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Abstract: Both passive and active microfluidic chips are used in many biomedical and chemical ap‑
plications to support fluid mixing, particle manipulations, and signal detection. Passive microfluidic
devices are geometry‑dependent, and their uses are rather limited. Active microfluidic devices in‑
clude sensors or detectors that transduce chemical, biological, and physical changes into electrical
or optical signals. Also, they are transduction devices that detect biological and chemical changes
in biomedical applications, and they are highly versatile microfluidic tools for disease diagnosis and
organ modeling. This review provides a comprehensive overview of the significant advances that
have been made in the development of microfluidics devices. We will discuss the function of mi‑
crofluidic devices as micromixers or as sorters of cells and substances (e.g., microfiltration, flow or
displacement, and trapping). Microfluidic devices are fabricated using a range of techniques, includ‑
ing molding, etching, three‑dimensional printing, and nanofabrication. Their broad utility lies in the
detection of diagnostic biomarkers and organ‑on‑chip approaches that permit disease modeling in
cancer, as well as uses in neurological, cardiovascular, hepatic, and pulmonary diseases. Biosensor
applications allow for point‑of‑care testing, using assays based on enzymes, nanozymes, antibodies,
or nucleic acids (DNA or RNA). An anticipated development in the field includes the optimization
of techniques for the fabrication of microfluidic devices using biocompatible materials. These devel‑
opments will increase biomedical versatility, reduce diagnostic costs, and accelerate diagnosis time
of microfluidics technology.

Keywords: micromixers; particle separation; cell sorting; particle enrichment; electrophoresis; di‑
electrophoresis; magnetophoresis; acoustophoresis; pressure fields; thermal fields; optical trapping;
disease modeling; biomedical applications; lab‑on‑a‑chip; organ‑on‑a‑chip; point‑of‑care; cancer di‑
agnosis; biosensors

1. Introduction
Recent advances in the design and development of microfluidics (MFs) devices have

made it possible to miniaturize conventional biochemical laboratory protocols into a mi‑
crochannel networking system, which has emerged as an efficient and cost‑effective tool.
Biomedical microdevices include integrated structures consisting of numerous micro‑ and
nano‑sized integrated devices, where many processes from particle manipulation to sens‑
ing take place in the platform. Although different types of microfluidic devices can per‑
form similar tasks in biomedical applications, passive microfluidic systems are mainly
used for particle manipulation [1–5] and mixing liquids [4,6], while active types contribute
more to particle trapping [7–19] and sensing [20–24]. Passive devices are governed by
diffusion, inertial forces, secondary flows, and geometry‑induced turbulence and particle
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manipulation; active microfluidic devices generate streams depending on external energy
to disturb particles or fluids inside microfluidic devices. Depending on the geometric de‑
sign, mixing ratios of fluids could be relatively high, and separation of particles, which
have different sizes and densities under the influence of internal forces, can reach high‑
efficiency values in microfluidic channels. External forces due to acoustic pressure fields,
electric fields, magnetic fields, thermal fields, pressure fields, and optical fields could ma‑
nipulate biological or chemical particles and mix fluids in biomedical applications. In addi‑
tion, some active manipulation techniques with functional surfaces coated on the transduc‑
tion area can also sense some unique biological structures, such as DNAs and biomarkers.
Briefly, passive MFs, where internal forces are effective, and active MFs, which perform
operations under the influence of external forces, are two categories regarding microflu‑
idic devices. There are several biomedical applications in microfluidics devices. One of
the most promising applications of microfluidics in biomedical sciences is the diagnosis of
diseases, including cancer diagnosis and infectious diseases. However, further develop‑
ment of microfabrication permits employment of microfluidics devices in disease model‑
ing, tissue engineering, and organ‑on‑a‑chip. Moreover, microfluidics–biosensing technol‑
ogy has become popular for applications such as point‑of‑care testing, biosensors, and cell
manipulations [25]. This narrative review discusses recent advancements in microfluidics
systems and their relevant biomedical applications. The table of content is available in the
Supplementary Material.

2. Microfluidics
Microfluidic devices are generally categorized into passive and active devices. Al‑

though the effect of internal forces, diffusion, and secondary flows are very effective in
fluid mixing and particle manipulation, they operate within geometry‑dependent limits
in passive/inertial microfluidic devices. In active microfluidic devices, the restriction in‑
volves the interaction between the target and external energy source in contrast to passive
microfluidic chips. For example, magnetic fields can only affect structures with magnetic
properties. Even though there is a limit between the energy source and target structure,
some energy sources, such as acoustic fields and pressure fields, eliminate manipulation
limits, and many biomedical applications benefit from the incorporation of microfluidic
devices over time. This section discusses the most recent studies of microfluidics and their
outputs, focusing on passive and active devices as the major distinction.

2.1. Passive Microfluidics
The main applications of passive microfluidic devices are fluid mixing, particle fo‑

cusing, separation, sorting, and isolation, which are all manipulation techniques of fluids
and particles for specific applications. Even though geometrical limits reduce the scope
of applications, some biomedical implementations of passive microfluidic devices (e.g.,
organ‑on‑a‑chip) open new horizons that overcome this limit.

2.1.1. Inertial Micromixers
Passive micromixers with wide applications from chemical reactions to biological

analysis processes rely on their channel geometry. These low costs and complexity are
based on Dean vortices, or secondary flow, seen in curved microchannels to improve the
mixing efficiency [4]. In addition to chaotic advection mixing generated by curved mi‑
crochannels, designing different‑shaped baffles on channel walls can further enhance the
mixing index by constantly fluid folding and stretching. Ahmadi et al. [6] experimentally
and numerically compared six novel‑designed microchannels (i.e., M2 to M6) with a previ‑
ously studied serpentine micromixer (M1). Among the designed microchannels, M3 and
M7 could provide high mixing indexes of 98% at Reynolds numbers (Re) of 20 and 35, re‑
spectively, implying mixing performance can be enhanced even at very low Re by designed
baffles on channel walls (Figure 1).
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2.1.2. Sorting, Separation, and Isolation
Principal areas of interest in biomedical research are the analysis of particular cell

types in samples containing various components by purification and sorting. Depending
on the application, target cell types could have moderate or low populations inside the
primary sample [26]. Considering that microfluidic devices are potent platforms for ma‑
nipulating particles inside microchannels, lab‑on‑a‑chip platforms have been developed
for cell sorting, separation, or isolation based on the biological or physical properties of
the target cells. Passive microfluidics, which operate independently of any external force,
are based on different mechanisms, including microfiltration, inertial and secondary flow,
deterministic lateral displacement (DLD), and pinch flow fractionation (PFF) [26–28].

(a) Microfiltration

This technique employs the size of floating components inside the original sample
to trap the particles in specially designed restrictive elements. Considering the type of
elements used for separation (Figure 2), filtration is categorized into three main groups,
including membranes [29], pillars [30], and other flow barriers (e.g., weirs) [31]. In addition,
based on the flow direction through micro‑posts or along them, microfiltration platforms
are classified into dead‑end [32] and crossflow [33] types. the efficiency of capturing large
particles in dead‑end type is better than that of crossflow filtration. However, the latter
type mitigates the clogging problem [34].

(b) Inertial Focusing and Secondary Flows

Under laminar flow conditions and the absence of any external forces, suspended par‑
ticles travel among fluid streamlines until an equilibrium is reached. The latter is achieved
because the inertial effects become dominant under such conditions, so that the reciprocal
effect of shear‑induced lift and wall‑induced forces on particles steers them towards the
equilibrium position. For example, Segre and Silberberg experimentally observed this ra‑
dial migration of neutrally buoyant solid particles in Poiseuille flow [35]. Subsequently, Di
Carlo et al. [36] studied inertial focusing in straight and curved microchannels. For curved
channels, in addition to induced lift forces, due to the centrifugal force, a drag force is
exerted on particles by the formation of a secondary flow called the Dean flow, which is
perpendicular to the primary flow. Aside from curved microchannels, other secondary
flow generating geometries including spiral channels [37], serpentine channels [1], suc‑
cessive contraction and extraction channels [3,38], top surface slanted grooves [5,39], and
herringbones structures [40] have been studied for particle sorting. The inherent high vol‑
umetric flow rates in inertial microfluidic devices make it favorable for cell separation [41].
However, the behavior of cells differs from solid particles regarding the presence of an
extra deformability‑induced lift force, which is driving them away from the walls [42]. Re‑
cently, inertial microfluidic platforms based on viscoelastic fluids have shown promising
results in precisely focusing and manipulating particles [43]. Kumar et al. [44] investigated
particles focusing in spiral channels at higher flow rates compared to previously reported
values using a non‑Newtonian viscoelastic fluid. The utilization of viscoelastic fluids ex‑
erts a new elastic force on particles shifting the equilibrium position from the inner wall of
the curved channel to the outer wall, which is helpful for cytometry applications (Figure 3).
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Figure 2. Microfiltration examples: (a) Dead‑end membrane‑based filtration, adopted with permis‑
sion from [29], Copyright 2019, Elsevier; (b) Cross‑flow membrane‑based filtration, adopted with
permission from [33] Copyright 2011, Royal Society of Chemistry; (c) Cross‑flow pillar‑based filtra‑
tion, adopted with permission from [30], Copyright 2008, Elsevier; and (d) Cross‑flow weir‑based
filtration, adopted with permission from [31], Copyright 2005, Royal Society of Chemistry.



Biosensors 2022, 12, 1023 5 of 60

Biosensors 2022, 12, x  5 of 62 
 

Kumar et al. [44] investigated particles focusing in spiral channels at higher flow rates 

compared to previously reported values using a non-Newtonian viscoelastic fluid. The 

utilization of viscoelastic fluids exerts a new elastic force on particles shifting the equilib-

rium position from the inner wall of the curved channel to the outer wall, which is helpful 

for cytometry applications (Figure 3). 

 

Figure 3. Inertial and secondary flow examples: (a) viscoelastic non-Newtonian spiral device, re-

printed with permission from [44], Copyright 2021, Springer Nature; (b) serpentine device, re-

printed with permission from [1], Copyright 2016, Springer Nature; (c) successive contraction and 

extraction channels, reprinted with permission from [38], Copyright 2013, Royal Society of Chemis-

try; (d) top surface slanted grooves configuration, reprinted with permission from [39], Copyright 

Figure 3. Inertial and secondary flow examples: (a) viscoelastic non‑Newtonian spiral device,
reprinted with permission from [44], Copyright 2021, Springer Nature; (b) serpentine device,
reprinted with permission from [1], Copyright 2016, Springer Nature; (c) successive contraction and
extraction channels, reprinted with permission from [38], Copyright 2013, Royal Society of Chem‑
istry; (d) top surface slanted grooves configuration, reprinted with permission from [39], Copyright
2017, IEEE; and (e) Herringbone structure, reprinted with permission from [40], Copyright 2021,
Wiley‑VCH GmbH.

(c) Deterministic Lateral Displacement

Deterministic lateral displacement (DLD) microfluidic platforms offer a novel config‑
uration and were proposed by Huang et al. [45] for continuous particle separation at low
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Reynolds numbers under the laminar flow conditions. This kind of device houses periodic
arrays of micro‑posts such that a certain distance shifts each row compared to the previous
row, which generates curvy streamlines. Within this kind of microfluidic device, particles
smaller than a critical value follow the streamline, whereas larger particles laterally shift
between the streamlines with a defined angle. Thus, particles follow different trajectories
based on size, deformability, and shape.

DLD devices using circular micro‑pillars are prone to clogging due to the formation
of stagnation zones above micro‑posts [26]. Circular posts are prone to generate stagnation
points in which cells are trapped causing system clogging. To avoid this problem, different
geometries have been investigated. As an instance, Loutherback et al. [46] reported the
isolation of viable circulating tumor cells (CTCs) from blood using arrays of triangular
posts (Figure 4).
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(d) Pinch Flow Fractionation

Yamada et al. [47] first proposed the separation of different size particles suspended
in a laminar flow with pinch flow fractionation (PFF). In this method, two fluid streams
containing a liquid with suspended particles and a sheath flow enter separately through a
Y‑junction to a microfluidic system and are combined in a third narrow pinched segment.
The flow rate ratio of the inlet flows must be such that particles are pushed to the wall
of the narrow segment by the sheath flow. Therefore, the center of mass of particles dif‑
fers based on their size, which steers them through different streamlines. To enhance the
separation efficiency following the pinched segment, a wider segment is used to increase
the lateral distance of streamlines in pinched segment. In addition, to have an optimum
design, several parameters such as the total flow rate, ratio of the inlet flow rates, channel
width of the pinched segment, angles of boundaries, and outlet configuration should be
considered [26]. In this regard, several studies have investigated several different outlet
configurations to separate particles, including symmetric [47] or asymmetric [48] channels,
as well as channels equipped with micro‑valves [49] and other drainage methods. Also,
the PFF method could be utilized alongside other passive methods such as sedimentation
PFF [50], inertial‑enhanced PFF [51], and elasto‑inertial PFF [52] approaches to further en‑
hance the efficiency.

2.1.3. Droplet Microfluidics
The precise creation and manipulation of predefined discrete droplet volumes as im‑

miscible liquids in microfluidic platforms provide the potential for achieving high through‑
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put with controllable droplet properties. As a result, droplet microfluidics allows applica‑
tions in different fields, including microbiology, single cell analysis, cell culture, drug de‑
livery, micro/nano particle production, and emulsification [53–56]. In microfluidic devices,
the interfacial instability of continuous and dispersed immiscible phases in oil‑in‑water or
water‑in‑oil liquids results in droplet formation. By employing both passive and active
techniques, these platforms offer monodisperse droplet production with high throughput
and higher efficiency than traditional methods [53]. In the passive approach, where no
external forces are applied in the system, the channel’s geometrical design is the most in‑
fluential parameter on droplet characteristics [53]. In addition, parameters such as rheo‑
logical properties of dispersed and continuous liquids and their flow rate ratios, as well as
water/oil interfacial tension modification by surfactants, have been studied to attain favor‑
able droplet creation modes [53,55]. Based on the channel configuration, passive droplet
microfluidic platforms are categorized into crossflow, co‑flow, and flow‑focusing geome‑
tries (Figure 5) [53,55]. In a crossflow type, two immiscible liquids are introduced to the
system through a Y‑shape or a T‑shape junction. This design requires small space on the
device in comparison to other geometries and could be readily integrated into other mi‑
crofluidic components [57]. Within this configuration, the produced droplets normally
have plug‑like shapes, but an increase in the capillary number and a decrease in the flow
rate ratio makes it possible to yield spherical droplets as well [53]. Flow‑focusing design is
appropriate for generating high‑throughput smaller spherical droplets having a minimal
contact with walls compared to cross‑flow configuration [55,58]. As depicted in Figure 5,
the flow‑focusing configuration consists of two side channels supplying the continuous
flow to gird the dispersed flow streaming in the middle of the constriction channel. On
the other hand, features of produced droplets in a co‑flow geometry are comparable with
the flow‑focusing configuration with an extra capability of adjusting the droplet size by
modifying the channel width of the dispersed flow [56]. The co‑flow type platforms have
two concentric channels providing the dispersed flow in the middle surrounded by the
continuous flow, where the droplet breakup occurs at the end tip of the dispersed channel
due to existing shear forces [58,59].
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(a) Microfluidic‑Based Materials Production

The behavior of fluids inside microfluidic devices is predominantly affected by in‑
terfacial parameters rather than gravity in microscale. Therefore, by designing different
geometries and changing the operating conditions, it is possible to control fluid dynamics
at the microscale level. Because of this feature, microfluidics have gained traction in the
production of micro and nanomaterials for biomedical applications in different fields such
as diagnostics, drug delivery, organs‑on‑chip, tissue engineering, and stimuli‑responsive
biodevices [60,61]. Microfluidic devices enable researchers to control the geometry, struc‑
ture, and composition of the synthesized microfluidic‑based micro/nano particles, fibers,
films, and bulk materials. A common technique for preparing micro/nanoparticles using
microfluidics typically involves two steps [62]: forming precursor droplets of uniform size,
followed by solidification of droplets using different methods such as photopolymeriza‑
tion [63], heating and thermal curing [64,65], solvent evaporation [66], and ionic or chem‑
ical cross‑linking [67,68]. Similarly, spinning micro/nanofibers through microfluidic de‑
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vices comprising different fluids’ coaxial streams is accompanied by a curing step for the
central or outer precursor stream [60,61]. In addition, incorporating microfluidic nozzles
into three‑dimensional printers allows precise control over the spatial distribution of fed
inks to form heterogeneous compositions of two‑dimensional films and customized three‑
dimensional structures [60] (Figure 6).
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2.2. Active Microfluidic Devices
Active microfluidic devices are influential small size platforms, where flow regimes,

stationary droplets, or particles inside the fluid are manipulated for specific purposes un‑
der the influence of external forces (Figure 7), such as acoustic pressure fields, electric fields,
magnetic fields, optical or electromagnetic fields, and thermal gradients [69]. Regardless of
the characteristics of microfluidic devices, the type of transducer that generates the external
force is limited by the sample properties used for biomedical applications. To exemplify,
almost all micro and nanoparticles can change motions with the direct effects of acoustic‑
based transducers, but the electrical or magnetic properties of the particles highly depend
on whether the source is an electric field or a magnetic field. Active microfluidic devices
have found many applications and are currently being developed more and more with
time. They could be categorized depending on the external energy type, and an external
energy source is selected according to the electrical, magnetic, and physical properties of
the target particle or liquid. The difficulty here is that, except for the acoustic and pressure
field effective devices, they are selected according to the characteristics of the target, and
their design is dependent on it. Acoustic resonators with microfluidic devices can manip‑
ulate almost any type of particle, but submicron particles require high‑frequency signals,
may exceed 1 GHz, and may require nanostructures to transduce the electric signal into
acoustic waves. Electric and magnetic fields are more successful in affecting submicron
particles and liquids than acoustic waves. The focused laser beam can drag particles with
high radiation pressure in optical methods. Although there is independence from the char‑
acteristics of the target in pressure‑effect systems, vibrating physical mechanisms can di‑
rect the particles with specific criteria. Finally, manipulating particles under the thermal
gradient effect is possible to a certain extent.
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netophoresis method [70], Copyright 2020, Langmuir; (d) Visualization of thermal field particle ma‑
nipulation in a droplet [12], Copyright 2016, Scientific Reports; (e) Optical manipulation of particles
inside a microfluidic channel under a certain flow rate [8], Copyright 2021, Sensors and Actuators B:
Chemical; and (f) Manipulation of particles by driving pressure field with electric field [71], Copy‑
right 2016, Scientific Reports.

2.2.1. Dynamic Micromixers
The working principle of micromixers is based on two main effects: molecular inter‑

diffusion with hydrostatic potential and turbulence formation inside a microchannel by
the effect of geometrical shapes of microchannels or the external energy sources causing
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chaotic advection [72]. Induction of mixing processes inside microfluidic channels using
external energy sources is realized in active or dynamic micromixers, which is schema‑
tized in Figure 8. Unlike inertial microfluidic channels, the energy source of dynamic ma‑
nipulators could be an acoustic field, electric field, magnetic field, thermal gradient, and
externally stimulated micro‑mechanisms inside a microchannel.
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(a) Acoustic Field‑Driven Micromixers

Fluids can be mixed with high efficiency by creating acoustic streaming, which per‑
turbs the fluidflow [74]. According toNam’s study, 100% mixing efficiency can be achieved
by creating three‑dimensional acoustic‑fluid interactions in the microchannel [75]. Surface
acoustic wave manipulators with a 30 MHZ resonance frequency were produced by de‑
signing dual LiNbO3‑based Focused Interdigitated Transducer (F‑IDT), one for the bottom
side of the channel and the other for the top of the microchannel. Thus, when the Surface
Acoustic Waves (SAWs) advancing from both surfaces interact with deionized water and
fluorescent particles, they are a strong vortex that leads to high‑speed mixing in the chan‑
nel at 4.44 ≤ Re ≤ 22.22 [75]. Blockage of channels, nanoprecipitation of particles, particle
sizes, and batch‑to‑batch variation are common problems in nanoparticle synthesis. To
overcome these obstacles, Rasouli & Tabrizian proposed to shape sharp edges within the
microchannel and create vortices by vibrating the bubbles with strong acoustic energy us‑
ing a PZT (lead zirconate titanate) disc driven in several kHz ranges [76]. Chemical and
biological mixtures could reach a mixing efficiency (MI) as high as 80% within millisec‑
onds (e.g., 0.8 ms), while obtaining homogeneous and non‑precipitating mixtures [76]. It
seems challenging to achieve both rapid and high efficiency mixing with a single device.
Yet, Bachman et al. [77] examined the effectiveness of the mixture by adjusting the flow
rate. They observed that varying flow rates from 20–2000 uL.min−1 is very effective in ob‑
taining a homogenous solution in the outlet, even though the mixing index is not as high
as desired (maximum < 0.5) [77]. Because mixing is complicated in linear microchannels,
mixing efficiencies up to 90% can be achieved at specific flow rates by integrating different
micro geometries (e.g., domed structures) into linear channels [77]. Although it occurs at
low flow rates, a high mixing efficiency could be achieved at a 39.6 MHZ and 20 V signal
amplitude. Due to the acoustic stream created by the F‑IDTs placed around the dome, ef‑
fective mixing could be reached [78]. Instead of using SAW, bulk acoustic waves could be
more advantageous for mixing. A star‑shaped micro‑oscillator was driven by bulk acous‑
tic waves, allowing a 91% efficiency within 4.1 ms [79]. Fluid mixing is also convenient for
diagnosis or detection systems developed as portable point‑of‑care (POC) devices. How‑
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ever, the amount of fluid used in such procedures is not acceptable for clinical applications.
Acoustic waves generated by linear IDTs driven with a resonance frequency of 390 MHZ
trap the fluorescent polystyrene particles diluted with PBS and mixed with immunocom‑
plexes by the acoustic stream [73]. In a prostate‑specific antigen (PSA) detection system,
a wide dynamic response range from 0.3 ng/mL to 10 ng/mL was obtained with a detec‑
tion limit of 0.2 ng/mL in a 10 µL sample [73]. In addition to the mixture of liquids in
a continuous flow, mixtures in the form of droplets are also frequently used methods in
biological applications. Piezoelectric transducers, based on PZT with a signal of several
hundred kHz based on PZT, have a higher mixing efficiency and, provide rapid mixing
by creating acoustic flow in the droplet [80]. Rounded piezoelectric transducers operate at
low frequencies but generate highly effective acoustic waves. Still, SAW‑based transducers
operating at higher frequencies are frequently used because they can be produced in dif‑
ferent geometric shapes. Acoustophoretic forces cause acoustic streams that perturb tiny
droplets to rapid mixing and result in detectable (by photodiodes) color changes within a
short time [81].

(b) Electric Field‑Driven Micromixers

The conductivity feature is not sought in biological or chemical samples for acous‑
tic field micromixers. However, electrophoresis, dielectrophoresis, and magnetophoresis
are manipulation techniques that need to be developed, depending on particle properties
such as the conductivity, magnetization, and dipole moment. Although there are many
obstacles, the experiments with different parameters such as frequency, flow rate, and so‑
lution conductivity, the mixing efficiency exceeded 90% when the following parameters
were used: flow rate is 0.728 µL/min, the electrode conductivity is 0.2 S/m (1 S/m), and
the applied voltage of 52.5 Vp−p with 1 MHz oscillating frequency [82]. Mixing of fluores‑
cently labeled versus dye‑free KCl solutions with the same conductivities could be mixed
with high efficiency (94.7%) using the charge‑induced electroosmosis flow (ICEO) created
by applying a signal of 14 V at 400 MHz to ITO electrodes [83]. In another study, AC elec‑
troosmosis was implemented at nanoscales for lipid‑based drug delivery via vesicles using
nanoprecipitation with a phase‑controlled field‑effect micromixer and three‑fingered sinu‑
soidal shaped and linear electrodes [84,85]. These unique phase‑based mixing systems per‑
mit high mixing efficiencies over 90% at a volumetric flow rate of 4 µL/min, corresponding
to ~13.9 mm/s under optimized voltage excitation conditions [84,85]. As a droplet‑based
micromixer platform, AC electrostatic excited micromixer is a unique microfluidic system
used to induce vibration and deformation in a liquid marble, but it could have negative con‑
sequences of high electric field strengths of 385 kV.m−1 in biological applications [86]. On
the other hand, the lab‑on‑a‑foil concept is the AC electroosmosis micromixer that emerged
as an innovative approach [87]. In the study, tooth‑shaped planar electrodes were fab‑
ricated inside the PDMS microchannel, and electroosmotic flow (EOF) was investigated
depending on the flow rate and applied signal frequency [87]. According to the results,
the optimum values for mixing performance were 1 Hz for signal frequency and 15, 20, 25,
and 30 µL/min for flow rates [87].

(c) Magnetic Field‑Driven Micromixers

Similar to electrophoresis, magnetophoretic micromixers developed according to ma‑
terial properties are also highly effective for magnetofluids and magnetic particles. Rapid
mixing of deionized water with Fe3O4 ferrofluid in a Y‑shaped microchannel, integrated
into a permanent magnet, has been studied for the permanent magnets [88]. A magnetic
field of 3000 G, which was applied to the magnetic nanoparticles flowing inside a linear
microfluidic channel, shortened the mixing length and increase the mixing efficiency to
95% within less than two seconds [88]. For the same purpose, numerical and experimental
results of an integrated magnetic micromixer design with a Y‑shaped microchannel and
a uniform magnetic field were shared to obtain rapid mixing of ferrofluid and deionized
water. The mixing performance of the micromixer could be provided and optimized by
adding microwires to the structure [89]. As a result, the mixing efficiency could reach
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around 99.06% [89]. Rotating magnets were used in mixing and cell lysis. The magnetic
slabs were attached to a rotating circular disk as magnetic stirrers, changing angular ve‑
locities from 0 to 480 rpm to investigate the shaking effect on mixing the DI‑water with
glycerol 75%. As a result of high mixing efficiency and production of viscous stresses,
this platform was successfully implemented for cell lysis [90]. The following study pre‑
sented a magnetofluid mixer for rapid mixing of ferrofluid and distilled water without
producing harmful Joule heat up, when considering the microfluidic flow rate, magnet
placement angle, and magnet dimensions. The results were able to increase the mixing
performance of the magnetofluidic micromixer up to 50% with the optimization of mag‑
net properties [91]. Unlike static magnets, electromagnets driven by direct current (DC), or
alternating current (AC) are also widely used in mixing processes. By adjusting the desired
wire cross‑section and dimensions, the desired magnetic field magnitude could be created
statically or dynamically, and rapid and high‑efficiency mixing of chemical or biological
microfluidic samples with magnetic properties could be achieved [92–95].

(d) Thermal Field Micromixers

Temperature gradients originating from temperature differences between two points
allows masses to be manipulated at certain rates and adapting the methodology in various
applications. The main advantage for these micromixers is the use of very low AC signals
(1–30 Vp−p) with frequencies from hundreds of kHz to several megahertz (MHz) capable
of eliminating Faradaic currents and associated reaction air bubbles [96]. This methodol‑
ogy relies on the Marangoni effect, which involves temperature–gradient dependent mass
transport across the interface of two fluid surfaces with different temperatures by thermo‑
capillary convection. By focusing the laser on plasmonic metal nanostructures placed in a
microchannel, a temperature of 200 ◦C could be reached with local light–heat conversion,
and bubbles with a diameter of 10 µm could be formed, allowing the solution to be mixed
in the microchannel [97].

(e) Pressure Field Micromixers

Effective fluid mixing can also be achieved by pressure fields that cause pulsatile mi‑
cromixing, which are created by oscillatory micropumps, or mechanical parts integrated
into the microchannel. The oscillation unit controlled by the switching frequency gener‑
ates pressure fields in the microchannel, and mixing is achieved momentarily. According
to different flow rates and oscillation frequencies, the studies on various fluids reported
high mixing efficiencies from 75% to 99%, proving the potential of pulsed field‑effect mi‑
cromixers [98–102].

2.2.2. Particle Separation
Particle separation represents a process that goes beyond the mere separation of two

types of micro/nanoparticles, schematized in Figure 9. Rather, this process includes pre‑
cise and critical applications such as the purification of submicron particles for chemical
purposes or the separation of cancerous cells from healthy cells in biomedical studies. Ex‑
ternal energy types for active microfluidic applications are critical considerations in this re‑
gard because certain physical parameters could be hazardous for biological samples (e.g.,
cells and proteins). Therefore, thermal field applications are restricted to manipulation of
particles that are not damaged by high‑temperature gradients. In addition to single meth‑
ods for particle separation, cascade systems that include more than one particle separation
method, are also realistic [103].
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The acoustic wave‑material interaction causes a change in the wavelength of the prop‑
agating wave. Since this change depends on material properties, the transducer design is
determined by calculating the velocity of the wave through the material and fabricated on
a piezoelectric substrate (e.g., LiNbO3, LiTaO3) using microelectromechanical fabrication
methods. Unlike micromixers, acoustic methods in particle manipulations also differ ac‑
cording to the types of used surface acoustic waves (SAW), such as Rayleigh waves, shear
horizontal waves, Lamb waves, and Love waves. The aim of acoustic waves is to bring the
particles into order instead of subjecting them to the chaotic effects. Generally, depending
on the standing acoustic wavelength or standing surface acoustic waves (S‑SAW), acoustic
pressure nodes are created inside a microfluidic channel by applying resonant tuned RF
signal to the metal ports, which are developed on a piezoelectric substrate or embedded
in the body and expressed as interdigitated transducers (IDT)—linear, focused, or tilted at
various frequencies. These nodes are high acoustic radiation points and can manipulate the
particles depending on characteristic properties such as volume, density, and mass. Thus,
they separated by changing their trajectories through different microchannel outputs [20].

To diagnose diseases, purification, or enrichment of bioparticles, such as bacteria and
tumors, by separating them from healthy particles such as normal cells, is one of the pri‑
mary diagnostic methods. For these processes, separating particles by acoustic methods
is prevalent. Li et al. [104] proposed an acoustic‑microfluidic device to separate unlabeled
bacteria from human blood samples. Acoustic radiation forces generated from the tilted
angle standing surface acoustic wave (taSSAW) field create an acoustic radiation force that
allows separation of Escherichia coli bacteria from human red blood cells at a 96% purifi‑
cation rate when analyzed using flow cytometry analysis [104]. Similarly, a piezoelectric
transducer was driven by an AC signal with an amplitude of 15  Vp−p and a frequency of
1.99 MHz, creating an acoustic field within the microchannel, which was kept constant at
25 degrees [105]. When the mixture of diluted whole blood cells, to which P. putida bacte‑
ria were added, and buffer solution were exposed to the effect of the acoustic field, blood
cells and bacteria could be separated from each other efficiently [105]. Generally, standing
surface acoustic waves (S‑SAW) are used to separate tumor cells and healthy cells, allow‑
ing cancer diagnosis. Dual IDT structures are excited with identical frequency electrical
signals, creating standing waves. The pressure nodes having high acoustic radiation forces
(Far f ) that apply forces depending on cell density and sizes [106,107].

In the electrophoresis method with different particle types (i.e., cations in cataphore‑
sis and anions in anaphoresis), charged particles are separated according to their proper‑
ties [108]. In contrast, the electrical properties of the particles are redundant in dielectroph‑
oretic‑based particle separation [109]. The electric field between two symmetrical or asym‑
metrical parallel plates results in separation by inducing a force on particles according to
their ionicity and polarizability [13,71,110–115].
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Micro or submicron magnetic particles can be manipulated by creating a magnetic
field gradient using oscillations of permanent magnets and electricity‑driven coils. This
process is a suitable separation method for particles used in biomedical and other fields.
The magnetic sensitivity of cells is enhanced by magnetic nanoparticles that are separated
from diluted blood using a magnetic field [116]. A similar process can separate white and
red blood cells from the blood. Permanent magnets exert positive and negative magne‑
tophoretic forces on RBCs and WBCs. Two cladding streams containing blood plasma con‑
dense the cells in the magnetophoretic field. It is possible to separate cells using a magnetic
field due to their different properties [117]. As in cells, particles with magnetic properties
could be separated using the magnetic field effect [70,118–121].

2.2.3. Focusing, Sorting, and Enrichment
As opposed to separation, sorting of particles via particle focusing allows accumula‑

tion of particles to a point or straight line in active microfluidic applications under the in‑
fluence of external forces. Focusing phenomena can support the separation of two distinct
particle types with different sizes. By taking advantage of the size differences of the parti‑
cles, large and small particles are subjected to greater or lesser force by the focused acous‑
tic pressure point [122]. In acoustic separations, a pair of electrodes is slotted vertically on
two sides of the microchannel, and a surface acoustic wave moves towards the microchan‑
nel [123]. Acoustic waves radiated from two opposite directions interfere with each other
and generate standing waves that create pressure points at specific points depending on
the wavelength inside the linear microchannel [124]. As in acoustic‑based resonators and
electric field manipulators [7,125], magnetic field‑based manipulators [126,127] and optical
field‑based transducers [8,128] could generate gradients inside the microchannel to manip‑
ulate microparticles or nanoparticles for focus in a specific point, sorting in a specific path,
and purifying to increase the density inside a content to be used, Figure 10.
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2.2.4. Particle Trapping
Particle trapping is an extraordinary method actively used in biomedical applications

by creating physical tweezers depending on the acoustic field, electric field, magnetic field,
optical field, or thermal field as a driving force in every particle manipulation method.
Standing waves created by two identical interdigitated transducers are critical in acoustic
method for creating a high‑pressure point known as a tweezer that can trap different‑sized
particle, which could be micron‑ or sub‑micron size particles [15,129,130]. Without stand‑
ing waves, it is possible to confine silica nanoparticles, exosomes, and drugs inside a fluid
chamber as rotating droplets for biomedical applications with the help of acoustic radi‑
ation force, acoustic microstreaming, and shear stresses [131]. Positive dielectrophoresis
(pDEP) and negative dielectrophoresis (nDEP) tapping regions are determined by applied
electric field distribution, which could be uniform or non‑uniform. The particles, which
have a lower polarizability (Re (K) < 0) than the surrounding medium, are driven towards
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the nDEP and vice versa [9,132]. Magnetic particles move to the low‑energy region un‑
der the effect of the magnetic field gradient. When the energy distribution is examined,
the trajectory of the particle can be predicted and controlled by manipulation of external
magnetic energy [133,134]. The Joule heating‑induced temperature gradient drives a con‑
trollable electric current to manipulate micron‑sized particles [11]. In buoyancy‑driven
convection forces, the particles are pushed through the hot region by a negative Soret coef‑
ficient (ST), while the opposite is valid for positive ST [12]. Optical tweezing, also known
as a single‑beam gradient force trap, has the sensitivity of trapping a single molecule or a
single nanoparticle and is frequently used in biomedical applications [17]. Depending on
the refractive index of particles and surrounding medium, a laser beam creates attractive
or repulsive forces [135], which can manipulate even dielectric and absorbing particles at
the focal point, Figure 11, which is also known as beam waist [14,19,136].
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2.3. Summary of Passive and Active Methods in Microfluidics
In summary, passive microfluidics has been used as tools for mixing, particle focusing,

or separation. Several techniques, including microfiltration, inertial focusing, secondary
flows, DLD, and PFF, were discussed in this section. Also, droplet microfluidics as another
area of utilizing passive microfluidics was discussed, and related progress in this area was
covered. Since passive microfluidics depends on the channel geometry manipulations of
fluids or particles, they can be made with a limited number of parameter (flow rate and
fluid viscosity) changes. Still, in active manipulation techniques, the channel geometry,
fluid viscosity, the properties of target particles, and the type of external energy source
should be considered a priority. Additionally, the generation of external energy related
to the frequency and amplitude of the applied signal is also important because the design
parameters are tightly correlated. These techniques have their advantages, and are used
as is, or will be further developed and used in biomedical applications. Here, micromixers,
particle separation, focusing, sorting, enrichment, and particle trapping were mentioned
according to the type of external energy, such as acoustic, electrical, magnetic, thermal,
pressure fields, and optical, in the active microfluidic section. Lastly, Table 1 summarizes
the content of the microfluidic part.
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Table 1. Summary of passive and active microfluidics.
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3. Fabrication of Microfluidic Devices
Fabrication of micro‑sized structures is limited by special requirements such as reso‑

lution and difficulty handling small sizes. Therefore, special production techniques have
emerged thanks to scientific and technological developments. The leading and current
microfabrication methods were reviewed and mentioned in this section. To specify the
scope, we examined the fabrication techniques in general in three parts. The first category
includes molding, the other three‑dimensional printing, and the last category includes
nanoimprinting lithography and etching techniques.

3.1. Molding
3.1.1. Replica Molding

Replicamolding, or soft lithography, is a very common method for fabricating biomed‑
ical microfluidic devices [25,137–140]. Optimized steps exist for the fabrication of silicon
molds [2,6]. The negative photoresist using photolithography is patterned on the silicon
wafers. SU‑8 is usually selected as the photoresist due to its high resolution, mold dura‑
bility, and capacity for high aspect ratios [141]. The first step is coating the photoresist
on the silicon substrate via a spin coater at the corresponding speed for the desired thick‑
ness. Then, the wafer is exposed to UV light using a Mask Aligner UV‑Lithography device
through the previously designed photomask. The next step is to immerse the sample in
a developer to remove the unexposed area. In this step, the silicon mold or SU‑8 mas‑
ter is ready. The polydimethylsiloxane (PDMS) prepolymer base and curing agent are
two chemicals to mix at a 10:1 ratio, and they are then poured over the SU‑8 master and
placed in a glass petri dish. The PDMS mixture should be degassed before curing in an
oven. The PDMS is peeled from the mold and bonded with microscope glass slides by
an oxygen plasma device to generate the microchannel. This technique is well established
and becoming the standard in the fabrication of microfluidic devices because of its incor‑
poration of a high‑resolution, flexible, optically transparent, biocompatible polymer (i.e.,
PDMS) [137,139,141]. PDMS microfluidic devices control the cell physicochemical envi‑
ronment by adjusting flow conditions [142]. The limitation of soft lithography is the need
for a cleanroom facility, which makes this method costly. Also, the molecule absorption of
PDMS might influence the cellular response [143,144].
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3.1.2. Injection Molding
Injection molding is very attractive for fabrication of microfluidics due to its high‑

throughput, cost efficiency, andhigh accuracy [70,137]. This commercially popular method
is compatible with a wide range of available thermoplastics and requires a small num‑
ber of steps [137,145]. First, the used thermoplastic is melted in a compressible chamber,
and two sides of the mold are compressed to form the mold cavity. After the mold has
cooled down, the cast object is removed. The mold insert techniques and materials de‑
pend on the required production of the mold. Lee et al. [146] discussed advantages and
limitations of rapid injection molding and provided design recommendations to success‑
fully utilize this method for microscale cell‑based assay development. Convery et al. [147]
showed that inlays for injection molding could be three‑dimensionally printed. Generally,
the main drawbacks of microinjection molding are material restrictions related to thermo‑
plastics and mold expensive fabrication and limited resolution [25,137]. In the study of an
injection molded microfluidic approach with novel single‑cell analysis capabilities were
considered [148].

3.1.3. Hot Embossing
The mold shape is transferred to the thermoplastics or polymers at high temperature

and pressure during this process. To do so, the thermoplastic film is inserted between two
molds, and then both the film and molds are heated under vacuum. Pressing the molds
against the softened polymer transfers the mold shape. Finally, the mold is cooled down,
and the processed polymer is removed [137,138]. Al‑aqbi et al. [149] used hot embossing
of PMMA for studies on drug separation from whole blood within three minutes. Using
hot embossing, Jiang et al. [150] reported a flexible method for fabricating glass and other
amorphous materials for microfluidic channels. Developing a rapid hot embossing device
by Jiang et al. [150] evaluated the effects of process parameters (i.e., embossing force, em‑
bossing temperature, soaking time, and annealing rate) on the filling behavior of N‑BK7
glass in a microhole of silicon carbide mold [151]. In hot embossing, flowing the ther‑
moplastic at a smaller distance causes less stress in the material than injection molding.
Restriction in utilized materials and fabrication of complex structures are the limitations
of this method [137].

3.2. Three‑Dimensional Printing
Three‑dimensional printing is a relatively new fabrication technique for various mi‑

crofluidic devices by successive layers of materials. This additive fabrication technology
can utilize several materials with different mechanical and physical properties in a sin‑
gle build process [138]. Three‑dimensional printing, which can create fine features with
lower costs, has some limitations such as low z‑resolution, absence of extremely smooth
surface finish, limited restricted diversity of transparent materials, and low precision of
fabricated hollow and void sections [152]. Various technologies are associated with three‑
dimensional printing to develop organ‑on‑chip applications [153]. This section covers four
microfluidics fabrication approaches associated with three‑dimensional printing: fused
deposition modeling, vat polymerization, multi‑jet printing, and two‑photon polymeriza‑
tion.

3.2.1. Fused Deposition Modeling
Fused deposition modeling (FDM) is an extrusion‑based three‑dimensional printing

method in which a thermoplastic filament is melted, extruded through a nozzle, and solid‑
ified by cooling [154]. Even though this technique is simple, effective, and compatible with
different materials, the fabricated structures are more sensitive to compressive stress frac‑
tures because there is no sufficient fusion between adjacent layers [25]. Moreover, obtain‑
ing microchannels with suitable transparency and sizes is challenging [154–156]. Quero
et al. studied parameters relevant to printing resolution, such as nozzle features, frame
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and printing bed, layer thickness, and extrusion width. These revealed the potential of
FDM for the fabrication of transparent microfluidic devices [155].

3.2.2. Vat Polymerization
Vat polymerization, which involves stereolithography (SLA) and digital light process‑

ing (DLP) as rapid prototyping technologies for manufacturing fine features, utilizes UV
light to cure the resin and build three‑dimensional printed microfluidics. This method
consists of three main components: a light source to enable some reactions, light‑sensitive
precursor materials with reactants (photoinitiators), and a printing platform as a reaction
container [138]. A SLA device directed towards a set of coordinates uses a focused light‑
emitting diode (LED) laser and scanning galvano‑mirror to harden the photopolymer. In
the DLP method, a build plate moves in a small increment to expose the liquid polymer
with a stationary UV light.

The SLA method was used to fabricate three‑dimensional printed microneedle ar‑
rays with biocompatible resin for transdermal drug delivery [157,158]. The biocompat‑
ibility of commercially available photopolymers was also studied for SLA [159,160]. In
a smartphone‑based detection study, the DLP technique was proper to develop a paper‑
based microfluidic analysis device for simultaneous detection of multiple biomarkers [161].

3.2.3. Multi‑Jet Printing
This three‑dimensional printing technique, commercially known as Polyjet, enables

manufacturing of high‑accuracy microfluidic devices with various materials. A photo‑
sensitive resin is ejected as a droplet from an inkjet printhead and then hardened by a
light source attached to the inkjet printhead [137]. Sweet et al. used multi‑jet printing for
fabricating entirely three‑dimensionally printed sub‑millifluidic and microfluidics finger‑
powered (electrical power‑free) actuators [162]. Another study developed a wearable mi‑
crofluidic device to collect sweat from the skin [163]. Microfluidic valves as important parts
for controlling fluid were also printed with this method [164].

3.2.4. Two‑Photon Polymerization
This technology is capable of generating complex and nano‑scale structures. A liquid

resin volume is exposed to a focused laser, and owing to the nonlinear nature of photoex‑
citation, some spots are cured, while the remaining liquid is washed away [138]. This high‑
resolution three‑dimensional printing approach was utilized in fabrication of biomimetic
placental barrier structures [165], microneedle arrays [166], transparent fused silica glass
microstructures [167], and coaxial lamination mixer [168].

3.3. Other Fabrication Methods
3.3.1. Nanofabrication

Standard photolithography does not have a high resolution because of the higher
wavelength of its light source for patterning designs on the substrate. Three methods,
including extreme ultraviolet lithography (EUV), electron beam lithography (EBL), and
nanoimprint lithography (NIL) enable ultra‑small features by wavelength reduction [137].
EUV generates 13 nm light wavelength to expose a specific photoresist on the substrate.
EBL exposes an electron resist coating with a high‑energy electron beam instead of light.
However, these methods are not extensively used in nanofluidic design due to their high
costs and limited throughput [169]. NIL, as the specific type of replica molding, has many
applications in microfluidics [170]. It comprises a mechanical process, in which a prepared
mold pressed into a resist material and resist hardening could be performed through ther‑
mal, chemical, or optical methods [137]. In one study, a biological detection chip with
polymer nanostructures could be fabricated using NIL. Zhang et al. [171] detected lunger
cancer cells with a size of 10–15 µm by taking advantage of polymer nanostructure adhe‑
sion to a specific property of cancer cells.
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3.3.2. Wet and Dry Etching
These methods are generally used for the fabrication of silicon and glass microfluidic

devices. Wet etching is a fast‑etching technique, which requires strong chemicals such as
hydrofluoric acid. In addition to the safety and environmental issues, wet etching gener‑
ates an isotropic profile of the etched channels [172]. However, as a highly precise and
controllable method, dry etching provides anisotropic profile. This approach has slower
etching rates than wet etching. Both techniques have been utilized in fabricating microflu‑
idic devices and biological detection systems [173–175].

3.4. Summary of Fabrication of Microfluidic Devices
This part comprises an overview for the recently developed and practical fabrication

methods of microfluidic devices, which is summarized in Table 2. According to the char‑
acteristics of utilized material, the application of device, volume, cost of production, and
specific fabrication methods can be adopted.

Table 2. An outline of microfluidic fabrication methods.
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4. Biomedical Applications
4.1. Microfluidics in Diagnosis
4.1.1. Cancer Detection

Cancer, which can occur in any tissue, is one of the most common and deadly dis‑
eases in the world [176]. The importance of timely diagnosis of cancer is indisputable.
Today, methods such as positron emission tomography, magnetic resonance imaging, and
computed tomography are used for diagnosing and staging cancer masses [177]. There is
certainly a need for novel approaches in the diagnosis and treatment of cancer, as these
methods rely on patients’ exposure to high doses of radiation or chemotherapeutics [178].
Microfluidics, which involve miniaturized devices and precision analysis techniques, are
promising for biomedical applications such as cell culture, drug delivery, DNA amplifica‑
tion, and point‑of‑care (POC).

Chemotherapeutics used in cancer treatment often cause many side effects. By at‑
taching any imaging or locating agent to nanoparticles, both treatment and diagnosis can
be achieved. Microfluidic systems used for this purpose in this way include theranostic
nanoparticles [179]. Theranostic nanoparticles can be used to monitor drug delivery, drug
release, efficacy, the determination of cancer stage, and the mediation of drug delivery at
the appropriate dose [180]. Nanocarriers loaded with chemotherapeutics cause the least
systemic toxicity while delivering the drug to the target tissue. For instance, fluorescent 5‑
aminolevulinic chitosan nanoparticles, combined with alginate and conjugated with folic
acid, were designed for endoscopic detection of colorectal cancer cells. These nanopar‑
ticles entered tumor cells via the folate receptor, accumulated protoporphyrin IX in the



Biosensors 2022, 12, 1023 20 of 60

cell with the 5‑aminolevulinic acid released from the lysosome, and, thus, were proved to
be an ideal vector for photodynamic detection [181]. Ryu et al. [182] demonstrated that
cathepsin B‑sensitive fluorogenic peptide probes conjugated to the surface of glycol chi‑
tosan nanoparticles could filter metastatic cells from healthy ones in three mouse mod‑
els. Another research effort includes the case of the use of hyaluronic acid, iron oxide,
and homocamptothecin nanoparticles in human squamous cell carcinoma, both in in vitro
and in in vivo studies [183]. Baghbani et al. [184] showed that ultrasound‑mediated treat‑
ment of doxorubicin‑loaded alginate‑stabilized perfluorohexane nanodroplets caused tu‑
mor regression in mice with breast cancer. A study performed a photodynamic therapy
system with near infrared/magnetic resonance imaging by loading Fe3O4 nanoparticles
onto redox sensitive chlorine‑e6 conjugated dextran nanoparticles to identify breast can‑
cer cells [185]. Quantum dots are avant‑garde in vivo imaging tools. For example, Shi
et al. [186] developed luminescent magnetic graphene oxide quantum dot nanoplatforms
to identify HEPG2 hepatocellular carcinoma from infected blood samples. In another
study, quantum dots and anti‑cancer drugs were loaded together on lipid carriers to feel
and treat H22 cancer cells [187].

Microfluidic systems provide models for examining and eliminating essential mecha‑
nisms such as apoptosis, drug resistance, invasion, and metastasis in cancer. As an exam‑
ple, Han et al. [188] developed a redox and pH‑sensitive system with mesoporous silica
nanoparticles loaded with doxorubicin to overcome drug resistance in breast cancer. In
another study, a paclitaxel and lonidamine loaded EGFR targeted polymer nanoparticle
drug delivery system was developed for the combined treatment of drug‑resistant cells in
breast cancer [189]. In order to increase apoptosis and reduce drug resistance in lung can‑
cer, an inhalation system containing siRNAs, targeting MRP1 and BCL2 and mesoporous
nanoparticles loaded with doxorubicin and cisplatin, was designed [190]. Furthermore,
microfluidics also automated tumor cell culture, enabling the creation of multicellular co‑
cultures and mimicry of cancer tissue with organoids [191]. For example, a multi‑organ
microfluidic chip mimicking lung cancer is physiologically suitable for recapitulating the
metastasis process [192]. Nguyen et al. developed electrical impedance through a three‑
dimensional matrix microfluidic system to define single cancer cell migration [193]. Apart
from these, research efforts examining tumor cell extravasation [194], invasion [195], and
blood‑tumor barrier models [196], with microfluidic platforms, have also been conducted.

Microfluidic systems are also employed to specify cancer biomarkers such as CTCs,
ctDNA, exosomes, ncRNA, and various cellular metabolites or proteins [191]. In addition,
routine measurement of biomarkers in small amounts of fluid samples from cancer patients
contribute to personalized medicine. As CTCs mostly express epithelial cell adhesion
molecules, antibodies on CTC chips were used for their selection from blood [197]. In the
following stages, debulking, inertial focusing, and magnetic separation steps were added
to this system, which was named as CTC‑iChip [198]. Ganesh et al. designed another mi‑
crofluidic chip based on a ZnO electrode and pH sensors for the isolation of CTCs [199].
The rm chip combined two approaches based on cell size or immunoaffinity with Rhip‑
salis (Cactaceae)‑like hierarchical structures [200]. However, the monolithic CTC‑iChip
is also noteworthy, which distinguishes CTCs using epitopes such as cytokeratin, HER2,
and prostate‑specific antigen [201]. In Western blotting with microfluidics, expression in
patient‑derived CTCs was profiled with an eight‑plexed protein panel [202]. Aptamer
nanovectors, used in CTC membrane protein profiling, identified different breast cancer
subpopulations by multispectral orthogonal surface enhanced Raman spectroscopy anal‑
ysis [203]. Microfluidic technologies such as acoustic waves [204], oscillating flow [205],
Dean vortex flow [206], and cluster‑chip [207] that can separate CTCs from blood in a
label‑free manner are also worth mentioning. Moreover, the immunoaffinity [208–210],
nanomembrane filter [211], dielectrophoretic system [212], lateral displacement, and acous‑
tic fluid [213] techniques were used to isolate exosomes. In addition, techniques for detect‑
ing exosomes include the fluorescence electrochemical technique [214] and mass spectrom‑
etry [215]. Among these techniques, the ExoPCD‑chip, which combines the isolation and
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electrochemical analysis of exosomes, and the herringbone chip (HB chip), stand out due to
their superior performance [216,217]. The liberated ctDNAs from tumor cells reflect mu‑
tation degree and progression of cancer. The microfluidic solid phase extraction (µSPE)
device produced by Compos et al. includes the immobilization, extraction, and replica‑
tion of cfDNA, and it can also be produced as a low cost platform [218]. In order to isolate
cfDNA from serum while minimizing degradation, a rapid and automated microfluidic
has developed that combines all three process of plasma separation, residual protein lysis,
and cfDNA elution [219]. However, the ncRNAs play a regulatory role in tumor progres‑
sion at the transcriptional and translational level. In this regard, an oil‑saturated PDMS
microfluidic system with droplet digital PCR was developed for lung cancer miRNA quan‑
tification [220]. By the multiplex qRT‑PCR method developed on a microfluidic chip, 384
miRNAs, which are important in the diagnosis and prognosis of prostate cancer, could
be purified [221]. Protein‑structured substances such as growth factors, cytokines, and
hormones secreted by cancerous cells, as a result of the increase in proliferation, are ideal
diagnostic tools. Researchers designed a microfluidic integrated microarray in a single
platform to identify PSA, TNF‑α, IL‑1β, and IL‑6 proteins in serum samples from prostate
cancer patients [222]. Fan et al. reported a blood barcode chip integrated microfluidic
system that can rapidly measure a wide panel of proteins from blood [223].

4.1.2. Cardiovascular Disease Detection
Cardiovascular diseases (CVDs), such as stroke, coronary artery, and hypertension,

arise from dysfunctionality of the heart and its relevant blood vessels. CVDs are a major
cause of premature death worldwide. Social, environmental, cardiometabolic, and behav‑
ioral risk factors are some leading determinants of CVD [224,225]. However, aging is the
essential factor of CVDs due to the induction of oxidative stress, which results in variations
in biological reactions and reactive oxygen species (ROS) [226]. Diagnosis of CVD is cru‑
cially important to decrease the mortality rates, and several detection techniques depend‑
ing upon biomarkers or molecular imaging (MOI) are currently applied in clinics. Never‑
theless, improvements in the accuracy, sensitivity, and specificity of the current diagnos‑
tics for early‑stage detections of CVDs are necessary to establish effective diagnostic sys‑
tems [227]. Microfluidic diagnostic platforms present favorable features such as portabil‑
ity, fast‑responsive analysis, and low reagent use to detect CVD biomarkers. For this pur‑
pose, microchannels were modified by particular antigens to determine CVD‑associated
biomarkers, and several studies have been performed [228–233]. Plenty of blood‑borne
biomarkers such as cardiac troponin I (cTnI), fibrinogen, and C‑reactive protein (CRP)
are associated with CVDs. However, currently used assays for diagnosis are costly, time‑
inefficient, and susceptible to batch‑to‑batch changes. Sinha et al. built a portable microflu‑
idic device with the integration of aptamer probes and field‑effect transistor (FET) based
sensor arrays [234]. The proposed device can identify four CVDs related biomarkers such
as CRP, cTnI, fibrinogen, and N‑terminal pro‑b‑type natriuretic peptide (Nt‑proBNP) in
only five minutes from small volumes of clinical samples and present favorable results for
novel POCT of CVDs. Heart failure (HF) is a common CVD, and the changes in the level of
NT‑proBNP in the blood are related to the diagnosis of HF. However, current clinical CVD
detection methods are not precise enough to evaluate severity and progression of HF ac‑
cording to one single cut‑off value of the NT‑proBNP biomarker, whereas a rising pattern
for long time periods could be a signal for HF. Therefore, POC monitoring of NT‑proBNP
is vital to prevent HF. As an example, Beck et.al. developed a microfluidic biosensorchip
to determine changes in the level of NT‑proBNP by modification of silver nanoparticles
(AgNPs) as a label [235]. For this purpose, laminar flow assay (LFA) and electrochemical
analysis were combined by flow injection analysis (FIA) while detecting of antibody mod‑
ified AgNPs. The developed biosensor allows for precise detection of NT‑proBNP from a
finger prick sample volume at home with simple use. Acute myocardial infarction (AMI)
is an extensively encountered CVD disease that is life‑threatening and sometimes challeng‑
ing to diagnose since the symptoms could be confused with other diseases. For this reason,
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Yin et al. demonstrated a snail‑shaped microfluidic platform to detect myoglobin (Myo),
cTnI, and creatine kinase‑MB (CK‑MB) biomarkers for diagnosis of AMI. They designed a
microfluidic chip by utilizing a chemiluminescence (CL) detector and coating the middle
of the chip, which has reaction layer based on particular antibodies. Thus, they obtained
a POCT candidate which is able to diagnose three AMI‑related biomarkers with higher
sensitivity and within a short time of period [236].

4.1.3. Respiratory Infection Detection (SARS‑CoV‑2)
A novel coronavirus disease (COVID‑19) was first reported in late 2019 and resulted

in the infection of over 66 million individuals approximately within a year after its dis‑
covery [237,238]. SARS‑CoV‑2 is a RNA virus that could quickly spread among individu‑
als in intimate interaction through respiration and develops in certain regions such as the
nasal cavity, pharynx, and lower respiratory tract [239]. One of the essential stages in con‑
trolling the spread of SARS‑CoV‑2 is early diagnosis [240]. As a result, researchers have
been working to have a rapid, inexpensive, portable, and sensitive alternatives for detec‑
tion. Microfluidic‑based detection strategies have been widely developed for point‑of‑care
COVID‑19 disease detection throughout the pandemic. These strategies could be classified
according to detection mechanism in microfluidic devices: antigen detection, anti‑SARS‑
CoV‑2 antibody detection, and nucleic acid detection [241]. In another investigation, Ho
et al. [242] designed a disposable point‑of‑care digital microfluidic cartridge to detect the N
gene in SARS‑CoV‑2 by utilizing real‑time quantitative polymerase chain reaction (qPCR).
According to the study, the DMF cartridge demonstrated uniform droplet formation, ho‑
mogeneous temperature control, and a suitable fluorescence readout, enabling qPCR POC
testing. Recently, paper‑based microfluidic devices have been also emerging. Akarapi‑
pad et al. [243] utilized a paper based‑microfluidic device for comfortable and facilitated
detection of SARS‑CoV‑2 from saliva samples. Evaluation of the flow profile allowed for
assessing infection status. The change in surface tension and capillary flow velocity re‑
sulted within particle‑target immunoagglutination through the channel, which was conse‑
quently determined using a smartphone. Similarly, Kim et al. [244] introduced airborne
droplets that could be trapped directly on a paper microfluidic device without additional
apparatus in less than 30 mins, including capture‑to‑assay time. The working principle
was based on the 10% human saliva samples with SARS‑CoV‑2 sprayed into the air to
produce liquid droplets and aerosols. Subsequently, an antibody‑conjugated particle was
introduced to the paper channel, and the immunoagglutinated particles on the paper mi‑
crochip were quantified using a smartphone‑based fluorescence microscope. Therefore,
SARS‑CoV‑2 could be identified directly from the air with a portable and low‑cost ap‑
proach. Furthermore, the detection of SARS‑CoV‑2 N protein utilizing a paper channel
was reported, which demonstrated a paper‑based enzyme‑linked immunosorbent assay
on the chip and visual detection and sensitivity of the N protein [245].

Qi et al. [246] developed a microfluidic‑coupled capacitive sensor for ultratrace nu‑
cleocapsid protein detection. The slight change on the microelectrode array surface was
recognized using the solid–liquid interface capacitance with a sensitivity of picofarad level.
The reaction time of the sensor response from sample to outcome was estimated to be less
than 15 s due to adequate microfluidic enrichment, fulfilling the real‑time detection need.

4.2. Drug Discovery and Delivery
Patients usually ingest drugs for treatment. In the traditional methods, high doses of

drugs, high toxicity, and often side effects occur. Drug delivery systems aim to minimize
cytotoxicity by increasing bioavailability and specificity. Microfluidic devices can also be
platforms for drug delivery that are easy to control, scale, and replicate [247]. Nanotech‑
nological developments facilitate the controlled release and targeted delivery of drugs by
encapsulating them [248]. While experimental studies demonstrate the potential of drug
delivery systems, it takes a long term to develop the clinical trial with the efficacy and
safety standards that patients can use.
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Microfluidic systems allow us to control the effectiveness of drug delivery systems.
We can roughly divide drug delivery systems into carrier‑based and non‑carrier‑based.
Carriers are formed by encapsulating drugs with organic, inorganic and hybrid molecules.
Dendrimers, micelles, liposomes, various polymers, and metallic nanostructures are fre‑
quently used in drug delivery systems [249]. Drugs that are less soluble in water become
more soluble by the conjugation of drug and polymer complexes. However, the effective‑
ness of nanocarriers varies depending on their size, shape, and physical/chemical prop‑
erties [179]. These targeted carriers must be biodegradable and compatible, as well as
responsive to stimuli [248]. Doxil is the first successful PEGylated liposomal carrier ap‑
proved by the FDA in 1995 and has fewer side effects and more toxic to tumor cells than
doxorubicin [179]. InFed is an iron complex containing dextran and has been used to treat
iron deficiency [250]. Another drug–polymer complex is Abraxane, nanoparticles of pa‑
clitaxel coated with human albumin [251]. PEGylated lipid nanoprticles also had success
in the delivery of RNA therapeutics, such as Onpattro and Comirnaty [252,253]. In addi‑
tion, various agents can be attached to the polymer backbone or functional side groups
that facilitate targeting and imaging of nanoparticles.

Spark microfluidic systems used in the fabrication of particles are divided into single,
mixed, and fully aqueous emulsion templates. While traditional methods such as emul‑
sion, dispersion polymerization, and spray drying are less effective in particle production,
technologies such as droplet and flow lithography, electrohydrodynamic co‑spraying, pho‑
tolithography, soft lithography‑based printing, and micro molding are considered to be
more innovative [254]. Each phase in these systems ensures the production of particles in
the appropriate size and shape, as well as is the desired physical, chemical, and biological
properties. In this way, thy can be used to develop particles with complex structures such
as core‑shell, multi‑core‑shell, janus, and porous ones [255]. The formation of particles
from monodisperse droplets occurs using various methods such as polymerization, ionic
crosslinking, and solvent evaporation [254]. The chemical structure of drug targets must
be among already characterized macromolecules such as nucleic acids, enzymes, proteins,
and lipids. Thus, microfluidic systems can also be used for new drug discovery [256]. Mi‑
crofluidic systems not only improve the drug delivery with precise fluid control, but they
also provide benefits for testing drugs before clinical use [247]. For the clinical analysis of
the drug delivery systems produced in experimental studies, the animal models should
be primarily studied. The first limitations in directing drug delivery systems to the de‑
sired target are the barriers in the body at the systemic, microenvironmental, and cellular
levels [257]. For example, ellipsoids, discoid‑shaped nanoparticles, and nanorods adhere
better to blood vessels than spheres [258]. Inhalation of nanoparticles allows rapid passage
into lung tissue to avoid extravasation [259]. However, mucus barriers can pass smaller
particles while larger ones are filtered out. Methods such as receptor‑mediated transcyto‑
sis and glucose transporters can be used to cross the blood‑brain barrier [260]. Oral admin‑
istration of polymeric nanoparticles was found to be more active with the gastrointestinal
tract than normal drugs [261]. Platforms have also been developed that allow the drug to
be released only under certain pH and temperature conditions [262]. Enhanced permeabil‑
ity and retention effects in cancer tissues are also utilized for the accumulation of drugs.
In addition, negatively charged particles are more difficult to adhere to the cell membrane,
while positive ones can cause cytotoxicity in the cell [263]. Preclinical testing of drugs can
be achieved by recapitulating the barriers in the body with microfluidic systems such as
organ‑on‑chip and body‑on‑chip platforms.

Microfluidics allows drug specificity and adjustable doses or combined drug strate‑
gies for personalized therapy [257]. Microfluidic devices can be used in disease remodel‑
ing and to increase drug accessibility to cancer cells [264]. It is also possible to evaluate
them with their biomarker roles [265,266]. For example, graphene oxide nanoflakes have
been used in the detection of pancreatic cancer due to their capacity to bind albumin in
plasma [267]. The use of magnetically guided or Au nanoparticles is common. The use of
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photothermal CAR‑T cells in solid tumors is also of interest [268]. Microfluidic systems
have been also used for approaches such as gene therapy and gene editing [269].

4.3. Disease Modeling
Human diseases are controlled by sophisticated mechanisms that are intrinsically

difficult to understand since there is a limitation in direct observation of interference of
biological molecules. Hence, methods for disease modeling are of considerable interest
for understanding disease pathophysiology and the development of advanced therapeu‑
tic strategies. The two‑dimensional cell culture method has some drawbacks, including
the possibility of cell morphology and polarity changes, which might cave to interrup‑
tion in cellular‑extracellular communication [270]. Moreover, the monolayer structure of
two‑dimensional cell culture leads to unrestricted availability to reach to the optimum
medium, oxygen, and signal molecules. Significantly, the accessibility of the nutrients,
oxygen, or/and signal molecules for cancer cells in a living organism could be changeable
due to the inherent structure of the tumor [271]. On the other hand, three‑dimensional
cell culture platforms offer an opportunity to investigate complicated interactions by em‑
ulating a physiological environment that approximates the in vivo environment observed
in patients [272]. The reason for the similarities between responses of animal models
and tumor spheroids against drugs could be the increase in cellular interaction via ad‑
hesion [273]. Disease‑on‑chip models, however, attract widespread interest due to their
potential emulation of the disease microenvironment, regulatory factors, and physiologi‑
cal circumstances surrounding organs. The shear force applied by the environment, cell
patterning, cell–cell communication, and other factors can be controlled for mimicking the
organ and relevant diseases [274]. Furthermore, these platforms offer multi‑omic analysis
and investigation of the primary biophysical and chemical reasons for cancer formation
and cellular‑extracellular conditional growth microenvironment [275]. In this section of
the review, we will discuss the recent applications of three‑dimensional culture models as
disease‑on‑a‑chip platforms in the study of human diseases, including cancer, neurologi‑
cal, and pulmonary/lung diseases.

4.3.1. Cancer Modeling
The studies on microfluidic cell culture technology in the literature pointed out differ‑

ent aspects of cancer modeling, including cancer cell invasion [276–283], intravasation [284,
285], extravasation [286–288], and tumor microenvironment modeling [289,290]. Cell inva‑
sion refers to cell motility, including attachment, proteolysis, and relocation of cancer cells,
which may result in cancer metastasis [291]. Conventional laboratory strategies, mainly
two‑dimensional approaches, are limited to providing adequate quantitative data, includ‑
ing multifactors for the determination of cell–matrix interaction, cell–cell communication,
and cell invasion [292–294]. Since multiple factors exist in tumor invasion, finding and
distinguishing the function of such environmental factors are required to comprehend the
intercellular dynamics of the tumor invasion. One of the significant factors is the interac‑
tion between the tumor environmental niche and human immune system. As an example,
Surendran et al. [295] emulated the tumor‑immune microenvironment (TIME) as a three‑
dimensional platform, which represented the role of neutrophils along with chemotaxis
and neutrophil extracellular traps (NETosis) in the invasion of ovarian tumor cells. In
another study on the cancer invasion, Samandari et al. [296] engineered a stand‑alone mi‑
crofluidic gradient generator to characterize transmission of the chemotactic factors over
the hydrogel region, which utilized the hydrogel barriers to isolate the cell culture cham‑
ber from the signal channels. Moreover, the proposed detachable PDMS microfluidic chip
enabled pump free activity and low‑pressure operation, thereby preventing potential leak‑
age. Besides, Amirabadi et al. [297] produced a two‑layered three‑dimensional environ‑
ment, serving for invasion of different types of breast cancer cells consisting of wild type,
mutated, and promoter hypermethylated E‑cadherin containing cells. According to the re‑
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sults, MDA‑MB‑231 cells, as single cells, invaded the matrix more than MCF‑7 and CAMA‑
1, while CAMA‑1 cells unitedly invaded less than MCF‑7.

The cancer metastasis process could be defined as an intravasation, where transporta‑
tion of the cancer cell through the blood vessel occurs. Cancer cells tend to intravasate at
locations where the shear stress is lower through the vessel [298] and, therefore, trigger for‑
mation of angiogenesis‑caused capillary branches [299]. Yankaskas et al. [300] displayed
shear stress responses of normal and tumor cells throughout the migration to intravasa‑
tion. Therefore, they utilized a particular molecule, which behaved as fluid shear sensor
of the cells. The microfluidic platform modeled the transition from migration to intrava‑
sation, where the cells moving through longitudinal channels moved into an orthogonal
channel with induced shear stress. However, recapitulating invasion and intravasation
at the same time in cancer modeling is compelling due to the complex tumor microenvi‑
ronment. Nevertheless, Nagaraju and Truonginvasion et al. [301] designed a microfluidic
tumor‑vascular model, including a three‑dimensional tumor, stroma, and vasculogenesis
to investigate invasion and intravasation in a single device. Besides, there have been var‑
ious studies on emulated tumor microenvironments, such as tumor‑on‑a‑chip or cancer‑
on‑a‑chip platforms [302,303]. For instance, Chi et al. [304] introduced a three‑layered L‑
TumorChip platform, combining tumor stroma and microvasculature and investigated the
effect of different stromal cells on cancer cell development and the stromal effects on drug
responses. In another study, Strelez et al. [289] presented the colorectal cancer (CRC) on‑a‑
chip platforms with the facets of CRC, stromal cross‑talk, and mechanical force. Moreover,
Fridman et al. [305] mimicked the breast tumor microenvironment, where tumor cells, im‑
mune cells, and fibroblasts were encapsulated into different hydrogel scaffolds within a
microfluidic platform. Similarly, Haque et al. [290] used patient‑derived organoids and
mimicked pancreatic ductal adenocarcinoma by exhibiting epithelium–stroma communi‑
cation and controlled the microenvironment‑modulating agents in a lab‑on‑a‑chip model.

4.3.2. Neurological Disease Modeling
Microfluidic modeling platforms have been rapidly developed over the past decade,

allowing the advancement of in vitro human nervous system modeling and associated dis‑
ease models. Central nervous system (CNS) modeling involves handling axons, synapses,
and neuronal networks, as well as conditional growth in cell culture for mimicking neural
diseases such as Parkinson’s disease (PD), Alzheimer’s disease (AD), and multiple sclero‑
sis (MS) [306]. As an example, Virlogeux et al. [307] established a microfluidic model to
ascertain Huntington’s disease (HD) corticostriatal network to understand the uncertain
role of pre‑and postsynaptic neurons during the first stage of the HD development. This
study revealed the great importance of the pre‑synaptic compartment in HD, especially
for the follow‑up therapies. Osaki et al. [308] modeled another neurodegenerative disease,
Amyotrophic Lateral Sclerosis (ALS), exploiting iPSC‑derived skeletal muscle cells and
non–ALS patient‑derived MNs. This study evaluated muscle contraction and motor neu‑
ron viability under mimicked human physiological and pathological conditions. Regard‑
ing the peripheral nervous system (PNS) disease, the loss of myelin sheaths could elicit
neurological issues. Since the overall process is unclear, it is formidable to come up with
auspicious treatment strategies. Hence, Hyung et al. [309] established a microfluidic plat‑
form exhibiting the overall mechanism of myelination, demyelination, and remyelination
under the favor of cocultured motor neurons and primary Schwann cells. Significantly,
the emulated microenvironment enabled the preservation of long‑term coculturing over
40 days. Similarly, Dittlau et al. [310] studied the effects of ALS‑causing mutations in an
in vitro microfluidic model. The results demonstrated that FUS mutations caused by ALS
consequently led to poor neurite regeneration over axotomy and neurite outgrowth. They
concluded that a selective HDAC6 inhibitor‑enhanced neurite outgrowth and regeneration
was at play and, therefore, that HDAC6 inhibition could be used to treat ALS.
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4.3.3. Pulmonary/Lung Disease Modeling
Lung‑on‑a‑chip platforms seek to model the evaluation of drug toxicity under physio‑

logical conditions and to provide technical assistance for drug screening and personalized
diagnosis and therapy [311]. Furthermore, various research studies focused on develop‑
ing lung disease models, such as lung inflammation, injury, and other pulmonary diseases
due to the complexity of the lung anatomy and physiology, which involves airway trans‑
portation by small units such as bronchi, bronchioles, and alveoli [311], were developed.
For instance, Huh et al. [312] investigated the human pulmonary edema on a microflu‑
idic platform, which exhibited the alveolar–capillary interface of the lung. This system
consisted of microchannels surrounded by tight layers of human endothelial cells and pul‑
monary epithelium subjected to air, fluid flow, and cyclic mechanical strain to simulate
breathing activity. The other study showed that the pulmonary artery (PA)‑on‑a‑chip plat‑
form allowed researchers to investigate pulmonary arterial hypertension (PAH) regarding
molecular and functional alterations in pulmonary vascular endothelial and smooth mus‑
cle cells against drugs and disease impellers [313]. COPD (chronic obstructive pulmonary
disease) is a serious lung illness caused by restricted airways, leading to breathing compli‑
cations. Although COPD is associated with neutrophil outflow into the airways through
chemotactic migration, there is plenty room to improve knowledge about the utilization
of neutrophil chemotaxis for the diagnosis of COPD. As an example, Wu et al. [314] con‑
structed a microfluidic system to quantify the neutrophil chemotaxis in sputum samples
from COPD patients.

4.3.4. Liver Disease Modeling
Since liver diseases manifest and develop silently, it is vital to immediately take ac‑

tion following a diagnosis [315]. In vitro studies of the pathogenesis of liver disorders
benefit from microfluidic disease‑on‑chip technologies [315]. Numerous liver disease‑on‑
a‑chip systems have been introduced, particularly for investigating fatty liver disease. Non‑
alcoholic fatty liver disease (NAFLD) emerges from lipid deposition in hepatocytes, which
could ultimately lead to hepatic carcinoma. Lasli et al. [316] established a NAFLD‑on‑
a‑chip model to investigate steatosis, which was composed of spheroids formed inside
inverted pyramid‑shaped microwells. Moreover, spheroids were formed by coculturing
human hepatocellular carcinoma (HepG2) cells and umbilical vein endothelial cells (HU‑
VECs) in microwells. Steatosis progression might lead to inflammation, which is known
as steatohepatitis [317]. Wang et al. [318] designed a NAFLD model as a liver‑on‑a‑chip
platform using human‑induced pluripotent stem cells (hiPSC) cultured within spheroids.
The essential pathogenic characteristics of liver organoids were linked to NAFLD that was
investigated on‑a‑chip after induction by free fatty acid. In addition to NAFLD, scientists
examined alcoholic liver disease (ALD) by mimicking physiology or anatomy of the liver.
For instance, Lee et al. [319] established an ALD model on a chip, which consisted of mono‑
and co‑cultured spheroids. Ethanol‑exposed spheroids exhibited different levels of alco‑
holic injury. Subsequently, the viability, morphology, cytochrome P450 (CYP450) activity,
and hepatic functions of spheroids were investigated.

4.4. Tissue Engineering
Tissue engineering (TE) aims to regenerate bioengineered tissues based on cellular

growth and focuses on biocompatible materials, such as scaffold, to procure proliferation,
replacement, or the repairing of damaged tissues [320,321]. The bioengineered scaffolds
enhance the transfer of particular cells and growth factors (GFs) through an impaired site
of the tissue to promote tissue regeneration [322]. A feasible scaffold must successfully
induce the cellular growth—proliferation—which leads to vascularization. The procedure
needs to be biodegradable after healing with no toxic effect [323]. Besides, the dynamics
and functionality of an extracellular matrix (ECM) of a specified tissue must be mimicked
mechanically, biologically, and physically by the scaffold [324]. Although there are already
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some advancements in functioning by the bioengineered scaffolds, there are still obstacles
in the biomimicking of original tissues.

Bioengineered scaffolds are massively developed under the static cell culture environ‑
ment using supplementing nutrients, which is practically highly limited due to restrictions
in cell–cell, cell–ECM interactions, altering the cellular morphology as a result of inade‑
quate replication of the physiological environment [271,324].

ECM dynamics have a dominant effect on the identification and regulation of tissue‑
specific cellular responses. In addition, the shape the regeneration process, tissue forma‑
tion, wound healing, and disease progression could also be affected tremendously by ECM.
Hence, the platforms that are capable to mimic the dynamics of the main tissue should be
used in the fundamental studies on cellular behavior which leads to the advancements in
tissue engineering [325]. However, it was shown that the replication of cellular dynamics
is insufficient with the use of traditional static culturing techniques [326]. Herein, microflu‑
idic devices introduce a great platform to understand cell–cell and cell–ECM interactions in
a precisely controlled microenvironment by manipulation of the cells. Micro perfusion sys‑
tems used in microfluidic devices can enhance the delivery of the nutrients across cells and
subsequently remove the waste from the system by constant flow in microchannels small
dimensions. These models are excellent to mimic in vivo cellular reconstructions [327].
The in vitro microfluidic platforms enable the investigation of distinctive biological path‑
ways by mimicking the principal aspects in natural tissues and organs [248,328]. Thus,
several applications of microfluidic platforms in tissue engineering were realized and are
discussed in this review as two topics—replication of cellular microenvironment and fab‑
rication of biomaterials [329].

4.4.1. Replication of the Cellular Microenvironment
A cellular microenvironment can be formed by dynamic interactions of cells, intersti‑

tial fluid, and ECM that vitally affect the cellular process and functioning through physical,
biochemical, and physicochemical mechanisms [330,331]. Therefore, it is crucially impor‑
tant to replicate the dynamics of the cellular microenvironment to analyze the phenotypes
for disease modelling and therapeutics. Herein, microfluidic platforms are favorable to
construct complex biofidelic cell microenvironments by precisely altering the distribution
of oxygen and signaling molecules, controlling the mechanotransduction, and presenting a
way to combine them with elements to induce the cells electrically, chemically, or mechan‑
ically [329]. The cellular behavior depends on the flow. Therefore, one of the particular
flow processes observed in the cell microenvironment is the interstitial flow [332]. Inter‑
stitial flow (IF) is a one‑way transport of fluid through ECM and a signal from the tumors
which vitally affects cancer metastasis. Besides, it delivers proteins and soluble reagents
through tumor stroma. In a recent study, a microfluidic platform was fabricated that al‑
lowed the investigation of activation and differentiation of cancer cells by mimicking the
IF of tumor cells and transport of the soluble factors through tumor stroma from donor
cells [333]. Biochemical factors also have a major role in the regulation of cell functioning.
Zhang et al. investigated the effect of Ca+2 and Sr+2 metal ions on osteogenic differentia‑
tion of mesenchymal stem cells (MSCs) by employing a microfluidic platform [334]. In that
study, the Ca+2 and Sr+2 crosslinked alginate microgels were produced and processed for
encapsulation of single MSCs using a microfluidic system to mimic the three‑dimensional
stem cell microenvironment. In conclusion, they indicated that Ca+2 crosslinked alginate
hydrogels triggered the osteogenic differentiation by increasing the matrix mineralization.
The stiffness of the microenvironment is another essential factor that alters the cell fate
and functioning and tissue development [335,336]. In a recent study, the separation of na‑
sopharyngeal carcinoma 43 (NPC43) cells and nasopharyngeal epithelial 460 (NP460) cells
were performed by altering the stiffness, number of layers, and dimensions of the cell mi‑
croenvironment [337]. These alterations caused changes in the migration of both cell types
according to separation by a microfluidic platform.
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4.4.2. Fabrication of Biomaterials
Biomaterials are the building blocks of tissue engineering that improve the replication

of native ECM by inducing the required cellular functioning in injured tissues by utilization
of an artificial framework [338,339]. Several techniques have been used to construct engi‑
neered biomaterials including particulate‑leaching, freeze‑drying, electrospinning, rapid
prototyping, solvent casting, and microfluidics [340]. Among these techniques, microflu‑
idics has become an advantageous approach for the fabrication of biomaterials as this ap‑
proach is cost‑effective, safe, and manageable [341]. Moreover, employing both fluid dy‑
namics and shaped microchannels would lead to the fabrication of distinctive biomaterial
carriers such as nanoparticles, microfibers, and microspheres [342]. In a recent study, Lei
et al. have developed a microfluidic platform to prepare magnetic chitosan microspheres
(MCMs) to trigger angiogenesis and epithelization for wound healing with antibacterial
activity [343]. As a result, the developed microfluidic platform enhanced the efficient fab‑
rication of MCMs with uniform size and shape. In another investigation by Utoh et. al,
the microfluidic system was used to fabricate collagen microfibers by fragmentation phe‑
nomenon with continuous flow and altered shear stress [344]. Calcium phosphate (CaP)
biomaterial is a commonly used material to promote bone regeneration and repair, and
as Galván‑Chacón et al. demonstrated, a microfluidic system could alter the physical and
chemical properties of CaP for superior efficiency [345]. Furthermore, monodispersed CaP
microparticles were synthesized in different sizes using droplet microfluidics, which could
directly lead to monitoring of the responsive kinetics. The vascularization is one of the ob‑
stacles in tissue engineering, and it is considered an essential process to equally distribute
the nutrients and oxygen successfully in engineered tissues [346]. In this regard, microflu‑
idic platforms play a crucial role in intensifying the inherent laminar flow and perfusion
flow through cells for vasculogenesis and represent a unique system for microvessels perfu‑
sion [329,347]. In a recent study, Wang et al. developed a microfluidics‑based technique for
the fabrication of the endothelized biomimetic microvessels (BMVs) by alginate–collagen
composites [348]. The constructed BMVs exhibited a significant perfusion effect that was
also able to induce osteogenic differentiation by releasing BMP‑2 and PDGF‑BB.

4.5. Organ‑on‑a Chip
An organ‑on‑a‑chip (OoC) is an experimental platform used to reproduce human tis‑

suemodels to investigate pathophysiology of a disease andnovel therapeutical approaches.
These platforms contain microfluidic channels and engineered tissues having the ability to
mimic organ‑specific functions [349,350]. The micro scale system replicates better in vivo
cell‑microenvironment communications in vitro with incorporation of biophysical/ bio‑
chemical signals, whereas two‑dimensional cell culture models cannot. Therefore, OoC
platforms can substitute for two‑dimensional cell culture and animal models due to ethi‑
cal concerns and insufficient reproduction of human pathophysiology [351]. During the
recent decade, OoC systems have been extensively utilized to replicate physiological mi‑
croenvironment of several organs such as the gut [352–354], heart [355–357], liver [358–360],
bone [361–363], kidney [364–366], lung [367–369] and brain [370–372]. In this section, cur‑
rent OoC studies based on the gut, bone, liver, brain, heart, kidney, and lung will be dis‑
cussed.

4.5.1. Gut‑on‑a‑Chip
The essential responsibility of a gut system is nutrient digestion and the restricting of

transmission of undesired substances and pathogens for the protection of the body by bar‑
rier functioning ability. Nevertheless, the gut is not only vital for the digestive system, but
also crucial for the desirable functionality of other organs. Thus, the improper functioning
of the gut triggers several diseases [373]. To understand the physiology of the human gut
system, animal models and static in vitro models were developed (Figure 12). However,
the animal models are not sufficient to mimic the physiology of the human gut, and the
static model is not efficient to replicate fluid flow, peristaltic movements, and the villi struc‑
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tures of intestines [374]. Hence, three‑dimensional models are required to mimic the gut
microenvironment dynamically and to investigate its physiology and pathology properly.
Gut‑on‑a‑chip (GoC) platforms are favorable to replicate gut dynamics by consistently per‑
fused microchannels and the utilization of several intestinal cell types to mimic the in vivo
morphology of the gut [375]. Maurer et al. developed an intestine‑on‑a‑chip platform to
understand microbial interactions in the gut microbiota by replicating the immune toler‑
ance of the intestinal lumen with characteristics of mucosal macrophages and dendritic
cells [376]. Hence, efficient investigation of microbial pathogenicity mechanisms under
the immunocompetent intestine microenvironment was studied, which can be utilized to
explore pathogenic diseases. Jeon et al. designed a gut‑on‑a‑chip platform to study epithe‑
lial cell differentiation in vitro [377]. In addition, intestinal epithelial barrier functioning
was analyzed with co‑culturing of the damaged epithelial layer, and probiotics that con‑
sequently promoted healing of barrier functioning were recorded with the assistance of
the human microbiome without bacterial overgrowth. In the case of intestinal drug ab‑
sorption, tissue explants are favorable for drug screening. However, it is not possible to
keep the explant tissue alive for a long period in a static environment. Amirabadi and his
colleagues developed an intestinal explant barrier chip (IEBC) to analyze intestinal perme‑
ability ex vivo [378]. The novel platform incorporated human and porcine intestinal colon
tissue explants in separate microchannels to study the intestinal absorption of therapeutics
in a dynamic microenvironment with small non‑specific binding of therapeutic molecules.
The mentioned microfluidic device could be modified for the use in drug screening in other
organs such as liver or skin.
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Figure 12. (a) A representative model and components of gut‑on‑a‑chip platform. Reprinted with
permission from ref. [373], Copyright 2020, Elsevier. (b) The human gut‑on‑a‑chip platform was
presented by Jeon et al. to reproduce gastrointestinal structure with co‑culture of human and micro‑
bial cells. The human Caco‑2 cells were utilized to form intestinal lumen, whereas HUVECs were
employed to establish vascular lumen in right and left channels, respectively. The channels were
separated by collagen type I gels, and the continuous flow of medium was enhanced by osmotic
pump. (c) Immunofluorescence staining results indicated that PECAM‑1‑positive HUVECs and ZO‑
1‑positive Caco‑2 cells were positioned in the left and right channels. Reprinted from ref. [377] (open
access).
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4.5.2. Bone‑on‑a‑Chip
The regulatory effects of the sympathetic nervous system (SNS) on breast cancer bone

metastasis were exemplified recently, and Conceição et al. presented a fully humanized
metastasis‑on‑a‑chip platform to reproduce the influence of sympathetic stimulus on the
cellular interaction between breast cancer cells and bone cells [379]. Three different cell
types of osteoclasts, breast cancer cell variants, and sympathetic neurons were cultured
in separate chambers, which allowed the dynamic paracrine signaling between the cells.
According to the results, the aggression of breast cancer cells increased with the release of
paracrine signaling from osteoclasts and sympathetic neurons. The essential role of bone
marrow is to establish the hematopoiesis through its endosteal and perivascular niches.
Glaser and his team developed a novel microfluidic platform that consisted of two niches
of bone marrow separated by vascular network formation [380]. The CD34 + hematopoi‑
etic stem cells (HSPC) were cultured and differentiated into mature neutrophils. Thus,
the platform allowed one to analyze the stem cell niche and could be utilized for drug
screening and modeling of haematological diseases. Multiple myeloma (MM) is an incur‑
able disease which is caused by the accumulation of monoclonal abnormal plasma cells
and growth of osteolytic lesions. Nelson et al. [363] demonstrated a similar study based
on human bone marrow on chip (Figure 13). However, Sui et al. presented a microflu‑
idic device that replicated the stroma, sinusoidal circulation, and endothelium of the bone
marrow microenvironment [381]. Subsequently, the effect of CXCL12‑ mediated MM cells
on the barrier function of endothelial cells was observed, and the device could be used to
investigate the spatiotemporal association of cancer cells in the bone marrow sinusoidal
microenvironment.
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Figure 13. Schematic of human bone marrow‑on‑a‑chip (hBM‑on‑a‑chip) presented by Nelson et al.
to investigate hematopoietic stem and progenitor cell behaviour and reaction to pathological stimu‑
lus. (a) The developed chip can mimic endosteal BM niche and central perivascular BM niche, which
are present in long bones. OB = osteoblasts and mineralized bone‑like tissue layer; MSC = mesenchy‑
mal or marrow stromal cells, including pericytes; stromal cells = other cells of the BM stroma includ‑
ing CXCL12‑abundant reticular cells (CAR), matured hematopoietic cells, and adipose cells; HSPC
= hematopoietic stem and progenitor cells; FN = fibronectin; LN = laminin, col I and IV = collagen
I and collagen IV; OP = osteopontin; Jag‑1 = Jagged 1. (b) Soft lithography was utilized to fabri‑
cate a 5‑channel PDMS microfluidic platform. An endosteal layer was formed in the central channel
with differentiation of MSCs for 21 days. After this, HSPCs, HUVECs, and MSCs were loaded and
seeded on top of the endosteal layer for vasculogenesis. Reprinted with permission from ref. [363],
Copyright 2021, Elsevier.
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4.5.3. Liver‑on‑a‑Chip
Nonalcoholic fatty liver disease (NAFLD) is the most common liver disease, and its

mechanism of progression is still complicated. Du et al. developed a microfluidic‑based
liver lobule chip (LC), which provided a platform for the co‑culturing of hepatic cells and
was recruited to investigate NAFLD accurately [360]. In vivo‑like liver microtissue was
obtained in the LC platform by a dual blood supply from hepatic artery (HA) and hep‑
atic portal vein (PV). The NAFLD was modeled under exposure of nutrient supplies with
changes in the lipid zonation for early‑stage progression of NAFLD. Obesity is a metabolic
disease that emerges with an excessive amount of lipid accumulation, together with esca‑
lated inflammation and forms hypertrophic adipocytes. A team led by Leung developed a
novel adipose‑on‑chip (AOC) disease model to reproduce adipose tissue hypertrophy and
inflammation under high concentrations of free fatty acid (FFA) [382]. The disease model
was replicated by employing oleic acid (OA) and palmitic acid (PA) to initiate inflamma‑
tion in adipocytes using hypertrophic lipid droplets. The developed model offered a new
methodology to investigate obesity‑associated metabolic diseases. A study conducted by
Lee et al. [383] led to the development of a gut‑liver chip to recapitulate hepatic steato‑
sis (Figure 14). In another investigation, the OOC platforms were tested to investigate
the toxicological pattern of the therapeutic agent and its metabolites in drug discovery.
Soltantabar et al. designed a pumpless heart/liver‑on‑a‑chip (HLC) microfluidic device to
explore cardiotoxicity evaluation of doxorubicin (DOX) [384]. The presented HLC plat‑
form explained high viability of H9c2 rat cardiomyocytes and HepG2 hepatocellular car‑
cinoma cells. This device was particularly suitable to monitor the damage on heart cells
more efficiently compared to three‑dimensional static culture. Thus, the developed HLC
platform could be a promising tool to investigate cardiotoxicity in the heart.
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Figure 14. A schematic of gut‑liver chip presented by Lee et al. to recapitulate hepatic steatosis. (a)
Representative figure of gut‑liver chip, indicating gut layer top of the membrane and liver layer on
the bottom of the membrane. (b) Cross‑section of the gut‑liver chip. (c) An image of an assembled
gut‑liver chip (blue ink indicates the liver part, whereas red ink indicates the gut part). (d) This
figure shows that absorption of fatty acids by gut cells (enterocytes) and liver cells (hepatocytes)
in the gut–liver platform. (e) This illustration demonstrates a lipid accumulation experiment in a
microwell plate. Cultured hepatocytes (HepG2) in a well plate were exposed to lipid accumulation,
and quantification of lipid accumulation was performed. Reprinted with permission from ref. [383],
Copyright 2018, Wiley Online Library.
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4.5.4. Brain‑on‑a‑Chip
Epilepsy is a complex neurologic disease that occurs due to recurrent epileptic seizures.

Pelkonen et al. presented a microfluidic platform for epilepsy modeling consisting of a mi‑
croelectrode array (MEA) that enables one to discriminate seizure‑like activity [372]. Hu‑
man pluripotent stem cells (hPSCs) and differentiated neurons were utilized to form func‑
tional neuronal networks, and seizure‑like activity was mimicked by kainic acid (KA) treat‑
ment on neuronal networks. Several investigations indicated that neurocognitive facilities
of the brain can be influenced by the gut environment, and exosomes could also moderate
the signaling in the gut–brain axis (GBA). Kim et al. developed a GBA‑on chip to investi‑
gate gut and brain communication [352]. This microchip was composed of the blood–brain
barrier (BBB) and gut barrier, which emulated the co‑culture of brain endothelial and gut
endothelial cells. The barrier integrity was tested by trans‑endothelial/epithelial electri‑
cal resistance (TEER), and changes were demonstrated in barriers after lipopolysaccharide
(LPS) or butyrate treatment, which eventually induced an inflammatory response in the
gut–brain axis and influenced permeability of BBB, respectively. Moreover, as shown in
Figure 15, the investigation on the human BBB chip was successful in representing the es‑
sential structure and function of the vascular and perivascular parts to study nanoparticle
distribution [385].
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Figure 15. Schematic of human BBB chip presented by Ahn et al. to reproduce the essential struc‑
ture and function of human BBB and to investigate nanoparticle distribution in the vascular and
perivascular parts. (a) The figure shows the structure of the BBB composed of endothelial cells (ECs),
pericytes, and astrocytes with aquaporin‑4 (AQP4) expression. (b) Illustration for microengineered
human BBB platform. (c) Layer‑by‑layer schematic of developed BBB platform indicates the upper
vascular layer, porous membrane, lower perivascular layer, and glass slide. Reprinted from ref. [385]
(open access).

4.5.5. Heart‑on‑a‑Chip
Human‑induced pluripotent stem cell (hiPSCs) differentiated cardiomyocytes (CMs)

(hiPSCs‑CMs) are the key elements to build heart‑on‑chip platforms. Nevertheless, the
immaturity of hiPSCs‑CMs, according to the adult myocardium, cause a difficulty in the
exact replication of heart physiology and disease. The team led by Zhang et al. developed a
novel heart‑on‑chip platform to overcome the immaturity of hiPSCs‑CMs [386] (Figure 16).
That microfluidic platform offered a long‑term dynamic culture of hiPSCs‑CMs, while the
real‑time recording of hiPSC‑CMs under applied electrical stimulation provided the matu‑
ration of CMs to replicate native cardiac tissue. The developed heart‑on‑chip demonstrated
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favorable results in drug tests and could be proposed as a platform to evaluate drug effi‑
ciency and cardiotoxicity.
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Figure 16. Schematic of heart‑on‑a‑chip device presented by Zhang et al. to investigate in situ elec‑
trical stimulation and observation of the function parameters of cardiac tissues. (a) Design of the
developed heart‑on‑a‑chip platform consisting of four layers: (i) top layer—a PDMS cover layer con‑
taining 4 inlet/outlet channel; (ii) a PDMS channel layer; (iii) a PDMS chamber layer inserted with
two platinum wire electrodes; and the (iv) bottom layer—a glass layer coated by four gold electrodes.
(b) Three‑dimensional illustration of the heart‑on‑a‑chip platform. (c) The side view of the schematic
demonstrates cardiac tissue in the chamber. (d) Magnified sketching of the elaborated design of the
PDMS channel, representing the channel layer (ii) in (a). (e) Picture of the introduced heart‑on‑a‑chip
platform. Reprinted with permission from ref. [386], Copyright 2021, Elsevier.

4.5.6. Kidney‑on‑a‑Chip
The glomerulus is the essential element of a kidney, which carries out regular filtra‑

tion of blood using a capillary network and particular cells known as podocytes. Therefore,
mimicking the glomerulus is crucial to investigate kidney physiology and diseases. Roye
et al. proposed and demonstrated a personalized glomerulus chip to reproduce glomeru‑
lus barrier function utilizing hiPSCs‑differentiated nephron progenitor cells and vascular
endothelial cells (ECs) from a single patient to obtain a genetically matched tissue pro‑
file [387]. In another example, the kidney‑organoid‑on‑a‑chip platform was introduced by
Lee et al. to investigate the biochemical effect on in vitro development of human pluripo‑
tent stem cell (hPSCs)‑derived human kidney organoids (Figure 17). In addition, a disease
model was also developed to investigate the glomerulus injury, and the results indicated
that the glomerulus chip established promising outcomes to replicate a functional glomeru‑
lus and glomerulus‑related diseases.
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(hPSCs)‑derived human kidney organoids. Controlled shear force and optimized ECM were utilized
to explore biochemical effect. Reprinted from ref. [388] (open access).

4.5.7. Lung‑on‑a‑Chip
Reproducing the air–blood barrier in lung‑on‑a chip platforms is complicated, and

the alveoli network is crucial to mimic physiological properties of the lung in vitro. Zam‑
progno et al. fabricated a lung‑on a chip platform that enabled one to replicate an array of
alveoli. This system has an advantage of biodegradability and elasticity in the biological
membrane due to the presence of collagen, elastin, and proteins of lung ECM [389]. The
platform exhibited an excellent model demonstration for prolonged air–blood barrier func‑
tioning using primary human lung endothelial and alveolar epithelial cells and proposed
a novel technique to replicate biological barriers of the organs. Furthermore, as shown in
Figure 18, the lung‑on‑a‑chip platform studied by Zhu et al. [390] exhibited a favourable
biomimetic breathing human lung with microphysiological breathing monitoring.
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Figure 18. Schematic of lung‑on‑a‑chip platform presented by Zhu et al. to develop favourable
biomimetic breathing human lung with microphysiological breathing monitoring. (a) Figure of pul‑
monary alveolus while breathing. (b) Design of the developed breathing human‑lung‑on‑a‑chip de‑
vice consisting of an array of pulmonary‑alveolus‑like structures. Rhythmic stretch during breathing
was mimicked by cyclic airflow. Utilization of structural colours was enhanced to visualize breath‑
ing process. Fb = fibrinogen; NP = nanoparticle; AC = alveolar cell. Reprinted with permission from
ref. [390], Copyright 2022, Wiley Online Library.

4.6. Microfluidics Biosensors
In recent years, several advantages of microfluidics‑based biosensors made them uniq‑

ue methodologies in assay and for the detection of various biological particles. The contin‑
ues microfluidics‑based biosensors provide us with a rapid analysis of biological molecules
in a small quantity, with minimum reagent, which consequently generates trivial amounts
of byproducts in a single platform with least cost. Biomolecule‑based microfluidics biosen‑
sors are categorized in four groups based on the type of employed bio elements, including
enzymes‑based, nanozymes‑based, antibody‑based, and nucleic acid‑based biosensors. Ta‑
ble 3 shows the comparison among them.

4.6.1. Enzyme‑Based Microfluidic Biosensors
Enzymes are proteins in nature and are known to enhance the rate of efficiency of

a reaction ranging from 105 to 1017 in comparison with non‑catalyzers reactions. The
biosensor‑embedded enzyme generally belongs to the redox enzyme class, which catalyzes
oxidation–reduction reactions. Enzymes are perfect biosensors because electrochemical
monitoring is typically used to detect their turnover [391].

Since the first enzymatic biosensor was introduced in 1962 by Clark and Lyon et al.
[392], enzymes have been utilized in a diversity of biosensing applications due to their
intrinsic functional properties such as high selectivity, biocatalytic activity, and precise
enzyme–substrate interactions [393]. By taking advantage of these features, enzyme‑based
biosensors constitute continuousmonitoring and rapid, accurate analysis of several biomar‑
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kers [394]. They are usually coupled with microfluidic platforms due to automation, small
and stable sensing area, and multiplexed functions [395,396]. In these platforms, reliabil‑
ity, long‑term stability, and reusability of enzymes are the main concerns [397]. Enzyme
immobilization is one of the most crucial techniques to address these challenges. Immobi‑
lization strategies of enzymes onto a surface of a transducer, as well as on the microchan‑
nels, have been widely reviewed in the literature [398–402]. Most of the immobilization
approaches rely on adsorption, covalent bonding, cross‑linking, and entrapment of en‑
zymes. Adsorption is forthright. Physical interactions such as ionic, hydrogen bonding,
and Van der Waals forces are responsible for immobilization without disrupting the es‑
sential structure of the enzyme [403]. However, covalent bonding is more complicated. It
requires strong interaction between surface groups of the enzyme and the surface [404].
Immobilization can be conducted via forming strong covalent bonds between enzymes
as well. Cross‑linking methods form three‑dimensional enzyme complexes by utilizing
cross‑linking agents for immobilization [401]. Lastly, enzymes can be encapsulated within
organic or inorganic polymer matrices to sustain the structural stability of the enzyme
and diminish leakage [401–405]. Glucose level measurement is mostly performed by this
type of microfluidic biosensor, which were extensively studied in the literature due to the
huge demand for diabetes management [406]. In these systems, the widely utilized en‑
zyme is glucose oxidase (GOx) due to its high specificity, low cost, and durability against
pH and temperature [406,407]. These advantages make GOx a potent enzyme for microflu‑
idic biosensors to monitor glucose levels in the blood and noninvasive fluids such as saliva,
tears, and sweat [408–412]. Recently, Sun et al. [413] developed a microfluidic biosensor for
glucose level monitoring from a single drop of any of these noninvasive fluids for the first
time. This fully integrated nanoelectronic system was composed of a pump‑free, flexible
microfluidic enzymatic system (called iez Slice), coupled with a customized reusable poten‑
tiostat (called iezBar) for signal acquisition and wireless transference. In this microfluidic
platform, to achieve glucose measurement in various raw biofluids including tear, saliva,
and sweat, three‑dimensional carbonaceous nanosphere network aerogels with hierarchi‑
cal architectures (3D‑CNAs) were used as glucose oxidase electrode substrates due to their
higher‑level electro‑catalytic ability. Moreover, utilization of a microchannel made of high‑
concentration buffer powder‑loaded Kimwipes (HBP‑KWs) provided a distinctive stable
glucose measurement from tears, sweat, and saliva. Because of the nature of HBP, this mi‑
crochannel compels biofluids to maintain the same pH and high ionic strength as they do
when they flow into it. They noted that, together with the HBP‑KWs microchannel, this
enzyme‑based microfluidic biosensor accurately analyzed glucose from a 0.30 µL sample
of raw noninvasive biofluids with a much higher r‑value (≥0.96). Monitoring of glucose
byproduct lactate level is prominent for athletes and high‑performance workers. Addi‑
tionally, the lactate level is expressed as the best marker of tissue hypoxia [414]. Recently,
Shitanda et al. [415] developed a microfluidic sensing system for sweat lactate level track‑
ing. They immobilized the lactate oxidase (LOx) enzyme by a covalent bonding method
onto a MgO‑templated carbon screen‑printed electrode with the aid of an alkene of glycidyl
methacrylate (GMA). This electrode configuration supplied a high surface area to acquire
a high response readout. Then, this electrode was integrated into a microfluidic platform
with eight sweat collecting channels to avoid turbulence and air trapping, and a chamber
with a 10 mm radius was introduced. Monitoring the level of another biomarker, urea, pro‑
vides valuable information about kidney and liver health [416]. Hence, numerous microflu‑
idic platforms, based on the principle of urea hydrolysis by the urease enzyme, exist in the
literature [416,417]. Additionally, monitoring creatinine levels for kidney health is among
the top applications of enzyme‑based biosensors [418]. Tzianni et al. [419] developed a
smartphone‑coupled paper‑based sim card type biosensor for urinary creatinine measure‑
ment. Creatinine deiminase enzyme was immobilized onto pH‑responsive copolymers
PMMA‑co‑PMAA and demonstrated three conductive electrode configurations. This sys‑
tem was successfully mounted in a sim cardholder. Based on the same principle, various
enzyme microfluidic paper‑based analytic devices revolutionized the field of microfluidics
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in biomedical applications. Such an improvement has introduced further sensitivity and
selectivity in analytical properties on paper‑bound enzyme microfluidics systems [420].
Additionally, enzyme‑immobilized papers demonstrate further mechanical and chemical
stability due to their collegial effects. Nonetheless, such bindings increase the life span and
enzyme stability [421,422]. An enzyme‑based paper microfluidics system, µPADs, offers a
cellulose matrix which is highly flexible, thin, and cost effective [423]. In addition, the pa‑
per has implicit capillary function with high surface‑to‑volume ratio, enabling the user to
load various enzymes and markers. Moreover, the surface of microfluidic cellulose papers
is conveniently adjustable for microfluidics channels via two zones attributed to sample
and detection [137] (Figure 19).
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from [424]. Copyright 2019, American Chemical Society.

During the last decade, multiplexed analysis of simultaneous biomarkers in invasive
and noninvasive biofluids has accelerated by leveraging microfluidics [425]. For instance,
an enzymatic low volume microfluidic platform that simultaneously analyzes a lifestyle
biomarker trio—alcohol, glucose, and lactate levels in a low volume of sweat (1–5 µL)—
was developed by Bhide et al. [396]. Monitoring free amino acids in the blood serum could
give prominent information about the state of several diseases, including cancers [426].

More recently, Kugimiya et al. [427] developed a laminated paper‑based analytical
device (LPAD), exploiting an aminoacyl‑tRNA synthetase (aaRS) analysis system, to mea‑
sure histidine, tryptophan, glycine, and lysine levels (Figure 20). It included a sample spot
connected to four enzymatic reaction areas, each containing a specific tRNA synthetase
for one amino acid type and four detection areas. Properties and dimensions of channels
between detection and reaction areas specify the incubation time for the reaction mixture.
In the detection zone, the colorimetric signal due to the molybdenum blue reaction was
quantified using an image scanner. In another study, ammonia and ethanol concentration
in sweat were measured, relying on an enzyme‑based colorimetric readout in a multi‑layer
microfluidic platform. In this platform, super absorbent polymer (SAP) pumps and capil‑
lary burst valves were integrated for mixing purposes, as well as to increase the reaction
kinetics control [428]. Apart from monitoring the health status of patients, these types of
microfluidic sensors are also used to monitor and characterize microfluidic cell culture sys‑
tems [429]. In an interesting study, Cedillo‑Alcantar et al. [424] developed an automated
microfluidic platform, relying on droplet generation technology, for this purpose. To em‑
phasize an application, they performed a simultaneous analysis of glucose, bile acid, and
lactate dehydrogenase (LDH) of a microfluidic cell culture platform comprising hepato‑
cyte spheroids. To circumvent the problem of decreasing enzyme activities when immo‑
bilized, they injected the required enzymes throughout the measurement. With the aid
of automated pneumatic valves, first enzymes were mixed with the substrates and then
encapsulated in water‑in‑oil droplets. In each tiny droplet (<0.8 nL), a discrete enzymatic
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assay took place, and the results were quantified based on colorimetric and fluorescent
readouts.
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specify the incubation time for the reaction mixture. Reprinted with permission from [427] (open
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4.6.2. Nanozymes‑Based Microfluidic Biosensors
Nanozymes are artificial nanomaterial enzymes that not only mimic the activity of

enzymes, but also offer advantages over natural enzymes due to their impressive proper‑
ties [430]. Compared to natural enzymes, they are easy and inexpensive to produce on a
large scale, have a long storage time, and withstand harsh conditions such as high pH and
temperatures [430–432]. Since they were first introduced in 2007, the use of nanozymes in
biosensors instead of enzymes has gained momentum. That year, the interesting enzyme
mimetic property of magnetite (Fe3O4), similar to natural peroxidases, was discovered
by Gao et al. [433]. They proposed a new immunoassay in which they used H2O2Fe3O4
instead of horseradish peroxidase (HRP) to catalyze the oxidation of various peroxidase
substrates. In the following years, other nanomaterials with peroxidase‑like properties,
such as metal and metal oxides [434], metal–organic frameworks (MOFs), and carbon‑
based nanomaterials [435] were discovered [431]. Moreover, it was reported that numer‑
ous nanomaterials could mimic the activities of other enzymes, including oxidase [436],
catalase [437], and superoxide dismutase (SOD) [438,439].

Together with the discovery of enzyme mimetic nanomaterials, their utilization in
microfluidic biosensors to perform the function of enzymes has been accelerated. Con‑
sidering the prominent research area of microfluidic glucose biosensors, nanozymes were
effectively used for colorimetric, electrochemical, and fluorescence glucose measurement
[440–442]. Gomez et al. [441] used a supported metal–organic framework (MOF) to mimic
the activity of peroxidase for the first time in a microfluidic paper‑based analytical device
(µPAD) and measured glucose levels using a small sample volume (10µl) of urine and
serum. Another µPAD was designed for simultaneous detection of uric acid and glucose
based on peroxidase mimicking platinum nanoparticles (Pt NPs) [443]. Hydrogen per‑
oxide is an important analyte itself and a prominent product or substrate of catalyzed
oxidation reactions [444]. Hence, various microfluidic biosensors utilizing nanozymes
including Au@PtNP/GO [445], graphene oxide‑gold [446], and cerium oxide nanosheets
(NSs) [444,447] were developed for H202 measurement. Nanozymes are exploited for
point‑of‑care (POC) cancer diagnosis as well [442,448,449]. More recently Liu et al. [442] de‑
veloped an electrochemical/visualmicrofluidic platform for sensitive detection of pheochro‑
mocytoma circulating cells (PCC‑CTCs) based on the peroxidase mimicking activity of
covalent–organic framework‑based nanozymes (COF@Pt).
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4.6.3. Microfluidics in Antibody Based Biosensing
Antibody‑based microfluidic biosensors are based on the immobilization of various

monoclonal antibodies as a rapid detection mechanism [450,451]. Using antibodies as
biosensors has the advantage that the immunogen could be detected with no prior pu‑
rification steps [452]. However, recent developments in recombinant technology made it
possible to generate the fab fragment as the main antigen binding site for various gen‑
eral antibodies [453]. The limitation of traditional immunoassay techniques has been over‑
come in combination with microfluidics devices. In the recent pandemic, various portable
microfluidics‑based immunoassay strips presented accurate, quick, and convenient ap‑
proaches for the detection of SARS CoV 2 IgG/IgM/antigen using pharyngeal swabs [454].
In this case, the microfluidic immunoassay relies on the interaction of viral protein with im‑
mobilized anti‑SARS‑CoV‑2 antibodies on an electrode of sensor with the capacity to detect
the change of the electric current. The detectors are generally coated with various mate‑
rials, such as fluorine‑doped tin oxide electrode (FTO) or screen‑printed carbon electrode
(SPE) or gold nanoparticles AuNPs) or graphene, which consequently act as an indicator
for change in conductivity upon antigen/antibody interaction [455–457].

Table 3. Summary of the advantages and disadvantages in various biosensor‑based bio elements
[24].

Enzymes [458,459] Proteins [460,461] Nucleic Acid [462,463] Nanozymes [430,431]

A
dv

an
ta

ge
s

High sensitivity and
selectivity

Rapid analysis for
direct immunoassay

Highly sensitive and
selective

Inexpensive to
manufacture
and easy for large scale
production

Suitable for oxidation
and reduction
reactions

Suitable for Bio affinity
interactions

Ideal for selection of
long ranged analytes

pH and temperature
stability

e.g, antibody antigen
interaction

Stable, cheap, and easy
synthesis Long storage time

Potential for
modification with
labels while retaining
same efficacy

D
is

ad
va

nt
ag

es

Possibility of losing
their activity upon
immobilization

Indirect immunoassay
is time consuming and
labeling process is
costly

Higher toxicity than
antibodies

Lower specificity
compared
to enzymes

Suitable for small
analytes e.g., lactate,
urea, glucose

Not ideal for detecting Faster elimination due
to their small size

Biocompatibility and
biodegradability
concerns

Sensitive against pH
and temperature
change

Small targets in both
sandwich and
direct immunoassay

Weaker binding to
analytes

Not suitable for redox
reactions

The DNA‑based microfluidic biosensors employ amplification of targeted DNA frag‑
ments followed by DNA hybridization of obtained sequences of the immobilized com‑
plementary target sequence in a single platform. The technique that generally requires
separate amplification and base pairing on a gel substrate is integrated into a single tool
with a convenient detection method by receiving the relevant change in physiochemical
signals [464].
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Currently, there are three main microfluidics biosensors developed to detect nucleic
acid: PCR, (CRISPR)/clustered regularly interspaced short palindromic repeats, and isother‑
mal amplification [465]. The microfluidics‑integrated qPCR method that was reported by
several research groups has the advantage of high throughput scheme processing, allow‑
ing massive quantitative analysis, including preparation and detection in a single chip plat‑
form [466,467]. A recent PCR‑based microfluidic system introduced by Cojocaru et al. was
a disposable chip functionalized with lyophilized probes and primers, which offered a
rapid result (less than 30 mins) for as much as 1.2 µL volume per reaction [468]. In isother‑
mal amplification, the thermocycler, the fundamental part of PCR, is replaced by incubator
or water bath‑integrated microfluidics devices. Several types of microfluidic‑based isother‑
mal amplifications developed, including rolling circle amplification (RCA) [469], recombi‑
nase polymerase amplification (RPA) [470], and loop‑mediated isothermal amplification
(LAMP) [471], which were remarkably efficient and accurate. Ramachandran et al. de‑
signed a microfluidics‑based CRISPR where the CRISPR–Cas12 enzyme and a guide RNA
were introduced to the device to bind to the selected target DNA and cleave it. The active
compound then randomly chopped the probed single‑stranded DNA labeled fluorophore
−quencher. In this method, the CRISPR assay was analyzed by governing the gradients
obtained from the change in the electric field and, subsequently, navigated target DNA,
reporters, and Cas12–gRNA within the microfluidic device. This technique is known as
isotachophoresis (ITP) enhanced microfluidic based CRISPR assay, which can detect the
target nucleic acid, RNA, within less than 35 mins [472].

4.7. Artificial Cells
The microfluidics systems are also used to provide activated artificial cells via me‑

chanical forces. In this system, stable double emulsion droplets (aqueous/oil/aqueous) are
utilized to model mechanosensitive artificial cells. The microfluidics device is designed to
trap such mixed drops in the form of the developed chamber, which implies pressure and
target simultaneously. Such pressure is accompanied by a temporary raise and perpetual
drops in the oil thickness. Therefore, the group observed consequent calcium ion influx
due to activated artificial cell activity which was caused by diluted oil drops [473].

4.8. Microfluidics and Cryopreservation
Cryopreservation is a banking technique that enhances the store of bio‑engineered

materials under gradual/rapid cooling and dehydration by adding cryoprotective agents
(CPA) [474]. The technique is significant in maintaining particular genetic characteristics of
the culture at a certain point for the applications in clinics and tissue engineering [475,476].
In the cryopreservation technique, the biological function of living cells is quenched at
low temperatures, which procures their long‑term preservation [477]. The cryopreserva‑
tion technique is very prone to induce cell damage due to dehydration, osmotic shock,
and formation of ice crystals, thereby decreasing the cell viability [478]. Microfluidic CPA‑
integrated devices introduced a great advantage of cryopreservation in a single platform.
These procedures, such as automated freeze‑thawing cycles with potentially adjustable
cell concentration in addition to low‑CPA vitrification, were demonstrated with a series of
functional microtubes in form of microfluidics channels [479]. In the case of fertility preser‑
vation, oocyte cryopreservation is a significant process and, as Guo et al. demonstrated, a
microfluidic device could be utilized to minimize the osmotic stress injury (OSI) on porcine
oocytes during CPA loading and unloading [480]. They indicated that their invented mi‑
crofluidic system was able to decrease the potential osmotic damage drastically through
the sequencing of loading and unloading CPAs and, thus, promotes the developmental
capability of oocytes. Embryo vitrification is another vital process in fertility preservation.
Tirgar et. al. designed an automatic standalone microfluidic‑based cryopreservation sys‑
tem for mouse blastocyte vitrification [481]. This device enhanced, controlled, and offered
a continuous CPA loading without damaging the spherical morphology of blastocytes and
minimized the shrinkage rate. Moreover, in a recent study, Özsoylu et al. developed a
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method to preserve the cell‑based biosensor chip, which allowed one to preserve adherent
cells on sensor surfaces and, therefore, this method was called on‑sensor cryopreserva‑
tion (OSC) [482]. Here, the biosensor surface was modified by polyethylene vinyl acetate
(PEVA) electrospun fibers to make the sensor durable for high temperature changes. Then,
the microfluidic platform was integrated through the sensor to ensure fast thawing and
decreasing thermal mass. The results indicated that the OSC method is an ideal technique
for cryopreservation of adherent cells using sensors and, therefore, it is recommended for
“ready‑to‑use on‑site” applications.

4.9. Summary of Biomedical Applications of Microfluidics Devices
The biomedical application section explained various techniques where microfluidics

devices have been employed for diagnosis, therapeutics, and organ modeling. The role of
microfluidic devices was discussed in disease detection, drug discovery, disease modeling,
tissue engineering, and organ‑on‑a‑chip use. In the following section, the focus of our
review was based on the biosensor development of microfluidic devices in recent years.
At last, we have highlighted the two futuristic topics on the application of microfluidic
devices in artificial cell development and cryogenic applications.

5. Conclusions
Over the last few decades, there have been significant advances in microfluidics de‑

vices, which are used in various applications, from diagnostics to disease modeling. Due to
the use of biocompatible materials in the production of microfluidic (MF) devices and the
development of many production techniques, their use in biological applications has be‑
come widespread in recent years. Although there are different production techniques, cost
varies depending on the resolution and scale. Although some designs are costly, microflu‑
idic devices can be customized into desired shapes and sizes using soft lithography meth‑
ods. Lab‑on‑a‑chip platforms have been developed because microfluidic devices are easily
integrated and can perform different tasks on the same platform to expedite results. These
devices can also be created as a cascade system and can perform all experimental tasks that
are normally carried out in laboratories using large‑scale systems. Microfluidic devices
that are not used directly in the diagnostic tasks can contribute indirectly by carrying out
auxiliary tasks such as particle separation and fluid mixing. In addition to the utility of mi‑
crofluidics as convenient diagnostic tools, modern innovations in microfluidic fabrication
techniques improve biomedical integration. Microfluidic bio‑systems have revolutionized
the field of tissue engineering and organ‑on‑a‑chip. Applications of microfluidic systems
were initially focused on food and drug testing. Yet, the need for small‑scale biomedical
tools featuring microfluidics has expanded over time. Many conventional laboratory di‑
agnostic methods, such as RT‑PCR and other molecular analysis methods, have rendered
microfluidic systems very powerful tools. Microchannel systems that approximate and
emulate the physiological microenvironment of tissues in patients using organ‑on‑a‑chip
approaches represent exciting new avenues in which significant progress has been made.
Other applications, such as DNA detection and protein detection, have resulted in the de‑
velopment and implementation of microfluidics‑based sensor kits. Surface acoustic wave
(SAW) sensors, which transduce mass and density changes into electrical signals, repre‑
sent some of the most promising tools for biomarker detection. In conclusion, this review
discussed how different techniques can be developed for fabricating microfluidic devices
and other biocompatible materials. Microfluidic devices will find more use in biomedical
applications in the future and will reduce diagnostic costs and accelerate diagnosis time.
At present, many biomedical studies have actively adopted microfluidics based on their
effectiveness in manipulating liquids and particles, sensing changes, and the easy‑to‑use
capabilities of microfluidic structures. One of the major challenges in the development of
microfluidics devices with biomedical applications is the transition from laboratory envi‑
ronments to real life industrial application and large‑scale production for commercializa‑
tion. The microfluidic chips to be developed must be portable, durable, and user‑friendly.
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In addition, the microfluidics‑based platforms for diagnostic purposes must be adaptable
and consistent for sufficient clinical trials and home testing and point‑of‑care testing. Be‑
cause of the intrinsic advantages of microfluidics, we anticipate that microfluidics will
dominate the biomedical device sector and provide superior diagnostics at a fraction of
the time. The development of various geometries with nano/microelectromechanical fab‑
rication methods, combined with easy integration of many external energy forces, may
broadly expand the use of microfluidics in biomedical sciences and the clinical practice in
the future. Future advances in image/data processing and machine learning techniques
will certainly further amplify the impact of futuristic microfluidic devices.
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