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Abstract The ability to investigate substances at the molecu-
lar level has boosted the search for materials with outstanding
properties for use in medicine. The application of these novel
materials has generated the new research field of
nanobiotechnology, which plays a central role in disease di-
agnosis, drug design and delivery, and implants. In this re-
view, we provide an overview of the use of metallic and metal
oxide nanoparticles, carbon-nanotubes, liposomes, and
nanopatterned flat surfaces for specific biomedical applica-
tions. The chemical and physical properties of the surface of
these materials allow their use in diagnosis, biosensing and
bioimaging devices, drug delivery systems, and bone substi-
tute implants. The toxicology of these particles is also
discussed in the light of a new field referred to as
nanotoxicology that studies the surface effects emerging from
nanostructured materials.
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Introduction

Nanotechnology has many definitions and applications.
However, all definitions highlight the design and development
of highly ordered bottom–up nanostructured materials that
offer specific responses when exposed to certain stimuli

(Saji et al. 2010). Surface chemistry and physics Btune^ the
applications of nanosized materials. The concentration of
atoms on the surface of these systems represents up to 90%
of their total mass and results in enhanced reactivity. In this
sense, modifying the surface of a nanomaterial in different
ways can produce materials with distinct biological properties
and functionalities for a specific end application and with
improved solubility under physiological conditions (Gupta
et al. 2007; Kasemo 2002).

Nanotechnology products have become increasingly useful
in biomedicine and have led to the advent of a hybrid science
named nanobiotechnology (Saji et al. 2010). Nanomaterials
have noteworthy applications in nanobiotechnology, particu-
larly in diagnosis, drug delivery systems (Faraji and Wipf
2009), prostheses, and implants. Nanoscale materials integrate
well into biomedical devices because most biological systems
are also nanosized. The materials commonly used to develop
these nanotechnology products are inorganic and metal nano-
particles, carbon nanotubes, liposomes, and metallic surfaces
(Liu et al. 2016a). By using chemical or physical methods and
taking advantage of specific biological reactions, such as the
antibody–antigen interaction, receptor–ligand interaction, and
DNA–DNA hybridization, it is possible to conjugate
biospecific molecules with nanoparticles. Surface chemistry
(composition) (Castner and Ratner 2002; Moyano and
Rotello 2011), surface physics (topography and roughness)
(McNamara et al. 2010; Yim et al. 2010), surface thermody-
namics (wettability and free energy) (Menzies and Jones
2010), and their toxicological effects determine the specific
application of nanomaterials.

In this review we discuss the biomedical applications of
nanoparticles and nanopatterned surfaces (Fig. 1), including
surface features and modifications which are responsible for
tuning their response when in contact with biological environ-
ments. The design of nanostructures by controlling their
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surface properties is presented as a strategy to achieve im-
proved responses aimed at a specific application. In this con-
text we focus on the use of inorganic (metallic and metal
oxide) and organic (carbon-nanotubes and liposomes) nano-
particles and nanopatterned flat surfaces in diagnosis, biosens-
ing and bioimaging devices, drug delivery systems, and bone-
substituting implants. The toxicology of these particles is also
discussed in the light of a new field referred to as
nanotoxicology that studies the surface effects emerging from
nanostructured materials.

Biomedical applications of metal oxide nanoparticles

Metal oxide nanoparticles have been employed to construct
several medical devices. The magnetic properties of iron oxide
have been used for therapeutic and diagnostic purposes, such as
contrast agents for magnetic resonance imaging, magnetic par-
ticle imaging, and ultrasonic techniques (e.g. magneto-motive
ultrasound (Oh et al. 2006), photoacoustic imaging, and mag-
netic particle hyperthermia (Gupta and Gupta 2005; Liu et al.
2016b). The electronic structure of zinc oxide (ZnO) is useful
for biomedical applications; for example, the intrinsic fluores-
cence of ZnO nanowires has been employed to image cancer
cells (Hong et al. 2011). To this end, functionalization of the
surface of ZnO nanowires increases their solubility in water and
their biocompatibility and reduces their cellular toxicity.

Functionalization of the ZnO surface with specific biomole-
cules creates photosensitive biosensors (Liu et al. 2006).

The high surface area of nanoparticles favors the prompt
adsorption of plasma proteins (Deng et al. 2009). Hence, the
chemical composition and physical topography of the surface
of nanoparticles and the combination of these properties (wet-
tability, surface-free energy) tailor the interaction of the parti-
cles with different compounds and dictate their end applica-
tion (Fig. 2).

Titanium oxide (TiO2) has a wide range of biomedical appli-
cations (Fei Yin et al. 2013). For instance, in bone-substituting
materials, the biofluid first makes contact with a thin TiO2 layer
that spontaneously emerges on the top surface of metallic titani-
um (Hanawa 2011; Feng et al. 2003). This has motivated the use
of TiO2 nanoparticles for bone regeneration (He et al. 2008;
Kubota et al. 2004; Brammer et al. 2012; Tan et al. 2012).
Zirconium oxide has recently been used for dental implants
because, like titanium, it is compatible with the same type of
hard tissues (Koch et al. 2010; Özkurt and Kazazoğlu 2011).

Metal nanoparticles

The strong optical absorption related to the surface plasmon
resonance of noble metals makes them suitable for construct-
ing molecular contrast devices (Liao et al. 2006; Bhattacharya
and Mukherjee 2008). Absorption and scattering in the visible
and near-infrared regions have stimulated the application of
materials containing metal nanoparticles in the fields of sens-
ing and diagnosis. Gold nanoparticles can be deposited on
appropriate substrates or added to substrate formulation to
enhance luminescence (Bhattacharya and Mukherjee 2008).
The application of this technology depends on the size and
geometry of the particles because these determine their
absorption/scattering properties. Gold nanorods absorb in the
near-infrared and have been used to monitor the blood flow
in vivo using photoacoustic imaging (Wang et al. 2005). The
literature contains examples of applications that used gold
nanocages, nanoshells, and nanospheres (Liao et al. 2006). It
is possible to modify the surface of gold nanoparticles with
sulfur-containing compounds because gold and sulfur have a
high chemical affinity (Schmidt and Healy 2009; Moyano and
Rotello 2011). Modification of gold nanoparticles with
biospecific compounds enhances binding to specific tissues
(Faraji and Wipf 2009). For example, surface-labeled gold

Fig. 1 Nanobiotechnology and its main tools

Fig. 2 Correlation between the main chemical and physical properties of the surface of nanoparticles and the end nanobiotechnological application of
nanomaterials
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nanoshells have been used to target cancer cells in vitro
(Bhattacharya and Mukherjee 2008) and the results confirmed
by optical microscopy.

Given all the advantages of using noble metal nanoparticles
for biomedical applications, silver nanoparticles (AgNPs)
have also attracted interest. Some biosensing applications are
based on spectral modifications due to aggregated particles
(Liao et al. 2006; Moyano and Rotello 2011). These particles
display well-known antibacterial activity as well as an anti-
inflammatory action (Chaloupka et al. 2010). The preparation
of AgNPs is straightforward (Guidelli et al. 2011, 2012) as
their size is easy to control, and they can be incorporated into
different materials without difficulty (Guidelli et al. 2013;
Guidelli et al. 2016). Published reports describe the use of
silver as a coating in materials for cardiovascular implants
and central venous and neurosurgical catheters (Chaloupka
et al. 2010; Chen and Schluesener 2008).

Polymers used as bone cement (Alt et al. 2004) and wound
dressing (Tian et al. 2007) have also been loaded with AgNPs
and their antimicrobial responses compared to standard anti-
biotics and silver salts compared. Only AgNPs-bone cement
combines high antibacterial activity with low cytotoxicity as
compared to silver salt and gentamicin-bone cement (Alt et al.
2004). Controlled delivery coupled to small particle size is one
strategy to reduce toxicity. AgNPs have been added to latex
membranes used for skin regeneration (Guidelli et al. 2013),
with the membranes acting as a biomaterial and controlling
the nanoparticle delivery rate (Abukabda et al. 2016).

Carbon nanotubes

The physical and chemical properties of carbon nanotubes
(CNTs) have motivated their application in several areas of
science.Modification of the surface of these particles and their
functionalization with biological molecules at the molecular
level has increased their use in nanobiotechnology (Yang et al.
2007; Prato et al. 2008; Sharma et al. 2016). These modified
particles provide well-dispersed samples that are compatible
with physiological conditions (Williams et al. 2002). In this
context, nanotubes might be useful drug delivery vehicles
because their nanometer size enables them to move easily
inside the body (Pastorin et al. 2006; Faraji and Wipf 2009).
The bioavailability of methotrexate, a drug used in cancer
therapy, increases when it is administered after being
immobilized on a double-functionalized carbon nanotube sur-
face (Pastorin et al. 2006). The active compound can be
inserted inside the tube or it can bind to the surface of the
particle with the aim to target and alter cell behavior at the
subcellular or molecular level. Moreover, biofunctionalized
single- or multi-walled CNTs can be taken up by a wide range
of cells, traffic through different cellular barriers (Yang et al.
2007), and interact with DNA (Pantarotto et al. 2004a).

Cationic CNTs complexed with plasmid DNA. can also be
taken up by cells and interact with DNA (Pantarotto et al.
2004b). CNTs are suitable scaffolds for the proliferation of
osteoblasts (Zanello et al. 2006; Zancanela et al. 2016) and
for the regeneration of bones (Zhao et al. 2010; Yoon et al.
2014). We have demonstrated that the toxicity of unmodified
single- and multi-walled CNTs is concentration-dependent
and that at concentrations of up to 10−2 mg/mL, they particles
can be safely used in osteoblast cultures (Zancanela et al.
2016). We recently proposed the use of collagen-modified
calcium carbonate nanotubes as a new generation of tubular
structures for bone regeneration (Tovani et al. 2016).

Liposomes and nanobiotechnology

Liposomes are small artificial lipid-bilayer spherical vesicles
that were first reported by Bangham and Horne (1964).
Liposomes with different properties can be achieved by tuning
their composition, surface charge, and size. The rigidity and
fluidity of the bilayer can also be tailored by choosing specific
lipids (Akbarzadeh et al. 2013). These artificial membrane
models can be classified on the basis of their diameter. Small
unilamellar vesicles range in size from 20 to 100 nm, whereas
large unilamellar vesicles (LUVs) range from 200 to 1000 nm.
The vesicles consist of a single lipid bilayer and an internal
aqueous cavity. Liposomes can also be classified according to
the number of lipid bilayers. Multilamellar vesicles are formed
by multiple, concentric phospholipid bilayers intercalated
with aqueous compartments, with diameters ranging from
400 to 3500 nm (Akbarzadeh et al. 2013; Bilia et al. 2014).

Over the last two decades, liposomes have been widely
employed as drug delivery systems for cancer and gene ther-
apy and vaccines, among other uses (Madni et al. 2014; Liu
and Chen 2015). These vesicles can deliver a range of bioac-
tive compounds, such as antioxidants, antimicrobials, and
angenic proteins (Simão et al. 2015). The functionality of
these molecules is preserved after encapsulation (Benech
et al. 2002; Shehata et al. 2008; Akbarzadeh et al. 2013;
Gao et al. 2014). Moreover, compounds with different solu-
bility can be encapsulated inside the aqueous cavity or at the
surface of the lipid bilayers (Ghalandarlaki et al. 2014;
Reimhult 2015). Because liposomes are potentially atoxic,
degradable under physiological conditions, and non-immuno-
genic, they can be expected to deliver drugs with a low deg-
radation rate, with diminished collateral effects (Ravi-Kumar
2000; Ghalandarlaki et al. 2014).

More than materials for drug delivery, liposomes can also
be used as biomimetic models to study how membranes inter-
act with hydrophobic drugs and proteins. Actually, protein-
associated liposomes (proteoliposomes) can be employed to
investigate the action of photosensitive dyes applied during
photodynamic therapy (Bolfarini et al. 2012; Longo et al.
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2012; Faria et al. 2015) to prevent/treat several diseases
(Daghastanli et al. 2004; De Lima Santos et al. 2005;
Zucolotto et al. 2007; Ciancaglini et al. 2012; Simão et al.
2015). Proteoliposomes can be used to study how the pro-
tein–lipid interactions specifically affect the surface of the
membrane model. The scientific community has highlighted
this approach as an excellent tool to understand biochemical
and biophysical phenomena and to evaluate biotechnological
applications (Camolezi et al. 2002; Ierardi et al. 2002;
Daghastanli et al. 2004; De Lima Santos et al. 2005; Rigos
et al. 2008; Santos et al. 2009; Bolean et al. 2010, 2011, 2015;
Simão et al. 2010a, 2010b; Barbosa et al. 2011; Yoneda et al.
2013, 2014; Simão et al. 2015; Dong et al. 2016; Elkhodiry
et al. 2016).

Nanotechnology to engineer the surface of metallic
implants

Nanotechnology has also found applications in tissue and im-
plant engineering. The possibility to enhance the surface area
of the material and to tune the roughness of its surface at the
nanometric scale should yield better biological responses of
osteogenic cells and effective mechanical contact between tis-
sue and implant. Titanium and its alloys are considered to be
the most attractivematerials for bone replacement applications
(Rack and Qazi 2006). The widespread use of this metal is due
to its improved mechanical properties, high resistance to cor-
rosion, low surface reactivity, and acceptable biocompatibility
in vivo and in vitro. The live tissue heals in close apposition to
the metal, although there may be a thin fibrous layer separat-
ing the metallic implant and the bone that represents a failure
in the osteointegration process. In this context, it is necessary
to modify the surface of the implant to create a stronger bone–
implant interface and to achieve successful osteointegration
(Puleo and Nanci 1999; Le Guéhennec et al. 2007). At first
glance, modification of the surface should only change the
topography (Le Guéhennec et al. 2007). However, the addi-
tion of bioactive compounds and the creation of roughness at
the nanometer level appear to be more promising strategies for
biomedical applications. In the following subsections, we re-
view which factors must be modified on the surface of im-
plants if better host tissue responses are to be achieved. We
also describe how nanotechnology is being used to engineer
the surface of implants at the nanometer scale.

Why modify an implant surface?

The aim of modifying metallic surfaces is to improve the
contact between the implant and the live tissue in bone-
substitution applications (Jalota et al. 2007). Successful ortho-
pedic implant osteointegration relies on the quick and efficient
formation of bone tissue at the surface of an implant

(Albrektsson et al. 1981). A cell never encounters a complete-
ly clean surface; instead, it comes into contact with a surface
conditioned by water molecules, ions, and adsorbed proteins.
Therefore, water interactions, protein adsorption, and cell at-
tachment are the first events taking place at the tissue–implant
interface after implantation (Puleo and Nanci 1999). This con-
ditioned surface dictates cell attachment and the resulting mor-
phology and behavior of the cell. All these early events at the
bone–implant interface are determined by properties of the
surface, such as topography, wettability, charge, and chemical
composition (Chen et al. 2014). Surface engineering ensures
that an implant with an optimized surface is achieved by ma-
nipulating these properties to maximize anchorage of the im-
plant to the tissue. The need tomodify the surface is clear from
clinical observations indicating that bone growth rate is higher
moving away from the implant surface than toward the im-
plant surface (Puleo and Nanci 1999).

In the case of bone-substitution materials, roughness gov-
erns the amount of bone tissue that is in close contact with the
surface of the implant (Wennerberg et al. 1998). In this con-
text, topographic features, such as valleys, peaks, and grooves,
act as points for cell anchorage and protein adsorption
(Lampin et al. 1997; Anselme et al. 2000; Webster et al.
2000; Jayaraman et al. 2004). For materials with the same
surface chemistry, cell growth will be driven by topographic
features (Rosales-Leal et al. 2010). Rougher surfaces promote
higher adhesion of osteoblasts (Martin et al. 1995; Webster
and Ejiofor 2004) and dictate the metabolism of these cells
regulating gene expression (Brett et al. 2004), the synthesis of
collagen (Boyan et al. 2001; Wennerberg and Albrektsson
2009), and the activation of integrins (Khang et al. 2012).
Manipulation of the topography of a surface at the nanoscale
level has been shown to positively affect cell behavior (Khang
et al. 2012). Osteogenesis starts faster on surfaces organized at
the nanometer level than on smooth surfaces (Riehle et al.
2003; Webster and Ejiofor 2004; Sato et al. 2005).
Therefore, manipulation of the nanotopography of a biomate-
rial can stimulate and control cellular behavior such as attach-
ment, migration, spreading, gene expression, proliferation,
differentiation, and secretion of matrix components (Klymov
et al. 2013). Creating materials organized at the nanometric
level can be an effective strategy to target the cell recognition
process (Brunetti et al. 2010) and may affect the interaction of
solvent molecules with the surface, thus impacting the inter-
facial energy of the material (Kuna et al. 2009).

Wettability determines how cells and fluids interact with
surfaces. Wettability refers to the ability of a fluid to spread
on a given surface. It is related to the equilibrium of forces
acting at the solid–liquid interface and is governed by the to-
pography of the surface (Quéré 2008). In biomaterials science,
wettability is assessed by measuring contact angles (θ) between
a liquid drop and the surface (Menzies and Jones 2010). When
this liquid is water, surfaces where the water droplets
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spontaneously spread over the surface (θ < 90°) are considered
to be hydrophilic; if θ is >90°, the surface is considered to be
hydrophobic. However, this classical limit between a hydro-
philic and a hydrophobic surface has been reviewed due to
the specific structure of water molecules at the interface (Berg
et al. 1994; Vogler 1998). The value of θ is measured at the
solid–liquid–gas interface and is univocally fixed by the chem-
ical nature of the different phases and the equilibrium forces
acting among these phases. Contact angles are mathematically
correlated by the Young–Dupré equation (Kwok and Neumann
1999), namely, cos(θ) = (γSG − γSL)γLG, where γ is the interfa-
cial tension between the solid (S), liquid (L), and gas (G)
phases. In particular, γSG is called the surface free energy
(SFE) of a solid. SFE is an important parameter because it
can be determined by using chemical models that depend not
only on γSL and γLG, but also on specific intermolecular forces.
Hence, the total SFE can be seen to be the result of the combi-
nation of dispersive forces (γSG

d ) and polar forces (γSG
p ) (Kwok

and Neumann 1999). Thus, the SFE of a biomaterial selectively
determines how either the polar or the non-polar portion of
proteins and cell membranes interact with the surfaces.

To achieve a specific effect for biomedical applications, the
type of protein and the manner in which the protein is
adsorbed onto the implant are more important than the amount
of adsorbed protein. Replacement of the initially adsorbed
proteins with other proteins that display a higher affinity
dictates the bioactivity of the surface of a biomaterial (Tirrell
et al. 2002). The protein layer absorbed onto the surface of the
implant will determine how cells attach and spread, thereby
influencing cell maturation. Arima and Iwata (2007) showed
that albumin can block cell–implant interaction by strongly
binding to hydrophobic surfaces, thus inhibiting replacement
by other extra-cellular matrix (ECM) proteins. On the other
hand, when adsorbed albumin binds to hydrophilic groups, it
can indeed be replaced with ECM proteins. Consequently, the
type of protein and the type of binding govern cellular
adhesion and migration processes (Arima and Iwata 2007).
Cells can non-specifically adhere to surfaces through ionic
and van der Waal’s forces, or they can specifically adhere to
the surface via adsorbed protein clusters (Anselme 2000). In
osteoblasts, integrin receptors recognize motifs such as
Arg-Gly-Asp (RGD) on proteins like fibronectin and
vitronectin to form local focal adhesions. The formation of
these adhesions activates a cascade of intracellular signaling
pathways that affect cell behavior (Hendesi et al. 2015).
Recognition of this integrin-mediated cell attachment
mechanism has inspired scientists to modify metallic surfaces
by immobilizing sequences of RGD-peptides (Ferris et al.
1999; Rammelt et al. 2006). Thus, surface modification adds
another dimension to bioactive coating by altering not only
the chemistry but also the topography; in this context,
manipulating the SFE of the surface might be the more
promising strategy to stimulate the cell adhesion process.

Kilpadi et al. (2001) observed that hydroxyapatite (HAp)
adsorbs more ECM proteins and binds more integrins and
osteoblast precursor cells than pure titanium or steel.
Therefore, the addition of bioactive compounds (e.g., bioactive
polar groups) to the metallic surface could be an alternative
approach to tailoring SFE and cell behavior. On hydrophobic
surfaces, human fetal osteoblasts express significantly lower
levels of the α5 and β3 integrin subunits than cells cultured
on hydrophilic surfaces (Lim et al. 2005). Moreover, surfaces
containing polar groups (COOH and NH2) display an enhanced
activity of integrins, which leads to a higher adhesion and
spreading of fibroblast cells (Faucheux et al. 2004). Using
macrocrophage cultures, Hotchkiss et al. (2016) observed that
materials with high surface wettability produced an anti-
inflammatory microenvironment through activation of macro-
phages and the production of cytokines, indicating it is crucial
to control wettability when attempting to improve the healing
response to biomaterials.

Bio-inspired modifications of surfaces

The addition of bioactive minerals inspired by the bone struc-
ture has been one of the most commonly used strategies to
modify metallic surfaces of the implant. Biomimetics is a de-
sirable strategy because it predefines nanochemical and/or
nanophysical structures. The manufacture of coatings based
on calcium phosphates (CaP) is common in biomaterials sci-
ence, and the application of such coatings to the implant sig-
nificantly affects the bone regeneration process (Surmenev
et al. 2014). HAp is a calcium orthophosphate mineral that
resembles the biological apatite found in bone tissue, where
HAp crystals are hierarchically organized into the array of
collagen fibers (Olszta et al. 2007). At the commercial level,
plasma spray (Surmenev 2011) and sputtered coating (Yang
et al. 2005) techniques produce apatite coatings. However,
such methods are complex and require extremely high tem-
peratures as well as expensive equipment. Moreover, these
mechanically based methods pose some challenges: homoge-
neous thickness and crystallinity are difficult to achieve, coat-
ing adhesion is low, CaP phases change during the coating
process, and particles are released from the surface (Le
Guéhennec et al. 2007; Surmenev 2011).

Inspired by the CaP growth process in in vivo systems,
physiological solutions or media have also been used to pro-
duce CaP coatings. This methodology allows the formation of
continuous CaP coatings with controlled surface topography
(Costa et al. 2012), but it can require long exposure times (Tas
2014). Simulated body fluid (SBF) is one of the most frequent-
ly used physiological solution (Kokubo et al. 1990; Cüneyt Tas
2000). SBF consists of a supersaturated CaP solution that sim-
ulates the pH and ionic composition of human body fluid and
is a standard method employed to evaluate the bioactivity of
materials (Kokubo and Takadama 2006). The use of
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biomimetic saturated solutions to grow CaP coatings is advan-
tageous because these solutions promote immobilization of
biofunctional substances, such as therapeutic agents, bone
morphogenic proteins, and growth factors within the CaP lay-
er, to create hybrid coatings that tailor specific cell responses.

One approach to surface modification science is to grow
biominerals using organic templates to guide crystal growth.
Several organic matrices, such as self-assembled monolayers
(Tanahashi andMatsuda 1997; Han andAizenberg 2003), poly-
mers (Wei and Ma 2004; Xu et al. 2014; Nogueira et al. 2016),
and collagen-based structures (Ehrlich 2010; Pastorino et al.
2014; Jin et al. 2015), have been used to study the growth of
biominerals. However, there has been little exploration of the
use of organic matrices to mediate the formation of hybrid
coatings on metallic surfaces (Walsh et al. 2001; Xia et al.
2012). Two promising techniques involve templating biomin-
eral coatings using Langmuir–Blodgett (LB) and layer-by-layer
(LbL) films (de Souza et al. 2014a; Cruz and Ramos 2016). LB
films are structured molecular films of amphiphilic molecules
and are a well-known biomembrane model used to understand
and to mimic biological events (Caseli et al. 2015). When a
solution of an insoluble amphiphilic molecule is spread on an
aqueous subphase, the molecules tend to adsorb spontaneously
at the air–liquid interface, to form Langmuir monolayers. If a
support is passed through the monolayer, LB films can be built
up by deposition of the condensed Langmuir monolayer on the
surface of the support. Manipulation of the immersion and
withdrawal of the support through the monolayer creates LB
films containing as many layers as desired. By judiciously
choosing the amphiphilic molecules, Ca2+ can interact with
the molecule polar heads, which affords a well-ordered Ca2+

array for biomineral growth after the biomineral is deposited on
metallic surfaces (Costa and Maquis 1998; Zhang et al. 2004;
de Souza et al. 2014b; Cruz et al. 2016). We have reviewed the
growth of homogeneous, nanostructured, and continuous
carbonated-HAp coatings on titanium and stainless steel sur-
faces using dihexadecyl phosphate (DHP) LB films as tem-
plate. We achieved hybrid coatings with high roughness and
wettability, which increased the proliferation of osteoblasts (de
Souza et al. 2014b). Moreover, the LB technique allows the
immobilization of different molecules (drugs, proteins) in the
organic matrix as an alternative to building hybrid-
biofunctional coatings. LB films have also been used as a
template to grow other mineral-based coatings, mainly
CaCO3 thin films (Cruz et al. 2016). CaCO3 has been widely
employed in bone surgery (Lopez et al. 1992; Piattelli et al.
1997; Yukna and Yukna 1998; Fujihara et al. 2005) and is a
biocompatible osteoconductive material (Piattelli et al. 1997;
Fricain et al. 1998). Our group reported the growth of
particulate CaCO3 thin films on titanium surfaces using
DHP-LB films as template (Cruz et al. 2016). This hybrid
coating was highly bioactive as assessed by the increased
proliferation of osteoblasts and the shorter growth times

(only 36 h) that were necessary to grow HAp after exposure
to SBF.

The LbL technique is based on alternating and consecutive
adsorption of opposite molecules onto solid surfaces as pro-
posed by Decher et al. (1992). It has been used to create
different hierarchical organic matrixes (Lvov et al. 1995;
Decher et al. 1998; Xiao et al. 2016). In the case of
polymeric-based LbL films, the choice of polyanions allows
Ca2+ to interact with the negatively charged groups present in
the polymer chain, resulting in the organization of an ionic
array for biomineral growth. The LbL technique is a versatile
approach that can be used to manipulate the properties of the
hybrid coatings. Ramos et al. (2008; 2012) controlled the
morphology and the formation of CaCO3 polymorph by
changing the polyelectrolytes used in the LbL matrixes
deposited onto metallic surfaces. Cruz and Ramos (2016)
reported that the LbL-hybrid coatings containing CaCO3

particles rapidly develop into HAp after exposure to SBF,
which attests to the high bioactive properties of the resulting
coatings.

Toxicology of nanomaterials

Despite the promising biomedical applications of
nanomaterials, knowledge of their toxicological effects is
lacking (Krug and Wick 2011). The toxicity of nanomaterials
depends on a wide range of parameters, including dose and
composition, as well as physicochemical properties, such as
size, surface charge, roughness, crystalline structure, and
shape (Oberdörster 2010).

The physicochemical properties of materials depend on
their dimensions. Consequently, the toxicological behavior
of the bulk material induces nanospecific toxic events
(Verma and Stellacci 2010). The term nanotoxicology has
been used to improve our understanding of the physicochem-
ical properties of nanoparticles and their toxic effects (Kim
et al. 2005; Jiang et al. 2008). Most nanotoxicological re-
search is based on studies involving cell culture (Carlson
et al. 2008). Several investigations have employed simple bio-
mimetic cell membrane models, such as Langmuir mono-
layers (Hartono et al. 2009), and proteins in vitro (Karmali
and Simberg 2011). However, as data obtained from in vitro
experiments may not reflect their in vivo effects (Fadeel and
Garcia-Bennett 2010), verification in vivo experiments is
needed (Kim et al. 2005; Mahmoudi et al. 2012) to predict
how nanomaterials interact with biological systems.

Although many assays have been carried out, inconsisten-
cy in methodologies has led to wrong toxicological interpre-
tations. For example, classic toxicology examines exposure
time and dose, but the toxicological effects of nanomaterials
do not fit with this concept (Elsaesser and Howard 2012). The
use of suitable dose metrics needs to be carefully considered.
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To compare the effect of nanoparticle size on its toxicity, nu-
merous studies have pointed out that the total surface area
should be considered as the dose (Jiang et al. 2008; Dhawan
et al. 2009) because the main phenomena occur at the surface
of the nanomaterials and not in the bulk as in the case of
regular toxicological assays (Verma and Stellacci 2010). In
this sense, comprehensive characterization of the material is
critical to associate the toxicity with the correct parameters
and properties of nanomaterials and to allow comparison
among literature data.

Another concept that needs to be incorporated into toxico-
logical studies is the transformation of the surface of
nanomaterials upon contact with the physiological environ-
ment. These changes are key to understanding their biological
behavior (Nowack and Bucheli 2007). In biological media,
before making contact with cells, the nanomaterial interacts
with the body fluid, an aqueous media of proteins and biomol-
ecules. In physiological media, the nanomaterial is covered
with proteins, resulting in a Bcorona^ (Cedervall et al. 2007;
Lundqvist et al. 2011) and a dramatic change in both the
properties of the surface of the nanoparticles and their biolog-
ical identity. The composition of the corona depends on the
size and the surface characteristics of the nanoparticle, which
will determine protein binding specificities and affinities.
Studies have shown that this corona is the first layer to be
recognized by cells (Lundqvist et al. 2011). Therefore, the
physicochemical properties of the nanomaterial + corona sys-
tem should be taken into account when predicting its biolog-
ical fate (Lynch and Dawson 2008).

Establishing the real effect of nanomaterials in biological
systems is a challenging task (Dhawan et al. 2009).
Nonetheless, in order to take advantage of the potential appli-
cation of nanomaterials to medicine, a detailed understanding
of their potential toxicity is necessary (Kunzmann et al. 2011).
However, the relationship between toxicity and physicochem-
ical properties should always be interpreted cautiously to min-
imize false results (Kroll et al. 2009).
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