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Abstract Electrochemical biosensor holds great promise in the biomedical area due to its enhanced specificity, sensi-

tivity, label-free nature and cost effectiveness for rapid point-of-care detection of diseases at bedside. In this review, we are

focusing on the working principle of electrochemical biosensor and how it can be employed in detecting biomarkers of

fatal diseases like cancer, AIDS, hepatitis and cardiovascular diseases. Recent advances in the development of

implantable biosensors and exploration of nanomaterials in fabrication of electrodes with increasing the sensitivity of

biosensor for quick and easy detection of biomolecules have been elucidated in detail. Electrochemical-based detection of

heavy metal ions which cause harmful effect on human health has been discussed. Key challenges associated with the

electrochemical sensor and its future perspectives are also addressed.
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1 Introduction

Chemical sensor converts information generated from

chemical reaction of analytes into an analytical signal by

utilizing the physical property of the system investigated

[1]. These chemical sensors have vast application in

industries for process control and monitoring in safety,

environmental protection, detection of biochemical agents,

drug development, in-home medical diagnosis and chemi-

cal warfare. Analytical signal obtained from the biochem-

ical process are regarded as biosensor. These sensors have

great potential for monitoring environmental hazards as

well as in health care. Biosensor is a device which inte-

grates a biological recognition element into a transducer. A

schematic of the basic principle of biosensor shown in

Fig. 1 shows biomolecules incorporated into a solid matrix

that holds the sensing bio-analyte. Components of the

sensor like electrodes, and intermediate matrix between the

recognition layer and transducer play an important role in

defining the stability, selectivity and specificity of biosen-

sor [2]. Based on the principle of transducer, biosensors

may be classified as shown in Fig. 2. The two major

transduction mechanisms like optical and electrochemical

sensors are, respectively, based on the light intensity and

electrical distribution that play a vital role in a majority of

the available biosensors. Among these, the electrochemical

sensors possess a huge potential and are most suitable in

the context of biomedical application. When modified with

different nanomaterials, they can offer a variety of bio-

molecules to be identified with great specificity and

sensitivity.

In electrochemical sensor, the transducer converts bio-

logical event into an electrical signal. Two most commonly

used parameters in electrochemical sensing are
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amperometric and potentiometric. In potentiometric, the

analytical information obtained through biorecognition

process is converted into potential, while in amperometric,

constant potential current associated with reduction or

oxidation of an electroactive species is monitored [3].

Therefore, they are employed extensively in disease diag-

nostics for the detection of suitable marker proteins, anti-

bodies, DNA sequences or cells.

The development of novel diagnostic tools draws more

attention towards point-of-care applications. This provides

us with a major challenge of developing a new material in

electroanalytical techniques that can specifically sense

in vivo analytes. With the advent of nanotechnology,

nanomaterial-based biosensors have shown immense pos-

sibility of diagnosis and detection of disease biomarkers

more efficiently. Important advances in this aspect have

been made with the utilization of different types of nano-

materials such as metal nanoparticles [4], magnetic nano-

materials [5], carbon materials [6], etc. to improve

electrochemical signal of biocatalytic events occurring on

the electrode surface.

Nanomaterials are characterized by excellent properties,

like high surface area-to-volume ratio, good electrocat-

alytic nature (e.g. carbon-based nanomaterials) and

enhanced adsorption capacity (e.g. gold nanoparticles).

This leads to the fabrication of electrochemical sensors that

exhibit improved sensitivity and selectivity [7]. Nanos-

tructures, like nanowires (NWs), nanotubes (NTs),
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nanoparticles (NPs) and quantum dots (QDs) have been

explored extensively for biosensing, since their size is

comparable to the chemical and biological species to be

sensed. Nanomaterials are employed in modifying elec-

trochemical transducers so as to improve the transfer of

electron in an analytical application and also provide bio-

compatible microenvironment to biomolecules. Recently,

efforts are being made to use nanostructured modified

electrodes for monitoring specific biological species

in vivo [8] which opens up the possibility to detect a

specific molecule in living organisms. So that real-time

monitoring of some analytes like glucose can be imple-

mented [9]. There is a need for the development of in vivo

sensors to directly examine the nature of biological pro-

cess, as in vitro sensing generally fails to completely

explain the complexity of the living system. Different

devices have been formulated which can implement real-

time monitoring of biological events like muscular dys-

trophy, inflammatory events, infections or release of pro-

teins in an in vivo environment as well. In vivo sensing

requires sensitive instrumentation which can monitor sig-

nals inside living system. Detectors should be non-toxic

and biocompatible and do not perturb the system.

Realizing the potential role of electrochemical sensor in

diverse areas of biology and medicine, we have selectively

reviewed here the recent advances in biomedical prospects

of electrochemical sensor. Various modifications of elec-

trodes have been made so as to increase the compatibility

of biological species with the surface. Employing nano-

materials like carbon-based nanomaterials, metallic

nanoparticles (such as silver and gold), metallic oxides,

etc., in electrochemical biosensor has been discussed. We

have also highlighted future perspectives and challenges

related to this rapidly growing technology.

2 Electrochemical Biosensor

To enhance the effectiveness of disease treatment, early

diagnosis of disease is an important issue which needs to be

resolved. Highly sensitive sensors are urgently required to

measure extremely low level of markers and detect early

stages of the disease, which will increase the survival rate

of patients [10]. Existing diagnostic tests (e.g. glucose

strips, ELISA) are not sensitive enough, and their detection

limit corresponds to advanced stages of the disease. Faster,

cheaper and miniaturised implantable devices are now

desired. It will implement real-time monitoring of the

diseased condition and make results available at patient

bedside within few minutes [11, 12]. In this regard, elec-

trochemical sensors are considered to be highly sensitive.

They can easily be miniaturised and have fast analytical

time compared with other conventional immunoassay

techniques. And complex instrumentation system is also

not required [13].

Electrochemical sensor is a tool that reads the chemical

information of a sample and converts the data into an

analytical signal. That information may be originated from

the physical property of the system or from the reaction of

a species present in that system. Data provided by the

receptor unit are transferred to a transducer unit which

converts them into an analytical form. Conventionally, a

three-electrode system is employed in electrochemical

biosensing for the target analytes as shown in Fig. 3. The

working electrode is considered to play a key role in the

redox process of an electrochemical cell. Different types of

high-cost metal electrodes like platinum, mercury, gold and

silver to low-cost glassy carbon, carbon paste and screen-

printed electrodes are now being used as the working

electrodes. Bioreceptor molecules like enzymes, nucleic

acid, antibodies, dyes and metal ions are immobilised on

electrodes for enhancing the signal and better recognition

of analytes and biomarkers shown in Fig. 4. A potential is

applied to the working electrode with respect to the refer-

ence electrode (Ag/AgCl, saturated calomel), while the

counter electrode (platinum wire) is accustomed to com-

plete the electrical circuit. On applying a negative poten-

tial, electron passes from the working electrode into the

solution and reduces the analyte, whereas the reverse is

obtained on applying a positive potential. The analysis of

the reaction can be made through different modes like

cyclic voltammetry (CV), differential pulse voltammetry

(DPV) and square wave voltammetry (SWV). Techniques

are applied for broad-spectrum behaviour analysis of target

substance in electrolytic solution. Impedance spectroscopy

(IPS) is also being utilized for target analyte detection

where the increase in radius of semi-circle in Nyquist plot

reflects the presence of target molecules. Different sorts of

nanomaterials like graphene, nanotubes, silica-based NPs,

metallic NPs, TiO2 and ZnO have shown excellent sensing

performance in both sensitivity and selectivity with an

extremely lower limit of detection (LOD) [14–16].

Electrochemical sensing has widely been explored to

identify markers of different diseases like cardiac diseases,

cancer, acquired immunodeficiency syndrome, hepatitis

and urinary infections (Table 1) [17–22]. A variety of

electrochemical analysis methods such as amperometric,

voltammetric, conductometric and impedimetric are

reported based on the disease biomarker. Miniaturised

implantable electrochemical biosensors are now considered

as an important tool for in vivo sensing of various

metabolites like blood glucose, triglycerides and choles-

terol to various protein biomarkers, bacteria and viruses

without requiring patient intervention and its physiological

state (rest, sleep, exercise etc) [23–26].
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3 Bioreceptors in Electrochemical Sensing

3.1 Enzymes

Enzymes are considered to be an important biomarker for

the analysis of different diseases through electrochemical

detection. Enzymes are generally protein molecules of

oxidase type that can selectively react with the target

analyte. They can be easily immobilised on the electrode

surface by physical adsorption, covalent bonding and var-

ious other techniques [27, 28]. Blood glucose measurement

is generally done by three major enzymes: glucose-1-

dehydrogenase (GDH), glucose oxidase (GOx) and hex-

okinase. Glucose oxidase (GOx)-modified electrodes are

playing an important role in easy-to-use blood sugar testing

[29]. Kang et al. and Shan et al. detected glucose by direct

electrochemistry of GOx on graphene, exploiting its

excellent electron transfer property [30, 31]. The p24 HIV

capsid protein was electrochemically sensed by CV using

horseradish peroxidase (HRP)-labelled antibody-conju-

gated AuNP-modified glassy carbon electrodes (GCEs) and

hydroquinone as a redox mediator [32]. Alpha-enolase is

another metabolic enzyme that acts as a plasminogen

receptor which works by the activation of plasmin. It is in

the degradation of extracellular matrix. The enzyme level

is upregulated in tumour cells supporting invasion of can-

cer. Enolase was detected using two antibodies: anti-eno-

lase monoclonal antibody adsorbed on the electrode surface

and polyclonal antibody labelled with AuNPs. The detec-

tion of this analyte was done through SWV with the LOD

of 11.9 fg mL-1 [33]. The important feature of sensing

through enzyme is its availability in highly pure form, their

specificity for the substrates and ability to detect large

number of analytes. The sensors fabricated by enzymes can

be used continuously as they are unaltered at the end of the

reaction. However, the drawbacks are their limited stability

and activity dependence on various aspects such as tem-

perature, pH, ionic strength and chemical inhibition

(Table 1).
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3.2 Nucleic Acids

Nucleotide (DNA or RNA) sequences are also employed as

biomarkers, and single-stranded DNAs are immobilised as

biorecognition elements. If the complementary sequence is

present in the sample, binding occurs and electrochemical

response is generated. The detection occurs by comple-

mentary binding of nucleotides like adenine (A) to thymine

(T) and cytosine (C) to guanine (G). DNA-based recogni-

tion elements, aptamers, whose function is analogous to

antibodies, bind to the target and generate signal of

recognition. Cancer marker tumour promoter (TP53) gene

which encodes p53, a tumour suppressor protein, mutation

in this gene leads to a variety of human cancers [34].

Discrimination between the mutated and normal gene was

made using methylene blue-labelled short-hairpin molec-

ular beacon as a recognition layer. The current was mon-

itored through cyclic voltammetry by oxidation/reduction

of methylene blue [35]. Nanomaterials like nanogold and

quantum dots are also being used for conjugating DNA

molecules, which makes this detection highly sensitive and

more selective [36]. Electrochemical detection of human

hepatitis B and papilloma viruses was carried out through

impedance spectroscopy using AuNP-conjugated single-

walled carbon nanotube (SWCNTs) [37]. Electrochemical

DNA sensor based on graphene was developed by Zhou

et al. They reported the simultaneous detection of different

bases, and the electrodes were also capable of separating

all four bases in both single-stranded DNA (ss-DNA) and

double-stranded DNA (ds-DNA) [38]. A disadvantage

associated with this system is their specificity and stability

in electrolytic solution.

3.3 Cells

Cells are also regarded as an important bioreceptor as they

are highly sensitive to environment. They get easily

immobilised on the surface of electrode and functions well

as a biorecognition layer to frequently detect parameters

like toxicity, stress and effect of drugs. In cell biorecog-

nition, cell membrane recognises the element present in the

solution such as aptamers, antibodies or small cell vesicles.

Reports have been established on the role of electro-

chemical sensor in the detection of different cells like

cancer, A549 cell line and bacteria cells [39–41]. Human

umbilical vein endothelial cells (HUVECs) were

Table 1 Electrochemical diagnosis of different diseases based on their respective biomarkers

S.

no.

Disease Bioreceptors Biomarker Electrode modification Detection limit References

1. Cancer Antibodies Carcinoembryonic antigen (CEA) Glutathione-modified AuNPs 0.01 ng mL-1 [70]

Prostrate-specific antigen (PSA) Graphite modified by Au 0.5 pg mL-1 [22]

Nucleotides TP53 gene Au 50 fM [71]

Cells MCF7 cancer cells Aptamer modifed 1000 cells [72]

2. Cardiac Antibodies Troponin T Graphite powder 0.2 ng mL-1 [17]

Troponin I Graphene 4.5 pg mL-1 [50]

Myoglobin Didodecyldimethylammonium

bromide-stabilized AuNPs

10 ng mL-1 [51]

C-reactive protein Macroporous Au 0.1–20 ng mL-1 [14]

Cells Platelet-derived microparticles

(PMPs)

Graphene oxide 100

microparticles lL-1
[15]

3. Hepatitis Antibodies Hepatitis B surface antigen AuNPs 2.3 ng mL-1 [21]

Hepatitis C Graphite 1 ng mL-1 [73]

4. AIDS Antibodies p24 antigen AuNPs 0.01 ng mL-1 [19]

Enzyme HIV protease Au 10 pg mL-1 [74]

5. Urinary

tract

infection

Enzyme Lactoferrin UTI sensor array 104 cfu mL-1 [18]

6. Malaria Antibodies Malarial antigen PfHRP2 ISE (27504-30; Cole-Palmer) 20 ng mL-1 [64]

7. Nucleotide

antibodies

Gliadin Covalent attachment to Au coated

with DT2

46 ng mL-1 [75]

tTG Screen-printed carbon electrodes

modified with MWCNT and

AuNPs

2.45 U mL-1 for tTG IgA [16]
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immobilised on the electrode surface to construct an

endothelial cellular biosensing system to detect nitric oxide

through DPV [42]. Pond snail neuron cell membrane

potential was monitored using glass microelectrodes to

access the concentration of serotonin [43]. Cell-based

potentiometric sensor for the detection of toxins was fab-

ricated by attaching endothelial cells to a K? selective

membrane. When it is exposed to a specific class of

compounds, the permeability membrane increases and

more K? ion can penetrate producing a potential response

[44]. Detection of formaldehyde and cholanic acids has

been done using immobilised yeast where any change in

metabolism was detected via O2 electrode measurements or

extracellular acidification rates [45, 46]. The disadvantage

associated with the cell-based detection is its large size

which may create steric hindrance in the system and the

presence of undesirable enzymes. This obstructs its speci-

ficity and makes the results less reliable and ambiguous.

3.4 Antibodies

Antibodies are protein molecules which are obtained from

B-lymphocytes in any kind of antigenic stimulation. They

are immobilised on the electrode surface through covalent

bonds such as thiol, amide, ester, etc. Electrochemical

immunosensor for prostate-specific antigen (PSA) detec-

tion has been developed using silver hybridized meso-

porous silica nanoparticles (Ag@MSNs) as an electrode

material and hydroquinone (HQ) as a mediator. Graphene

sheet–methylene blue (GS-MB) nanocomposite was

employed for fabricating an immunosensor to analyse PSA

with a detection limit of 13 pg mL-1 [47]. Lu et al.

reported detection of human chorionic gonadotrophin

(hCG) by forming a sandwich-type immunosensor with

AuNPs dotted CNTs–graphene composite having a detec-

tion limit of 0.034 ng mL-1 [48]. Specific monoclonal

antibody against human cardiac troponin I (cTnI) was

modified on AuNP-coated ITO electrode surface by self-

assembly for the clinical detection of cTnI [49]. Another

carbon nanofiber nano-electrode array is also explored for

the detection of cTnI as low as 0.2 ng mL-1 [50].

Myocardial infarction biomarker like myoglobin was

quantified through electrochemical nanosensors using

AuNP/didodecyl dimethyl ammonium bromide (DDAB/

Au)-modified electrode utilizing SWV [51]. Our group has

recently reported graphene oxide-based electrochemical

biosensor for detecting platelet-derived microparticles

(PMPs), which are regarded as a major risk factor for

thrombotic pathologies like acute myocardial infarction

(AMI) and stroke. Graphene oxide was immobilised on

electrodes along with PAC1 antibodies. Results indicated a

progressive rise in the impedance of Nyquist plots with

increasing concentration of PMPs in blood plasma sample.

Blood obtained from patients diagnosed with acute

myocardial infarction exhibited significantly higher values

of circulating PMPs, thus validating the specificity and

selectivity of the sensor [15]. Few limitations are associ-

ated with antibody-based electrochemical sensors, like the

binding affinity and irreversible antigen–antibody

interaction.

4 In Vivo Applications of Electrochemical Sensors

In vivo electrochemical sensing is a well-established

technique which offers real-time monitoring of analyte

through implanted microelectrodes [52]. In general, these

sensors were decorated by making amperometric changes

that depict biological events like enzymatic activity.

4.1 Glucose Sensors

In glucose monitoring, glucose oxidase is immobilised on

the electrode surface to detect the electron transfer process.

Glucose electrochemical sensors are embedded within the

blood vessels which are directly linked to signal processing

unit and implanted wires for supplying power. In this

device, electrode is modified with glucose oxidase-conju-

gated biocompatible material and then covered with a

selectively permeable membrane to reduce signal inter-

ference. Concentration of glucose is quantified by mea-

suring oxygen (O2) consumption or hydrogen peroxide

(H2O2) production via electrochemical oxidation or

reduction occurring on the surface of the working elec-

trode. Due to the advent of nanomaterials (metallic nano-

materials, carbon nanotubes, graphene, quantum dots, etc.),

electrochemical sensors have gained large importance as

nanomaterials largely retain the activity of enzymes or

antibodies bound to them. In addition, they also facilitate

the fast electron transfer between enzyme and electrode.

Nanogold used in a glucose biosensor has shown sevenfold

increases in the rate of electron transfer rate and a decrease

in interference from O2. A needle-implantable in vivo

glucose sensor with high sensitivity was prepared by using

a nanoporous working electrode decorated with platinum

nanoparticles [53]. The two implantable electrochemical

glucose sensors (CGMS System Gold and GuardianTM

system, from Medtronic MiniMed) have FDA approval.

4.1.1 Continuous Glucose Monitoring System (CGMS)

CGMS is a needle-type amperometric enzyme electrode

which is implanted subcutaneously and coupled to a

portable logger, from which data can be downloaded after

up to 3 days sensing. The sensor is based on the conven-

tional technology in which glucose oxidase is immobilised
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at a positively charged base electrode, detecting hydrogen

peroxide production:

Glucose þ O2 ��������!
Glucose oxidase

H2O2 þ gluconic acid:

For the measurement of glucose concentrations, the

sensor is implanted in the subcutaneous tissue, through

which interstitial fluid flows and the level of glucose is

monitored [54, 55]. It is similar to normal measurement,

but in conditions when glucose level changes rapidly, for

example after a meal, these implantable devices are bene-

ficial. The magnitude of changes has been recorded in

needle-type enzyme electrodes in animal and human

studies [56, 57]. An unpredictable drift and impaired

response are two major problems associated with subcu-

taneously implanted electrodes.

4.1.2 GuardianTM System

It is designed so as to take readings from the patient for

3 days and must be calibrated with a self-monitoring blood

glucose (SMBG) system for at least every 12 h [58, 59].

Lower and higher levels of glucose alerts are generally set,

and the software is provided through which data can be

downloaded and analysed.

4.1.3 Glucowatch Biographer

It extracts glucose through intact skin via reverse ion-

tophoresis process. Hydrogel discs are used as electrolytes

and reservoirs in which glucose is collected. GOx is dis-

solved into hydrogel discs. When the reaction occurs, the

peroxide concentration changes can be measured coulo-

metrically. The total concentration of peroxide is related to

the concentration of blood glucose. This system generally

provides six readings h-1 and can be operated for 13 h

before requiring replacement [60]. The major issues asso-

ciated with the implanted glucose biosensors are instability,

the foreign body response, protease activity, etc.

4.2 Neurochemical Sensing

Analysing the brain’s extracellular chemical environment

has the potential to provide a significant insight into neu-

rotransmission, pharmacology and behaviour. Recently, the

more significant applications of in vivo electrochemical

sensing are in the field of neuroscience. As neurotrans-

mitter signalling behaviour cannot be monitored effectively

in in vitro assays, the development of in vivo electro-

chemical biosensors for the understanding of brain is

important [61]. In vivo monitoring provides information

about the working of the neural networks whether they are

active or not. Because neurochemicals are electrically

active, the electrochemical signals can be easily generated.

Fast-scan cyclic voltammetry (FSCV) is an important

electrochemical technique. It allows measurement of the

release and uptake dynamics of endogenous monoamine

level. This technique is used mainly to detect three major

neurotransmitters, serotonin (5-HT), dopamine (DA) and

norepinephrine (NE), as they can be oxidized at low volt-

ages. By the incorporation of wireless data transmission

with implantable sensors, real-time measurements of

dopamine and serotonin level have been made freely in

moving animals [62]. In another study, the kinetics of nitric

oxide signalling in brain have been measured through

in vivo electrochemical biosensors [63]. The in vivo

measurement of rapid changes in the extracellular con-

centrations of L-glutamic acid in mammalian brain during

normal neuronal activity or following excessive release due

to episodes of anoxia or ischaemia in brain tissue has been

made [64].

The most popular materials for in vivo electrochemical

sensing are carbon, platinum, gold and iridium. These

materials are often shaped into microwires with a micro-

disc-shaped tip, which can be mechanically polished.

These probes have advantages of batch fabrication, high

reproducibility of micro-scale features and flexibility to

customize electrode recording site placement and substrate

shape.

5 Heavy Metal Ion Detection

Recent reports showed the detection of heavy metal ion in

different types of diseases like cancer and malaria [65, 66].

Urine and blood is recognised as the best non-invasive

method for monitoring a broad range of toxic metals ions,

whose detection is important for detecting various diseases.

This detection has been an issue due to protein competition

and electrode fouling. Lead in urine has been detected

using supermagnetic iron oxide nanoparticles (Fe3O4)

functionalized with dimercaptosuccinic acid (DMSA) by

stripping voltammetry [67]. Cadmium levels in urine pri-

marily reflect the total body burden. Blood cadmium levels

are indicative of recent exposure rather than whole-body

burdens. The most sensitive targets of cadmium toxicity are

the kidney, bone and lung cancer. Recently, Kudr and his

group reported the presence of Zn, Cd, Pb and Cu ions in

artificial blood plasma samples and Cd ion in chicken

embryo by electrodeposition of mercury film over carbon

tips [68]. Kensova and co-workers analysed the Cd con-

centration in blood using mercury electrodes with a

detection limit of 0.002 lM [69]. Elevated lead concen-

trations in human blood are associated with damage to

kidney, liver and gastrointestinal tract as well as the central

nervous system [70]. The electrochemical sensors used in
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the detection of different heavy metal ions in various types

of diseases is shown in Table 2.

6 Challenges and Future Aspects

of Electrochemical Biosensors

Medical diagnostics require a rapid, accurate and

portable system which could easily be available in patients’

bedside with real-time monitoring system. Currently,

electrochemical sensing is facing some challenges which

should be sorted out to get a highly sensitive and selective

system for the diagnosis of diseases. Stability of the sensor

is an important parameter for single-use electrodes and

those which are to be used repeatedly. With the advances in

point-of-care devices for diagnostic purposes, portability of

the electrochemical analyser is also an important issue

which needs to be resolved. Another important challenge

for future development of electrochemical sensors is

in vivo analysis of samples conveniently. In general, the

ideal in vivo biosensor should be biocompatible, stable for

longer period, sensitive and non-toxic to the host. A variety

of approaches and techniques have been utilized to address

the challenges of in vivo sensing. As many nanoparticles

are biocompatible, the toxicity detected by other sensors

can be minimised. Nanoparticles show less reactivity to

proteins and do not have the capability of eliciting immune

response. In addition, advances in the miniaturisation of the

device, wireless power and data transmission all promise to

reduce the invasiveness of many in vivo electrochemical

sensors. High specificity of modern electrochemical assays

could be achieved using biorecognition element of differ-

ent small molecules (e.g. folic acid to detect cancer cells or

more recently used aptamers). Sensor arrays need to be

designed for detecting multi-analytes (metabolic markers

such as glucose, lactate and uric acid). Non-invasive

microfluidic biosensors, capable of extending the sizes of

arrays and reducing the sample volume, should be devel-

oped to facilitate early detection and treatment of disease.

The potential of electrochemical sensors is extremely

promising for incorporating all these recent changes and

thus driving force towards the development of point-of-

care testing and monitoring of the disease. A wide range of

excellent high-quality sensors have been developed in

diverse areas like food industry, environmental pollution

detection, heavy metal detection in water, etc. Significant

advances have been made in the design and application of

electrochemical sensors. Still changes need to be

strengthened to focus on designing simple and cost effec-

tive sensors with improved sensitivity, response time and

selectivity.

7 Conclusions

Highly sensitive sensors are now required to measure

extremely low level of biomarkers and detect early stages

of diseases. In this regard, electrochemical sensors are

Table 2 Electrochemical sensors in the detection of different heavy metal ions in various types of diseases

Diseases Sample matrix Analyte Detection limit Electrodes used References

Cancer, lung infections,

kidney disorder

Blood Lead 0.001 lM Hg [68]

1.2 lg dL-1* Hg/screen-printed [69]

0.46 ppb Hg microelectrode [76]

0.03 lg mL-1 Mercury film/carbon [67]

– Bismuth [77]

0.23 ppb Hg-plated pre-anodized screen-printed carbon [78]

Cadmium 0.002 lM Mercury [68]

– Bismuth [78]

0.06 lg mL-1 Mercury film/carbon [67]

0.1 nM Nafion-coated mercury-plated glassy carbon [79]

Zinc 0.01 lM Mercury [69]

0.6 lg mL-1 Mercury film/carbon [68]

Cooper 0.01 lM Mercury [69]

0.02 lg mL-1 Mercury film/carbon [68]

Urine Lead 0.5 ppb GCE/ferromagnetic rod [65]

0.44 ppb Hg microelectrode [80]

Hyponatremia Urine Sodium – Ion-selective (ISE-27504-30; Cole-palmer) [65]

* Lower limit of linear range in calibration
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considered to be the best candidate having fast analytical

time, label-free nature and higher sensitivity and speci-

ficity. In this review, we addressed the recent advances in

electrochemical sensors for their applications in biomedical

field. Different modifications of electrodes in the context of

enhancing compatibility of biological species against

electrode surface have been discussed. Nanomaterials like

carbon-based nanomaterials, metallic nanoparticles and

metallic oxides are widely used as biomarkers in electro-

chemical biosensing. Besides, we have highlighted the use

of miniaturised, non-toxic in vivo sensing devices which

are widely used for analysing glucose and different neu-

rotransmitters as clinical biomarkers. The future perspec-

tives and challenges related to this rapidly growing

technology were also discussed. Such major developments

suggest that future interdisciplinary efforts will yield new

generations of biosensors having a wide range of

applications.
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