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Abstract: Diagnostic- and therapeutic release-aimed nanoparticles require the highest degree 

of biocompatibility. Some physical and chemical characteristics of such nanomaterials are 

often at odds with this requirement. For instance, metals with specific features used as 

contrast agents in magnetic resonance imaging need particular coatings to improve their 

blood solubility and increase their biocompatibility. Other examples come from the 

development of nanocarriers exploiting the different characteristics of two or more 

materials, i.e., the ability to encapsulate a certain drug by one core-material and the targeting 

capability of a different coating surface. Furthermore, all these “human-non-self” 

modifications necessitate proofs of compatibility with the immune system to avoid 

inflammatory reactions and resultant adverse effects for the patient. In the present review we 

discuss the molecular interactions and responses of the immune system to the principal 

nanoparticle surface modifications used in nanomedicine. 
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1. Introduction 

The focus of the present review is to describe the main molecular mechanisms of host defense 

towards the principal surface modifications of nanoparticles (NPs) used in medical fields as diagnostics 

or therapeutics. 

A complex variety of organic materials (e.g., polymers, dendrimers, liposomes, proteins and 

carbohydrates), allotropic forms of carbon (e.g., fullerenes, carbon nanotubes) and inorganic nanosized 

particles (e.g., quantum dots, silica, gold or iron core NPs) are currently under investigation for drug 

delivery and imaging purposes [1,2]. 

The nano size of drug delivery vectors is designed to improve solubility, pharmacokinetics and 

biodistribution of small drugs, vaccines or other active molecules, otherwise less effective. Together 

with these advantages, the introduction of such nano-systems may pose biocompatibility concerns that 

go beyond the drug toxicological profile.  

Complex living organisms have perfected their defense mechanisms towards exogenous pathogens 

throughout the course of evolution. The immune system is able to distinguish between self and non-self 

substances. The foreign molecules able to elicit immune responses by binding to specific host receptors 

are called antigens (antibody generators). The immune system ensures a plethora of selective response 

against several non-self molecules retaining immunological memory and preventing injury to host cells 

during responses to microbes. Recognition and subsequent clearance of these alien elements are important 

physiological mechanisms employed by the immune system to maintain the body homeostasis [3]. 

2. A Brief Description of Immune System Main Features 

Different and subsequent lines of defense of increasing specificity are deployed by the immune 

system to eradicate infections by exogenous organisms. Physical barriers, like the skin and mucosa, are 

the first protection of the innate immunity to prevent the entrance of pathogens into the body. If infective 

microorganisms overcome these barriers, another line of innate defense provides an immediate but 

non-specific response. This line of control is carried out by different cellular and biochemical mediators. 

Phagocytic cells, like neutrophils or macrophages, play a major role in wiping out the foreign pathogen 

by encapsulating and destroying it with specific enzymatic reaction cascades. These cells recognize 

unique molecular structures of microbial pathogens, called Pathogen-Associated Molecular Patterns 

(PAMPs), by means of specific pattern-recognition receptors. Well known examples of PAMP-receptors 

are the Toll-like receptors (TLRs) which recognize various microbial molecules including the 

Gram-negative bacteria wall component lipopolysaccharide (LPS), the lipoteichoic acid (present on the 

wall of Gram-positive bacteria) receptor or the receptors for mannose-rich oligosaccharides present on 

the fungi. Innate immune cells are also able to respond to secondary effects like cell damages caused by 

infections. Damage-Associated Molecular Patterns (DAMPs) indicate cell injuries induced by a myriad 

of reasons, including toxins, traumas or decreased nutrient supply. Stress induced proteins, nuclear 

proteins or crystal (i.e., monosodium urate) are recognized by DAMP receptors that initiate immune 

responses. Furthermore, blood proteins can directly interact with the undesired invader and regulate its 

fate. A heterogeneous group of cell derived proteins, named cytokines, synchronize all these immune 

response mechanisms [3]. 
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By means of evolution, most of the vertebrates also possess a further level of protection, the adaptive 

immune response, which can be activated by the innate immunity if pathogens have not been 

successfully eliminated. The adaptive immune system improves its response during an infection and 

“memorizes” pathogen features once it has been eliminated. The immunological memory allows a faster 

and stronger reaction by subsequent exposure to an already recognized element. Indeed, this mechanism 

is the basic principle of vaccination. The adaptive immunity is also called “acquired immunity”, as a 

consequence of its responses against non-self elements “acquired” by experience. The peculiar cells of 

adaptive immunity are the lymphocytes. These antigen-specific cells display receptors that are able to 

recognize an incredible number of exogenous pathogens and to distinguish between very closely related 

molecular structures.  

We can describe two different types of adaptive responses, named humoral and cell-mediated 

immunity, often working contemporaneously and in conjunction with the innate system. The humoral 

immunity is mediated by proteins called antibodies. This family of proteins is secreted by B lymphocytes 

(or B cells) once differentiated into antibody-secreting plasmacells. The process of recognition of 

pathogens by B lymphocytes is also mediated by antibody receptors expressed on the cell surface that 

trigger an intracellular signaling leading to cell differentiation upon foreign molecule binding. In 

contrast, cell-mediated reactions begin with a coordinated interaction between a different type of 

lymphocytes, the T lymphocytes (or T cells), and Antigen Presenting Cells (APCs). T cells are not 

capable of producing antibodies and have a restricted specificity for antigens [4]. They recognize only 

foreign peptides bound to host molecules, the major histocompatibility complex (MHC) exposed on the 

presenting cells. One of the main tasks of adaptive cell-mediated immunity is to destroy microbes that 

survive and proliferate inside the cells, like viruses. Functionally different subpopulations of 

T lymphocytes play a role in the various kinds of infections. All these subsets are grouped in two main 

families, known as T helper (THLs) and cytotoxic T cells (CTLs). The antigenic stimulation induces 

T helper cells to secrete cytokines, which in turn foster proliferation and differentiation of T cells, 

B cells, macrophages and other leukocytes. Cytotoxic T lymphocytes are equipped with specific set of 

reactive proteins capable to kill cells that expose foreign antigens on their surface. A third group of 

lymphocytes is represented by natural killer (NK) cells, which are principally involved in innate 

response towards microbes and pathogens [5]. Lymphocytes and APCs circulate through the body and 

home to the target sites of antigen exposure. Lymphoid organs, like spleen, liver or lymph nodes 

represent the anatomical districts where these cells increase the possibility of antigen presentation and 

start an immune response [6]. 

All the immune cells travel within the body in a strictly regulated manner. Differentiated cells from 

all the tissues provide signals to drive the immune cell travelling, mainly releasing chemokines 

(chemoattractant cytokines) [7]. This very special type of polypeptides has a conserved structure which 

is maintained in the evolution, highlighting the importance of their role in cell migration. The tissue 

modifications happening during inflammatory processes are intended for leukocytes recruitment from 

the circulation to the injured tissue with the purpose of destroying pathogens. Indeed, the majority of the 

cell movements implicated in the physiological tissue rearrangements and pathological conditions rely 

on chemokine driven signaling [8]. 
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As well as microbes, most of the engineered nanomaterials that enter the body are recognized as 

non-self by the immune system, which efficiently detects and tries to eliminate them through the 

described mechanisms [9]. This biological event makes the immune system a crucial obstacle to deal 

with, in order to apply nanotechnology to biomedicine. 

3. Nanoparticle Interaction with Blood Components and Uptake by Phagocytic Cells 

Critical physical and chemical features of NPs regulate the interaction with the immune system. 

Surface electrostatic charges of engineered nanomaterials are fundamental to define immune 

responses [10]. Positive-charged surfaces on the particles are often more cytotoxic than anionic and 

neutral ones. Cationic NPs bind more efficiently than anionic charged or neutral molecules to the 

negatively charged plasma membrane of target cells, which expose the negative charges of the 

phospholipidic groups. Once NPs have entered the cell, NP surface positive charge slows down the 

acidification of endosomes (responsible for the transport pathway from the plasma membrane to the 

lysosome), thereby delaying the endosome–lysosome transition. Moreover, they can cause more 

pronounced disruption of plasma-membrane integrity, stronger mitochondrial, lysosomal damage, and 

increased number of autophagosomes [11,12]. Positively charged elements introduced into cells may 

also form complexes with the negatively charged nucleic acids raising genotoxicity concerns. However, 

a net positive surface charge helps the binding to plasma membranes. This physical effect can be 

beneficial for drug delivery particles. 

The different uptake preferences of phagocytic and nonphagocytic cells for cationic and anionic NPs 

are important for the efficacy and selectivity of NPs. In general, neutral particles show lower interaction 

with the cell membrane than charged (cationic or anionic) nanoparticles of the same size, due to the 

lower number of electrostatic interactions between NP-surface and charged cell membranes. Designing 

optimal coatings for drug delivery carriers requires a precise characterization of these physical interactions.  

Drug or gene delivery nanocarriers for systemic injection in the bloodstream come across a biological 

milieu composed of cells, proteins and solutes [13]. Injected NPs almost instantaneously adsorb and bind 

different proteins, whose affinity kinetics depends on the nano-material surface, charge and size. The 

protein layer created on the particle surface is called “corona” and it influences particle biodistribution 

and circulation time. Proteins that increase the clearance of exogenous particles by specialized 

mononuclear phagocytes are called opsonins. Blood released antibodies, for example, principally work 

as opsonins enhancing phagocytosis. Molecules that activate the complement system (see below) are 

also considered opsonins. Their binding to NPs injected in the bloodstream leads to the attachment of 

macrophages followed by cell internalization. This type of internalization is highly regulated by cells 

surface receptors and their capability of binding to the particular protein corona attached to the particle. 

A detailed characterization of NP-specific opsonization process will help to design nanoparticle with 

future clinical relevance. 

The protein corona hiding the surface of NPs determines the effective size and the final 

beneficial/dangerous effects of the material. Besides enhancing particle recognition by the host immune 

cells, protein adsorption/opsonization increases the hydrodynamic diameter (HD) which contributes to 

modify NP accumulation and tissue distribution. Generally HD is greatly larger than the NP diameter 

measured after their synthesis. The HD of particles injected in the bloodstream is inversely related to 
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glomerular filtration rate in the kidney, ultimately regulating the blood half-life of the solutes [14]. 

Molecules with an HD < 5 nm achieve a rapid equilibrium with the extravascular extracellular space 

(EES), whereas larger particles have prolonged circulatory times due to slow transport across the 

endothelium [15,16]. 

The opsonization process of NPs may involve the blood proteins of the complement system, which 

refers to about 30 small blood molecules (serum proteins and cell membrane receptors) synthesized by 

the liver [17]. This system helps and “complements” the action of innate and adaptive immunity and has 

an important role in leukocytes chemotaxis and bacteria lysis. Upon stimulation, specific proteases 

cleave downstream peptides to release cytokines, thus initiating an amplifying the proteolytic cascade to 

further cleavages. The end-result is a massive amplification of the response and subsequent activation of 

APCs, T and B cells. Complement can be activated through three different biochemical ways: the 

classical, the alternative and the lectin pathway. The several types of NPs can differently activate the 

complement system through one specific pathway or a combination of them [18]. The specificity of the 

activated pathway by NPs depends on their surface properties, such as the conformation of a particular 

polymer coating [19–21]. 

The activation of complement protein cascades can be responsible for some adverse effects  

(i.e., hypersensitivity and anaphylaxis). To avoid such events, nano-formulations intended for systemic 

administration of drug carriers are usually designed to prevent the complement activation. 

As previously mentioned, NP physicochemical properties regulate their recognition and uptake by 

phagocytic cells. In the past decades it was believed that phagocytosis was restricted to large matter 

(>1 μm). However, like other cells, macrophages can also use different routes of internalization like 

endocytosis and macropinocytosis to uptake nanosized particles. It has been observed that nanoparticles 

>500 nm are primarily and more efficiently internalized via macropinocytosis or phagocytosis 

mechanism than smaller ones with the same composition and surface properties [18,22]. NPs with 

dissimilar morphologies interact with macrophages in a different way. As expected, the longest 

dimensions exhibit the strongest attachment with macrophages membranes. Nonetheless, virus-sized 

particles (20–200 nm) are efficiently taken up by macrophages or APCs, but mainly via clathrin-coated 

mediated endocytosis [23]. 

Once internalized within immune cells, NPs can activate cytoplasmic multiprotein complexes called 

inflammasomes, which are involved in the initiation of inflammatory responses [24]. These complexes 

induce the proteolysis of inflammatory cytokine precursors and the following release of the bioactive 

mediators. Endo/lysosome compartment damage and the release of hydrolytic enzymes, such as 

Cathepsin B seem to play a major role in NP-induced inflammasome-dependent interleukin-1β (IL-1β) 

release by macrophages and DCs [25]. 

Unfortunately, the information regarding the interaction of nanomaterials with the immune system is 

still limited and fragmentary. Many results have been obtained in vitro using mouse or human 

immortalized cell lines. The differences between mouse and human immune systems rise up some 

concern on the potential clinic reliability. A second issue to be considered is the constitutive release of 

inflammatory factors or growing hormones by immune cell lines, otherwise suppressed by primary cells 

or temporary expressed after external stimuli. Furthermore, the several synthesis processes to produce 

the same nanomaterials may introduce discrepancies in the resulting in vivo outcomes. 
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In this review we report and comment on what is known in literature on the immunological 

characterization of the principal inorganic and organic materials usually exploited in NP coating for 

biomedical applications. To better focus on the surface material-related immune events, we will not 

describe and discuss NP functionalization with peptides or other biological moieties intended for 

specific cell targeting. 

4. NP Surface Coatings 

The employment of synthetic polymers to coat NPs increases their stability and solubility with 

advantageous effects on cytotoxicity or inflammatory responses following administration [26]. Active 

molecules can be encapsulated (adsorbed or bound) into the coated carriers to protected them from 

metabolizing enzymes. Specific NP surfaces can confer protection to non-target tissues from a possible 

unspecific toxic action of the drug payloads leading to side effects of the pharmaceutics. On the other 

hand, they protect the drug from premature release or degradation in the biological environment of the 

body, preserving their efficacy. 

As well as delivery carriers, different type of shells cover NPs aimed at imaging and more in general 

at diagnosis. For instance, contrast agents for Magnetic Resonance Imaging (MRI), like 

super-paramagnetic iron oxide (SPIO) NPs or paramagnetic gadolinium-labeled NPs are often coated 

with polymers to increase their solubility and biocompatibility [27]. 

Conversely, the coating can be chosen to produce immune-stimulant reactions, as demonstrated by 

the application of NPs as adjuvant in vaccines production, which is becoming a field of fast development 

in pharmaceutical industry [28]. In this case, reactive surfaces stimulate specific immune cells in order to 

increase the response to antigens. 

Therefore, NP surface features and materials must be considered as key factors that may significantly 

contribute to adverse immune reactions and toxicity in current healthcare practice. In the following 

paragraphs, representative observations will describe the type of interaction that the mainly used 

NP-coating materials have with the immune system and their proved or potential effects. 

5. Synthetic Polymeric Coatings 

5.1. Polyethylene Glycol (PEG) 

Hydrophobic surfaces generally tend to exclude water molecules causing aggregation and 

precipitation of unstable colloids with limited biological applications. NP surface can be modified by 

using highly hydrophilic polymers, such as poly(ethyleneglycol) (PEG) [26]. PEG is a polyether chain 

able to absorb water and generate hydrogen bonds that allow solubilization in polar solvents and the 

stabilization of the colloid either in acidic or basic pH environments. As we mentioned before, charged 

nanoparticles bind more proteins than particles with neutral surfaces. Surface neutralization by coating 

with PEG is one of the best approaches to protect nanoparticle surface from protein binding. 

Two different approaches are mainly used to obtain PEG-coated nanoparticles: PEG adsorption or the 

covalent attachment of the polyether chain on the surface, usually called PEGylation [29]. PEG 

adsorption is the simpler approach, but it is barely useful in the case of NPs released in a biological 

environment. Since this polymer is highly water-soluble, the coating might be immediately dissolved in 
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salty fluids. PEGylation represents the best way to stably attach the polyether chain on the surface for 

biomedical applications. A third way to obtain PEGylation is using amphiphilic di-block copolymers to 

form NPs. In this case, self-assembling micellar structures can be produced and loaded with the  

desired cargo [30].  

As consequence of PEG coating NP internalization by phagocytes is reduced prolonging their 

circulation time when released in the blood [13]. However, PEG covering of some materials like 

liposomes does not protect from complement activation. The presence of specific chemical groups on 

the polymer shell may modulate this effect. For instance, linkers like hydroxy and thiol-groups do not 

activate the complement cascade, while methoxy groups potently trigger the cleavage reaction [21]. 

Different structural conformation and chemical group charges may determine the complement binding 

with associated immune responses. 

Most of the data present in literature describing antigenic responses to NPs surface coatings are 

provided by experiments using PEGylated liposomes. Repeated systemic administrations of these 

nano-systems induce an antibody-dependent rapid clearance of the second dose from the circulation [13]. 

This phenomenon is called accelerated blood clearance (ABC). The ABC effect seems to be 

accompanied by the accumulation of both PEGylated and uncoated liposomes in the liver and spleen 

immune resident cells. Phagocytic cells depletion attenuates this process, suggesting that macrophages 

are involved in NPs accelerated clearance. The rate of the ABC phenomenon depends on many factors, 

like the dose, the interval between the administered doses, the NP size, the surface charge, the liposomal 

composition and the PEG density. 

Nowadays, PEG coatings show many advantages to produce “stealth” NPs able to avoid a major 

activation of immune system. This is proved by its abundant use as sole coating or in combination with 

other polymers. Nevertheless, clinical studies employing PEGylated NPs for long time are not available 

to assure its complete immune-safety. 

5.2. PLGA 

Poly(lactic-co-glycolic acid) (PLGA) is one of the most successfully developed polymers for 

therapeutic devices, owing to its biodegradability and biocompatibility [31]. PLGA is synthesized by 

co-polymerization of two different monomers, the cyclic dimers of glycolic acid and lactic acid. 

Depending on the ratio of lactide to glycolide used for the polymerization, different forms of PLGA can 

be obtained. Although the homopolymers of lactic acid (polylactide) and glycolic acid (polyglycolide) 

show poor solubility, PLGA can be dissolved by a wide range of common solvents. 

Under normal physiological conditions, PLGA undergoes hydrolysis in the body and produces its 

original monomers. Since they are by-products of various metabolic pathways in the body, there is minimal 

systemic toxicity associated with the use of PLGA for drug delivery or other biomedical applications.  

PLGA is described in the literature as a promising carrier adjuvant for nasal subunit vaccines. Glycol 

chitosan coated PLGA (GC-PLGA) NPs were found to elicit relatively stronger immune response as 

compared to chitosan coated PLGA (C-PLGA) and PLGA NPs after nasal administration [32]. 

GC-PLGA NPs showed a better mucoadhesivity, with consequently prolonged nasal residence time. 

Furthermore, GC-PLGA NPs resulted in a more efficient antigen uptake and transport across the nasal 
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mucosa and into the circulatory system. The coating of NPs with chitosan and glycol chitosan did not 

affect the integrity and release profile of the antigen. 

Surface-modified PLGA microspheres (cationic PLGA microspheres) were also described as potent 

nasal delivery systems for vaccines where mucosal, humoral and cellular responses after bacterial and 

viral pathogens invasion are required [33]. 

It is worth noting that PLGA particulate vaccine adjuvants enhance LPS-induced NALP3 

inflammasome and Caspase 1 activation leading to increased IL-1β secretion [34,35]. This observation 

emphasizes the complexity of immune responses to NPs even for those usually considered non-toxic and 

biodegradable. It can be hypothesized that the presence of PLGA coating helped to increase the 

efficiency of the adjuvant delivery without a direct involvement in the immune response. The 

enhancement of an inflammatory pathway born after particle internalization, that is, the inflammasome 

activation, would suggest the hydrolyzation of the PLGA coating within the cell. 

The advantage of using PLGA as a good and biodegradable protection for the desired cargo also 

seems a good choice for the immune-compatibility of the polymer, based on the absence of detrimental 

effects in the available literature. 

5.3. Dendrimers 

Dendrimers molecules are highly-branched symmetric structures which are synthesized in a 

layer-by-layer fashion expressed in “generations” (G) around a core unit. This structure has repeated 

dendrons with a single chemical linking group, called focal point. Their synthesis results in high level of 

control over size, branching points and surface functionality. Several kinds of inorganic nanoparticles, 

coated with dendrimers are reported in literature for drug and gene delivery [36–38] or imaging [39]. 

Many detailed results are available on dendrimer toxicity either in vitro or in vivo [40]. However, 

information on the immune system reactions to dendrimer is still less well explored. Glycodendrimers 

containing various surface modifications have been designed as anti-infective ligands with anti-viral or 

antimicrobial effects. As examples, a polysulfonate G4 polyamidoamine (PAMAM) dendrimer show the 

ability to block HIV-1 and HIV-2 activity in vitro [41]. Although the mechanism of infection prevention 

is mainly related to structural entrapment of the virus by the branched structure, dendrimer-related 

antimicrobial activity may also involve immune-modulation. For instance, N-acetyl-glucosamine-coated 

G1 PAMAMs administered in mice bearing subcutaneous melanoma model, decrease tumor growth and 

increase mice survival. These results were accompanied by an increase of CD69+ cells in the spleen and 

the tumor tissue, associated to the up-regulation of IL-1h, IFN-g, TNF-a and IL-2 [42]. Another 

indication of such phenomenon is provided by the over-expression of pro-inflammatory chemokines and 

cytokines, namely MIP-1a, MIP-1h, IL-8, TNF-a, IL-1h and IL-6 induced in human dendritic cells and 

macrophages by glucosamine-modified G3.5 PAMAMs [43]. 

Many different dendrimer compositions can be synthesized and each one should be studied using 

primary immune cells and animal models in order to understand and eventually classify the different 

features of immune responses. It is clear that cationic dendrimers can damage cell membranes and this 

event can activate innate inflammatory reactions mediated by DAMP receptors, which could recognize 

cell components escaping from their intracellular location. 
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6. Natural Polymeric Coatings 

Among the natural polymers, chitosan, sodium alginate and dextran are frequently used to cover NPs. 

However, the information on immune effects is often restricted to the bulk material or to some 

specific application. 

6.1. Chitosan 

Chitosan (Chi) is a linear polysaccharide, extensively diffused in biomedical applications for its 

excellent properties including rapid blood clotting, biodegradability, non-toxicity, high charge density, 

gelling and mucoadhesivity. These features give to chitosan an immense potential for various 

pharmaceutical applications, such as the coating or entrapment of biochemicals, drugs and antigenic 

molecules. An example is represented by chitosan microspheres, which have been studied as promising 

carrier systems for mucosal vaccination (especially oral and nasal) to induce enhanced immune 

responses [32]. 

This natural polymer can be employed both for inorganic and organic nano-structures. Literature 

reports chitosan coatings of different metallic NPs [44,45]. Chi has been shown to enhance the function 

of immune cells, such as neutrophils and macrophages stimulating the production of cytokines and 

growth factors [46–49]. However, Chi is also controversially employed as a “fat binder” to reduce body 

weight. The mechanism of interaction between chitosan and fat is not well understood and has not been 

proved clinically. No indications of specific immune responses have been clearly shown following oral 

administration of chitosan tablets or pills. On the other hand, due to its adjuvant properties that increase 

inflammatory responses, caution should be used before choosing this polysaccharide as NP coating. 

6.2. Sodium Alginate 

Sodium alginate is a hydrophilic, water soluble and biocompatible polysaccharide obtained by marine 

brown algae. Alginate consists of α-L-guluronate and β-D-mannuronate, arranged in a block structure as 

homopolymer (polyguluronate or polymannuronate) or heteropolymer (a mixed sequence of these residues).  

It is often employed as a coating for magnetic [50] and polymeric NPs [51,52]; alginate oligomers 

obtained by enzymatic digestion of alginate polymer are able to induce the secretion of high levels of 

inflammatory cytokine and chemokines, like MCP-1, RANTES in vitro and in vivo [53,54]. 

Combinations of alginate and poly-lactide-co-glycolide acid (PLGA) are developed for vaccination 

purposes. Immunization studies in Balb/c mice by intradermal route demonstrated that incorporation of 

alginate elicited humoral and cellular immune responses [33,55]. 

Enhancement of non-specific immune responses demonstrated in vivo suggests the employment of 

alginate as coating for NPs aimed at immune stimulation. Either for vaccine adjuvant properties or for 

diagnostic purposes to reveal deficient innate immune reaction, this brown algae-derived anionic 

polysaccharide may represent a useful tool in biomedicine applications of NPs. 
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6.3. Dextran 

Dextran is a complex, branched polysaccharide composed of many glucose molecules. It is widely 

used in medicine as an anti-thrombotic (anti-platelet action) and blood viscosity reducer. Larger 

dextrans, which do not cross the vessels, are potent osmotic agents, and thus volume expanders in 

hypovolemia.  

Dextran is also diffused for the realization of metallic NP coatings to protect core oxidation. Dextran 

coatings can be obtained by adsorption [56], chemical functionalization [27,57] or directly during 

nanoparticle formation [58]. 

Even if extensively employed for NP shells, a few studies investigated the effects of such surfaces on 

the immune system. Potential immune stimulatory effects on mouse splenocytes have been achieved 

using drug loaded chitosan-carboxymethyl dextran NPs (CDNP) [59]. Unfortunately, it is difficult to 

understand the specific contribution or role of the dextran in those kinds of immune responses.  

The complex of two or more polymers can create surfaces with very different characteristics and 

immune reactions. 

Immune effects resulting from the release of free dextran molecules (not in nano-complexes) are not 

useful to establish its immunogenicity as NP coating. Many inflammatory reactions depend on the 

molecular weight of the chosen polysaccharide, its branching structure and the administered dose. 

6.4. Starch 

Starch is a different natural polymer produced by plants such as corn, potato, rise and cassava. It is 

composed of two biomolecules, namely amylose and amylopectin. Amylose is a linear polymer of 

glucose units mainly linked with alpha-1,4-bonds. Amylopectin, an extremely high molecular weight 

polymer, has the same backbone structure of amylose, but with many alpha-1,6-linked branch points. 

This polymer is highly biocompatible and biodegradable, with different physicochemical properties 

according to the type of starch source [60]. 

Due to all these features, starch is widely used in many different biomedical applications ranging 

from skin topical release [61] to degradable drug microsphere carrier [62]. Starch based coating have 

also been employed for gold [63] or iron-core magnetic NPs [64,65]. 

Although commonly used, the literature regarding immune system interaction with starch coated NPs 

is poor. It is unclear whether stereotyped immune reactions can be associated with the starch surface. 

Due to its wide presence in food and its biodegradability, starch is considered a “safe” material. It is 

expected, however, that potential allergic reaction will be experienced only in a restricted number of 

sensitive human recipients, as well as for the other materials. 

7. Inorganic NP Coatings 

Inorganic covering of NPs is frequently used to produce NPs for applications involving specific 

characteristics of the coating material. Due to the lower solubility of their coating properties, they are 

less applied than the organic polymers for NP delivery in biomedicine. Data on the immune reactions 

towards inorganic NPs are frequently associated to secondary effects following cell internalization of the 

particles. NP size and charge play a major role in toxicity, intracellular localization and membrane 
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damages that lead to DAMPs release by injured cells and inflammasome activation in the phagocytes. 

Immune secondary events limit the possibility to find common responses to a certain coating material 

and restrict the observations to the particles employed in a specific study. 

7.1. Silica 

Silicon dioxide NPs (SiO2 NPs) are exploited in a wide range of applications and in particular for 

biomedical research. Dense or porous silica inorganic coatings are also used to shell different NP 

cores [66]. SiO2 NPs have demonstrated low toxicity in vitro suggesting a positive role of silica shell 

around different core materials, including CdSe/Zn QDs [67–69]. As described earlier, phagocytes such 

as macrophages and monocytes react more efficiently to micro-size particles than to nano-size particles. 

Moreover, increased cell damage has been shown for silica micro-particles than for nano-particles [18]. 

An interesting work by Fruijtier-Polloth and colleagues demonstrated that interaction between 

amorphous silica nanoparticles and endothelial cells promotes the upregulation of endothelial adhesion 

molecules expression. This effect enhances the adhesion of monocytes to endothelial cells, a typical 

early event of inflammatory processes [70]. Moreover, many immunotoxic effects are due to the 

interference with signaling pathways involved in activation of the immune response or the release of 

pro-inflammatory cytokines or chemokines [71]. 

Morishige and colleagues demonstrated that chemical modification of silica NP surfaces can decrease 

or suppress inflammasome activation and IL-1β release in THP-1 human monocyte/macrophage cell 

line [25]. However, it is important to note that these inflammatory outcomes have been proved using 

1 μm particles. Nano-scale silica particles, ranging from 30 to 300 nm, did not induce IL-1β release. 

These results suggest that inflammatory responses of silica nanoparticles could depend on the 

combination of several features, including size and surface functionalization. 

It is worth mentioning that many indications come from cancer models where the immune system is 

not in a physiological condition [72]. Further experiments specifically planned would help to better 

decipher the silica coated NPs impact on the immune system. 

7.2. Gold 

Gold coatings are generally used for the preparation of bimetallic particles, containing a magnetic 

core as platform for surface functionalization. Some strategies reported in literature describe different 

core-shell NPs covered with this metal [73,74]. Gold-coated nanoparticles (Au-shelled NPs) have been 

particularly designed for biomedicine, especially for drug delivery [75] and cancer applied hyperthermia 

treatments [76,77].  

There are controversial studies concerning the toxicological effects of engineering gold nanoparticles. 

A study by Hashimoto et al. compared the exposure of cultured macrophages RAW264.7 to AuNPs 

with AgNPs. Although an inflammatory response was observed for both the Au- and Ag-NPs, the 

harmful cytotoxic effects of AuNPs were smaller than those of the Ag-NPs [78]. However, as described 

for other kinds of nanomaterials, the interaction between cells and Au nanoparticles could be mediated 

also by unspecific adsorption of serum proteins onto the gold surface [79]. 

  



Coatings 2014, 4 150 

 

 

7.3. Titanium Dioxide (TiO2) 

Titanium dioxide (TiO2) is another coating for inorganic nanoparticles, exploited to increase their 

cytocompatibility. It was reported that a titanium oxide shell on Zn-based nanoparticles reduces zinc 

ions release in human lung epithelial cell line [80]. More recent studies demonstrated that core/shell iron 

oxide/titanium oxide nanoparticles can be used as doxorubicin vector for cancer cells [81]. There are 

contentious data about TiO2 toxicity. TiO2 particles are considered to be inert and unable to pass 

undamaged skin. For this reason, they are commonly used for cosmetics or sunscreens preparations as an 

efficient filter of UV light [82]. In contrast, other studies reported cell toxicity and genotoxicity [83–85]. 

The discrepancy may be due to different TiO2 particle compositions, different cellular origin, or 

variation in TiO2 sensitivity between the organisms. TiO2 acts as a modulator of neutrophil 

degranulation, typically associated with inflammatory process. Actually, it enhances cell surface 

expression of some granule markers, the secretion of some proteins in the supernatants and 

metalloproteinases activity in human neutrophils [86]. 

8. Discussion and Conclusions 

Nanoparticles designed for biomedical applications in vivo inevitably encounter the human Immune 

System. Many aspects of nanoparticle-induced modulation of immune responses have been investigated 

and comprehensive literature on the subject has been published [9,18]. In this review we have revised the 

available literature focusing on the immune aspects specifically due to different surface coatings of NPs, 

independently of their size, shape and core composition (summary in Table 1). We also excluded the 

protein functionalization of the surfaces, which could inevitably induce a ligand-receptor driven 

targeting of the particle or stimulate specific immune pathways on purpose. 

It is important to have an overview on this subject; however, it is difficult to draw conclusions or even 

compare the several ways to shell NPs. The choice of the NP coatings firstly relies on the chemical 

feature of the employed materials. For example, not all the polymers can be covalently attached or 

adsorbed onto different metal cores. The use of surfactants may be helpful for solubility improvement, 

but can completely change the immune response. Experimental approaches that clearly avoid 

false-positive or false-negative immunotoxicological results of nano-systems are not simple. Secondly, 

the NPs end goal may limit the application of a specific NP coating. For instance, NPs aimed at clinical 

applications could require high temperature sterilization processes. These particles cannot be coated 

with polymers that liquefy at high temperatures. In this case the surface that the immune cells will face 

would not be the original polymer but either a modified polymer or the core material. 

Precise design of NP organic or inorganic coatings to avoid or specifically interact (e.g., coadjuvants) 

with the Immune System could be done only if the binding sites were clearly known. Polymers differ by 

chemical groups that present unique composition and structure. The different metallic or metal oxides 

NPs show diverse reactivity on their surfaces depending on their atomic and crystal structure. So, several 

features should be considered, like sizes of antibody binding sites vs. their potential interaction site on 

the NP surface. Moreover, the biological conditions and opsonization by diverse molecules in vivo may 

dramatically alter all these parameters. 
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Table 1. Immune response summary of surface coatings. 

Surface 

coatings 
Origin Immune response Cell mediator Applications References 

Polyethylene 

glycol (PEG) 
Synthetic Complement activation Phagocytic cells 

Biomedical 

applications 
[13,21,26,29,30] 

Poly(lactic-co 

glycolic acid) 

(PLGA) 

Synthetic Antigen-mediated 

NALP3 

inflammasome 

and Caspase 1 

activation 

Drug delivery, 

vaccine adjuvant 
[31–35] 

Dendrimers Synthetic 
Innate DAMP 

receptors-mediated 

Dendritic cells 

and 

macrophages 

Anti-infective 

ligands 
[36–43] 

Chitosan Natural 
Innate immune 

response 

Neutrophils and 

macrophages 

Coating of drugs, 

vaccine adjuvant 
[32,44–49] 

Sodium 

alginate 
Natural 

Humoral and cellular 

response 

Neutrophils and 

macrophages 

Coating for 

magnetic and 

polymeric NPs, 

vaccines 

[33,50,53–55] 

Dextran Natural Not well defined Not well defined 

Anti-platelet 

action, metallic 

NP coatings 

[27,56–59] 

Starch Natural 
Low immune and 

allergic responses 
Not well defined 

Skin topical 

release, gold or 

iron-core 

magnetic NPs 

 [60–65] 

Silica Inorganic 

Inflammasome 

activation 

DAMPs release 

Endothelial 

cells, 

monocytes 

Biomedical 

research 
[18,25,66–72] 

Gold Inorganic 

Serum protein 

mediated-inflammatory 

response 

Not well defined 

Magnetic 

core,cancer 

applied 

hyperthermia 

[73–79] 

Titanium 

dioxide 

(TiO2) 

Inorganic 

Secretion of proteins, 

metalloproteinases 

activation 

Neutrophils 
Vector for cancer 

cells, cosmetics 
[81–85] 

In view of all this complexity, special attention must also be paid to in vitro and in vivo models for 

immunology studies. Although currently used in the laboratory, these models provide limited 

information regarding a potential immune response in human subjects. Immune cell lines are often used 

as in vitro models. These cell types are proliferating clones that differ from primary immune cells which 

are extracted from a donor in a physiological state. Primary cells are usually cultured and tested within a 

couple of weeks. Although the window of time to perform experiments on each donor is shorter than 

using a cell line, this represents the best in vitro model. Primary white blood cells represent a reliable 

model to assess the cellular and molecular immune responses following cellular activation pathways by 

the NPs. The possible release of inflammatory cytokines in the supernatant can also be carefully 
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quantified in culture. The weak point of all the in vitro systems is the isolated and artificial environment 

of the culture. Different sera, media and mutated cell lines of the same origin have produced 

contradictory results. It is difficult to predict with reasonable certainty what will happen once NPs are 

administered in vivo. Most of these experiments, however, are necessary to exclude some responses and 

orientate the researches towards specific outcomes. If high doses of a certain NP do not induce 

pico-molar doses of inflammatory cytokines in vitro it will be unlikely that the same particle will induce 

cytokine release in relevant amounts in vivo. On the other hand, a different reaction cannot be excluded 

in a living organism as a consequence of orchestrated reactions of different cell types. 

In vivo experimental models are definitely required to understand systemic immune reactions. The 

elected model for immunology is the mouse. Selected strains of mice are commercially available and 

permit the investigation in fast reproducing and easy-to-handle mammals. Their immune system is not 

exactly like the human one, but the cell types and the main features are very similar. Moreover, modern 

biotechnology provides genetically modified animals missing genes involved in specific immune 

reaction. Genetically modified mice for immunity genes provide the most straightforward evidence for 

potential immune system activation induced by NPs. Model mice with a specific disease offer the 

opportunity to study the specific immunological events induced by the nano-carrier potentially 

employed as drug delivery system for the same disease. The latter consideration assumes that specific 

disease states could present altered immune responses limiting the information collected from 

experiments of NP release in healthy mice. 

In vivo models are mandatory when the targets of delivery are protected organs like the Central 

Nervous System (CNS). The optimal way to deliver NPs to the CNS would be through the blood 

circulation. Nonetheless, the presence of the Blood-Brain-Barrier (BBB) increases the level of difficulty 

for delivering drug carriers. The BBB acts as a rigorously regulated gate for the flow of ions, 

macromolecules, and nutrients between blood and brain tissue, as well as potential hazards. It combines 

physical and metabolic barriers to maintain the homeostasis of the CNS [87]. However, reaching the 

CNS through blood flow is very difficult, although very attractive due to the reduced invasiveness of 

intravenous administration compared to intracerebroventricular (ICV) or intraparenchymal (IP) injections. 

The preparation of NPs for applications in the CNS implies a peculiar design of the surface and 

specific particle properties. Polymeric NPs or coating with surfactants like polysorbates or PEG have 

been traditionally used as a strategy to cross the BBB [88–90]. These approaches have been applied with 

comprehensive chemical design of the nano-vectors and many observations of neural cell responses. 

Fewer details are available on the immune responses happening in the CNS, once NPs have been 

introduced in the neural parenchyma. 

The CNS resident immune system is represented by microglial cells [91]. These cells are able to sense 

pathological tissue alteration and perform immunological functions, besides many other emerging 

functions in maintaining the homeostasis of the healthy CNS. 

As already pointed out, PEGylation is one of the most used materials to reduce protein opsonization 

on the NP surface, limiting the immune system response. It has been observed that uncoated lipid NPs, 

which accumulate in the brain parenchyma after intravenous injection, cause considerable microglia 

activation. PEG coating of those lipid NPs with PEG strongly reduce microglial activation [92]. 

We already mentioned the PEG or PLGA coating of magnetic NPs designed as contrast agents for 

MRI imaging in the CNS. A novel approach is represented by magnetic core coated with lipid 
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modified-PAMAM dendrimers [93]. No indications on immune reactions towards this type of NPs have 

been presented yet. However, very recent results on G4 amine-PAMAMs and lipid-modified 

amine-PAMAMs emphasize the importance of the dendrimer modification of the regulation of 

inflammatory cytokine and chemokine receptors on microglia surface [94]. On the other hand, PAMAM 

dendrimers alone have already been employed for CNS delivery in vivo demonstrating helpful features 

for neuro-inflammatory disease models [95]. 

As described in this review, nanomaterials applied to biomedicine can be designed to avoid or target 

the immune system. The advent of engineered NPs has highlighted the importance of immunosafety 

tests to understand the behavior of immune cells in response to these formulations. Unfortunately, 

nano-sized systems often interfere with the assays usually used by immunologists. Generally, 

experimental results can be affected by chemical or biological contamination and by optical interference 

related to the material density. Traditional in vitro tests do not usually contemplate the use of NPs and 

their possible optical and catalytic interference with the employed reagents and cellular model. 

Moreover, traces of impurities (solvents, carry-over molecules) and/or endotoxin within a 

nano-formulation can also induce an inflammatory response, causing cellular- and immunotoxicity [96]. 

The development of new nanomaterial-aimed techniques and assays will help to validate the already 

existing results and to unify the results obtained from different methods. 
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