
RESEARCH Open Access

Biomedical event trigger detection by
dependency-based word embedding
Jian Wang1*, Jianhai Zhang1, Yuan An2, Hongfei Lin1, Zhihao Yang1, Yijia Zhang1 and Yuanyuan Sun1

From IEEE International Conference on Bioinformatics and Biomedicine 2015

Washington, DC, USA. 9-12 November 2015

Abstract

Background: In biomedical research, events revealing complex relations between entities play an important role.

Biomedical event trigger identification has become a research hotspot since its important role in biomedical event

extraction. Traditional machine learning methods, such as support vector machines (SVM) and maxent classifiers,

which aim to manually design powerful features fed to the classifiers, depend on the understanding of the specific

task and cannot generalize to the new domain or new examples.

Methods: In this paper, we propose an approach which utilizes neural network model based on dependency-based

word embedding to automatically learn significant features from raw input for trigger classification. First, we employ

Word2vecf, the modified version of Word2vec, to learn word embedding with rich semantic and functional

information based on dependency relation tree. Then neural network architecture is used to learn more significant

feature representation based on raw dependency-based word embedding. Meanwhile, we dynamically adjust the

embedding while training for adapting to the trigger classification task. Finally, softmax classifier labels the examples by

specific trigger class using the features learned by the model.

Results: The experimental results show that our approach achieves a micro-averaging F1 score of 78.27 and a

macro-averaging F1 score of 76.94 % in significant trigger classes, and performs better than baseline methods. In

addition, we can achieve the semantic distributed representation of every trigger word.
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Background
With the development of system biology which emphasizes

the importance of relations and interactions between

biological entities, revealing biomedical events, the complex

interactions between biological molecules, cells, and tissues,

becomes imperative [1]. Biomedical events play a key role in

the development of biomedical research, which can contrib-

ute to biomedical database development and pathway cur-

ation. However, there is little knowledge about biomedical

events in existing databases that we can utilize directly.

Consequently, with the rapidly growing quantity of biomed-

ical scientific literature, continuing effort must be put into

mining the underlying knowledge (e.g. entity relations and

biomedical events) hiding in the scattered literature. As such,

biomedical event extraction has attracted much attention.

BioNLP shared tasks [2] have been held for three editions

aiming to extract fine-grained, complex, and structural

events from biomedical scientific literature and many novel

methods have been proposed.

In general, we define an event as a triple tuple: <event type,

theme, cause>. The event type denotes the related event be-

havior, such as gene expression, regulation, or binding. An

event contains the theme and cause, where the theme is the

primary participant of the event and the cause is the reason

that the event behaves. For instance, as shown in Fig. 1, the

words “inhibited” and “formation” denote the events “Regu-

lation” and “Development,” respectively. We call the event

“inhibited” a complex event that contains another event and
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the event “formation” a simple event that only contains the

theme. No matter is an event simple or complex, the trigger

plays a major role in the whole event extraction procedure.

The current popular approaches for biomedical event

extraction mainly follow a pipeline procedure: event trigger

detection and event argument extraction. In such pipeline

methods, event trigger detection plays a primary role. Our

preliminary analysis has shown that more than 60 % of

extraction errors are caused by trigger detection. Unsurpris-

ingly, much effort [3, 4] has been put into improving the

performance of trigger detection.

There are mainly two kinds of approaches for trigger detec-

tion: rule-based and machine learning approaches. Rule-

based approaches focus on the definition of a set of extraction

rules, such as regular expression and matching pattern rules.

However, it is much difficult to define different rules to match

all trigger words, which influences the overall performance of

trigger detection. Furthermore, rule-based methods fail to

generalize to the new dataset, which is an unavoidable prob-

lem in extracting new events between new biological entities.

Machine learning approaches treat the trigger detection

task as a traditional classification problem that assigns an

event label to every word. These kinds of methods usually

extract high-end hand-designed features from processed

training data. For training a trigger detection model [5],

the features are fed into a classification model, such as

Support Vector Machine (SVM). However, the annotated

data we can utilize is often not enough for training a

classification model with acceptable performance. Conse-

quently, Zhou [6] proposed a novel method that learns

domain knowledge from a large corpus of text and em-

beds it into word features with a natural language model.

In these approaches, the hand-designed features generally

reach hundreds of thousands of dimensions in order to

better represent the trigger feature information that will

be fed into the classification algorithm. To obtain this use-

ful classification information, the method usually needs to

parse the data using a shallow and deep dependency

parser which is usually time and computation consuming.

Afterwards, features are manually designed through the

parse results. However, these kinds of methods need to

design different features for different NLP tasks based on

the particularities of each specific task. Furthermore, the

hand-designed features are traditional one-hot features

lacking semantic information about the trigger. Nowadays,

there are many methods for modeling words’ semantic

information. Of these, word2vec [7] is one of the most

popular tools because of its effectiveness and efficiency.

We propose a biomedical event trigger detection method

by employing neural network model and dependency-based

word embedding for addressing the complex problem of

manually designing task-specific features. The method aims

to not only solve the problem of dimension disaster but also

can be generalized to new extraction tasks with new data

without extra intervention. The dependency-based word

embedding is learned from all available PubMed abstracts

which have similar topic with the annotated data. The em-

bedding contains more functional semantic information.

Words have higher similarity when they behave similar in

function. Consequently, the dependency-based word em-

bedding contributes more to the trigger detection task than

topical word embedding does since the classification of

trigger needs more functional information. Then the senior

and significant features are automatically learned by the

neural network model (also called deep learning model).

For evaluating the effectiveness of our proposed approach,

we perform the experiment in MLEE dataset to extract the

biomedical event trigger containing 19 trigger classes. Our

experimental results show that the method has better

performance compared to baseline approaches.

The proposed method mainly contains following con-

tributions: (1) Dependency-based word embedding is

employed to address the functional semantic informa-

tion in the trigger detection task. (2) Features are auto-

matically built from raw input with dependency-based

word embedding. (3) Neural network model is utilized

to learn powerful features which are fed to softmax

classifier. Meanwhile, the word embedding is dynamic-

ally adjusted based on backup propagation algorithm.

The remaining part of the paper is organized as follows.

Section II detailed illustrates the proposed method. Section

III presents the experimental results and detailed discussion.

Section IV concludes our paper and describes the future

work.

Method

Our method consists of four major parts as shown in

Fig. 2: (1) Dependency-based word embedding is trained

by Wordvecf [8] with all available PubMed abstracts.

The embedding contains more functional information,

which contributes more to our trigger identification task

in that most of the detected triggers are verbs or words

acting as verbs. (2) The distributed semantic feature

vectors, which have low dimension and continuous

value, are extracted from the processed dataset by a sim-

ply window-based approach without extra preprocess.

Fig. 1 The annotation example of biomedical event
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(3) The neural network classification model is employed

to automatically learn the hidden and significant feature

representation from the raw input and train the trigger

detection system with the labeled dataset based on a

back propagation algorithm. At same time, the algorithm

dynamically adjusts the input word embedding to learn

the better word embedding for the trigger detection task.

(4) The biomedical event triggers are predicted by the

softmax layer.

Biomedical knowledge

The annotated dataset only contains 262 documents

with annotations. We cannot learn the exact semantic

information from such little data. However, there are

large amounts of biomedical knowledge hiding in public

databases. Consequently, we employ the public available

biomedical knowledge, PubMed abstracts, to accurately

capture the semantic information of every word, espe-

cially event trigger words to promote the performance of

trigger identification. The data are approximately 20G,

which are enough to model the semantic information of

every word.

Word embedding

The machine learning algorithm requires some fix-

length feature vectors, such as bag-of-words [9]. Despite

its popularity, the bag-of-words lacks the order infor-

mation and semantics. So, word embedding, also called

word vector or word distributed representation, aims

to present the semantics of words and lower the fea-

ture dimension with a low-dimension semantic vector

instead of a high dimensional and sparse feature vec-

tor. Specially, we can learn different word embedding

for different tasks. Of all word embedding, word2vec

[7] achieves giant success in many NLP tasks, such as

Named Entity Recognition(NER) and Part-of-Speech(POS)

Tagging. There are mainly two kinds of word embedding:

bag-of-words-based embedding and dependency-based

embedding.

1) Bow-based word embedding

The linear bag-of-words contexts are employed to

train word embedding by word2vec and many other

neural language models. The method uses a window

of size k to predict the current word or current

word to predict its surrounding words. Generally,

we utilize the skip-gram model to maximize the

average log probability:

1

T

X

T

t¼1

X

−c≤j≤c;j≠0

log℘ wtþjjwt

� �

ð1Þ

where c is the window size (a hyper-parameter to be

chosen while training). We call this kind of word em-

bedding bow-based word embedding, which is trained

by the linear contexts. The embedding is full of semantic

information, usually topic semantics. For example, the

Fig. 2 The framework of our method
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word “dancing” is most similar to the words “dance,”

“dances,” and “dancers.”

2) Dependency-based word embedding

Unlike other NLP tasks, such as POS or CHUNCK,

the trigger detection task needs more information

in dependency contexts than in linear contexts.

Consequently, an alternative to the bag-of-words

approach is to derive contexts based on deep

dependency parse. As shown in Fig. 3 and Table 1,

after parsing each sentence, we derive word contexts

in syntactic relations and use them to train word

embedding. And we can capture relations of words

that are far apart and thus “out-of-reach” with small

window bag-of-word.

More specifically, we parse all available PubMed abstracts

with Gdep parser [10], a dependency parse tool specialized

for biomedical texts, and train the dependency-based word

embedding based on the contexts in dependency relations

with the tool word2vecf [8].

Generally, this kind of word embedding model derives

more functional semantic information. For example, the

word “dancing” is most similar to the words “singing,”

“rapping,” and “miming,” which act in similar roles in a

sentence. This kind of functional semantic information is

the important resource for our trigger identification task.

Corpus preprocessing

In most trigger recognition methods, complex prepro-

cessing, such as shallow and deep parse, usually need to

be made for extracting complex, high-end, and useful

features that are fed to the specific classifier. However,

in our method, there is no need to do such complex pre-

processing. In fact, we do not even use entity annotation

information, which takes significant time to annotate.

In our method, only the following steps are employed

to process the annotated data.

� Sentence split. There are no events with cross

sentences in the dataset. Consequently, we utilize

the GENIA Sentence Splitter [11] to split the source

text into the sequence of sentences for facilitating

further processing.

� Tokenization. Tokenization refers to the process of

breaking the input text into words, phrases, and

symbols that become the input of further

processing. We employ the NLTK toolkit [12],

which is a widespread used natural language toolkit,

to tokenize a sentence into the sequence of tokens.

Word embedding based neural network model

As described previously, the trigger detection task can be

seen as a classification task. Traditional trigger identifica-

tion methods mainly extract high-end, hand-designed

features from the data with being processed by kinds of

NLP methods containing sentence split, tokenization, and

dependency parse. Then feature extraction is finished

based on these parse results and the annotated entity in-

formation. This is a complex and task-dependent process.

Consequently, it is difficult to generalize to new data or

new task. Instead, we employ the dependency-based word

embedding with rich functional semantic information to

automatically learn significant features using a general

purpose learning procedure (called deep learning [13]).

Our methods follow the process as shown in Fig. 4.

Window processing

Inspired by word2vec [7], we can predict the trigger

word by its context information with rich semantic in-

formation that is called distributed semantic representa-

tion. Consequently, we only utilize the linear context of

the target trigger to identify the target trigger, instead of

extracting complex features from the dependency tree or

entity annotation.

For example, as shown in Fig. 3, “inhibited” is a trigger

with type “Regulation”. We use the words “Thalidomide”

and “formation”, where the word “the” is a stop-word to

predict the word “inhibited”, whether it is a trigger and

which types it belongs to. Although the method looks

simple, it is effective. As a result, in this step, we process

every instance into the sequence of word indices, which

are fed into the next steps.

Lookup table layer

Then, the sequence of word indices are projected into

the word vector through the lookup table layer and con-

catenating operation. The operation of lookup table re-

fers to projecting every word in a specific window to the

semantic representation which is utilized to predict the

trigger. And the concatenating operation refers to join-

ing every single vector of the word end to end into the

corresponding feature vector. The vector is regarded as

the semantic feature representation of the target trigger.

Fig. 3 Example of a dependency parse result
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Then, the generated vectors are fed into the neural

network model to train the trigger detection model by a

backup propagation and gradient descent algorithm.

More formally, for each word w∈D , the responding

vector representation is acquired by the lookup table

layer LTw ∙ð Þ:

LTW wð Þ ¼ W 1
w ð2Þ

where W �R
Dj j�size is the word matrix parameter being

learned using PubMed abstracts and fine-tuning the

training process to be more adaptive to the specific data-

set. Wh i1w is the wth column of W and size is the word

vector size (a hyper-parameter to be chosen) [14].

Automatic feature learning

Conventional supervised machine learning (shallow classi-

fier) methods are used to design a good feature extractor

that requires a considerable amount of engineering skills

and domain expertise, but the hand-designed feature

doesn’t allow the learner to generalize well outside of

training examples. In our methods, we employ the neural

network model to automatically learn good feature repre-

sentation from raw input for making the classifier more

powerful. At each layer, the total input z is computed for

each units which is the weighted sum of the outputs of

the last layer. Then a nonlinear activation function f ∙ð Þ is

applied to z to generate the output of the current unit.

Among all nonlinear activation functions, the rectified

linear unit (ReLU) f zð Þ ¼ max 0; xð Þ is chosen, commonly

used in recent years, for its effectiveness and fast

convergence.

H xð Þ ¼ f ω⋅xþ bð Þ ð3Þ

Where x is the output of upper layer, ω is the param-

eter matrix between the layers, b is the bias item, and H

xð Þ can be regarded as the senior feature representation,

which can be classified better. Then the learned features

are fed into the classifier to classify the sample into a

specific trigger class.

Training

After building the biomedical event trigger identification

model, we need to choose an optimization algorithm to

train the model and search for optimal parameters.

Among most optimization algorithms, such as gradient

descent and Newton method, gradient descent is the

most efficient and popular algorithm because it is simple

and requires less computation. Gradient descent is a

first-order optimization algorithm to find the local mini-

mum of a function. However, we usually employ batch

gradient descent for saving expensive computation and

its power of acquiring a better solution. We compute

the partial derivative of objective function toward the

parameter of each layer based on a backup propagation

algorithm. Then we update the parameters of each layer

using the gradient in that of fast convergence throwing

the negative direction of gradient. The algorithm walks

through all training examples with multiple iterations

Fig. 4 Neural network model

Table 1 Dependency Contexts

Words Dependency contexts

Thalidomide inhibited/SUB

Inhibited Thalidomide/SUB-1a,formation/OBJ

The formation/NMOD-1a

Formation the/NMOD, of/NMOD-1

Of activity/NMOD, tubes/PMOD-1a

Capillary tubes/NMOD-1a

Tubes capillary/NMOD, of/PMOD-1a

a
’-1’ refers to the inverse relation
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and stops iterating until the algorithm is convergence.

Finally, we can acquire the optimal parameters of model

and we can predict new examples using these optimal

parameters.

In addition, we modify the neural network architecture

with dropout architecture [15] and employ AdaDelta up-

date rules [16] to update the parameters dynamically.

The AdaDelta update rule dynamically adapts over time

using only first order information and has minimal com-

putational overhead beyond vanilla stochastic gradient

descent. The dropout architecture refers to random

dropout values of some nodes. This can prevent the

complex co-adaptations in which a feature node can

only be helpful in the context of several other feature

nodes. Overfitting usually can be avoided by randomly

omitting some feature nodes.

Finally, we implement the trigger identification model

by Theano [17]. Theano is python library that allows

users to define, optimize, and evaluate mathematical

expressions. Consequently, we can implement the neural

network model more easily. In addition, Theano supports

convenient configuration for GPU running, which can

greatly accelerate the training speed.

Hyper-parameters

As described in the last section, we adopt AdaDelta up-

date rule to update the parameters of the model. Conse-

quently, we do not need to initialize the learning rate,

which plays a considerably important role in the entire

training process. This facilitates the process of choosing

parameters to some extent. In addition to learning rate,

there are some other hyper-parameters, such as word

embedding size, dropout rate, layer number, layer size,

and batch size. The different combinations of different

hyper-parameters will lead to different results. As we all

know, there are no methods to find the best combination

of all the hyper-parameters theoretically. Consequently,

we empirically search for the reasonable combination of

all the hyper-parameters through a large number of exper-

iments. The combination of hyper-parameters of the

model is shown in Table 2.

Experiment results and discussion
In order to evaluate the performance of our proposed

biomedical trigger detection model, we conducted the

experiment study with the MLEE dataset1, which aims

to support event extraction across levels of biological

organization from the molecular to the organ system

level. At the same time, we also employ all the available

PubMed abstracts to train the rich functional semantic

information for every trigger word. Then we design a

multi-layer neural network model based on dependency

word embedding for trigger classification. The neural

network architecture automatically learns the good fea-

tures from raw word embedding without redundant pro-

cessing and task dependence, and it classifies the event

triggers by the learned hidden features. Furthermore, the

raw word embedding is dynamically adjusted based on a

backup propagation algorithm while training to be more

adaptive to the specific dataset and represent more ac-

curate functional semantic information of event triggers.

At last, we compare our experiment results with other

state-of-the-art methods based on precision, recall, and

F1 score.

Dataset

The MLEE dataset mainly focuses on the topic about

angiogenesis, a key process in tumor development. The

dataset supports event extraction across more concrete

entity and trigger types. The entities contains molecular,

cell, tissue and organ and the related event triggers are

divided into four categories containing 19 pre-defined

trigger classes, such as “Regulation”, “Cell proliferation”

and “Blood vessel development”. However, as shown in

Table 3, there are distinct differences in trigger numbers

among different trigger classes [18].

Table 2 The combination of hyper-parameters of the model

Hyper-parameter Layers Word Dropout Batch

Value 4 200 0.5 256

Table 3 The number of different trigger classes

Category Event type Number

Cell proliferation 43

Development 98

Blood vessel development 305

Anatomical Growth 56

Death 36

Breakdown 23

Remodeling 10

Synthesis 4

Gene expression 132

Transcription 7

Molecular Catabolism 4

Phosphorylation 3

Dephosphorylation 1

Localization 133

Binding 56

General Regulation 178

Positive regulation 312

Negative regulation 223

Planned Planned process 175
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Evaluation metrics

As with most of classification tasks, we chose preci-

sion (P), recall (R), and F1 score (F1) to evaluate the

performance of our trigger detection model for every

trigger class.

P ¼
tp

tpþ f p
ð4Þ

R ¼
tp

tpþ f n
ð5Þ

F1 ¼
2 � P � R

P þ R
ð6Þ

Where tp is true positive for test examples, fp is false

positive, and fn is false negative.

Furthermore, for evaluating overall performance, we

employ the micro-averaging (7), and macro-averaging

(8) methods to evaluate the overall F1 score per-

formance [19, 20].

MacroAvgF1 ¼

X Cj j

i¼1
F1i

Cj j
ð7Þ

MicroAvgF1 ¼

X Cj j

i¼1
2 � P � Rð Þi

X Cj j

i¼1
P þ Rð Þi

ð8Þ

Where C is trigger class, and Cj j is the responding

class number.

As is the same of most of supervised machine learning

methods, we cannot accurately predict the trigger whose

instance number is rare. At the same time, the predic-

tion failure of these triggers may have a serious impact

on the overall performance. Consequently, we evaluate

the overall performance ignoring the trigger class with

rare quantities (less than 10).

Performance analysis

For evaluating the efficiency of our proposed method, we

compute the precision, recall, and F1 score for each class

and compare them with state-of-the-art methods. More

specifically, we compare the results of dependency-based

word embedding with bow-based word embedding and

compare the results of non-static word embedding with

static word embedding, which shows that our proposed

method is efficient.

1) Overall analysis and discussion

We employ Pyysalo et al. [5] and Zhou et al. [6] as

the baseline methods. Pyysalo et al. implemented an

SVM-based approach, which manually designs

salient features such as context and dependency

features and fed them into SVM classifier. Zhou et

al. also conducted a similar experiment. The

method achieved significant results over existing

methods. However, this method only utilizes the

annotated data and fails to utilize the rich semantic

information contained in massive amounts of

biomedical literature. Zhou et al. employed a

feedforward neural network to train word embedding

and integrated it with hand-designed features into the

SVM classifier. This method has achieved state-of-

the-art results. However, as mentioned in [21], the

feedforward neural network is not the optimal method

for training word embedding compared with the Skip-

gram model. Furthermore, this method still needs

manually designed features, which limits the power of

generalization.

As shown in the Fig. 5, we compare our experimental

results (only event types with more than 10) with

Pyysalo et al. and Zhou et al. to show the potential

of our proposed method. From Fig. 5, we can

observe that there are eight classes that perform

better than Pyysalo et al. and six classes that

perform better than Zhou et al. As shown in

Tables 4 and 5, it can be observed that we achieve

better overall performance over micro-averaging

and macro-averaging F1 score. More significantly,

our proposed approach automatically learns

significant feature representation based on

dependency-based word embedding without any

manual intervention and hand-designed features

compared with the methods of Pyysalo et al. and

Zhou et al. Consequently, our proposed approach

has stronger power of generalization and it can be

applied to new examples.

2) Dependency-based word embedding versus bow-based

word embedding

Most NLP tasks employ bow-based word embedding

as semantic representation for its popularity and

efficiency. However, it is not proper for the trigger

detection task. In a trigger identification task, the

target triggers usually are verbs or words acting as

verbs. We cannot simply predict the trigger using

bag-of-words because the target trigger is usually

far away from entities, such as proteins and RNA.

Consequently, we employ dependency-based word

embedding for the trigger classification problem.

Generally, dependency-based word embedding is

trained based on syntax contexts instead of bag-of-

words. More specifically, the syntax contexts are

acquired by Gdep parsing. The dependency word

embedding contains more functional semantic

information.

To verify the efficiency of dependency-based word

embedding, we compare the experimental results of

dependency-based word embedding and bow-based

word embedding. As shown in Figs. 6 and 7. Figure 6
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is the change of macro-averaging F1 score over

iteration and Fig. 7 is the change of micro-averaging

F1 score over iteration. From these two figures, it

can be observed that dependency-based word

embedding (“dep10” in Figs. 6 and 7 where “10”

suggests that we filter the words less than 10)

performs better than bow-based word embedding

(“bow” in Figs. 6 and 7).

Through our experiments on different word

embedding, we can conclude that different word

embedding has a different influence on different

tasks. Consequently, we must choose a specific

word embedding (such as dependency-based word

embedding in our task) based on different

problems.

3) Word embedding static versus non-static

In order to learn better trigger semantic information

for our task in the specific dataset, we dynamically

modify the trigger word embedding matrix based

on a backup propagation algorithm and gradient

descent algorithm while training. In this process,

we adjust the word embedding parameters using

the annotated data, which can be regarded as a

supplement for unsupervised training.

Different experiments are conducted to evaluate

the different influence of static and non-static

word embedding. Figure 8 is the changing of

macro-averaging F1 score over iteration epochs,

and Fig. 9 is the changing of micro-averaging F1

score. As shown in Figs. 8 and 9, word embedding

with non-static achieves better experimental

results (macro-averaging and micro-averaging F1

score) in stability and efficiency over iterations.

Consequently, it is suggested that adjusting the

word embedding in the training process not only

makes the neural network model more stable and

gives it stronger power of generalization but it can

also achieve more optimal experimental results.

Finally, we can achieve semantic distributed

representation (word embedding) for every trigger.

The word embedding contains rich semantic

information of the trigger.

Fig. 5 Experimental Results

Table 4 Micro-averaging F1 score of significant events

Method R(%) P(%) F1 Score(%)

Pyysalo [5] 81.44 69.48 74.99

Zhou [6] 80.60 74.23 77.28

Proposed 83.62 73.56 78.27

Table 5 Macro-averaging F1 score of significant events

Method R(%) P(%) F1 Score(%)

Pyysalo [5] 78.04 68.74 73.09

Zhou [6] 79.18 72.03 75.43

Proposed 81.89 72.56 76.94
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Fig. 6 The influence of word embedding on Macro-averaging F1 score

Fig. 7 The influence of word embedding on Micro-averaging F1 Score
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Fig. 8 The influence of static and non–static on Macro-averaging F1 score

Fig. 9 The influence of static and non-static on Micro-averaging F1 score
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Conclusion and future work
In this paper, we proposed a method to automatically

extract biomedical event triggers from biomedical texts.

This method combines word embedding and neural net-

work classification models to build the trigger identifica-

tion architecture. The method takes advantage of word

embedding with massive biomedical resources containing

rich semantic information and does not need annotated

information of the entity, which can save the expensive

cost of annotating data. At the same time, we utilize dis-

tributed semantic vector instead of convolutional hand-

designed features for its stronger power of generalization.

In addition, we employ dependency-based word embed-

ding, which contains more functional semantic informa-

tion, to better capture semantics of triggers. And we

dynamically adjust word embedding based on supervised

training. The experimental results show that our proposed

approach is efficient compared with baseline methods and

it can generalize better.

In the future, we will explore tree-based deep learning

model such as tree LSTM which can automatically learn

features from dependency tree for trigger detection task.

And we will extract complete biomedical events after

detecting triggers.

Endnote
1http://nactem.ac.uk.
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