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Featured Application: This review is significant to the researchers using plant-derived products 

as therapeutics. It evaluates and summarizes the most recent studies published in the last 20 years 

and combines the latest botanical description, pharmacological, and biomedical effects of the 

most popular phytonutrients and their active phytochemicals. Furthermore, this review provides 

the reading audience fast, summarized information of >250 scientific articles on the most utilized 

phytonutrients worldwide, of which much tertiary literature is found without the support of ro-

bust, reproducible scientific data. 

Abstract: Phytonutrients are plant foods that contain many natural bioactive compounds, called 
phytochemicals, which expose specific biological activities. These phytonutrients and their phyto-
chemicals may play an important role in health care maintaining normal organism functions (as 
preventives) and fighting against diseases (as therapeutics).  Phytonutrient’s components are the 
primary metabolites (i.e., proteins, carbohydrates, and lipids) and phytochemicals or secondary me-
tabolites (i.e., phenolics, alkaloids, organosulfides, and terpenes). For years, several phytonutrients 
and their phytochemicals have demonstrated specific pharmacological and therapeutic effects in 
human health such as anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, 
and immune response. This review summarizes the effects of the most studied or the most popular 
phytonutrients (i.e., turmeric, garlic, cinnamon, graviola, and oregano), and any contraindication 
found. This article also calculated the physicochemical properties of the main phytochemicals in the 
selected phytonutrients using Lipinski’s, Veber’s and Ghose’s rules. Based on our revisions for this 
article, all these phytonutrients have consistently shown several in vitro, in vivo, and clinical studies 
with great potential as preventives and therapeutics on many diseases. 

Keywords: phytonutrients; phytochemicals; turmeric; garlic; cinnamon; graviola; oregano; 
Lipinski's Rule of 5; Veber’s Rules; Ghose Filter. 
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1. Introduction 

For centuries, plants have been considered a significant source of medicinal nutrients 
and compounds. Historical findings have reported the use of plants by our ancestors to 
treat numerous diseases [1-3].  Consequently, it has been a quest for many individuals to 
search for herbal supplements and natural therapies to attend to their healthcare needs, 
prevent diseases, and support their nutrition. Plants produce a large variety of metabo-
lites. Primary metabolites (i.e., innate proteins, lipids, and carbohydrates) are directly in-
volved in the main intrinsic metabolisms as normal growth, development, and reproduc-
tion of organisms. In contrast, secondary metabolites, also known as phytochemicals, con-
fers a selective advantage to the plant organism, despite not being involved in their main 
metabolic pathways [4]. These phytochemicals are classified into four main chemical 
groups: phenolics, alkaloids, organosulfides, and terpenes [5]. Phenolics are the biggest 
group subdivided into seven groups: curcuminoid, stilbenes, tannins, flavonoids, phenol-
ics acids, lignans, and coumarins [6]. A summary of the phytonutrients’ metabolite com-
position is shown in Figure 1. 

Based on this definition of secondary metabolites, phytonutrients can be considered 
as a whole-plant extract containing one or more phytochemicals. Since one of the func-
tions of such secondary metabolites is to protect the plant organism from pests and dis-
eases, it is not surprising that many of them show activity against human ailments. The 
scientific literature contains strong evidence supporting healthy diets rich in phytonutri-
ents as being correlated with the prevention of chronic diseases, preventive medicine be-
ing one of the most important types of health care, if not the most [7-12]. However, the 
ingestion of plant-derived foods, also known as “superfoods,” or phytonutrients, to take 
advantage of its therapeutic properties is well under debate. Primarily, because of the dif-
ferent features affecting the looked-for properties between superfoods and extracts or 
phytochemicals, obtained as pure isolated compounds. 

When we consume superfoods, the first feature altering their biological effect is dur-
ing the food preparation, possibly inducing chemical decomposition and thermal dena-
turation of most metabolites, including phytochemicals [13,14]. Secondly, the different 
physiological barriers in the digestion process through the gastrointestinal tract determine 
the absorption, bioavailability, and delivery of all nutrients[15]. Multiple research groups 
have demonstrated the activity of the plant extract being higher when compared to the 
pure isolated phytochemical when orally administrated [16]. This difference is largely due 
to the general low bioavailability and low absorption of these isolated natural compounds, 
explained by their poor solubility[16-18]. To overcome this pharmacokinetic problem and 
study the real therapeutic potential of the pure phytochemicals, it is recommended to use 
other administration routes or develop improved delivery systems [19-20]. These results 
expose one of the most no worthy properties of the plant extracts- their synergistic inter-
actions between the mixture of metabolites, which creates a natural micellar nanoparticle 
behavior [21,22].  

The development of these intrinsic micelles in the extract significantly increases the 
successful delivery and high absorption of the phytochemical molecules [23]. On the other 
hand, if the phytochemical concentration in the herbal extract is extremely low, its bioac-
tivity would be underestimated. Furthermore, the metabolites concentration, composi-
tion, and quality from batch to batch in these extracts are considerably heterogeneous [24]. 
These inconsistencies make extracts challenging to fulfill the high integrity and the repro-
ducibility required to study their therapeutic activity analytically, even when people 
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claim their medicinal effect [5]. Thus, for the development of new drugs, isolated active 
phytochemicals are preferred over crude extracts. Fortunately, basic and clinical research 
studies of pure phytochemicals have continued for decades and have given important 
therapeutic outcomes. Because of these results, almost half of the drugs available in the 
market are naturally derived compounds [25], showing the pertinence to our review. 

Here, we aim to review studies published in the last 20 years that examine the botan-
ical description, pharmacological, and therapeutic effect of the most popular phytonutri-
ents, and their active phytochemicals. This review will focus on the following phytonutri-
ents: turmeric, garlic, cinnamon, graviola, and oregano. We emphasized the biomedical 
areas of the anticancer, antioxidant, antiviral, anti-inflammatory, antibacterial, antifungal, 
and immune response presented by the mentioned phytonutrients. Besides, special atten-
tion is given to potential contraindications found while consuming these phytonutri-
ents/phytochemicals alone or in combination with conventional medicine. After all, phy-
tonutrients impacting the health status of individuals, in a preventive or therapeutic way, 
remain an attractive topic for the public looking to include food with tangible health ben-
efits to their diets.  

2. Phytonutrients 

In the last 20 years, the researchers’ interest in natural products has grown in search 
of alternatives for disease prevention and therapies. In this review, we looked for the 
health benefits of the selected phytonutrients demonstrated by scientific studies. Further-
more, we constructed Table 1 to summarize our theoretical calculations of the physico-
chemical properties or “drug-likeness” relevant for gastrointestinal tract absorption of the 
main phytochemicals in the phytonutrients: turmeric, garlic, cinnamon, graviola, and ore-
gano. 

Figure 1. Phytonutrients’ Composition. Plants produce primary metabolites (i.e., innate proteins, lipids, and carbohydrates) 
as their normal metabolic functioning and secondary metabolites (i.e., phytochemicals), primarily to protect them from 
predators. These phytochemicals are classified into four main chemical groups: phenolics, alkaloids, organosulfides, and 
terpenes. Phenolics are the biggest group subdivided into seven groups: curcuminoid, stilbenes, tannins, flavonoids, phe-
nolics acids, lignans, and coumarins. 3D structures were visualized using PubChem [26] ball and stick model. 
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Table 1. Physicochemical properties calculations for the main phytochemicals of the selected phytonutrients. 

Phytochemical 

compound name 

Empirical formula / 

Structure 

MW 

(Da) 

HBA / 

HBD / 

RB 

Log 

P 

Log 

D 

A 

(cm3) 

PSA 

(Å2) 

GI absorption / 

L-RO5, GF, and 

VR violations 

Turmeric 

Curcumin C21H20O6  368.4  6 / 3 / 8  2.9  2.6  106 93.1 High / 0 

Demethoxycurcumin C20H18O5 338.3 5 / 2 / 7  3.2  2.6   97 83.8 High / 0 

Bisdemethoxycurcumin C19H16O4 

 

308.3 4 / 2 / 6 3.4 2.8  91 74.6 High / 0 

α-Turmerone C15H22O 218.3 1 / 0 / 4 4.4 4.1 69 17 High / 0 

Garlic 
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Alliin C6H11NO3S 177.2 4 / 3 / 5 -0.5 -3.3  44 99.6 High / 0 

Negative LogD 

Allicin C6H10OS2 162.3  1 / 0 / 5  1.2  1.4  46 61.6 Low / 

TNA<20 

Diallylsulfide C6H10S 114.2  0 / 0 / 4 2.6  2.9 37 25.3 Low / 

TNA<20 

MW<160 

A<40 

Z-Ajoene C9H14OS3 234.4  1 / 0 / 8  3.1  2.8  68 86.9 High / 0 

2-Vinyl-4H-1,3-dithiin C6H8S2 144.3 0 / 0 / 1  2.2  2.7  45 50.6 Low /  

TNA<20 

MW<160 

Cinnamon 

(E)-Trans-

Cinnamaldehyde 

C9H8O 132.2  1 / 0 / 2 2.1  1.8  42 17.1 Low / 

TNA<20 

MW<160 

(E)-Cinnamyl Acetate C11H12O2 176.2  2 / 0 / 4 2.6  2.6  53 26.3 High / 0 
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Eugenol C10H12O2 164.2  2 / 1 / 3 2.2 2.5  49 29.5 High / 0 

Cuminaldehyde C10H12O 148.2  1 / 0 / 2 3.0  3.1  47 17.1 Low /   

MW<160 

Protocatechuic Acid C7H6O4 154.1  4 / 3 / 1 1.2 -1.9  37 77.8 Low /  

TNA<20 

MW<160 

A<40 

Negative LogD 

Graviola 

Benzylisoquinoline C16H13N 219.3  1 / 0 / 2 4.0 4.3 72 12.9 High / 0 

Annonacin /Acetogenin C35H64O7 596.9 7 / 4 / 26 6.4 7.3 169 116 Low / 

TNA>70 

MW>500 

RB>10 

LogP>5.6 

A>130 

High LogD 
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Cinnamic Acid C9H8O2 148.2  2 / 1 / 2 2.4  -0.7   44 37.3 Low /  

TNA<20 

MW<160 

Negative LogD 

Coumaric Acid C9H8O3 164.2  3 / 2 / 2 2.4  -1.4   46 57.5 High / 0 

Negative LogD 

Caffeic Acid C9H8O4 180.2 4 / 3 / 2 1.4 -1.7 48 77.8 High / 0 

Negative LogD 

Rutin C27H30O16 610.5 16 / 10 / 

6 

1.8 -1.8 138 266 Low / 

TNA>70 

MW>500 

HBA>10 

HBD>5 

A>130 

PSA>140 

Negative LogD 

Oregano 

 Carvacrol C10H14O 150.2  1 / 1 / 1  3.3  3.1  47 20.2 Low / 

MW<160 

 Thymol C10H14O 

 

150.2  1 / 1 / 1  3.3 3.1   47 20.2 Low /  

MW<160 
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MW: molecular weight; S: aqueous solubility; LogP: lipophilicity; LogD: lipophilicity considering ionizable groups at pH 7.4; A: 
molar refractivity; HBD: Hydrogen bond donors, HBA: Hydrogen bond acceptors; RB: rotatable bonds; PSA: polar surface area; 
TNA: total number of atoms; L-Ro5: Lipinski’s Rule of 5; GF: Ghose Filter; VR: Veber’s Rules 

Predicted data of Empirical formula, Structure, MW (Da), H-bond Acceptor / Donor, Log P, Log D, and A were generated using 
PubChem [26], ChemSpider [28], ACD/Labs Percepta Platform - PhysChem Module [29] and US Environmental Protection 
Agency’s EPISuite™ [30]. 

Favorable properties or “drug-likeness” for GI tract absorption are predicted by the combination of L-RO5, GF, and VR: MW 
(160-500 Da); HBD ≤5; HBA ≤10; A (40-130); LogP (-0.4–5.6); RB ≤ 10: PSA<140; TNA (20-70) [27]. 

2.1. Turmeric 

2.1.1. Botanical Description 

Turmeric, also known as Curcuma longa, is a rhizomatous herbaceous perennial plant 
that belongs to the Zingiberaceae family (ginger family). This plant is highly branched with 
aromatic long leaves arranged in two rows. Turmeric flowers have colors ranging from 
white, green, yellowish, and purple-red [31]. Curcuma plants are wildly cultivated in 
Southeast Asia and the Indian region where is used mainly for herbal medicinal applica-
tions, dietary supplement, and cuisine purposes [32,33]. The most essential part of tur-
meric used as a spice and herbal supplement is the rhizome in the roots of the plant. Tur-
meric powder has a pungent taste and distinctive yellow/orange color due to pigments 
and curcuminoids phytochemicals in the rhizome [34]. Furthermore, primary metabolites 
(e.g., proteins and fats) and phytochemicals concentration, which dictate other physical 
properties and the color intensity of the turmeric powder, depending on factors like the 
type of soil, crop fertilizers, and pH [35]. 

2.1.2. Phytochemicals 

Turmeric’s therapeutic properties may include a wide variety of conditions found in 
the literature, where most of them come from the bioactive compounds in its rhizome.  
For years different research groups have shown that turmeric is extraordinarily rich in 
valuables phytochemicals with pharmacological properties including polyphenols (e.g., 
curcuminoids), terpenes (e.g., ar-, α- and β-turmerone, α-zingiber, and β-sesquiphellan-
drene), flavonoids, coumarins, saponins, tannins, and steroids [36-38]. The principal cur-
cuminoids are curcumin and its derivatives demethoxycurcumin and bisdemethoxycur-
cumin [32,39,40]. Curcumin is considered the major bioactive phytochemicals from tur-
meric and is around 5% of the rhizome. Some other bioactive compounds found in 

 O-Cymene C10H14 134.2  0 / 0 / 1  4.0 4.1   45 0 Low /  

MW<160 

 Apigenin C15H10O5  270.2  5 / 3 / 1  2.1 1.3  70 87 High / 0 

Luteolin C15H10O6 

 

286.2  6 / 4 / 1  2.4 1.1  72 107 High / 0 
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essential turmeric oils are aromatic-tumerones, α-santalene, and aromatic curcumene 
[41,42]. The biomedical uses of curcumin are limited by its short half-life, low stability, 
and limited bioavailability are its short half-life, low stability, and poor bioavailability 
[43]. However, there are different strategies under investigation to overcome these limita-
tions, as the use of natural enhancers and the development of delivery systems to encap-
sulate the curcumin [44,45]. Various studies have demonstrated that primary and second-
ary metabolites in turmeric extracts may enhance the bioavailability of curcumin in vivo 
[43,46]. Some other phytochemicals in combination with curcumin have shown synergistic 
effects increasing its bioavailability, e.g., quercetin, genistein, terpineol, epigallocatechin-
3-gallate, and resveratrol [47,48]. 

2.1.3. Biomedical effects 

2.1.3.1. Anticancer 

Turmeric extracts and isolated curcumin have been extensively studied for cancer 
applications. Since 1985, turmeric extracts have demonstrated potent cytotoxic activity 
against cancer in vitro and in vivo [49]. Then, it also entered clinical studies for the treat-
ment of cancer [50]. Curcumin has been shown to diminish tumor growth effectively, pre-
vent tumor formation, angiogenesis, migration, and invasion by modulating several cell 
signaling pathways related to adhesion molecules, cell survival proteins, growth factors, 
transcription factors, cytokines, kinases, and receptors [51]. Different studies demon-
strated that curcumin downregulates cyclin D1, cyclin E and MDM2, and upregulates p21, 
p27, and p53 [52]. Due to the low bioavailability of pure curcumin, some researchers pre-
fer to continue studies using turmeric extracts, co-administration with other phytochemi-
cals, or the development of drug delivery systems. For example, Li et. al., reported that 
turmeric extracts (200 mg/kg) induced in vivo tumor growth inhibition and anti-metastatic 
effects using colorectal CT26, HT29, and HCT116 cancer cells [53]. Also, in combination 
with the phytochemical quercetin, it reveals a synergistic effect against lung, skin, colo-
rectal, and breast cancer cells [54]. In addition, Almutairi et. al., designed the encapsula-
tion of curcumin in a chitosan polymer nanoparticle (115 nm) to determine its anticancer 
activity. This curcumin-chitosan nanoparticle showed a sensitive release in more acidic 
pH as in cancer environment [55] are much more anticancer studies using curcumin and 
explaining its mechanism of action in the literature: [56-60]. 

2.1.3.2. Antioxidant 

Curcumin is an extremely potent antioxidant by inhibiting the formation of reactive 
oxygen species [61]. In an in vitro study, Ak and Gülçin demonstrated the potent radical 
scavenging activity of curcumin by inhibiting >95% of lipid peroxidation [62]. Yuliani et. 
al., investigated the antioxidative and neuroprotective effects of curcuminoids on neurons 
from Sprague-Dawley rats as a potential treatment for dementia. Turmeric extract (200 
mg/kg) prevents spatial memory deficits, and its effects were comparable to the standard 
dementia medicine, citicoline [63]. In addition, Hossen et. al., demonstrated the antioxi-
dant properties and protective effects to hepatic organs in orally supplemented rats 
through a combination of curcumin (62%), flavonoids (37%), and ascorbic acid (10%). The 
possible mechanism of action was through antioxidant enzyme upregulation and lipid 
peroxidation inhibition providing protecting effects [64]. 

2.1.3.3. Antiviral 

Several studies have demonstrated that the turmeric plant and the isolated phyto-
chemical curcumin have exhibited activity against a wide variety of viruses due to its po-
tential to interfere with different cellular signaling pathways, inhibiting virus prolifera-
tion and viral expression [65]. The list of viruses that turmeric demonstrated activity are 
Influenza A, Dengue, Viral hemorrhagic septicemia, Human immunodeficiency, Herpes 
simplex, Enterovirus 71, Zika, Chikungunya, Vesicular stomatitis, Human respiratory 
syncytial, and others [66]. In general, curcumin strongly inhibits virus proliferation and 
expression before it was able to infect the cells. An in vitro study focused on the structure-
activity relationship demonstrated that double bonds in the central carbon chain 
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enhanced the curcumin activity against type A influenza virus by its interaction with the 
receptor-binding region [67]. On the other hand, in another study, researchers claimed 
that the hydroxyl groups and phenyl rings of curcumin are responsible for the antiviral 
effect against the herpes simplex virus [68]. Curcumin showed an excellent inhibitory ef-
fect in the micromolar rage against transmissible gastroenteritis virus in cells in a dose-, 
temperature- and time-dependent manner [69]. In a very recent systematic review, Kun-
numakkara et. al., explained the potential of curcumin and other spices against SARS-

COV-2 due to their anti-inflammatory properties to inhibit the cytokine storm [70]. These 
findings suggest that turmeric extracts not only could be a potential treatment but also a 
prevention alternative for viral infections. 

2.1.3.4. Anti-inflammatory 

Turmeric also exhibited potential to treat chronic pain and joint inflammation [71]. 
In a study using turmeric extracts in combination with Allium hookeri extracts, research-
ers determined that this co-treatment restored the altered skin membrane and inhibits 
white blood cells and monocyte proliferation in inflamed skin models [72].  Bethapudi 
et. al., demonstrated that oral administration of turmeric extract containing 57% of the 
bioactive turmerosaccharides significantly reduced pain and inflammation effects on an 
animal model (mimicking human osteoarthritis). This turmeric extract revealed a similar 
analgesic effect to tramadol on osteoarthritis pain [73]. In a recent study, Nicoliche et. al., 
summarized the following curcumin’s mechanisms of action against the inflammatory 
process: inhibition of NF-ΚB (nuclear factor kappa B), MMP-1, 3, 8, 9, and 13 (matrix met-
alloproteinases), nitric oxide synthase, MAPK (mitogen-activated protein kinase), MCP 
(monocyte chemoattractant protein), STAT (signal transduction and activation transcrip-
tion), PI3K (phosphoinositide 3-kinase), lipo-oxygenase, JAK (Janus kinase), and COX-2 
(cyclo-oxygenase-2), MIP (migration inhibitory protein); also inhibition on the expression 
of interleukin-1, -2, -6, -8, -12 and -1β, and TNF-α (tumor necrosis factor-α); significantly 
improve collagen repair [74].  It is also postulated that curcumin upregulates the peroxi-
some proliferator-activated receptor-γ (PPAR-γ) [75]. 

2.1.3.5. Antibacterial 

There are also reports showing the antibacterial activity of turmeric [37].  Bangun et. 
al., developed an alginate-based drug delivery system of turmeric extract and tested its 
activity against Staphylococcus aureus (gram-positive) and Escherichia coli (gram-negative). 
The results showed that this turmeric drug delivery system affected both strains. How-
ever, there was more prominent growth inhibition on the gram-positive bacteria than on 
the gram-negative [76]. Another study performed by Czernicka, and colleagues eluci-
dated the antimicrobial potential of turmeric extract against several Gram-positive strains 
(one strain of Staphylococcus epidermidis and two strains of Bacillus subtilis), revealing that 
the different fractions of this extract can inhibit bacterial growth [37]. In the same way, 
Shakeri et. al., confirmed that gram-positive bacteria are more sensitive to curcumin than 
gram-negative bacteria due to their abundant hydrophilic lipopolysaccharide’s outer 
membrane [77].   

2.1.3.6. Antifungal 

Another significant effect of turmeric is its antifungal activity. Chen et. al., showed 
that turmeric extracts have potent antifungal activity against 20 pathogenic fungi 
(e.g. Fusarium verticillioides, Curvularia pallescens, Colletotrichum falcatum, Aspergillus niger, 

Aspergillus terreus, Fusarium oxysporum, Fusarium moniliforme, Fusarium graminearum, 

Phoma wasabiae, Alternaria alternate, Botrytis cinerea, Chaetomium olivaceum, Penicillium pal-

lidum, Mycogone perniciosa, and Verticillium dahlia) by disrupting the synthesis of the main 
components of the fungal cell wall and interfering the protein synthesis. From this study, 
phytochemicals in turmeric have better antifungal activity working in combination than 
individual compounds [78]. Murugesh and colleagues elucidated that turmeric extracts 
exhibit a potent anticandidal effect against Candida albicans on in vitro studies [79]. In a 
randomized clinical trial, researchers demonstrated that the topical administration of 
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curcumin 5% ointment can significantly reduce knee pain in osteoarthritis patients [80]. 
This suggests the consideration of turmeric topical use as a low-cost alternative with lesser 
side effects considering its antifungal capacity. 

2.1.3.7. Immunological 

As previously described, curcumin has antioxidant and anti-inflammatory properties 
leading to improve immune response. In in vivo experiments to study Graft-versus-Host 
Disease (induced after bone marrow transplantation), mice were pretreated with curcu-
min (100 µg/mouse). These curcumin-pretreated mice showed an increase in CD4+ and 
CD8+ cells before the transplant preventing the disease [81] Jian et. al., studied the effects 
of curcumin as a dietary supplement in the male Hu sheep model, reporting changes in 
blood metabolites, antioxidant capacity, testicular development, and immune response. 
After four months of dietary supplementation, the sheep showed an improvement in the 
reproductive system performance [82]. In vivo and clinical studies indicate that curcumin 
can positively affect several immune cells (i.e., T lymphocyte subsets, macrophages, den-
dritic cells, B lymphocytes, and natural killer cells) which diminishes the severity of dif-
ferent autoimmune diseases [83]. Additional studies found promising results in patients 
with several pro-inflammatory illnesses (i.e., cardiovascular disease, renal diseases, ar-
thritis, Crohn’s disease, ulcerative colitis, irritable bowel disease, pancreatitis, peptic ulcer, 
gastric ulcer, oral lichen planus, vitiligo, psoriasis, acute coronary syndrome, atheroscle-
rosis, diabetes, lupus, acquired immunodeficiency syndrome, β-thalassemia, biliary dys-
kinesia, and Dejerine-Sottas disease) [84]. 

2.1.4. Contraindications 

Despite the extent of evidence that reveals the beneficial effect of Curcuma longa ex-
tract, there might be several side effects and contraindications associated with its use. Pre-
vious studies reported that turmeric extract could increase bile secretion, trigger biliary 
colic to predispose patients with gallstones [85]. Besides, taking turmeric in abundance 
for extended periods may cause gastrointestinal ulcers [86].  In addition, it was reported 
that a high dose of turmeric supplementation was related to inducing atrioventricular 
block in patients, which disappeared once the supplementation was discontinued [86]. 
Furthermore, turmeric supplementation may increase the risk of bleeding if it is taken in 
combination with anticoagulant drugs [87]. Moreover, turmeric extract is not recom-
mended to certain diabetic patients due to anti-hyperglycemic and insulin sensitizer ef-
fects [88]. Due to curcumin’s iron chelating property, it is not recommended to a patient 
with iron deficiency [89]. 

2.2. Garlic 

2.2.1. Botanical Description 

Central Asia is considered the home of garlic (Allium sativum), a member of the Am-
aryllidaceae family, even though it has been farmed for a long time worldwide. Garlic is 
a perennial plant that produces edible bulbs from a tall stem of 25-70 cm and can be grown 
in mild climates [90]. Garlic bulbs are composed of various cloves, and those who have 
flowers are hermaphrodites (some varieties do not produce flowers) [91]. Its leaves and 
cloves have been used as a spice and food additive and in traditional medicine for a long 
time [92].  Garlic has two major subspecies: hardneck (produce flower stalks and results 
in a bulb circle of 6-11 cloves) and softneck (produce no flowers and the bulb circle can 
result in 24 cloves [93-94].  Garlic's cultivars are divided into eight subtypes (rocambole, 
marble purple, purple stripes, porcelain, glazed purple stripe, Asiatic, Creole, and turban) 
for hardneck and into two subtypes (artichoke and silverskin) for softneck [94]. Alliums 
like garlic produce a pungent odor when crushed [94]. Interest in the potential benefits of 
this plant originates in antiquity (up to 5,000 years ago) and is one of the earliest docu-
mented examples of plants used for health maintenance and treatment of disease [95]. 

2.2.2. Phytochemicals 
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Garlic is composed of various phytoconstituents, including alkaloids, saponins, fla-
vonoids, tannins, phenolics, terpenoids, and organosulfides [96]. In addition, garlic is con-
sidered a good source of vitamins and minerals, including vitamin B1, B6, C, manganese, 
copper, phosphorus, selenium, and calcium. [97]. Garlic's main phytochemicals are or-
ganosulfides (sulfur-containing compounds) including allicin, alliin, ajoenes (E-ajoene 
and Z-ajoene), sulfides (diallyl sulfide, diallyl disulfide, diallyl trisulfide), 2-Vinyl-4H-1,3-
dithiin, and allyl methyl sulfide [98,99]. These organosulfides are produced in garlic 
cloves [96]. Allicin is the primary bioactive phytochemicals present in the aqueous extract 
of garlic and is also responsible for the characteristic odor of garlic [93].  Thus, enzyme 
alliinase converts allicin to alliin when the garlic cloves are sliced/crushed [100].  For this 
reason, several studies have shown that crushed fresh garlic can deliver most of its active 
phytochemical [98, 101,102]. As allicin is chemically unstable, it rearranges into the stable 
phytochemical ajoene (E- and Z-) [103].  Allyl sulfides are most often found in garlic oil, 
and vinyl-4H-1,3-dithiin is most often found in stir-fried garlic and garlic oil [104,105]. 

2.2.3. Biomedical effects 

2.2.3.1. Anticancer 

Interestingly, phytochemicals such as garlic-derived allicin have been combined with 
commonly used anticancer drugs to enhance the therapeutic effect of current treatments. 
For example, an experiment performed by Bogdan et. al., showed that a combination of 
the anticancer drug, 5-fluorouracil with allicin, hindered colorectal (DLD-1) and lung can-
cer (SK-MES-1) cell migration and proliferation in vitro [106]. Petrovic et. al., studied the 
effectiveness of intraperitoneal injections of ethanolic homemade garlic extract against an 
aggressive breast cancer tumor in BalB/c mice. The results showed that after 28 days of 
treatment, cancer growth was delayed by 30% compared with untreated mice.         
[107].  In another study, Tanaka et. al, led a randomized double-blinded study on 51 pa-
tients with colorectal adenomas that utilized high-aged garlic extract (2.4 ml/day) and 
low-aged garlic extract (0.16 ml/day) for 12 months. At least one adenoma decreased by 
50% (> 6 months of uptake) in the high-aged garlic extract group, while there was no de-
crease in the low-aged garlic extract group [108]. Finally, a recent meta-analysis of epide-
miological articles using a total of 11 clinical trials and 12,558 cases concluded that garlic 
intake could reduce the risk of colorectal cancer [109], coinciding with previous studies 
[110], while another previous meta-analysis limited to men, showed no correlation [111]. 
These studies show that broader investigations with increased sample size are necessary 
to clarify the result discrepancies from several epidemiological studies. 

2.2.3.2. Antioxidant 

Garlic's phytochemicals also promote an antioxidant effect. Bhatt and Patel et. al., 
prepared 900 mg of cooked versus raw garlic and incubated these samples with gastric 
enzymes. These results showed that cooked garlic lost 90% of phenolic content, leading to 
less antioxidant activity due to heat (evaporation of active compound) than raw garlic 
[112]. Lei et. al., demonstrated that the scavenging activity of black fermented garlic etha-
nolic extract is concentration-dependent in incubation with 1,1-diphenyl-2-picrylhydrazyl 
(DPPH) radical. This study also showed that this garlic extract increased the mean lon-
gevity of flies (Drosophila melanogaster) compared to controls [113]. In a more translational 
scenario, a randomized, double-blind clinical trial on seventy women with rheumatoid 
arthritis was made to test the effects of garlic in pain mitigation. Patients received 1000 
mg of garlic for a total of 8 weeks. Results showed that pain after activities decreased in 
the garlic group compared to the placebo. This effect from garlic was attributed to a de-
crease in oxidative stress, which is a common feature in this disease [114]. 

2.2.3.3. Antiviral 

Several studies have shown the antiviral effect of garlic. Pre-clinical studies eluci-
dated that garlic and its organosulfides phytochemicals have great activity against several 
human and animal viruses by inhibiting viral RNA polymerase, reverse transcriptase, and 
downregulation of the extracellular-signal-regulated kinase/mitogen-activated protein 
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kinase signaling pathway [115]. The variety of viruses attacked by garlic are adenovirus 
[116], SARS-CoV-1 [117], dengue [118], herpes simplex [119], influenza A, B, and H1N1 
[120,121], hepatitis [122], HIV [123] and rotavirus [124]. Furthermore, in a very recent 
study, garlic essential oil was found to be acting on the angiotensin-converting enzyme 2 
(ACE2) and largely on the main protease of SARS-CoV-2 (PDB6LU7). This activity is cru-
cial to diminish the impact of the host receptor of SARS-CoV-2, and this study proposes 
that garlic oil active compounds can be used as a COVID-19 preventive treatment [125]. 

2.2.3.4. Anti-inflammatory 

The anti-inflammatory effect of garlic was studied by several research groups. In an 
in vitro study, Lee and coworkers showed garlic’s anti-inflammatory activity at μM con-
centrations. They demonstrated that garlic’s organosulfides Z- and E- ajoene and analogs 
inhibited nitric oxide/ prostaglandins and nitric oxide synthase/ cyclooxygenase, the 
phosphorylation of p38 mitogen-activated protein kinases and, also the expression of the 
pro-inflammatory cytokines: tumor necrosis factor-α, interleukin-1β, and -6 in a lipopol-
ysaccharide-induced macrophage cell line [126]. In a different study, Metwally et. al., in-
vestigated the anti-inflammatory effects of garlic extract and allicin in vivo in 140 female 
BALB/c mice with schistosomiasis. It was shown that garlic and allicin diminished the 
number of worms and the amount of proinflammatory cytokines [127]. In a double-blind 
clinical trial study, anti-inflammatory effects in 40 peritoneal dialysis patients were inves-
tigated by administering a garlic extract twice daily for 8 weeks. The results demonstrated 
that garlic diminished inflammatory markers in end-stage renal disease patients, specifi-
cally interleukin-6, C-reactive protein, and erythrocyte sedimentation rate in the treated 
group [128]. 

2.2.3.5. Antibacterial 

The antibacterial effect of garlic was analyzed in vitro using fresh garlic juice in agar 
plates against E. coli, P.mirabilis, K.pneumoniae, S.aereus, and P.aeruginosa. The results 
showed a dose-dependent inhibition in all bacterial strains exposed to a garlic concentra-
tion higher than 10% [129]. In another study, two different aqueous garlic extracts (from 
Allium sativum and Allium tuberosum) were tested in rats infected with one penicillin-sen-
sitive (ATCC 25923) and one methicillin-resistant (ATCC 33592) S. aureus. The two species 
of garlic were administered orally at 100 and 400 mg/kg) every 6 hrs for 24 hrs. Results 
showed that both garlic extracts could reduce the infection of the sensitive strain, but not 
against the resistant strain [130]. Thus, several in vitro studies demonstrated the antibac-
terial effect of fresh garlic extract on E. coli, Klebsiella pneumoniae, Proteus mirabilis, P. aeru-

ginosa, and S. aureus [129]; and also, against multidrug-resistant E. coli, P. aeruginosa, K. 

pneumoniae, Serratia marcescens, and methicillin-resistant S. aureus [131]. In a clinical trial 
that involved 15 patients with Helicobacter pylori, the results showed that Urease Breath 
Test was lower in patients who took 3 g of garlic cloves twice a day, demonstrating its 
antimicrobial effect [132].   

2.2.3.6. Antifungal 

Various studies have discussed the antifungal effect of garlic. Li et. al., showed that 
in vitro experiments, garlic oil had an inhibitory effect against Candida albicans at a higher 
concentration of 0.35 μg/ml [133]. Aala et. al., performed an experiment that evaluated the 
structural characteristic of Trichophyton rubrum in response to garlic and allicin aqueous 
extracts. The results showed that the allicin extract was more effective in impeding the 
growth of fungal cells by changing fungi morphology [134].  In another in vitro study, 
results indicated that 0.125 and 0.0313 % of garlic oil had a strong antifungal activity by 
penetrating hyphae cells and destroy their organelles against Penicillium funiculosum [135]. 

2.2.3.7. Immunological 

The immune response induced by the garlic phytochemical, allicin, was studied in 
female BALB/c mice. Results showed that allicin treatment reduced parasitaemias and en-
hanced pro-inflammatory mediators during malaria infection in a dose-dependent man-
ner [136]. In addition, Bruck et. al., studied the immune response of allicin in induced liver 
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damage BALB/c male mouse. Results showed that allicin-treated mice showed decreased 
levels of the pro-inflammatory tumor necrosis factor-α, aminotransferases, and improved 
hepatic necroinflammation [137]. A randomized, double-blind, clinical trial studied the 
immune and inflammatory effects of 3.6 g aged garlic extract administered daily in 51 
obese adults for 6 weeks. Results showed that patients who took the extract supplemen-
tation had less pro-inflammatory cytokines like interleukin-6 and tumor necrosis factor-α 
[138]. In a separate study, the immune effect of aged garlic extract supplementation was 
analyzed in a randomized, double-blind trial with 120 healthy participant adults to exam-
ine the proliferation of immune cells and the severity of symptoms during cold and flu 
season. Results showed that the garlic extract induced increased levels of NK cells, γ/δ-T 
cells, and reduced severity of symptoms, days, and incidence [139]. 

2.2.4. Contraindications 

There is limited data about the safety of garlic supplements [140]. Hoshino et. al., 
administered 40 mg of different garlic preparations to adult dogs. Results showed signif-
icant damage caused to gastric mucosa by raw garlic powder, gastric redness caused by 
boiled garlic powder, and no effect by raw garlic extract [141]. In 2014, the first case of 
pneumonia caused by fermented black garlic was discovered in a 77-year-old female pa-
tient who came into the hospital with shortness of breath and cough after taking black 
garlic. Also, she tested positive via a drug-induced lymphocyte stimulation test. The pa-
tient showed health improvement when she stopped taking black garlic [142]. In addition, 
the first case of drug-induced liver injury by the mild periportal cholestatic reaction was 
reported in a 43-year-old patient who suffered from hepatopulmonary syndrome follow-
ing a liver transplant by taking a high dose of Allium sativum as treatment. The patient’s 
liver enzymes returned to normal after discontinuation of the treatment [140]. According 
to the National Institutes of Health, garlic supplements may increase the risk of bleeding. 
It is contraindicated to take garlic supplements if the patient takes blood anticoagulants 
such as warfarin or if you will undergo surgery. These supplements could interfere with 
the effectiveness of specific drugs used as HIV treatments. Other side effects, especially 
with raw garlic, could include heartburn, upset stomach, and allergic reactions [143]. 

2.3. Cinnamon 

2.3.1. Botanical Description 

Cinnamon, appreciated for centuries for its peculiar flavor and aroma, is the dried 
inner bark of Cinnamomum verum (syn. C. zeylanicum Blume), an evergreen tree native of 
Sri Lanka and India. This C. verum is also commonly called as “true” cinnamon or Ceylon 
cinnamon. The Cinnamomum genus, which the cinnamons are part of, belongs to the laurel 
family (Lauraceae), and it includes about 250 evergreen aromatic trees and shrubs [144]. 

Most of the spice sold as cinnamon in the United States, however, comes from another 
cinnamon species, Cinnamonum cassia, also called Chinese cinnamon, because of its geo-
graphical origin in the mountains of China [145]. The botanical features of C. verum are 
summarized as trees (up to 50 ft) with long lance-shaped leaves, small yellow flowers 
organized in a cluster, and ovoid-shaped fruits. The botanical features of C. cassia are sum-
marized as trees (up to 65 ft) with thin lance-shaped leaves, white flowers axial inflores-
cences, and globose drupe fruits [146]. 

2.3.2. Phytochemicals 

Qualitative phytochemical screening of a methanolic extract from the bark of C. 

verum showed the presence of all four categories of secondary metabolites. It has also been 
shown that the phytoprofiles of the cinnamon extracts depends on the botanical part of 
the tree used for extraction; while essential oils from the C. verum bark mainly contain 
cinnamaldehyde and linalool, the flower and fruit extracts are enriched in (E)-cinnamyl 
acetate, and eugenol is the main compound of leaf extracts [147,148]. The bark of the cin-
namon tree has also been reported to contain coumarin, a benzenoid lactone. C. cassia is 
particularly rich in coumarin (3462.0 mg/kg in C. cassia vs 12.3 to 143.0 mg/kg for C. verum) 
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[149]. The solvent and temperature should also be carefully selected according to the mol-
ecule one wishes to extract, for example, water is a better solvent for extracting the phenols 
from C. verum than polar organic solvents at 200°C [150]. For Klejdus et. al., however, the 
factor for efficiently extracting mainly depends on the state of the destruction of the cin-
namon cell structures during the extraction protocol [151]. 

2.3.3. Biomedical effects 

2.3.3.1. Anticancer 

In vitro and in vivo studies by Yang et.al., show that the essential oil of cinnamon 
extracted from the bark of C. cassia significantly inhibits the growth of head & neck cancer 
cells and tumors in mice. The antitumor activity was believed to be mediated by the trans-
cinnamaldehyde acting as a competitive inhibitor of the epidermal growth factor receptor 
(EGFR). This kinase is often mutated and overexpressed in many tumors and regulates 
key cancer metabolic pathways such as proliferation, apoptosis, angiogenesis, and tumor 
invasiveness [152]. Similarly, Koppikara et. al., reported that aqueous bark extract from 
C. cassia inhibits the growth of cervical carcinoma cells in a dose-dependent manner (IC50 

= 80μg/mL) by apoptosis and loss of mitochondrial membrane potential. The treated cells 
exhibited reduced migration potential by the downregulation matrix metallopeptidase 2 
(MMP-2) and the EGFR. [153]. Furthermore, Perng et. al, demonstrated that C. verum com-
ponent 2-methoxy-cinnamaldehyde had an antiproliferative effect on human hepatic ad-
enocarcinoma both in vitro (IC50= 25.72 μM for 48h) and in vivo (10-20 mg/kg/d administra-
tion of 2-methoxy-cinnamaldehyde). The targeted metabolisms determined by this group 
were like the previous studies (i.e., mitochondrial apoptotic pathway), and activation of 
caspase-3 and -9, a sub-G1 phase cell cycle arrest and downregulation of nuclear factor- 
Κβ (NF-Kβ) [154]. 

2.3.3.2. Antioxidant 

A study on the peripheral blood mononuclear cells of rheumatoid arthritis patients 
showed that cinnamaldehyde and eugenol significantly reduced the levels of pro-inflam-
matory cytokines tumor necrosis factor-α (TNF-α) and interleukin-6. Also, these patients 
showed enhanced activity of the enzymes: superoxide dismutase, glutathione peroxidase, 
and catalase, suggesting an antioxidant effect. [155]. In the same way, Davaatseren et. al., 
demonstrated that trans-cinnamaldehyde diminish the production of nitric oxide and re-
active oxygen species in macrophages [156]. Furthermore, cinnamon capsules were orally 
administered for 12 weeks in a small controlled clinical trial to women with polycystic 
ovary syndrome. This study demonstrated that cinnamon improved the antioxidant sta-
tus and lipid profile of these patients by decreasing serum levels of malondialdehyde (de-
rived from lipid peroxidation), total cholesterol, triacylglycerol, and increasing high-den-
sity lipoproteins. [157]. 

2.3.3.3. Antiviral 

In vitro studies concluded that essential oil extracts from the leaves of C. verum extract 
had an antiviral effect in cells infected with the Influenza type A (H1N1) [158]. Similarly, 
a study by Moshaverinia suggests that a hydroalcoholic extract of C. verum at 1 mg/mL 
significantly reduces the viral titer of the human herpes simplex virus type 1 -infected 
cells [159]. Furthermore, in silico studies by Kulkarni et. al., suggest that cinnamaldehyde 
possesses a strong affinity to the S1 receptor binding domain of the spike (S) glycoprotein 
of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Cinnamaldehyde 
could therefore be an efficient pharmacological agent to inhibit the entry of the virus into 
the host cells [160]. 

2.3.3.4. Anti-inflammatory 

A study conducted in an in vitro human skin model for chronic inflammation and 
fibrosis suggests that a concentration of 0.0012% (v:v) significantly inhibits the expression 
of genes involved in the inflammation and immune DNA damage responses. The authors 
attributed the effect to the cinnamaldehyde, and cinnamyl acetate, the two main chemical 
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compounds present in the extract [161]. Likewise, Gunawardena et. al., have demon-
strated that C. verum and C. cassia extracts inhibited the release of pro-inflammatory nitric 
oxide molecule and tumor necrosis factor protein in activated macrophages. From these 
results, the ethanolic extract from C. verum showed more activity than the aqueous extract 
(IC50 = 36.4 and 122 μg/ml, respectively). The phytochemicals with more anti-inflamma-
tory effects were E-cinnamaldehyde and o-methoxycinnamaldehyde [161]. Furthermore, 
in an in vivo study, 4.5 ml/kg of the ethanolic cinnamon extract was orally administered to 
a mouse model for colitis. The treated mice exhibited significantly enhanced resorption of 
their colon fibrotic tissues and reduction of the fibrotic score associated with a decrease in 
the expression of extracellular matrix proteinases [162]. 

2.3.3.5. Antibacterial 

Ahmed et. al., showed that aqueous, methanolic, and acetone extracts from C. verum 
bark exerted significant antibacterial effects on S. aureus, P. aeruginosa, and E. coli. The 
inhibitory effect of the extracts was believed to be mediated by cinnamaldehyde [163]. 
Furthermore, an in vivo study conducted on aquatic pathogens in zebrafish, Faikoh et. al., 
concluded significant antimicrobial effects of liposome-encapsulated cinnamaldehyde in 
fish-infected by A. hydrophilia, V. vulnificus, S. agalactiae, V. parahaemolyticus, and V. algino-

lyticus. The antimicrobial activity of the drug was associated with a decrease in the expres-
sion of the pro-inflammatory interleukin -1β, -6, -15 and with an increase of the interleu-
kin-10 [164].   

2.3.3.6. Antifungal 

In a 2019 study, Kowalska et. al., demonstrated the antifungal properties of 1 % (v/w) 
aqueous C. verum bark after a 6-day treatment against Botrytis cinerea, the mycelium re-
sponsible for the grey mold disease in tomato plants [165]. Furthermore, cinnamon seems 
to inhibit the growth of the microorganisms of the Candida family, which are responsible 
for most of the fungal diseases in humans. In a clinical trial study, Wang et. al., showed 
that an oil extract from C. verum significantly inhibited the growth of three species of C. 

albicans (IC= 0.064 mg/mL), C. tropicalis (IC= 0.129 mg/mL), and C. krusei (IC= 0.129 mg/mL) 
[166]. Additionally, a study conducted on guinea pigs suggests that topical treatments 
with methanolic extracts of C. verum inhibit the growth of M. canis and T. mentagrophytes, 
two fungi involved in skin infections in animals and humans [167]. 

2.3.3.7. Immunological 

Several studies have concluded that the phytochemicals present in cinnamon extracts 
inhibit the immune response associated with allergies. Mast cells, key effectors in allergic 
diseases, are considered promising therapeutic targets. Hagenlocher et. al., have shown 
that cinnamon extracts decrease the release and expression of pro-inflammatory mast cell 
mediators such as β-hexosaminidase, cytokines CXCL8, and chemokine ligand 2, 3, and 
4. From this study, the anti-allergic properties are believed to be mediated by cinnamal-
dehyde [168]. Similar results have been found in human and murine models for allergic 
inflammation. Cinnamon extracts significantly inhibited the allergen-specific T cell prolif-
eration as well as TH1 and TH2 cytokine production [169]. 

2.3.4. Contraindications 

While cinnamon possesses a large specter of medicinal properties, its regular con-
sumption can also lead to adverse health effects. Ingestion of a big spoon of dry cinnamon 
spice may lead to scarring to airways, or even pneumonia [170]. Due to its apoptotic effect 
of cinnamaldehyde on B and T-cells, the consumption of cinnamon is contraindicated in 
patients under an immunotherapy treatment [171]. The consumption of cinnamon should 
be avoided during pregnancy since cinnamon can induce contractions and may lead to 
premature labor [172]. Importantly, studies conducted both in vitro and in vivo suggest 
that coumarin, abundant in C. cassia, is a potential carcinogen to individuals with muta-
tions of the Cytochrome P450 2A6 [173]. 

2.4. Graviola 
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2.4.1. Botanical Description 

A member of the Annonaceae/ Custard-apple family, Annona muricata, commonly 
known as soursop, graviola, paw-paw, or "guanabana” is a tree native to Central America 
and West Indies that is abundant at altitudes lower than 900 m above sea level. It is now-
adays cultivated in tropical and subtropical climates in countries such as Angola, Brazil, 
Colombia, Costa Rica, Puerto Rico, India, and Venezuela [174]. The graviola tree is mainly 
appreciated for its edible fruit. Still, its parts (leaves, fruit, bark, root, etc.) have been com-
monly used in traditional pharmacopeia in the form of macerations, decoction, or as a 
topical medication [175,176]. While the graviola tree can grow in a large variety of soils, it 
prefers deep soils with good oxygenation [174]. Botanically speaking, its leaves are large 
and obovate to elliptically shaped, are green on top, and paler on under top with short 
petioles and a pungent smell. The tree produces yellow-greenish flowers and lags about 
two years in producing heart-shaped fruits. It usually bears fruits yearly from that point 
on and can produce up to ten fruits from its fifth year [177]. 

2.4.2. Phytochemicals 

More than two hundred (>200) bioactive compounds have been isolated from the 
leaves, seeds, root, bark, fruit, and fruit peel of the graviola tree [176]. Most frequently 
identified are alkaloids, phenolics, and terpenoids [178,179]. Acetogenins are considered 
the main bioactive compound in the Annonaceae family, with over 120 acetogenins identi-
fied from the root, leaves, stems, fruit pulp, and the seed of the family members [180,181]. 
Acetogenins are a special class of secondary metabolites that could be considered part of 
the phenolics integrating polyketides and polyethers found exclusively in the plants of 
the Annonaceae family [182]. The structure of acetogenins is composed of a long carbon 
chain (35-38 carbons) as a fatty acid derivative. graviola leaves contain key medically rel-
evant polyphenolics compounds, including quercetin, rutin, and gallic acid [183-185]. The 
leaves of graviola also contain close to eighty (80) essential oils, among which are bioactive 
sesquiterpenes, and compounds such as potassium, calcium, zinc, phosphorus, magne-
sium, carbohydrates, vitamin A, B, and C, phytosterol, and calcium oxalate [186,187]. 

2.4.3. Biomedical effects 

2.4.3.1. Anticancer 

Graviola anticancer activity has been extensively studied, and the cytotoxicity of gra-
viola has been reported for several cancer types e.g., breast, colorectal, skin, head and 
neck, lung, liver, pancreatic, prostate cancer, and leukemia [174, 188-190]. Most of the an-
tiproliferative properties of the extracts are believed to be mediated by the graviola aceto-
genins. The acetogenins exert an inhibitory activity on the NADPH mitochondrial com-
plex 1, a component of the energy transport chain, which is crucial to the synthesis of high 
quantities of ATP in cancer cells. [189,191,192]. Acetogenins have also been shown to tar-
get several critical cancer metabolic pathways by inhibiting the Na+/K+ ATPase pump and 
the hypoxic and glycolytic pathways, inducing apoptosis and cell cycle arrest [192-194]. 

2.4.3.2. Antioxidant 

Studies conducted in vitro and in vivo suggest that graviola contains antioxidant com-
pounds that act as free-radical scavengers and increase the activity of the antioxidant en-
zymes superoxide dismutase and catalase and downregulate the function of mitochon-
drial NADPH oxidase complex I, [195-197]. The leaf and the fruit pulp of graviola are the 
parts of the tree with the highest antioxidant properties [178]. The antioxidant activity of 
graviola is believed to be mediated by the phenolic phytochemicals: quercetin, gallic acid, 
and graviola leaf polysaccharides [198,199]. 

2.4.3.3. Antiviral 

It has been suggested that the phytochemicals polyphenolics in graviola exert some 
antiviral activity against RNA and DNA viruses [185,200]. A study by Wahab et. al., 
showed that pretreating monkey kidney epithelial cells with a graviola leaf extract 24h-
prior to infecting them with the dengue virus serotype 2, inhibited the virus replication.  
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The treatment also increased the survival of the dengue-infected cells [201]. A recent clin-
ical study conducted by Le Donne et. al., investigated the antiviral properties of graviola 
on human papillomavirus (HPV)-infected patients who were supplemented with ellagic 
acid and graviola extract twice a day for six months. Results showed a 74% HPV clearance 
in treated patients compared to the 25% clearance for the placebo group [202]. Further-
more, recent in silico studies suggest that rutin, a phytonutrient abundant in graviola, 
could act as strong ligands and inhibit the function of proteins of the SARS-CoV and SARS-

CoV-2 virus, thus suggesting potential therapeutic benefits against the COVID-19 infection 
[203,204]. 

2.4.3.4. Anti-inflammatory 

The anti-inflammatory properties of graviola have been extensively studied in vitro 

and in vivo [205]. Cercato et. al., reported that a topical application of a graviola leaf extract 
(0.3, 1, or 3 mg/ear) significantly reduced ear edema and myeloperoxidase activity in 
Swiss mice with 12-O-tetradecanoylphorbol-13-acetate (TPA)-induced ear inflammation.  
The authors were also able to show that the anti-inflammatory effect of the extract was 
associated with a reduction of the total amount of hydroperoxides, and with modulation 
of catalase antioxidant activity [206]. While studying the anti-inflammatory response 
in Lipopolysaccharide (LPS)-stimulated murine macrophage cell line RAW264.7 treated 
with graviola ethanolic leaf extracts, Laksmitawati et. al., reported a downregulation in 
the pro-inflammatory protein markers tumor necrosis factor-alpha (TNF-α), interleukin-
1β, interleukin-6 in the treated macrophages cells compared to untreated controls 
[207]. Furthermore, graviola aqueous extract suppresses nitric oxide production [208]. 
Similarly, an in vivo study conducted in rodents by Ishola et. al., showed that the admin-
istration of a lyophilized graviola fruit extract inhibits the activity of the pro-inflammatory 
biomarkers cyclooxygenase (COX)-1 and COX-2 in a dose-dependent manner [209]. 

2.4.3.5. Antibacterial 

Graviola leaf extracts have been shown to exert an in vitro antibacterial activity 
against oral pathogenic strains such as S. mutants, S. mitis, P. gingivalis, P. intermedia, P. 

intermedia, and C. albicans [210,211]. An in vivo study conducted in albino rats demon-
strated the efficiency of graviola unripe fruit extracts to inhibit the growth of S. typhi [212]. 
Furthermore, aqueous leaf extract and fruit-skin ethanolic graviola extracts showed a 
strong antibacterial effect against K. pneumoniae, S. aureus, and P. aeruginosa, bacteria, the 
pathogens responsible for respiratory infections in the Human Immunodeficiency Virus 
(HIV/AIDS) patients [213].   

2.4.3.6. Antifungal 

We did not find studies testing the antifungal activity of any graviola extract. How-
ever, we found studies evaluating this property in some of graviola’s phytochemicals. In 
2017 a research group found that gallic acid has in vitro antifungal activity against derma-
tophyte strains (between 43.75 and 83.33 μg/mL), and Candida strains (C. albicans IC= 12.5 
μg/mL, and Trichophyton rubrum IC= 43.75 μg/mL) by inhibiting the ergosterol synthesis. 
They also confirmed this activity in vivo studies administrating 80 mg/kg d of gallic acid 
[214]. In another study, researchers found that quercetin induces apoptosis in Candida al-

bicans through mitochondrial dysfunction by increasing intracellular magnesium [215]. 

2.4.3.7. Immunological 

Several studies have reported that graviola possesses immunomodulatory proper-
ties. For example, a study conducted in rodents by Umayra et. al., shows that administra-
tion of an ethanolic graviola leaf extract triggers a boost in the immunological response 
through the activation of phagocytic cells [216]. Furthermore, an immune-enhancing ac-
tivity of graviola leaf extracts has been observed in RAW 264.7 macrophage cells in vitro, 
a phenomenon which is believed to be mediated by the activation of the mitogen-activated 
protein kinase (MAPK) pathways [217]. 

2.4.4. Contraindications 
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In vitro and in vivo studies suggest that the acetogenins and alkaloids present in the 
graviola fruit could be toxic to neurons [188]. While patients with neurological ailments 
should avoid consuming graviola altogether, the benefits/contraindication of graviola 
should be carefully evaluated on a case-by-case basis. 

2.5. Oregano 

2.5.1. Botanical Description 

The term oregano refers to a group of several plant genera, including Thymbra, Thy-

mus, Coridothymus, Satureja, and Origanum, containing a high amount of the phytochemi-
cal carvacrol in their essential oils. The genus Origanum consists of 43 species. Origanum 

vulgare (O. vulgare), commonly named “oregano”, is the name of the aromatic plant used 
as a condiment herb in Mediterranean cuisine [218-220]. O. vulgare size is usually 20-80 
cm, its 1-4 cm leaves are dark green, with 2 mm bell-shaped calyx purple flowers arranged 
in erect spikes [221-223]. Like other aromatic plants, the oregano plant produces essential 
oils as secondary metabolites in response to various infectious agents, UV light, and even 
oxidative stress. Oregano essential oils (OEOs) are usually extracted from the plant leaves 
and flowering tops. OEOs are famous for their medicinal value and are traditionally used 
in Turkey to cure diseases like cough, chronic cold, wounds, gastrointestinal disorders, 
and skin problems in humans and domestic animals [224]. 

2.5.2. Phytochemicals 

The main bioactive compounds present in the OEOs are the aromatic oxygenated 
monoterpene thymol (5-methyl-2-(1-methylethyl) phenol) and its constitutive isomer car-
vacrol (5-isopropyl-2-methylphenol, 2-p-cymenol). The ratio of thymol/carvacrol varies 
according to the oregano plant's geographical location [225]. Both compounds are lipo-
philic, volatile, highly soluble in ethanol, and possess low densities [224, 226-228]. Other 
bioactive oregano phytochemicals include o-cymene (2-Isopropyltoluene), apigenin 
(4′,5,7-trihydroxyflavone), and luteolin (7,3',4',5-tetrahydroxyflavone) [229,230]. Due to 
their general low toxicities, the two main chemicals of O. vulgare, thymol and carvacrol 
have been approved as food additives by the Food and Drug Administration (FDA) [231]. 

2.5.3. Biomedical effects 

2.5.3.1. Anticancer 

The antiproliferative/anticancer properties of oregano have been documented in vitro 

and animal models for cancers. A recent study by Spyridopoulou et. al., showed that OEO 

exerts dose-dependent cytotoxicity against breast cancer (MCF-7), colon cancer cells (HT-
29), melanoma (A375), and hepatocellular carcinoma (HepG2) cells, with respective IC50 
values of 0.35, 0.35, 8.90, and 10.0 mg/mL. The authors also showed that the treatment of 
HT-29 cells with 50 mg/mL of OEO correlated with an attenuated migration and an in-
duced apoptosis-related morphological change in HT-29 cells. Furthermore, the oral ad-
ministration of OEO for 13 days (0.370 g/kg b.w/day) proved to inhibit the growth of CT26 
colon tumors in vivo in BALB/c mice [232]. Another study by Coccimiglio reports that an 
ethanolic leaf extract of O. vulgare promotes the death of A549 human lung carcinoma in 
a dose-dependent manner (IC50= 14.0 μg/mL) [233]. The antiproliferative properties of ore-
gano are believed to be mediated by thymol and carvacrol, which possess antioxidant 
characteristics while being non-mutagenic to cells [233-235]. The anticancer properties of 
thymol were evidenced in in-vitro and in vivo models for colorectal cancers [236,237]. One 
astonishing property of carvacrol is its potential to specifically target cancer cells while 
being less toxic to normal cells [238]. Furthermore, carvacrol seems to exert a modulatory 
effect on the toxicity of cisplatin in vitro, a property that could be exploited for reducing 
the side-effects associated with classical cisplatin-based antitumor treatments [235]. 

2.5.3.2. Antioxidant 

An in vitro study by Gavaric et. al., showed that OEO possessed a strong antioxidant 
activity (IC50= 0.2 µg/mL). While thymol and carvacrol were the components accounting 
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for the antioxidant properties of oregano, the antioxidant activities of the two compounds 
were much inferior to the one observed for the whole extract with (IC50 = 70-80 mg/mL for 
thymol and carvacrol). The authors concluded that thymol and carvacrol, and other ex-
tract phytocompounds acted in synergy to promote the scavenging of free radicals [239]. 
According to a study conducted on the human colon carcinoma intestinal Caco-2 cell line, 
thymol, carvacrol, and their mixture seem to exhibit double-edged anti or prooxidant ef-
fects, depending on the concentration at which they are administered (pro-oxidants at 
sub-cytotoxic concentrations vs. antioxidants at higher concentrations) [240]. 

2.5.3.3. Antiviral 

An in vitro study conducted on simian Vero cell line CCL-81 showed that thymol, 
carvacrol, and p-cymene (all major components of oregano oils) possess antiviral proper-
ties against the human herpes simplex virus type 1 with respective IC50 values of 0.002%, 
0.037%, and >0.1%. The antiviral properties of the three compounds are believed to be 
correlated to their ability to interfere with the viral membrane fusion mechanism during 
the adsorption phase of the virus [241]. Furthermore, an in vitro study by Sánchez & Aznar 
have reported a dose-dependent titer inhibition of the feline calicivirus and the murine 
norovirus by thymol, in the 1-2% (v:v) range concentrations [242]. 

2.5.3.4. Anti-inflammatory 

OEOs possess a strong anti-inflammatory activity, a property that is believed to be 
mediated by its main active compounds: thymol and carvacrol. The impact of the OEOs 
on 17 protein biomarkers closely related to the inflammatory response. The results show 
dose-dependent inhibition of the expression of all the proinflammatory biomarkers. Car-
vacrol was reported to be the main constituent of the essential oil, making up 78% of the 
total composition of its weight [243]. The anti-inflammatory activity of thymol was also 
reported in vivo in BALB/c mice affected by LPS-induced endometritis [244]. 

2.5.3.5. Antibacterial 

Thymol and carvacrol have been shown to exert antibacterial activities against gram-
positive and gram-negative bacteria [245]. In studies using thymol concentrations ranging 
from 26.5-52.9 mg/cm2 showed strong inhibitory activity against the S. aureus, B. subtilis, 

E. coli, and Salmonella enteritidis [246]. Studies performed by Du et. al., showed the follow-
ing results: strong antibacterial activity of the OEOs, thymol, and carvacrol against E. coli, 

C. perfringens, and Salmonella strains. They also performed in vivo studies in 448 male 
broiler chicks by oral gavage using OEO. They found that OEO alleviated intestinal le-
sions and decreased E. coli populations [247]. In another study, oregano oil showed great 
antibacterial activity against the following multidrug-resistant bacteria: three Acinetobac-

ter baumannii, three Pseudomonas aeruginosa, and four methicillin-resistant Staphylococcus 

aureus with inhibitory concentrations ranging from 0.08-0.64 mg/ml [248]. Another in vitro 
study shows that the use of OEO and carvacrol could curve Group A streptococci erythro-
mycin-resistant bacterial infections [249].   

2.5.3.6. Antifungal 

The in vitro antifungal properties of OEO, thymol, and carvacrol in the 40-350 mg/mL 
ranges, have been reported in several studies against plant pathogenic fungi Colletotrichum 

acutatum and Botryodiplodia theobromae [250], against Penicillium digitatum and Penicillium 

italicum [251], against food-relevant fungi Cladosporium spp. and Aspergillus spp. [252], 
against longan pathogens, Lasiodiplodia spp., Phomopsis spp., Pestalotiopsis spp. and Ge-

otrichum candidum [253], and against Fusarium verticillioides and Rhizopus stolonifera 
[254]. In a very recent study, Serna-Escolano et. al., determined that thymol and carvacrol 
encapsulated in the polymer 2-hydroxypropyl-beta-cyclodextrin were highly effective in 
reducing the growth rate of Geotrichum citri-aurantii (which causes sour rot in citrus fruits). 
Furthermore, an in vivo study conducted in Caenorhabditis elegans suggests that thymol 
possesses antifungal activity against Candida albicans, the most prevalent cause of fungal 
infections in humans [255]. 

2.5.3.7. Immunological 
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De Santis et. al., have studied the immunomodulatory effects of several 50% (v/v) 
hydroalcoholic O. vulgare extracts on human-derived dendritic cells type-1 and type-2 
macrophages infected with M. bovis Bacille Calmette-Guérin. The authors showed that the 
hydroalcoholic extract stimulated the anti-mycobacterial innate immunity and limited the 
inflammatory response in all the tested cell types [256]. On the contrary, Gholijani et. al., 
showed that intraperitoneal injections of 80 mg/kg of thymol or carvacrol in BALB/c mice 
trigger an immunosuppressive response, a property that could be exploited for treating 
autoimmune diseases [257]. 

2.5.4. Contraindications 

As detailed in this review, O. vulgare offers a large spectrum of health benefits. Cau-
tion should be taken, however, with its medical use due to some negative health effects of 
its most abundant chemical constituents: thymol and carvacrol. Tisserand et. al., have 
shown that thymol is an irritant to the mucosal membrane [258]. Furthermore, despite 
being non-toxic at low to moderate doses, thymol and carvacrol have shown to induce 
dose-dependent structural chromosomal aberrations in Rattus norvegicus, when adminis-
tered at doses of 40 mg/kg and up [259]. 

3. Discussion 

Phytochemicals are vital cofactors with powerful effects on the body, helping it re-
gain functionality. As shown in this review, even though phytochemicals may have dif-
ferent mechanisms of action and different levels of effectiveness in the body, there are 
overlapping aspects such as antioxidant, anti-inflammatory, and metabolic corrective ef-
fects that produce a variety of positive physiological repercussions that favor the healthy 
state. The physiologic modulation induced by these phytonutrients and their phytochem-
icals produces functional changes that support repair mechanisms necessary to achieve 
the homeostasis or balance known as health. 

The physicochemical properties calculated for the main phytochemicals in the phy-
tonutrients studied in this review are based on the combination of Lipinski’s, Ghose’s, and 
Veber’s rules (L-Ro5, GF, VR), described as an approximation for the pharmacokinetics of 
a molecule in the body [27]. Thus, a molecule whose structure falls out of the range of 
these rules is predicted to have poor absorption or permeation through the gastrointesti-
nal system and low systemic bioavailability. 

From the evaluation of 25 phytochemicals through the mentioned parameters (Table 

1), 23 of them fulfill the requirements of L-Ro5 (HBD ≤ 5, HBA ≤ 10, MW ≤ 500, logP ≤ 5) 
and VR (RB ≤ 10, PSA ≤ 140), while 2 (annonacin /acetogenin and rutin from graviola) 
violated more than one parameter. Per GF, the compounds should meet the following: 
MW (160 – 480), logP (-0.4–5.6), A (40-130), TNA (20-70). Accordingly, 13 phytochemicals 
(curcumin, demethoxycurcumin, bisdemethoxycurcumin, and α-turmerone from tur-
meric; alliin, allicin, and z-ajoene from garlic; (E)-cinnamyl acetate and eugenol from cin-
namon; benzylisoquinoline, coumaric acid and caffeic acid from graviola; apigenin and 
luteolin from oregano) comply with Ghose’s rules.   

Considering GI tract absorption (Figure 2a) 54% of all phytochemicals studied in this 
review (curcumin, demethoxycurcumin, bisdemethoxycurcumin, α-turmerone, alliin, z-
ajoene, (E)-cinnamyl acetate, eugenol, coumaric acid, caffeic acid, apigenin, and luteolin) 
met all rules and thus, have a higher probability of being highly absorbed. Based on L-
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Ro5, GF, and VR, all described turmeric’s phytochemicals belong to highly absorbed com-
pounds (100%) compared to garlic, cinnamon, and oregano (40%) (Figures 2b, 2c, 2d, 2f) 
and graviola (50%) (Figure 2e).   

Graviola’s phytochemicals, annonacin /acetogenin, and rutin violate the majority of 
the “drug-likeness” rules. For example, annonacin /acetogenin complies with only 50% L-
Ro5 and VR and violates 100% of GF. For rutin, the compliance for L-Ro5 was 25%, for GF 
was 25% and for VR was 50%. Thus, it is predicted that annonacin /acetogenin and rutin 
have the lowest probability of being absorbed in the GI.  

Other researchers have proposed that the lipophilicity considering the ionizable 
groups at pH 7.4 (LogD) is much more important for physiological absorption or perme-
ation [260]. Thus, compounds that fall below 1 and above 5 for LogD are less likely to be 
absorbed. Based on this, alliin from garlic; protocatechuic acid from cinnamon; annonacin 
/acetogenin, cinnamic acid, coumaric acid, caffeic acid, and rutin from graviola fall out 
this LogD range. 

However, the predictions of these rules are also based on molecules passively trans-
ported into the cells. This means that L-Ro5, GF, and VR do not take into consideration 
actively transported substrates by biological transporters (e.g., cellular receptors or chan-
nels) [261].  On the contrary, we understand that a large group of therapeutic compounds 
is actively transported in the organism, especially plant-based compounds. Due to this, 

Figure 2. GI absorption for described phytochemical compounds. (a) Percent (%) of phytochemicals of all selected phyto-
nutrients with high or low probability for GI absorption.  Percent (%) of (b) Turmeric, (c) Garlic, (d) Cinnamon, (e) Graviola, 
and (f) Oregano phytochemicals with high or low probability for GI absorption. 
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other studies have shown that most of the violators of these rules are natural products 
[262] 

4. Conclusions 

All the phytonutrients mentioned in this review article, when used properly, have 
demonstrated a large variety of health benefits. Yet, a medical evaluation is needed before 
any decision is made on utilizing phytonutrients and phytochemicals regularly or in com-
bination with another medical pharmacological treatment. 
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