]. However, 

microfabricated electrodes have started to gain popularity 

Fig. 1  EStim has multiple efects at molecular and cellular levels
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due to their capability to integrate in engineered scafolds 

to provide localized and directional EStim [41, 42]. For 

therapeutic EStim, electrode pads are often placed on the 

skin at the target location to deliver EStim. More recently, 

the advancement in material science and circuit design has 

enabled the development of electrical circuit on soft and 

stretchable substrates that have programmable life time. This 

has led to wearable and degradable EStim devices that allow 

more convenient and continuous EStim therapy [43, 44].

In this review, our objective is to: (1) discuss the funda-

mental mechanisms of tissue and cellular response to EStim; 

(2) review in vitro high-throughput and tissue engineering 

devices that are developed to either study or utilize EStim; 

(3) review clinical evidence on the eicacy of EStim for 

wound healing and ocular drug delivery; and (4) discuss 

the critical needs and gaps for the future development of 

therapeutic EStim. The term “electrical stimulation” in our 

review has a broad meaning. It refers to not only the physi-

ological stimulation of cellular and tissue activities through 

the application of electrical ield or current, but also the 

physical “stimulation” of faster molecular transports through 

biological membranes.

Mechanisms of cellular response to EStim

Common cellular responses to EStim include adhesion, 

proliferation, diferentiation, directional migration, and cell 

division. For nerve cells, it has been reported that EStim 

enhances oligodendrocyte maturation and myelin forma-

tion [45], neural precursor migration in mouse brains in 

vivo [46], promotes nerve cell regeneration and stimulates 

Schwann cells to express neurotrophic factors [47]. EStim of 

injured peripheral nerves has accelerated axonal regenera-

tion in laboratory animals [48, 49]. For bone cells, EStim of 

osteoblasts promotes natural healing of fracture bone break 

cases in humans [50] and enhances osteoblast cells activity 

[51]. AC EStim has been shown to promote bone regenera-

tion by promoting diferentiation of osteoblastic cells [52], 

and the osteogenic diferentiation of human mesenchymal 

stem cells (hMSCs) [53]. For muscle cells, nanosecond 

pulsed electric ield can modulate myoblast for proliferation 

and diferentiation [54]. EStim of the skeletal muscle bun-

dles can be used to study contraction-dependent endocrine 

efects of myokines on the activity of co-cultured mono-

cytes [55]. Exposure of mouse myoblast cells to an electrical 

ield resulted in morphological alterations with elongated 

nucleus, roughening of the cell surface topography, and 

myogenesis [56]. For skin cells, EStim has shown to guide 

the migration of epidermal stem cells (EpSCs) to regulate 

wound healing [57]. EStim can shift injury response from 

healing/scarring toward regeneration by promoting cell pro-

liferation, generating less condensed collagen ibrils, and by 

modifying macrophage responses [58]. AC EStim of 50 µA, 

generated by a triboelectric nanogenerator (TENG), has been 

shown to promote ibroblast cell proliferation [59].

The fundamental physical mechanisms that are respon-

sible for the aforementioned cellular responses to EStim 

are currently under active research. A number of hypoth-

eses have been proposed, which are summarized here. (1) 

Structural water disruption: EStim can lead to immediate 

disruption in the ordered arrangement of dipolar water (i.e., 

structured water) surrounding both the external surface of 

the cell as well as the cell cortex [60, 61]. This efect causes 

the cell to loss its gel structure to become more of a sol, 

and releases a large amount of trapped calcium ions lead-

ing to a calcium wave. Disruption of extracellular struc-

tured water also allows rapid inlux of  Na+ ions with an 

opposite low of  K+ outside the cell. This transition leads 

to the lamellipodial protrusion at the leading edge of the 

cell and its concomitant directional mobility. The ion lux 

can also afect cell volume and membrane potential [62]. 

(2) Electroosmotic luid low: in addition to accelerating 

trans-membrane drug delivery, the electroosmosis induced 

by the application of an electrical ield can also generate 

forces acting on the surface of the cell. These forces reorient 

the cell through a form of hydrodynamic drag force (FHD) 

[63]. This efect occurs because of the partitioning of larger 

 Na+ ions externally and small  K+ ions internally across the 

cell membrane. Larger  Na+ ions attract larger aqueous shell 

of water molecule externally as compared to small shell of 

water molecules attracted by  K+ ions internally. This difer-

ence can create strong external dragging force in the pres-

ence of electrical ield, resulting in cell mobility [64], and 

intracellular transport of biomolecules [65]. The electroos-

motic forces can have various phenotypic efects including 

cell proliferation, cell diferentiation, and embryogenesis 

[66, 67]. (3) Asymmetric ion low and opening of voltage 

gated channels: the application of electrical ield to cell will 

asymmetrically hyperpolarize the anodal side, and depolar-

ize the cathodal side of the cell thus modulating the cell 

membrane potential resulting into change in the activity of 

voltage-gated sodium, potassium, and calcium channels. 

This change creates asymmetric electromotive force for 

ions to low once ion channels are open [68]. This elec-

tromotive force is also called electrostatic force (Fe) [69]. 

Similarly, in the presence of an electrical ield, intracellular 

polyamines accumulate toward the cathode side, increas-

ing the inward rectifying property of KCNJ15/Kir4.2, and 

blocking the inlux of  K+ ions [69]. However, the anode 

side will show decreased inward rectifying property. This 

biased inward rectifying property of potassium channels 

to the cathode side will result in asymmetric low of  K+ 

ions. This asymmetric ion low and opening of voltage gated 

ion channels can lead to various cellular responses efect-

ing the inal phenotype. For example,  K+ waves integrate 
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Pseudomonas aeruginosa cells and Bacillus subtilis cell in 

the bioilm soma [70]; ion channel signaling afects limb 

and spinal cord regeneration in vertebrates [71, 72]; active 

inwardly rectifying potassium (Irk) channels regulate release 

of the Drosophila bone morphogenetic protein Dpp, which 

is necessary for normal wing morphogenesis [73]; electric 

synapses modulate eye size and border cell fate via DPP 

signaling in Drosophila [74, 75]; ion-channel-dependent 

signaling causes developmental defects in mammals [76]. 

(4) Mechanosensation: the electrostatic and electroosmotic 

forces induced by the electrical ield will apply mechani-

cal forces (Fm) on the tension-sensitive components on the 

cell surface, e.g., focal adhesion and cadherin adhesion. As 

a result, cell components will be dragged laterally. These 

mechanical signals alter the downstream gene expression 

and signaling pathways (i.e., mechanotransduction), causing 

change in various cellular processes, including cell mobility, 

cell proliferation, organogenesis, and development [77–79]. 

For example, mechanosensitive pathways such as Notch and 

Wnt/Ang2, play crucial roles in cardiovascular development 

and homeostasis in zebraish model [80]. (5) Redistribution 

of membrane components and lipid rafts: Fe and FHD, at 

the plasma membrane will create a cathodal–anodal axis of 

polarity by redistributing charged particles of the membrane 

[81]. Similarly, the three forces (Fe, FHD, and Fm) gener-

ated by applied electrical ield can induce forces on the lipid 

rafts resulting in its asymmetric redistribution across the cell 

membrane [82]. This preferential distribution further polar-

izes cell membrane components, e.g., integrin, and caveolin, 

which in positive feedback loop with lipid raft redistribution 

promote raft structural stabilization. This polarized efect of 

electrical ield can lead to directional mobility of cells. Pre-

vious reports on the efect of integrin type on the direction of 

cell migration [83] makes feed-forward interaction between 

lipid rafts and integrin efect on cell mobility even more 

interesting. This redistribution of membrane components 

and lipid rafts can bring changes in cell-to-cell communica-

tion and the initiation of intracellular signals among other 

pathophysiological functions [84]. The above-mentioned 

hypotheses have been summarized in Fig. 2.

All of these putative sensors of external electrical ield 

relay information through receptor-based cell signaling to 

diferent partners of intracellular components which act as 

a microprocessor that processes the electrical code, gets 

perturbed and transforms the electrical signal into cellu-

lar responses. Here, we use cell mobility as an example to 

Fig. 2  Models depicting the fundamental physical efects of EStim on 

cells. a Application of electrical ield disrupts the layer of structured 

water, leading to a calcium wave. Entry of  Na+ ions and escape of  K+ 

ions also take place when the layer of structured water is disrupted 

(not shown in current igure). b Hydrodynamic drag force (FHD) on 

the cell applied by the electroosmotic low at the charged migration 

surface could displace adhesions laterally. c Polarization of the cell 

by EStim can change the electromotive forces (Fe) and opening/clos-

ing of voltage-gated ion channels. d Electroosmotic forces (FHD) 

combine with electrostatic forces (Fe) on charged macromolecules 

and membrane components and produce mechanical forces (Fm). As 

depicted, this could asymmetrically activate a force sensor creating 

a local signal that could be used to deine the front and the back of 

the cell. e Local electro-osmotic (FHD) and electrostatic forces (Fe) at 

the cell membrane can also push other membrane components. Nega-

tively charged components will move toward the anode, and posi-

tively charged components will migrate towards the cathode. Depend-

ing upon the net surface charge possessed by the proteins of the cell 

they will be pushed to one side of the cell or the other by the elec-

troosmotic forces at the membrane. Similarly, all three forces, elec-

troosmotic (FHD), electrostatic forces (Fe), and mechanical work (Fm) 

add up to drag the lipid rafts toward the cathode
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illustrate some of the downstream signaling pathways that 

may be involved in eliciting cellular responses [85, 86]. The 

electrical ield-induced passive accumulation of  Ca2+ ions 

at the anodal side of the cell is suicient to induce con-

traction of the cytoskeleton and propel the cell towards the 

cathode [87]. However, cytoskeleton perturbation does not 

provide suicient evidence to explain the molecular mecha-

nism of electrical ield-induced cellular response. Clearly, 

some intracellular signaling pathways may also play roles 

in how cell behavior is altered in the presence of an exter-

nal electrical field. Using pharmacological and genetic 

approaches, two key signaling molecules, PI3K–AKT 

(phosphoinositide-3 kinase-AKT serine/threonine kinase) 

and PTEN (phosphatase and tensin homolog) gene, were 

discovered to be required for electrical ield-induced cell 

migration [14]. Electrical ield activates PI3K–AKT kinase 

activity that produces PIP3 (phosphatidylinositol-3,4,5-

bisphosphate), inducing AKT-dependent asymmetric intra-

cellular signaling cascade. AKT activation is critical for 

cellular responses following wounding, such as cell migra-

tion, survival, and proliferation. Genetic disruption of PI3 

kinase γ abolishes directed cell movement. In contrast, dele-

tion of the PTEN, an antagonist of the PI3K–AKT pathway, 

enhances the PI3K–AKT signaling axis and enhances the 

electrical ield-induced cellular responses. Similarly, asym-

metric redistribution of epidermal growth factor receptor 

(EGFR) after the application of a DC electrical ield, on 

both keratinocytes and corneal epithelial cells, was also 

reported [88, 89]. This concept is further corroborated by 

recent evidence of the asymmetric distribution of activated 

downstream intracellular molecules of signaling cascades 

such as increased lamellipodial  Ca2+ sparks, relocation of 

extracellular signal-regulated kinase 1, 2 (ERK1, 2), pERK1, 

2 (phosphorated ERK1, 2), and asymmetric activation of 

EGFR by EStim [90–92].

In vitro systems that study or utilize estim

High-throughput platforms for studying cellular 
response to EStim

To fully exploit the therapeutic potential of EStim, it is nec-

essary to elucidate the fundamental mechanisms of cellular 

responses to EStim and to identify the most efective and 

safe EStim conditions for diferent application scenarios. 

Conventional experimental setups for studying cellular 

response to EStim, such as the electrotaxis chamber, have 

limited throughput. They usually can only test one condition 

or one type of cell in each experiment. This low through-

put has signiicantly hindered the progress of EStim-related 

discoveries for both fundamental research and clinical 

applications.

To address this issue, high-throughput and integrated test-

ing systems have been developed that are capable of testing 

multiple EStim conditions or cell types in one experiment. 

The most commonly used high-throughput experimental 

setup is the multiwell plate. In two studies from Barker’s 

group [93, 94], a six-well plate-based high-throughput 

experimental setup was developed to investigate the efects 

of diferent EStim parameters, including electrical ield 

strength and EStim duration on the osteogenic diferentiation 

of mesenchymal stem cells (MSCs). The L-shaped EStim 

electrodes were attached to the lid of the 6-well plate, and 

were able to deliver uniform EStim to each individual well. 

In another study by Du et al. [95], a 96-well plate-based 

high-throughput screening platform was developed for stud-

ying the optimal EStim parameters for human neural crest 

stem cell (NCSC) diferentiation. The EStim electrodes were 

arranged in a top-down coniguration to generate a vertical 

electrical ield that can stimulate a larger area. The param-

eters investigated include EStim frequency, duration, and the 

direction of electrical ield.

More recently, microfabricated platforms, such as micro-

luidics and lab-on-a-chips, have been used in EStim studies, 

which have signiicantly improved the throughput. Micro-

luidics channels with changing widths [96, 97] (Fig. 3a) or 

resistor-ladder design [98, 99] (Fig. 3b) have been developed 

to generate multiple EStim strengths, which can be studied 

in the same device in one experiment. Among these devices, 

the resistor-ladder design is capable of generating a wide 

range of EStim intensity spanning over three orders of mag-

nitude from 2.1 mV/mm to 1.6 V/mm using a simple and 

expandable channel layout [98]. Salt bridges, power supply 

and/or voltage meter have been integrated in these systems, 

minimizing the footprint of the experimental setup. The sys-

tem that allows multiple diferent cells to be tested in the 

same experiment was also developed. Gao and colleagues 

developed a barcoded microplate-based platform to study the 

EStim response of a library of 563 Dictyostelium discoideum 

strains with morphological defects [100] (Fig. 3c). Each 

microplate had a unique graphic barcode which was corre-

lated with the D. discoideum strain that it carried. Up to 30 

types of microplates/strains were loaded in a testing chamber 

and their response to EStim was studied in one experiment. 

This study identiied a number of genes that mediate the 

electrotaxis of D. discoideum. These studies have signiicant 

impact in the ield. They collectively provide the technologi-

cal advancement that is necessary to elucidate the molecular 

mechanisms of electrotaxis and to identify the efective and 

safe stimulation conditions for clinical utilities.

The optimal EStim parameters found in high-through-

put studies have beneited tissue engineering applications. 

A study from Vunjak-Novakovic’s group [101] used a 

miniaturized experimental platform and high-throughput 

method to identify the optimal electrode material and 
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electrical parameters, including amplitude and frequency, 

for the EStim of neonatal rat cardiomyocytes. The optimal 

EStim condition they identiied have been used in many 

cardiac tissue engineering studies to improve cell mor-

phology, the production of proteins that are speciic to 

cardiac gap junctions and contraction, and the contrac-

tion force [102, 103]. The best EStim conditions found in 

Barker’s studies [93, 94] have been used in a recently pub-

lished study [12] to enhance the osteogenic diferentiation 

of bone tissue engineering constructs with encapsulated 

MSCs. In the same study, the optimal EStim condition 

was also applied to bone tissue engineering constructs 

that were implanted to treat rat femur large defects. The 

EStim therapy signiicantly improved the healing of rat 

femur large defects, with higher bone formation, strength 

and increased expression of osteogenic genes. The opti-

mal EStim parameters identiied in the study by Du et al. 

[95] was applied to NCSCs that were transplanted in live 

animals with sciatic nerve injuries. It was found that this 

EStim protocol signiicantly enhanced the survival rate 

and diferentiation of the transplanted NCSCs, as well as 

the overall nerve regeneration. These results show that 

high-throughput EStim studies have provided practical 

guidance on the selection of optimal EStim conditions for 

tissue engineering applications.

Tissue engineering systems that utilize EStim

Due to its direct efects on cells and the crucial role of elec-

trical signal in early tissue development and regeneration, 

EStim has been widely integrated in tissue engineering sys-

tems or applied during in vivo tissue regeneration to improve 

tissue proliferation, remodeling and maturation [2]. It has 

been shown that EStim applied directly to tissue scafolds 

could signiicantly enhance the nerve cell proliferation and 

neurite outgrowth in vitro [104–107] (Fig. 4a), as well as 

axonal regeneration/remyelination and functional recovery 

in vivo [108–110] compared to the same scafolds without 

EStim. EStim has also been applied to engineered skeletal 

muscle tissues. It was reported that the application of EStim 

improved the myobundle size, muscle contraction force and 

the expression of genes related to sarcomere development 

[111–113] (Fig. 4b). Due to the importance of electrical cues 

and activities in the development and functions of cardiac 

tissue, EStim has been widely used in cardiac tissue engi-

neering. It has been shown that EStim could improve the 

assembly and the functional development of neonatal rat 

cardiomyocytes into cardiac tissues that exhibited contractile 

capability [101, 102, 114] (Fig. 4c). EStim has also been 

applied to bone tissue engineering constructs to enhance 

the diferentiation of stem cells into osteo-lineage and the 

Fig. 3  High-throughput systems for testing cellular responses to 

EStim. a A multi-ield microluidic device that can generate three 

diferent electrical ield strengths simultaneously. Image reproduced 

from [97] with permission. Copyright 2009, Elsevier. b A resistor 

ladder-based microluidic device that can generate 10 levels of elec-

trical ield strength spanning over three orders of magnitude. Adapted 

from [98] with permission. Copyright 2014, Royal Society of Chem-

istry. c A microplate platform that allows testing 30 diferent Dicty-

ostelium discoideum strains in one experiment. Reproduced from 

[100] with permission. Copyright 2015, American Association for the 
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functional maturation of the tissues. For example, in two 

studies by Hu et al., a biocompatible polypyrrole scafold 

with adjustable electrical conductivity was developed [115, 

116]. Rat bone marrow stromal cells (rBMSCs) were seeded 

on the scafolds and electrically stimulated. It was found that 

the conductive scafolds and the EStim signiicantly acceler-

ated the diferentiation of rBMSCs and enhanced their min-

eralization. A detailed evaluation of diferent EStim modes 

revealed that square wave at 200 mV/mm electrical ield 

strength delivered the best outcomes.

EStim can be directly applied to the tissue culture 

medium as in the case of cardiac tissue EStim [40] (Fig. 5a). 

Electrodes are typically made of inert materials, such as car-

bon and platinum [42, 117]. It is also a common practice to 

apply EStim through conductive scafolds, which are typi-

cally made of conducting polymer ibers or carbon nanoma-

terials [5, 118, 119] (Fig. 5b). These conductive scafolds 

have attracted much attention recently, because they are not 

only capable of delivering localized EStim to the cells that 

are attached to the scafolds [104, 105, 120], but also able to 

provide topographic cues for cell orientation and prolifera-

tion [121, 122]. Conducting polymers and carbon nanoma-

terials are easy to be modiied to allow better tissue inter-

faces and functions. Extracellular components (e.g., laminin 

fragments and RGD motifs) and bioactive molecules (e.g., 

hyaluronic acid) have been blended in or grafted to the sur-

face of the conducting polymer ibers [123–125]. Functional 

groups (e.g., carboxyl group) and biomolecules (e.g., poly-

ethyleneimine and phospholipids) have been grafted on the 

surface of carbon nanotubes to improve their biocompat-

ibility and functions [126].

The clinical utilities of EStim

As mentioned previously, EStim has many potential clini-

cal applications as a non-invasive and non-pharmacological 

therapeutic modality. However, for many of the applications 

that have been tested, there is a lack of strong clinical evi-

dence that supports the therapeutic eicacy of EStim. For 

example, two recent reviews summarized the clinical evi-

dence for the use of EStim in bone regeneration in human 

patients [11, 127]. They found the existing clinical trials 

have reported inconclusive and mixed results regarding the 

clinical eicacy of EStim on bone repair. The evidence pro-

vided by many clinical trials was of limited quality due to 

the small sample size, poorly designed controls and/or vari-

ability in fracture sites. The eicacy of EStim on the restora-

tion and recovery of denervated muscles is also inconsist-

ent [128]. According to the literature, the EStim eicacy is 

highly dependent on the EStim conditions: higher current 

intensities and longer pulse widths usually generated better 

outcomes, especially in human muscles that have been den-

ervated for long time [38, 129]. However, such high current 

Fig. 4  EStim enhances tissue regeneration. a EStim increases the 

neurite length of PC12 cells. Scale bars are 50 μm. Image reprinted 

from [107] with permission. Copyright 2009, Elsevier. b EStim (at 

1 and 10  Hz) promotes growth of myobundles of human skeletal 

muscle. CTL is no-EStim control. CSA is myobundle cross-sectional 

area. F-act is a ilamentous actin. Scale bars are 200  μm. Image 

reprinted from [112] with permission. Copyright 2019, Elsevier. c 

EStim facilitates the assembly and ultrastructural development of 

cardiomyocytes, which is similar in many aspects to native myocar-

dium. Bar is 2 μm in the irst row and 1 μm in the second row. Image 

reprinted from [114] with permission. Copyright 2004, National 

Academy of Sciences
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intensities and long pulse widths can cause serious tissue 

damage [130–132], so it is unclear how useful they are in a 

clinical setup. Very few clinical trials have tested the ei-

cacy of EStim on nerve regeneration in human subjects. One 

randomized controlled clinical trial compared the efects of 

EStim on sensory nerve regeneration with no-EStim control 

[133]. Although a trend of greater functional improvements 

was shown in the EStim group when compared to the con-

trol, the diference was not statistically signiicant. Another 

randomized controlled clinical trial aimed to determine the 

eicacy of EStim on axonal regeneration after surgery [48, 

134]. The EStim group showed faster motor neuron regen-

eration than the control group. However, the EStim group 

failed to show signiicantly greater improvement in motor 

performance when compared to the control. Transcutane-

ous electrical nerve stimulation (TENS) has been frequently 

used for pain relief. A recently published systemic review 

surveyed the eicacy of TENS in pain reduction in human 

patients [135]. It concluded that the existing studies showed 

conlicting outcomes: some showed eicacy while the others 

showed no improvement. Another problem is the lack of 

high-quality clinical studies and the inconsistency in TENS 

parameters used in the existing studies.

There are two EStim application areas that have been 

extensively studied in animal models and clinical trials 

and have generated relatively consistent positive outcomes, 

which are the EStim-assisted wound healing and the ionto-

phoretic drug delivery. For iontophoretic drug delivery, we 

are particularly interested in ocular drug delivery, because 

EStim is non-invasive and enables high drug delivery ei-

ciency, two attributes highly desired for ocular applications 

that are not ofered by any of the conventional methods. 

Therefore, we will focus our discussion in this section on 

EStim-assisted wound healing and iontophoretic ocular drug 

delivery.

Electrical ield assisted wound healing

As mentioned previously, the application of external EStim 

can enhance the migration directedness and/or speed of a 

variety of cell types, including cells that actively participate 

in the wound healing process, such as keratinocytes [136, 

137] and dermal ibroblasts [138, 139]. EStim has been suc-

cessfully used to speed up the healing of in vitro scratch 

wounds, indicating strong therapeutic potentials.

A number of clinical trials have been conducted in the last 

3 decades to assess the eicacy of EStim on enhancing the 

healing of various chronic wounds [140–149]. Pulsed direct 

current is the most commonly used form of EStim. DC elec-

trical ield provides the directional cue that is necessary to 

guide cell migration into the wound bed. The pulsed signal 

reduces the time when the voltage is on so that the adverse 

efects, such as local heating and chemical changes, do not 

accumulate on the tissue surface. Continuous DC EStim is 

also used. However, the intensity has to be kept low to avoid 

tissue damage.

Many studies have reported that the application of EStim 

was able to signiicantly enhance the wound healing speed 

and/or the number of wounds closed at the end of the study, 

compared to conventional wound care. For example, using a 

pulsed DC EStim at a low current intensity of 600 µA, Wood 

and colleagues reported that EStim signiicantly increased 

the number of wounds healed at the end of the study com-

pared to sham control (P < 0.0001) [141]. Lundeberg and 

colleagues reported that the application of pulsed EStim sig-

nal could signiicantly increase both the number of wounds 

healed and the wound healing speed (P < 0.05) [146]. Carley 

and colleagues have shown that continuous, low-intensity 

DC EStim could efectively increase wound closing speed 

compared to the control (P < 0.01) [147]. Houghton [144] 

and Lawson [149] in two separate reports demonstrated that 

pulsed EStim with high intensity could efectively increase 

wound healing speed (P < 0.05 and P < 0.01, respectively).

Fig. 5  Commonly used EStim setups for tissue engineering. a Car-

bon rod electrodes directly inserted in culture medium are used to 

deliver EStim. 3D scafolds can be placed in between the electrodes. 

Image reprinted from [40] with permission. Copyright 2009, Springer 

Nature. b EStim can be applied through conductive nanoibrillar 

scafold (PCL-PPy) to increase neurite length. Image reprinted from 

[105] with permission. Copyright 2009, John Wiley and Sons

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

A
u

th
o

r
 P

r
o

o
f



U
N
C

O
R

R
E
C

T
E
D

 P
R
O

O
F

Journal : Large 18 Article No : 3446 Pages : 19 MS Code : 3446 Dispatch : 16-1-2020

 S. Zhao et al.

1 3

Other studies have reported less encouraging find-

ings on the efect of EStim on wound healing, which were 

either insigniicant improvement compared to control or no 

improvement. For example, Peters [140], Adunsky [145], 

Griin [143] and Houghton [142] in their respective reports 

have shown that high-voltage, pulsed DC EStim could 

enhance the wound healing speed and/or the number of 

wounds healed compared to control, but the diferences 

were not signiicant (P > 0.05). In the study conducted by 

Feedar and colleagues [150], it was found that high-voltage, 

pulsed DC EStim could efectively improve the wound heal-

ing speed compared to the sham control (P < 0.02), but the 

number of wounds healed at the end of the 4-week study 

was fewer than those of the sham control, although not sig-

niicant (P > 0.05).

Commercial wound dressings with EStim capabilities are 

being developed.  POSiFECT® is one of the early products 

developed by Bioisica, Inc. [151] (Fig. 6a). It is a dispos-

able wound dressing device capable of delivering EStim 

to facilitate the wound healing process. The POSiFECT 

device represents a typical design of EStim wound dress-

ing, consisting of a ring-shaped anode placed on the outside 

of the wound and a small cathode placed at the center of the 

wound bed to direct the electrical ield/current toward the 

wound bed. The power is provided by an integrated battery 

module and a constant EStim current is ensured through a 

control circuit.  Procellera® is a wound dressing device cur-

rently under active development by Vomaris Innovations, 

Inc. [152] (Fig. 6b). It integrates a novel micro-cell battery 

array that the company claims uses in situ electrochemical 

reactions to generate EStim current for wound stimulation. 

It has been shown that Procellera wound dressing had anti-

bacterial efects against clinical wound pathogens, which 

could reduce the risk of infection at the wound site and thus 

facilitate the wound healing process [153]. A controlled, 

preclinical study has been conducted that provided in vivo 

evidence on the anti-bioilm eicacy of Procellera wound 

dressing.  WoundEL® is a commercial EStim device that can 

deliver low-voltage, pulsed current to facilitate the wound 

healing process and reduce wound-related pain. A human 

clinical trial demonstrated that the WoundEL treatment of 

leg ulcers for 3 and 7 days could signiicantly reduce the pain 

score compared to the onset of the study [154]. The use of 

analgesic treatments could thus be reduced. A Dacron-mesh 

silver nylon stocking has been used as a wearable electrode 

to deliver EStim wound treatment during night time. Com-

pared to conventional electrodes, these stocking electrodes 

provided long-term EStim capability along with comfort 

[140].

Iontophoretic ocular drug delivery

Another area of clinical utility of EStim that has attracted 

much attention is the iontophoretic ocular drug delivery. 

Iontophoresis, as mentioned previously, can signiicantly 

increase the trans-membrane transport of biomolecules with-

out afecting tissues given that the EStim energy is within 

a safe range. Due to its non-invasiveness and high drug 

transport eiciency, iontophoresis has been tested for drug 

delivery into the eye, which is an organ where conventional 

drug delivery routes (e.g., systemic and topical delivery) 

have low eiciency. DC EStim is the primary approach used 

in this type of application, because a constant electrical ield 

direction is required to continuously “push” drug molecules 

into the eye tissue. The iontophoretic ocular drug delivery 

typically uses two routes, the trans-corneal route and the 

trans-scleral route. For trans-corneal iontophoresis, the 

working electrode and the drug reservoir are typically placed 

on the cornea. Drug molecules would penetrate the cornea 

under the guidance of an electrical ield and eventually get 

delivered into the anterior segment. This route is used to 

treat anterior segment diseases, such as glaucoma, dry eyes 

and keratitis. For trans-scleral iontophoresis, working elec-

trodes are usually placed at the pars plana on the sclera. 

Drug molecules would penetrate the sclera and choroid and 

eventually get delivered into the retina or the vitreous. This 

Fig. 6  Commercial EStim wound dressings. a  POSiFECT®RD bio-

electric dressing. Image reproduced from [151] with permission 

from Rafael V. Andino. Copyright 2006, Bioisica, Inc. b Procellera 

redox active bioelectric dressing. Image reproduced from [152] with 

permission under the terms of the Creative Commons Attribution 

License. Copyright 2014, Public Library of Science
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route is used to treat posterior segment diseases, such as age-

related macular degeneration. For both routes, the counter 

electrode is typically placed on the ear [155, 156]. A recent 

study showed that efective ocular iontophoresis could also 

be achieved when both working and counter electrodes were 

placed on the same eye [157].

Trans-corneal iontophoresis has been frequently used to 

deliver ribolavin, which is a chemical used in combination 

with ultraviolet (UV) irradiation to crosslink and stifen the 

cornea [158]. In a clinical trial published in 2014, trans-

corneal iontophoresis was performed in 19 patients (22 

eyes) to deliver ribolavin into the cornea, which was sub-

sequently used to crosslink the cornea by UV irradiation 

to treat progressive keratoconus [159]. It was found that 

the ribolavin/UVA treatment resulted in decreases in both 

keratometry level and corneal astigmatism, and improved 

the uncorrected distance visual acuity from 0.61 ± 0.44 up 

to 0.48 ± 0.41 (LogMAR) 1 year after the procedure. A 

more recent randomized controlled clinical trial compared 

the outcomes of the trans-epithelial iontophoresis-assisted 

corneal crosslinking and the standard corneal crosslinking 

with the epithelial layer removed (epi-of) [160]. At 6-month 

post-procedure, the iontophoresis group resulted in a sig-

niicantly higher corrected distance visual acuity compared 

to the standard epi-of corneal cross linking. However, at 

24-months, the diference was not signiicant any more. Also 

after 24 months, the iontophoresis was less efective than 

the standard corneal cross linking on the stabilization and 

regression of keratometry values. It was found that ionto-

phoresis had a less penetration depth of ribolavin than the 

standard method with epi-of.

Trans-scleral iontophoresis has been used to deliver 

corticosteroids to the posterior segment. Two separate 

clinical trials studied the efectiveness of a trans-scleral 

iontophoresis device, EyeGate II, on delivering EGP-437 

(a dexamethasone phosphate formulated for iontophore-

sis) for treating dry eye [161] and noninfectious anterior 

uveitis [162]. The irst study showed that the iontophoretic 

delivery of EGP-437 signiicantly improved the signs and 

symptoms of dry eye, including corneal staining, ocular 

protection index and ocular discomfort, compared to pla-

cebo control where sodium citrate bufer solution was used 

instead of dexamethasone. The second study tested a range 

of diferent EStim intensity (1.6, 4.8, 10.0, or 14.0 mA-

min) for the delivery of EGP-437 and assessed their ei-

cacy in treating noninfectious anterior uveitis. It was found 

that the lower doses seemed to be the most efective, and 

all treatments were well tolerated. The same EyeGate II 

device has also been used to deliver another corticoster-

oid, methylprednisolone sodium succinate, into the cornea 

through trans-scleral iontophoresis followed by lateral dif-

fusion [163]. It was shown that this method was efective 

in reducing active corneal graft rejection and improving 

corrected visual acuity.

Commercial iontophoretic devices have been developed 

to target ocular drug delivery. As mentioned previously, 

EyeGate II, developed by EyeGate Pharma, uses trans-

scleral iontophoresis to deliver therapeutic concentra-

tion of drug molecules into various ocular tissues [162] 

(Fig. 7a). The most commonly delivered drug is EGP-437, 

which is a dexamethasone phosphate optimized specii-

cally for iontophoresis. Last year, the company announced 

on their website the outcomes of its Phase 3 clinical study 

on the safety and eicacy of EGP-437 delivered by the 

EyeGate II device. Although the iontophoretically deliv-

ered EGP-437 showed therapeutic eicacy, it was inferior 

to the positive control which used the standard predniso-

lone acetate. Ocuphor was another ocular iontophoretic 

device that was once under investigation [164] (Fig. 7b). 

It had a simpler design compared to the EyeGate II sys-

tem, and used the same trans-scleral route. Human clinical 

study was conducted to evaluate the safety of Ocuphor 

device in healthy volunteers and found that it was in gen-

eral safe if the dose was less than 3 mA for 20 min or 

1.5 mA for 40 min [165]. However, no new studies on 

Ocuphor can be found after 2003.

Fig. 7  Commercial ionto-

phoretic ocular drug deliv-

ery devices. a The EyeGate 

II Delivery System. Image 

reproduced from [162] with 

permission. Copyright 2012 

Elsevier. b OcuPhor iontopho-

retic device inserted in the eye. 

Image reproduced from [164] 

with permission under the terms 

of the Creative Commons Attri-

bution License. Copyright 2011, 

Wolters Kluwer
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Problems and perspectives

The need to unveil the fundamental mechanism 
of cellular response to EStim

To apply EStim-based therapies to cure diseases and 

improve biological processes such as tissue regenera-

tion there is a dire need to unveil the mechanism of how 

exactly the cell behaves in an electrical ield. The mecha-

nisms behind cell–EStim interactions are not yet well 

understood. The diiculty to understand mechanisms for 

EStim–cell interaction calls for a detailed understanding 

of the induced EStim structures in cells. This irst requires 

thorough knowledge about ion channel targets expressed 

in tissues of interest so that they can then be accordingly 

manipulated using EStim. Recently a bioinformatics plat-

form, electroceutical design environment (EDEn), has 

been designed that includes information on ion channels 

and ion pumps, linked to known chemical modulators and 

their properties [166]. The database also provides informa-

tion about the expression levels of the ion channels in over 

100 tissue types. This database can help us to determine 

which ion channels should be manipulated by electroceu-

ticals or EStim to bring downstream changes in transcrip-

tional and epigenetic proile resulting in modifying the 

current state (diseased or immature) to the desired state. 

Also, construction of mathematical models is especially 

crucial to improve the understanding of these ion-chan-

nels and how cells behave in an external electrical ield. 

Various such mathematical models have been proposed 

before. For example, Fricke and Schwan model predicted 

the potential induced in an ellipsoidal and spherical cell 

respectively within the suspension exposed to external 

EStim [167, 168]. Numeric finite-element modelling 

(FEM) [169], transport lattice (TLM) models [170], and 

approaches based on equivalent circuits [171] examined 

complex cells of complex shapes immersed in an electro-

lyte. However in many in vivo conditions cells behavior 

toward EStim is more dynamic involving complex feed-

back loops; therefore, the next road map in this efort is 

to develop machine learning-based computation platforms 

e.g., BioElectric Tissue Simulation Engine (BETSE), a 

inite volume method multiphysics simulator that can pre-

dict the origin and progression of local and long-range bio-

electric patterns in complex multicellular tissues [172]. In 

future such eforts, along with their clinical trials can open 

new windows in the ield of bioelectricity-based therapies.

The need to standardize and improve therapeutic 
EStim protocol and device

Although EStim has a broad range of therapeutic poten-

tials, it has not been widely accepted in everyday clinical 

practice. This is because its therapeutic eicacy is incon-

sistent and inconclusive. After careful review of the pub-

lished clinical studies, we think there are three reasons that 

are potentially responsible for such inconsistent outcomes.

First, a variety of diferent EStim conditions have been 

used in clinical studies, including diferent voltages, cur-

rents, duration, waveform and polarity. Some studies were 

voltage controlled, while some were current controlled. 

These diverse experimental conditions make it very diicult 

to compare results from diferent clinical studies or to reach 

any reliable conclusion. It is also impossible to establish any 

guidance for future implementation of EStim in the clinics. 

There is a critical need for systemic studies to identify opti-

mal EStim conditions for each application. The fundamental 

mechanism of EStim response of diferent cell/tissue types 

would help to unveil such information.

Second, most of the published studies did not monitor 

how much EStim was actually delivered to the target tissues. 

EStim energy may be lost in the circuit or at the circuit/tissue 

interface. The heterogeneous tissue structures and electrical 

properties could lead to a highly non-uniform electrical ield 

distribution. All these factors would afect the amplitude of 

the EStim signal that is delivered to the target tissues. In 

addition, dynamic efects should also be considered, such 

as the change of the impedance at circuit/tissue interface 

during EStim application [173]. It is necessary to establish 

a detailed electrical model for each diferent tissue type 

to help predict the spatial and dynamic distribution of the 

EStim signal. It is also necessary to perform real-time EStim 

monitoring at the target tissue during EStim application to 

ensure that the desired EStim intensity is delivered and the 

outcome is reproducible.

Third, the EStim delivery capacity of current electrical 

devices is largely limited. There are fundamental diferences 

between current electrical systems and biological tissues, 

including the type of current conducted and their mechanical 

properties. All current electrical circuits conduct electron 

currents. Biological tissues, however, use ion currents. To 

deliver EStim to tissues, the electron currents have to be 

converted to ion currents through electrochemical reactions 

(if the voltage delivered is higher than a threshold, which 

is typically 1 V for water). These reactions induce physical 

and chemical changes, such as local heating and pH changes, 

which may cause tissue damage. These adverse efects limit 

the amount of EStim energy (intensity × duration) that can 

be delivered using these electrical circuits, and thus their 

therapeutic eicacy. In addition, most electrical circuits are 

prepared with rigid materials, while most biological tissues 
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are soft. This mechanical mismatch can cause tissue injury, 

inlammation and scar tissue formation, especially when 

long-term EStim is required. Therefore, there is a critical 

need for a new generation of electrical circuits capable of 

conducting ion currents and matching the stifness of biolog-

ical tissues to allow delivering higher EStim energy without 

causing tissue damage.

Some efforts have been undertaken to minimize 

device–tissue mismatch by pursuing alternative materi-

als and circuit designs. The recently developed ionic con-

ductors are prepared with tissue-matching soft hydrogels 

infused with salt solutions [174–177] (Fig. 8a). Their ion 

current-conducting capability could potentially eliminate the 

electrochemical reactions and the associated adverse efects 

during EStim. However, these ionic conductors lack stability 

in aqueous environments due to ion difusion. As a result, 

they are not suitable for devices that directly interface with 

biological tissues. To address the issue with ionic conduc-

tors, a water-stable, hydrogel-based circuit system, referred 

to as hydrogel ionic circuit, was developed. Hydrogel ionic 

circuit is capable of conducting ion currents in its high-con-

centration salt solution-illed channels [178] (Fig. 8b). These 

salt solution channels are fabricated within a polyethylene 

glycol (PEG) hydrogel matrix. A unique aqueous two-phase 

system formed between the PEG hydrogel and the salt solu-

tion stabilizes salt ions in the channels so their difusion into 

the PEG hydrogel or the surrounding aqueous medium is 

minimal. Meanwhile, PEG hydrogels permits ion currents to 

pass, so EStim can be delivered to biological tissues. These 

hydrogel ionic circuits have been used to deliver EStim to 

induce muscle contraction. Adverse efects associated with 

EStim, including local heating and pH changes are reduced 

compared to conventional electrodes.

Conclusion

EStim holds great therapeutic potentials due to its capa-

bility to non-invasively and non-pharmacologically afect 

cellular activities and biomolecule transport. To address 

the current issue of inconsistent and inconclusive thera-

peutic eicacy of EStim, future research on the fundamen-

tal mechanism of cellular response to EStim needs to be 

conducted, which will shed light on the optimization of 

EStim conditions for diferent applications. New EStim 

devices will need to be developed to match the properties 

of biological tissues to maximize EStim delivery capacity 

while minimizing tissue damages. Additional functions 

can be added, such as wireless energy transfer, prepro-

grammed/on-demand EStim to improve the usefulness of 

EStim therapy and patient compliance.
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