
 

 

  
Abstract—This paper presents a hand vein authentication system 

using fast spatial correlation of hand vein patterns. In order to 

evaluate the system performance, a prototype was designed and  a 

dataset of 50 persons of different ages above 16 and of different 

gender, each has 10 images per person was acquired at different 

intervals, 5 images for left hand and 5 images for right hand. In 

verification testing analysis, we used 3 images to represent the 

templates and 2 images for testing. Each of the 2 images is matched 

with the existing 3 templates. FAR of 0.02% and FRR of 3.00 % 

were reported at threshold 80. The system efficiency at this threshold 

was found to be 99.95%. The system can operate at a 97% genuine 

acceptance rate and 99.98 % genuine reject rate, at corresponding 

threshold of 80. The EER was reported as 0.25 % at threshold 77. We 

verified that no similarity exists between right and left hand vein 

patterns for the same person over the acquired dataset sample. 

Finally, this distinct 100 hand vein patterns dataset sample can be 

accessed by researchers and students upon request for testing other 

methods of hand veins matching. 

 

Keywords—Biometrics, Verification, Hand Veins, Patterns 

Similarity, Statistical Performance.  

 

I. INTRODUCTION 

SSOCIATING an identity with an individual is called 

personal identification. The problem of resolving the 

identity of a person can be categorized into two types of 

problems; verification and identification. Verification 

(authentication) refers to the problem of confirming or 

denying a person’s claimed identity (Am I who I claim I am?). 

Identification (Who am I?) refers to the problem of 

establishing a person’s identity. Automatic human 

identification has become an important issue in today’s 

information and network-based society. The techniques for 

automatically identifying an individual based on his/her 

physiological or behavioral characteristics are called 

biometrics, which provides an answer to this need. Biometric 

techniques fall into two categories: physiological and 
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behavioral categories. Common physiological biometrics 

include face, eye (retina or iris), finger (fingertip, thumb, 

finger length or pattern), palm (print or topography), and 

geometry, back of the hand vein pattern or thermal images. 

Behavioral biometrics includes voiceprints, handwritten 

signatures, and keystroke/signature dynamics. 

     Personal verification has become an important and high-

demand technique for security access systems in the last 

decade. Shape of the subcutaneous vascular tree of the back of 

the hand contains information that is capable of authenticating 

the identity of an individual [1-5, 22] to a reasonable accuracy 

for automatic personal authentication purposes. The shape of 

the finger vein patterns and its use for identification purpose 

was proposed by Miura et al. [4]. The infrared region is of 

special advantage since the skin tissue is relatively transparent 

and the blood absorbs infrared light well. Hence, the veins-

background contrast is higher than the visible area.  Since the 

arrival of fairly low cost CCD cameras and computer power, it 

seems straightforward to try to consider these technologies [6-

7]. Normally, black and white CCD cameras are also sensitive 

in the near infrared region, so a filter blocking the visible light 

is all that is needed on the camera. Proper lighting is of course 

essential to obtain even illumination on the skin surface. There 

are many research attempts for the extraction, segmentation 

and tracing of subcutaneous peripheral venous patterns [8-11], 

its main aim is to make data reduction and noise suppression 

for good diagnostic purposes and for making some 

quantitative measurements like lengths and diameters for the 

extracted vessel segments. These techniques are based on 

mathematical morphology and curvature (veins direction) 

evaluation for the detection of vessel patterns in a noisy 

environment. Researchers in hand vein biometrics [1-5, 22] 

had a satisfactory result for either verification or identification 

purposes, regardless of the difference in datasets size, 

methods, or vein similarities used. The vein tree detection 

stage includes four consecutive sub stages, which are hand 

region segmentation (i.e. region of interest localization and 

background elimination), smoothing and noise reduction, local 

thresholding for separating veins, and postprocessing. In this 

paper we propose a design of a hand vein biometric 

authentication system performing a fast spatial correlation 

method for hand vein patterns matching. 

II. DATA ACQUISITION AND PROCESSING 

     In visible light, the vein structure on the back of the hand is 

not easily discernible. The visibility of the vein structure 

varies significantly depending on factors such as age, levels of 
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subcutaneous fat, ambient temperature and humidity, physical 

activity, and hand position. In addition a multitude of other 

factors including surface features such as moles, warts, scars, 

pigmentation and hair can also obscure the image. 

Fortunately, the use of thermographic imaging in the near IR 

spectrum exhibit marked and improved contrast between the 

subcutaneous blood vessels and surrounding skin, and 

eliminates many of the unwanted surface features. The 

temperature gradient between the veins and surrounding tissue 

is generally more pronounced than the difference that can be 

seen by the naked eye. A commercially available conventional 

charge-couple device (CCD) monochrome camera, rather than 

a considerably more expensive thermal camera, is used to 

obtain the thermal image of the back of the hand. Though 

principally designed for use in visible light, CCD cameras are 

also sensitive to near IR wavelengths of the electromagnetic 

spectrum up to about 1100 nm. This is an actinic IR range, 

which covers the near infrared spectrum from 700-1400 nm. A 

CCD camera that is highly sensitive in the near infrared region 

was chosen. The camera characteristic curve is shown in Fig. 

1. The greatest intensity of IR radiation emitted by the human 

body is 10 mW/cm2 and is in the range of 3000-14000 nm [1]. 

Unfortunately, the CCD camera has no sensitivity in this 

region. Furthermore any naturally emitted near IR radiation is 

far too weak to be detected by the camera’s CCD imager. 

Consequently after experimentation with a variety of light 

sources, including high intensity tungsten lamps, it was found 

to be necessary to irradiate the back of the hand using an IR 

cold (solid-state) source. The reduced hemoglobin in venous 

blood absorbs more of the incident IR radiation than the 

surrounding tissue thus appearing darker. 

 

 

Fig. 1 Spectral sensitivity characteristics of used silicon based CCD 

sensor 

 

 The depth of absorption and radiation of actinic IR in 

biological tissue is approximately 3 mm, and so thermal IR 

radiation provides information only about surface (skin) 

temperatures of biological objects [1]. As a consequence only 

the subcutaneous vascular network is discernible in the image. 

The quality and extent of the revealed vein structure is 

however highly variable. The distinctiveness of the network 

depends on the thickness of the overlaying skin, on the degree 

of venous engorgement, on the conditions of the vein walls 

and on the nearness of the veins to the surface. 

 In our system, we have designed a near IR cold source to 

provide back-of-hand illumination. The IR cold source is a 

solid-state array of 24 LEDs (light emitting diodes). The 

diodes are mounted in a square shape, 6 LEDs in each side, on 

a designed and assembled PCB (printed circuit board). We 

made a housing and an attachment for fixing the LEDs around 

the CCD lens. Our experiments showed that the cold source 

provides better contrast than the ordinary tungsten filament 

bulbs. A commercially available, low cost, monochrome CCD 

fitted with an IR filter is used to image the back of hand. The 

transmission curve for the used filter (Hoya RM90) is shown 

in Fig. 2. The curve reveals that the filter has a small tail of 

transmittance down to about 750 nm.  

 

 
Fig. 2 Transmission curve for the RM90 Hoya IR filter 

 

The IR filter ensures that no visible light reaches the CCD 

sensor. After using the cold IR light source and the IR filter, 

the image constructed on the CCD sensor is totally a thermal 

graph for the back of the hand. The mostly distinguishable 

component in the image is the superficial vein tree pattern as 

shown in Fig.3 to the right. A comparison between visible 

light image and infrared image for the same person’s hand is 

demonstrated in Fig. 3.   

A simplified schematic diagram for our hand vein image 

acquisition prototype module is demonstrated in Fig. 4. As in 

Fig.3 to the left, the hand is presented as a clenched fist with 

the thumb and all the other fingers are hidden. It allows a 

person to easily position his/her hand in front of the camera 

and it eases the shape matching search process (translation 

and rotation variations).   

 

 
Fig. 3 Visible light image (left) and IR image (right) for the same 

person 

 
Fig. 4 Schematic of the hand vein pattern imaging module 
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The intensity of IR source is attenuated by the use of diffusing 

paper and it helps for obtaining an equally distributed 

illumination on the hand area. A monochrome frame-grabber 

is used to capture an image of the back of a hand for computer 

processing. Images are captured using a 320W X 240H pixels 

video digitizer with a gray-scale resolution of 8-bits per pixel.   

     A sample hand vein image from our data set is shown in 

Fig. 5 for a male hand. A dataset of 50 persons of different 

ages above 16 and of different gender, each has 10 images per 

person was acquired at different intervals, 5 images for left 

hand and 5 images for right hand. The data set is for normal 

persons who do not complain from any diseases such as 

arthritis. 

 

 
Fig. 5 Acquired image of 320W x 240H pixels, 8-bits per pixel 

A.  Hand Vein Image Processing Stages 

This is the second stage in the Hand Vein Verification 

System (HVVS) after the acquisition, which covers the 

detection of vein structures from the acquired infrared image 

for the back of the hand. The vein tree detection stage includes 

four steps, which are hand region segmentation (i.e. region of 

interest localization and background elimination), smoothing 

and noise reduction, local thresholding for separating veins, 

and finally the postprocessing. Fig. 6. illustrates the block 

diagram of the processing stage. 

 

 

         
 

                              
Fig. 6 Block diagram of hand veins processing stage 

 

  B.  Hand Region Segmentation 

     Image segmentation is one of the most important steps 

leading to the analysis of processed image data. Its main goal 

is to divide an image into parts that have a strong correlation 

with objects or areas of the real world contained in the image.    

     Binarization is the case of segmenting the image into two 

levels; object (hand region) and background; the object 

segment which is the region of interest (ROI) in white and the 

background segment in black as shown in Fig. 7. The 

algorithm used in the segmentation sub stage is an iterative 

method used for calculating and selecting an optimal 

threshold, which is used to segment the image into two 

distinct parts; hand and background [13].  We used this 

resultant binary image to calculate the center of gravity 

(COG) for our ROI (hand region). Then we translated the 

grayscale hand region to the center of the image after 

assigning the background area to zero gray value pixels. Thus 

we completely localized, separated and centered the hand 

region for subsequent processing steps.   

 

Fig. 7 Segmentation results; (a) Input gray scale image (b) Binary 

image and (c) Output image after ROI determination and centering 

 

     C.  Smoothing and Noise Reduction 

     Two approaches could be used for noise filtering. First 

approach is using Gaussian smoothing filter. The disadvantage 

of Gaussian filter is its non-edge preserving ability, since it 

blurs the image with equal weights; also edges of the veins are 

blurred and completely diffuse after performing several 

smoothing iterations. The second approach is an edge-

preserving technique like nonlinear diffusion [16-17]; in 

which the image gradient was used to weight the diffusion 

process. Fig. 8 show results of the smoothing filters used on 

three line profiles, where we used a median filter of 5*5 mask 

in order to remove the hand traces from the acquired image 

then we used the nonlinear diffusion filter based on edge 

weighted diffusion in order to smoothen the image while 

preserving the vein edges. The smoothing and noise removal 

sub stages effect is shown in Fig. 8 for 5 iterations of 

nonlinear diffusion of optimized diffusion parameters for 

these images, while the edges are not affected.   

 

                
Fig. 8 Effect of smoothing sub stage on the three image line profiles 

 

     D.  Hand Vein Pattern Segmentation 

     Hand vein segmentation is specifically to divide a hand 

vein image into a foreground (veins in the back of the hand) 

and a background (non-vessel areas). Segmentation methods 

can be divided into four groups, which are threshold-based 

segmentation, edge based segmentation, and region based 

segmentation and segmentation by matching. In this work, the 

Local 
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first thresholding method is adopted since it is 

computationally inexpensive.  Considering that we want to 

process and study veins only, global thresholding (i.e. single 

threshold for the whole image) is not a good technique for this 

purpose. A better approach is to calculate the average around 

each pixel of the image in an area of NxN neighbor pixels and 

to use average value as a threshold value [11]. The local 

threshold process separates the vein pattern from the 

background; hence the desired vein image is extracted. 

Experimentally and after optimization, we have chosen a 

31x31 mask size for computing the threshold for binarizing 

the central pixel. The result is shown in Fig. 9. 

 

 
Fig. 9 Processed image (left) and its local thresholded image (right) 

     E. Hand Vein Pattern Postprocessing 

     It is demonstrated from Fig. 9 that the resultant binary 

hand vein contains some noise and un-sharp edges. We 

experimentally applied 5x5 median filter for improving and 

validating the output binary hand vein pattern and for 

reducing the effect of these unwanted defects. We also 

converted the vein pattern into white in a black background 

which in this case the entire image. The final pattern after the 

post processing sub stage is shown in Fig. 10. 

 

 
Fig. 10 Hand vein pattern before (left) and after postprocessing 

(right) 

     F. Matching of Hand Vein Patterns 

     The ordinary use of the designed hand attachment does not 

allow rotational degrees more than -15 to 15 and translations 

in X and Y more than -35 pixels to 35 pixels. After image 

acquisition and hand vein extraction sub stages, we have a 

binary image that contains the segmented back of the hand 

vein pattern. This is suitable for the next and the final sub 

stage, the matching of hand vein patterns. The input for the 

matching sub stage is two binary hand vein images like the 

one in Fig. 10 (right), the matching output is Yes (the two 

images are for the same pattern) or No (the input images are 

not correlated). We used rigid registration technique [14] 

since we already constrained our data acquisition system with 

the attachment in order to prevent any large translation or 

rotation. One of the two images is remained stationary while 

we apply 2D transformation (x-translation, y-translation and 

rotation) on the other image in order to align it with the first 

pattern (Registration) to find the maximum correlation 

percentage between two hand vein images as in equations 1-2.  

 

),(/)100*(),,(
,,

TXMinTXForallTyTxnCorrelatio
TyTx

•=
θ

θ      (1) 

 

)),,(( θTyTxnCorrelatioMaxtionMaxCorrela =          (2) 

 

Where X in equation 1 is an image which contains the 

first test binary hand vein pattern, T is the second image 

which contains the transformed template binary hand vein 

pattern, •  is the logical AND operator, || operator is the 

summation of ones in the matrix. |X| equals the number of 

ones in the X image pattern, Min (|X|,|T|) is the minimum 

count of the white pixels between the two patterns to be 

matched. However Fujitsu researchers have presented a 

contactless/touchless palm vein authentication which is more 

convenient and non hygienic for users, we restricted our 

research designed prototype for a contact system type in order 

to simplify our matching phase and derive a dependent 

statistical measures for this proposed prototype. However 

accounting for scale (Age or hand to camera distance) in the 

registration algorithm is simple, we did not account for the 

scale in our matching since the distance from hand to camera 

is fixed and we assume that the real biometric system capture 

a new template each time interval. In real systems, capturing 

the hand template at equal monthly intervals after correct 

authentication is suggested in order to track the changes in the 

hand with age.  The matching (similarity) percentage is 

calculated as the ratio of the count of overlapped white pixels 

between input images to the number of white pixels in one of 

the two input images (the image with the minimum count of 

the white pixels). We calculated the matching ratio for each 

transformation step then we choose the maximum ratio as the 

final matching ratio between the two input hand vein patterns. 

In our fast implementation and for saving time of matching, 

we made the parameters (x-translation, y-translation, and 

rotation) steps equals 5, getting the maximum matching ratio 

on this grid, finally we made a fine search (tune pixel by pixel 

and 0.5 degree) to find the overall maximum correlation ratio. 

The result of matching sub-stage is shown in Fig. 11. A case 

of correct true match is demonstrated. The resultant pattern is 

correlated to the input images and it is shown that the 

matching ratio is 81.87 % (same person). A case of correct 

mismatch is shown in Fig. 12, the matching ratio is small as 

48.27 % (different persons). 
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Fig. 11 Example of true match for different patterns (left and right) of 

the same person and its associated high correlation (bottom) 

 

  
Fig. 12 Example of correct mismatch between different persons (left 

and right) and its associated low correlation (bottom) 

 
III.  RESULTS 

  A. Overall Performance 

     The system was tested over a dataset collected using the 

designed system consisting of 50 persons of different age and 

gender for each 5 left and 5 right images were acquired. The 

person was asked to put his/her right hand on the hand 

attachment frame and the system operator captures the first 

image for the current person right hand veins. Then the 

person replaces his/her right hand with the left one for 

acquiring the first image for the left hand vein pattern. This 

process was repeated until we acquire five images for the 

right hand and five images for the left hand in different scenes 

(5 minutes interval between every acquired image) 

independent of each other, i.e. ten images for each person. We 

will prove in our statistical analysis that the hand vein pattern 

is unique to some level for each person and for each hand. 

Thus we considered as if we have 100 persons of which 5 

images are in the dataset since we found that the left and right 

hand vein images are different. In order to find the 

dissimilarity threshold in correlation ratio between the 100 

hands we have chosen only the first image pattern for each of 

the 100 hands and for a correlation ratio threshold that exceed 

80%, we achieved 100% classification (Distinct pattern). For 

evaluating the uniqueness of the vein patterns, all possible 

comparisons are made between the whole data. We matched 

each image from our data set with all the 500 hand vein 

images in our dataset and then we recorded the matching 

ratios. We constructed the correlation matrix for representing 

the matching result between each image and all other images. 

We performed statistical analysis for selecting an optimal 

threshold to get the highest system performance, by testing 

the system over the whole dataset. To evaluate the hand vein 

performance, we used measures of performance, which 

include: sensitivity, specificity, false accept rate (FAR), false 

reject rate (FRR), and efficiency. Fig. 15 shows graphically 

how FAR(%), and FRR (%) change with different thresholds. 

Our aim is to select an optimal threshold. We want a single 

criterion, such that it takes into account the maximization of 

true events (GAR, GRR) and minimization of error events 

(FAR, FRR). Fig. 13 illustrates the change of system 

performance at different thresholds. Efficiency, which we will 

consider as our criterion for evaluating the system 

performance at different thresholds, reaches its maximum of 

about 99.88% at a threshold of 78. At this threshold the 

Sensitivity is 92.16%, the Specificity is 99.97%, FAR is 

0.03%, and FRR is 7.84%. Receiver Operating Characteristic 

(ROC) curve is shown in Fig. 14. A receiver operating curve 

provides an empirical assessment of the system performance 

at different operating points which is more informative than 

FAR and FRR.  
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Fig. 13 System Performance (Efficiency) at different thresholds 
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Fig. 14 General analysis receiver operator characteristic curve (ROC) 
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Fig. 15 FRR (Type I Error) versus FAR (Type II Error) 

 

Hand Vein Verification System (HVVS) is accurate in the 

low to medium security level: e.g., for a threshold 75, the 

genuine acceptance rate is 96.72% for only a 0.18% FAR. 

Although the 0.18% FAR may seems high, in practice it is 

much smaller, since a user of the system does not know the 

identity of which other users can claim that their hand veins 

match. Fig. 15 demonstrates FAR(%) and FRR(%) curves on 

the same graph. To get around this, vendors often provide a 

variable threshold setting, which allows the customer to strike 

a balance. If a site needs near 100% rejection of impostors, 

authorized users will have to pay for some % rejection rate.  

A commonly used point to examine the quality of 

performance is to evaluate Equal Error Rate (EER) point and 

it assumes that the costs of FA and FR are equal, and that the 

class prior probabilities (of client and impostor distributions) 

are also equal. From Fig. 15, we obtained an ERR for the test 

data = 0.695% at Threshold = 72. 

 

B.  Similarity between Right and Left Patterns 

A previous study on the individuality of biometric signal 

such as fingerprint was performed in [18] in order to prove the 

uniqueness of fingerprint features. In the previous section we 

proved that the hand vein pattern is unique to some extent for 

each identity (person), in this section we will estimate the 

probability for the true match between the right and left hand 

vein patterns for the same identity. If this probability is low, 

we will decide that the hand vein patterns are unique for each 

identity and are unique for each hand i.e. the hand vein pattern 

for the right hand is different from the hand vein pattern for 

the left hand of the same person. Else if the resultant estimated 

probability value is large, we will conclude that the hand vein 

patterns are unique for each identity but not unique for each 

hand.  

Using the correlation matrix, we calculated the mean and 

standard deviation for the matching ratios between the right 

and left hand vein pattern for the same person [15]. We 

calculated the probability for the matching ratio to be greater 

than the threshold we determined in the previous section. The 

probability of the matching ratio to be greater than 78% (for 

deciding a true match), is the probability for the two hands 

(right and left) for the same person to have a similar vein 

pattern. Table I shows the probability values for the thresholds 

displayed in the range from 70% to 80%. The probability at 

the threshold that gave us the maximum efficiency in the 

previous section (78%) is: Probability (Similarity >= 78%) = 

0.0002. 

       
TABLE I 

STATISTICAL RESULTS FOR THE PERFORMANCE OF THE SYSTEM, PROBABILITY 

FOR THE TRUE MATCH BETWEEN THE RIGHT AND LEFT HAND VEIN PATTERNS 

FOR THE SAME IDENTITY 

Thres

hold MEAN 
Std. 

Dev. 

Z = 

(Threshold 

-Mean)/ 

Std.Dev. 

P(Z) 
0.5-

P(Z) 

P(Similarity 

>= 

Threshold) 

% 

70 58.106 5.531 

2.14

9 0.4842 0.0158 1.58 

71 58.106 5.531 2.329 0.4901 0.0099 0.99 

72 58.106 5.533 2.510 0.4940 0.0060 0.6 

73 58.106 5.533 2.691 0.4964 0.0036 0.36 

74 58.106 5.533 2.872 0.4979 0.0021 0.21 

75 58.106 5.533 3.052 0.4989 0.0011 0.11 

76 58.106 5.533 3.233 0.4994 0.0006 0.06 

77 58.106 5.533 3.414 0.4997 0.0003 0.03 

78 58.106 5.533 3.594 0.4998 0.0002 0.02 

79 58.106 5.533 3.775 0.4999 1E-04 0.01 

80 58.106 5.533 3.956 0.5 0 0 

       

The calculated probability is small enough to some extent in 

order to let us conclude that the hand vein patterns are unique 

for each identity and is unique for each hand i.e. the hand vein 

pattern for the right hand is different from the left hand for the 

same person. Fig. 16 shows two hand vein images for the 

same person, the left one for his left hand and the right one for 

his right hand. 

 
Fig. 16 Two-hand vein patterns for the same person, left and right 

hand 
 

  C.  Verification Testing  

 To obtain the verification accuracy of our system, each of 

the images was matched with all of the images in the dataset 

after reducing it to 300 patterns (3 template images for each 

hand). A matching is noted as a correct matching if two 

images are from the same hand. The total number of matching 

is 20000 (200 images* 100 different hands). The probability 

distributions for genuine and imposter are estimated by the 

correct and incorrect matching, respectively, and are shown in 

Fig. 17.  

  Fig. 18 depicts the corresponding ROC curve, for all 

possible operating points. From Fig. 18, we can see that our 

system can operate at a 97 % genuine acceptance rate and a 

0.02 % false acceptance rate, and the corresponding threshold 

is 80. The system’s testing equal error rate is 0.25 % at 

threshold 77. In this verification testing analysis, we used 3 

images to represent the templates and 2 images to test. Each 

image is matched with the existing 3 templates. The same 
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analysis for the 300*300 as in section A was repeated. Figures 

17-19 show the results. For the 300*300 templates, the 

optimal threshold is 79 with FAR of 0.02% and FRR of 

7.22%. For the testing phase, matching the 200 test with the 

300 templates of 100 hands, the optimal threshold is 80 with 

FAR of 0.0202% and FRR of 3.00%. The system efficiency at 

this threshold was found to be 99.95%. Fig. 19 shows FAR 

and FRR versus threshold. The EER obtained is 0.25 % at 

threshold 77. 
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Fig. 17 Verification test results for genuine and imposter 

distributions 
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Fig. 18 Verification testing, ROC curve 
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Fig. 19 FAR & FRR for template and test analysis 

 
IV.  CONCLUSION 

     The designed system was tested for verification purpose 

only over a dataset collected with the designed prototype 

system. This dataset is for 50 persons of different age and 

gender of which ten images per person were acquired (five for 

the right hand and five for the left) in different scenes at 

different intervals and are independent of each other, i.e. ten 

images for each person. Verification performance statistical 

parameters were estimated for the overall system such as: 

Genuine Accept Rate (Sensitivity), Genuine Reject Rate 

(Specificity), False Accept Rate (FAR), False Reject Rate 

(FRR), Efficiency and Receiver Operating Curve (ROC). 

System overall performance (overall efficiency) was found to 

be 99.88% at threshold (matching ratio) equal 78. At this 

maximum efficiency the Sensitivity obtained is 92.16%, the 

Specificity is 99.97%, FAR is 0.03%, and FRR is 7.84%. For 

the testing phase, matching the 200 test with the 300 templates 

of 100 hands, the optimal threshold obtained is 80 with FAR 

of 0.02% and FRR of 3.00 %. The obtained system efficiency 

at this threshold is 99.95%. The obtained EER is 0.25% at 

threshold 77. However the difference in methods, datasets, 

and algorithms that were found in the hand veins biometric 

work of [1-4, 21-22], our performance results are comparable. 

We studied the similarity between right and left hand vein 

pattern for the same person. We verified that the hand vein 

pattern is unique for each person and is also unique for each 

hand based on our hand vein images dataset. Finally, since 

there is no available dataset for hand vein research purposes, 

the acquired hand veins dataset considered for 100 distinct 

hands of 5 images per hand will be available for free upon 

request for testing other methods to other researchers and 

students working in biometrics. 
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