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Abstract. Recent techniques based on error-correction enable the deri-
vation of a secret key for the (varying) measured biometric data. Such
techniques are opening the way towards broader uses of biometrics for
security, beyond identification. In this paper, we propose a method based
on fingerprints to associate, and further retrieve, a committed value
which can be used as a secret for security applications. Unlike previous
work, this method uses a stable and ordered representation of biometric
data, which makes it of practical use.

1 Introduction

Biometric authentication refers to verifying physiological or behavioral features
such as voiceprint, fingerprint or iris scan [9,2]. From personal device unlock to
e-passports, biometry-based authentication schemes have spread into our lives.
Such schemes usually run as follows: the user presents his current biometric data,
and the verifier checks if the measured data match the biometric reference data
acquired during the enrollment.

Biometric data have several properties which make them natural candidates
for security applications: they are hard to forge, they are unique to each person,
and they are a good source of entropy. However, they also have several drawbacks
which slow down their adoption: one cannot change his biometric data, biometric
data are often easy to steal, and acquisition of biometric data is subject to
variations.

As the measured data can vary, they cannot be directly used as a password or
as a cryptographic secret. Moreover, they have to be sent across a possibly inse-
cure network for matching against reference data stored in a database, whose loss
would be disastrous. Several research directions address these concerns. First,
recent schemes avoid the storage of the whole reference data. Second, new tech-
niques based on error-correction enable the derivation of a constant secret key
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from the (varying) measured biometric data. Such techniques can also naturally
address the biometric data storage problem.

Still, stolen biometric data are stolen for life. Unlike a cryptographic key, they
cannot be updated or destroyed. To solve this last problem, it remains to be able
to use biometric data to retrieve a secret value linked to each user, instead of
them directly as a secret. Few such proposals have been made, but they are not
practical. In this paper, we propose a practical method based on fingerprints to
associate, and further retrieve, a committed value which can be used as a secret
for security applications.

1.1 Related Works

The fact that storing biometric reference data should be avoided for distant
authentication system is commonly accepted, as mentioned by Jain et al. in [16].
In an attempt to do so [8], Jain and Uludag propose to use watermarking to
secure the transmission of biometric data across a network. However, they still
use a biometric database.

In [11], Juels and Wattenberg present the first crypto-biometric system called
fuzzy commitment, in which a cryptographic key is decommitted using biometric
data. Fuzziness means that a value close to the original (under some suitable
metrics) is sufficient to extract the committed value. The scheme is based on the
use of error-correcting codes, and runs as follows. Let C ⊂ {0, 1}n a set of code-
words for a suitable error-correcting code. The user chooses a secret codeword
c ∈ C, the decommitment key is the enrolled fingerprint x and the commitment
is the pair (c − x,H(c)), where H is a one-way function. When a user tries to
decommit a pair (c − x,H(c)) using a decommitment key x′, he attempts to
decode c − x + x′ to the closest codeword c′. Decommitment is successful if
H(c′) = H(c), which means the user has retrieved his secret c. In this scheme,
the key x is built from a fingerprint, as a set of minutiae positions. This yields
two shortcomings. First, it does not allow modifications of x, such as re-ordering,
and addition/deletion of an element in x, although such modifications are fre-
quent in real life. Second, the security proof of this scheme holds only if x is
uniformly distributed, which is not the case in reality.

In order to overcome these drawbacks, Juels and Sudan propose a fuzzy vault
scheme [10]. This scheme may be thought of as an order-invariant version of the
fuzzy commitment scheme, obtained by using a generalization of Reed-Solomon
codes in which they think of a codeword as an evaluation of a polynomial over
a set of points. The idea is to encode a secret s as a polynomial p of degree
d using the Reed-Solomon encoding scheme. The codeword consists of a set of
pairs R1 = {(x, p(x)}1≤i≤n, where the x-coordinates represent the position of
minutiae in the reference fingerprint. A set R2 of chaff points that are not on
p is added to R1 to form the vault V . To rebuild the codeword using the Reed-
Solomon decoding scheme, the user needs d+1 pairs (x, y) ∈ R1 from the original
n points. The method has been successfully tested by Uludag and Jain with the
IBM-GTDB database [15]. However, the fuzzy vault has one main drawback,
which is its restricted use. Indeed, if the polynomial p is compromised, then the
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fingerprint itself is, as all the other minutiae in the fingerprint are the points
on p in the vault V . Thus, if this method was used for different applications,
with different vaults each time, as the x-coordinates correspond to the minutiae,
disclosure of different vaults for the same user would reveal his minutiae.

Next, Clancy et al. considered a practical implementation of the fuzzy vault in
a secure smartcard [4]. Their experimentation showed that a sufficient security
level for the fuzzy vault cannot be obtained with real-life parameters. They thus
defined a modified scheme called the fingerprint vault, and proposed a way to
find the optimal vault parameters.

However, the choice of chaff points also yields uniformity problems, that can
be exploited by an attacker to distinguish between chaff points and real points in
the vault. Chang and Li have analyzed this problem [3] in a general setting. They
show that, since secret points are not uniformly distributed, the proper way of
choosing chaff point is far from being trivial, and there is no known non-trivial
bound on the entropy loss.

1.2 Contents of the Paper

In this paper, we propose a new method to associate, and further retrieve, a
committed value using a fingerprint. Our method is based on a special fingerprint
data representation measure called FingerCode [14]. The committed value is
rebuilt from the FingerCode biometric data and public data we call FingerKey.
The committed value cannot be recovered from the public data, and we show
that no illegitimate user is able to forge it. Moreover, using the FingerCode,
we avoid the minutiae set modifications concerns. At last, our method does not
require storage of any biometric reference, and therefore, when the committed
value is used as a (seed for generation of a) secret key in a secure cryptographic
protocol, an attacker cannot learn the biometric data.

The paper is organized as follows: after the introduction, we present the tools
we use and, more particularly, error-correcting codes, the FingerCode definition
and its extraction method in Section 2. In Section 3, we describe our construction
and give our experimental results. In Section 4, we give some advice on possible
applications and security parameters. At last, we give directions for future work
and we conclude.

2 Preliminaries

2.1 Error-Correcting Codes

Like the fuzzy schemes of Juels et al., our scheme relies on using error-correcting
codes. We refer the reader to [12,13] for more details on error-correcting codes.

The goal of error-correcting codes is to prevent loss of information during the
transmission of a message over a noisy channel by adding redundancy to the
original message m to form a message m′, which is transmitted instead of m.
If some bits are corrupted during the transmission, it remains possible for the
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receiver to reconstruct m′, and therefore m. In our scheme, the noise is the result
of the use of different measures of the fingerprint.

More formally, an error-correction code over a message space M = {0, 1}k

consists of a set of codewords C ⊂ {0, 1}n (n > k) associated with a coding
function denoted by encode, and a decoding function denoted by decode, such
that encode:M → C injects messages into the set of codewords and decode:
{0, 1}n → C ∪∅ maps an n-bits string to the nearest codeword if the string does
not have too many errors, otherwise it outputs ∅.

We recall that the Hamming distance between binary strings is the number
of bit locations where they differ. The distance Δ of a code is the minimum
Hamming distance between its codewords. Therefore, to be properly decoded,
a string must have at most Δ−1

2 errors. In the sequel, we have chosen to use
Reed-Solomon codes for their correction power.

2.2 FingerCode

Our purpose is to retrieve constant secret data from a varying measures of bio-
metric data. This measure should have be reasonably stable, which means slight
modifications of the acquisition should result in a low distance from the reference.
Therefore, we cannot use a minutiae-based matching method.

We propose to use a texture-based method, called FingerCode, which is sta-
ble in size, and founded on the localization of the morphological centre of the
fingertip and the use of a well-known pattern analysis method to characterize
a fingerprint. It was introduced by Jain and Prabhakar in [14,6]. A FingerCode
is a 640-component vector of numbers that range from 0 to 7, which is ordered
and stable in size. The matching is then handled by a simple Euclidean distance.
Here is a summary of this method.

Using Bazen and Guerez method [1], an estimation of the block orientation
field is computed. Using this orientation, a very simple curvature estimator can
be designed for each pixel. The maximum value of this estimator is the mor-
phological center that we are searching. We extract a circular region of interest
around this point in which we consider 5 concentric bands and 16 angular por-
tions making a total of 80 sectors. The width of the band is related to the image
resolution, e.g. for a 500-dpi image, the band is 20-pixels wide. Although we
avoid the problem of translation and rotation of the image by using the mor-
phological center and a circular area, we still have to handle the finger pressure
differences. Hence, we normalize the image to given values of mean and variance.

If normalization is performed on the entire image at once, then the intensity
variations due to the finger pressure difference remain. Therefore, it is necessary
to normalize separately each sector of the image, in order to obtain an image where
the average intensity at a local scale is about the same as that of the whole image.

Ridges and valleys can be characterized by their local frequency and orienta-
tion. So, by using a properly tuned Gabor filter, we can remove noise and catch
this piece of information. An even symmetric Gabor filter has the following gen-
eral form in the spatial domain:
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G(x, y, f, θ) = exp
{
− 1

2

[
x′2
δ2

x
+ y′2

δ2
y

]}
× cos(2π × f × x′)

x′ = x sin θ + y cos θ
y′ = x cos θ − y sin θ

where f is the frequency of the sinusoidal plane along direction t from the x-
axis, and δx and δy are the space constants of the Gaussian envelope along
the corresponding axis. The filtering in the spatial domain is performed with a
19 × 19 mask in 8 directions from 0 to 157, 5˚, resulting in 8 filtered images of
the region of interest.

Finally, we compute the FingerCode as the average absolute deviation from
the mean (AAD) of each sector of each image. The feature vector is organized as
follows: values from 0 to 79 correspond to the 0˚filter, the 80 following values to
the 22, 5˚filter and so on. In these 80 values, the 16 first are the innermost band
values, the first one being the top sector and the other values corresponding
to the sectors counted clockwise. The matching is based on Euclidean distance
between FingerCodes. We also use cyclic rotation of the FingerCode, up to 2
steps, to handle rotations up to 45˚.

3 Our Construction

The idea behind our proposal is to use the FingerCode, which offers ordered and
stable biometric data, in the fuzzy commitment scheme [11], in order to avoid
minutiae-related drawbacks. However, the FingerCode has a too high FRR rate
to be used directly as the decommitment key: error-correction would never be
efficient enough to recognize a legitimate user. Therefore, our scheme slightly
differs from the fuzzy commitment. It consists of a fuzzy extractor and of a
secure sketch according to the definitions of Dodis et al. [5]. In our construction,
the secret is represented as a word of d+1 letters, which correspond to the d+1
integer coefficients of a polynomial p ∈ Z[X ] of degree d.

The registration step consists in extracting public data called FingerKey from
the pair (F, p), where F is a FingerCode. To this end, n points of p are randomly
chosen, with n > d, and we hide these points using n stable subparts of the Fin-
gerCode like in the fuzzy commitment scheme. To retrieve the secret polynomial
p, we use the usual decoding procedure for each point. If at least d + 1 points
can be decommitted, then p is obtained by Lagrange interpolation.

3.1 Encoding

The encoding part, or fuzzy extractor as defined in [5], is a set of fuzzy commit-
ments where the committed values are points of on a secret polynomial. First,
the system chooses a secret polynomial p of degree d (for instance, using a bi-
jection between a secret key chosen by user U and the polynomials space), and
n random points p0 . . . pn−1 on this polynomial (n > d). These points are rep-
resented by l − bit strings, and encoded with an encoding function RS-encode
which outputs n codewords c0, . . . , cn−1 ∈ {0, 1}l+e. In our experimentation,
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RS-encode is the encoding function for Reed-Solomon codes. The FingerCode
FU of the user is then divided into n parts FU = f0|| . . . ||fn−1. The system then
computes {δi = ci − fi, 0 ≤ i ≤ n − 1}. The FingerKey KFU for user U consists
of the set of pairs (δi,H(ci)) where H is a one-way function and 0 ≤ i ≤ n − 1.
This algorithm is described in Figure 1. The FingerKey is then made public for
future reference, and may be stored in a server or in a user’s smartcard.

Inputs polynomial p of degree d
integer n with n > d
family (pi)0≤i≤n of randomly chosen points of p
FingerCode FU = f0|| . . . ||fn−1

Outputs FingerKey KFU

Algorithm KFU ← ∅
For i going from 0 to n− 1 do

ci ←RS-encode(xi, p(xi))
δi ← ci − fi

KFU ← KFU ||(δi,H(ci))
Return KFU

Fig. 1. Encoding algorithm: FingerKey extractor for user U

3.2 Decoding

In order to retrieve his secret, user U has his FingerCode F ′
U = f ′

0|| . . . ||f ′
n

measured by the system. The system looks up the FingerKey KFU for U , and
uses the RS-decoding function to compute, for each value δi + f ′

i , the closest
codeword c′i. In our experimentation, as we use the Reed Solomon code for
encoding, we use the Reed Solomon decoding function RS-decoding. If equality
H(ci) = H(c′i) holds, then, the decommitment of the codeword is successful. If
at least d + 1 values f ′

i (i ≤ 0 ≤ n) yield a successful decommitment, the user
is able to rebuild p using Lagrange interpolation. The user is thus authenticated
as U if he succeeds in decommitting at least d + 1 points and thus rebuild the
secret polynomial p. The system can then rebuild the user-chosen secret. The
algorithm is given in detail in Figure 2.

3.3 Experimentation

We have experimented this method on a fingerprint database containing 1000
pictures. In a first attempt, we used FingerCode values rounded to the nearest
integer. It turned out that the FingerCode differed too much from the original
value to be corrected by error-correction. We then changed our rounding method
as follows: values from 0 to 2 were replaced by 0, those from 2 to 4 were replaced
by 1, and the others (from 4 to 7) were replaced by 2. Thus, we used transformed
FingerCodes whose vector components values were 0, 1 or 2, which yields 3640
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Inputs degree d of the committed polynomial
integer n with n > d
User FingerCode F ′

U = f ′
0|| . . . ||f ′

n−1

FingerKey for user U KF ′
U

= (δ0,H(c0))|| . . . ||(δn−1,H(cn−1))

Outputs polynomial p or Failure

Algorithm P ← ∅
For i going from 0 to n− 1 do

c′i ←RS-decode(δi + f ′
i)

If H(ci) = H(c′i)
P ← P ∪ {ci}

If |P | > d,
p← Lagrange Interpolation of elements in P
Return p

otherwise return Failure.

Fig. 2. Decoding algorithm: Secure sketch for a user pretending to be U

possible values for an entire FingerCode. We divided each FingerCode into six-
teen parts, used the Reed-Solomon code RS(25, 10) defined by his generator
polynomial X6 +X5 +1, and we chose secrets as being polynomials of degree 8.
Then, no FingerCode coming from a fingerprint of another user could lead to a
successful decommitment. For a FingerCode coming from another fingerprint of
the legitimate user, the decommitment success rate was more than 60%.

As our system is more flexible than the standard procedure and as it allows
the regeneration of a user-chosen secret, with public data(FingerKey), we may
have expected worse results than standard matching. However, using the stan-
dard FingerCode matching on the same picture database, we obtained a FRR of
78% for a FAR of 0, 1%. Therefore, it appears that splitting the FingerCode into
several parts and using our construction allows for better results than the stan-
dard FingerCode matching. In the literature, better results are given for usual
FingerCode matching: Prabhakar obtains a 19,32% FRR for a 0,1% FAR. There-
fore, it is likely that our results can also be improved, and, using FingerCode
enhancements (picture optimization...), we can reasonably expect results for our
construction similar to those obtained for standard FingerCode matching.

4 Applications and Security

4.1 Security

The scheme we have presented enables users to retrieve a committed secret,
without biometric data storage. Just like other biometric systems, our system
should be used in a safe manner. Indeed, measuring biometric data and then
using these data to impersonate the legitimate user is still possible. Retrieving
a user’s secret is always possible given his FingerKey and a measure of his
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FingerCode. Nevertheless, the concealment property ensures that retrieving the
secret is unfeasible given the FingerKey only.

More formally, the security of the scheme relies on three properties:

1. an attacker who knows only a published FingerKey cannot retrieve the
biometric data which it was computed from,

2. (concealment) an attacker who knows only a published FingerKey cannot
retrieve the corresponding secret polynomial p,

3. an attacker who knows both a published FingerKey and the polynomial p
cannot retrieve the corresponding biometric data.

First, let us notice that retrieving the secret polynomial p from the biometric
data (FingerCode) associated with a FingerKey is straightforward. Property 1
arises from the security of the fuzzy commitment scheme [11]. We will show how it
extends to Property 3. In the following Theorem, we show that the computational
complexity of retrieving p is at least equal to the computational complexity of
the inversion of the hash function used. Therefore, Property 2 holds as long as
inverting the hash function is not computationally feasible.

Theorem 1. Suppose that an attacker knows the value KF of a FingerKey ,
and that he has access neither to the biometric data of the user corresponding to
KF , nor to a view of an execution of the scheme.

Consider the following parameters of our system: � is the length of the Finger-
Code subcomponents fi, n is the number of FingerCode subcomponents, Δ is the
distance of the error-correcting code used, L is the output length of the one-way
function H, d is the degree of the secret polynomial p, and C(H) the complexity
of inverting H for a random input.

Given the FingerKey KF , the complexity of retrieving p is equal to

min(2L, (d + 1) ∗ C(H), (d + 1) ∗ 2�

(
�

Δ−1
2

) ).

Sketch of the proof. We suppose p is chosen in a set whose cardinality is beyond
exhaustive search. In order to retrieve p, the attacker has to find d+1 points on
p. As he knows only the FingerKey KF , this means he has to find d+1 elements
in {ci ∈ C}1≤i≤n. As p is independent from the FingerCode, the values δi do not
reveal any information about the ci’s. Therefore, the attacker has either to revert
H, or to find at least d + 1 values f such that H(RS − decode(δi + f)) = H(ci)
for different i’s.

In order to find some f such that the distance between ci and δi +f is at most
Δ−1

2 , the attacker has to try an average of 2�

( �
Δ−1

2
)

values, and to test each value by

computing H(RS−decode(δi+f)) for a given i. Trying several i’s simultaneously
would just multiply the complexity by the number of i’s targeted, thus it does
not reduce the global complexity of the attack, which is thus (d + 1) ∗ 2�

( �
Δ−1

2
)
.

If the attacker chooses to revert H, there should be no algorithm better than
brute force for a proper choice of H, so the complexity of inversion of H would
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be 2L. In the case when there exists an algorithm better than exhaustive search
to invert H, the complexity of the attack is at most (d + 1) ∗ C(H). 	


The idea behind the proof is that, as all the values ci − fi are given, and that
knowing the ci’s yields p, the gap between Properties 1 and 2 lies in the given
values H(ci).

At last, Property 3 holds thanks to the fact that the choice of the points on
the polynomial is random. Hence, providing p does not give information on the
ci’s, the knowledge of which is equivalent to knowing the biometric data.

Any implementation of the system should ensure that the FingerCode is not
stored, and the user should only present his fingerprint to a trusted device. If
this is not the case, then, the system could still be secure if the FingerKeys of the
user are stored in a user-owned device. For instance, a FingerKey may be stored
in a smartcard, which would, on input of the FingerCode value, regenerate the
user’s secret and perform cryptographic operations using this secret internally.

4.2 Applications

Our system addresses two usual drawbacks of biometrics: it enables the regen-
eration of constant data, and it also allows to change these data in case of loss
or theft.

This system enables applications beyond the reach of usual biometric identifi-
cation. For instance, the regenerated value can be used as the seed for obtaining
a constant RSA keypair (or any other cryptographic key), used for applica-
tions such as digital signature, or encryption/decryption. Moreover, a user can
choose different secrets for different applications, and also change every secret
that would be compromised. Therefore, this system also offers scalability, and
decreases the risks linked to the theft of private data.

5 Conclusion

We have presented a system in which no biometric data has to be stored, and
the current biometric data is used to decommit a secret value. This enables the
regeneration of several secret values used for various applications for each user.
By reducing the need for transmission of biometric data, our system also reduces
the risks of biometric data theft. This proposal is the first to combine error-
correcting codes with stable and ordered biometric templates. Our experiments,
based on the FingerCode, provide encouraging results. We now wish to improve
our results by finding more suitable biometric measures. Hybrid methods that
mix minutia and texture features, as introduced in as in [7], provide more stable
biometric measures than the one we have used. One promising research direction
is thus to adapt such methods to our construction, in order to improve our
experimental results.
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