
 

Abstract—In this paper we propose a novel fusion protocol 
based on fuzzy fusion of face and voice features for checking 
liveness in secure identity authentication systems based on face 
and voice biometrics. Liveness checking can detect fraudulent 
impostor attacks on the security systems, and  ensure that 
biometric cues are acquired from a live person who is actually 
present at the time of capture for authenticating the identity. 
The proposed fuzzy fusion of audio visual features is based on 
mutual dependency models which extract the spatio-temporal 
correlation between face and voice dynamics during speech 
production, Performance evaluation in terms of DET (Detector 
Error Tradeoff) curves and EERs (Equal Error Rates) on  
publicly available audiovisual speech databases show a 
significant improvement in performance of proposed fuzzy 
fusion of face-voice features based on mutual dependency 
models over conventional fusion techniques. 

I. INTRODUCTION

OST of the commercial biometric security systems 
currently deployed are based on modeling the identity 

of a person based on unimodal biometric information, i.e. 
fingerprint, face, or voice features. Also, authentication 
schemes for many current interactive civilian human 
computer interaction applications are based on speech based 
voice features, which achieve significantly lower 
performance for operating environments with low signal-to-
noise ratios (SNR). Use of both visual and audio information 
can lead to better robustness, as they can provide 
complementary secondary clues that can help in the analysis 
of the primary biometric signals [1]. For instance, it is well 
known that deaf people can learn how to lip read. The joint 
analysis of co-occurring acoustic and visual speech signals 
during speech production can improve the robustness of 
automatic recognition systems [2, 3]. 

There is a significant body of work on use of joint face-
voice information for improving the performance of identity 
authentication systems. However, most of these state-of-the-
art approaches are based on independently processing the 
voice and face information and then fusing the scores – score 
fusion [4,5,6].  A  major weakness of these systems is that 
they do not take into account the dominant and non-
dominant joint relationship between audio and visual cues, 
leading to fraudulent impostor attacks on systems in real 
world unsupervised scenarios, such as for on-line web based 
authentication applications. Due to the technological 
advances in computer graphics and animation technologies, 
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it has become easier for impostors to artificially synthesize 
the biometric data, crafting a replay attack. Such fraudulent 
replay attacks leave the systems vulnerable to  spoofing  by 
recording the voice of the target in advance and replaying it 
in front of the microphone, or simply placing a still picture 
of the target’s face in front of the camera. Such problems can 
be approached with liveness check methods, which ensure 
that biometric cues are acquired from a live person who is 
actually present at the time of capture for authenticating the 
identity. With the diffusion of Internet based authentication 
systems for day-to-day civilian scenarios happening at a 
astronomical pace [7], it is high time to think about use of 
user-friendly non-intrusive biometrics for identity 
authentication, and face and voice biometrics rate high on 
this aspect. However, face and voice rate high also in terms 
of vulnerability to tampering and fraudulent replay, and use 
of effective countermeasures such as liveness checking needs 
to be incorporated in biometric security systems for better 
diffusion of biometric authentication technologies in day-to-
day real world operating scenarios. Though there is some 
work in finger print based liveness detection techniques 
[8,9], there is hardly any work on approaches on  liveness 
checks  based on user-friendly biometric identifiers (face and 
voice) 

A significant progress however, has been made in 
independent processing of face only or voice only based 
authentication approaches [1,2,3,4,5,6].These approach do 
not take into consideration an inherent coupling that exists 
between jointly occurring dominant and non-dominant 
biometric identifiers. Some preliminary approaches (such as 
the one described in [7, 8] address liveness checking 
problem by jointly modeling the acoustic and visual speech 
features for testing liveness. They involve the fusion of 
acoustic, appearance and shape based visual features from 
lip region for jointly modeling the co-occurring face-voice 
dynamics in speaking face video sequences.  However, they 
are heuristic and ad hoc approaches that work in ideal 
laboratory environments, and do not perform well  in real 
world unsupervised operating scenarios. 

In this paper we propose a novel fusion technique based 
on fuzzy fusion for joint analysis of acoustic and visual 
speech features for modeling liveness information. The rest 
of the paper is organized as follows. Section 2 describes the 
motivation for using mutual dependency features, and the 
proposed liveness check approach based on fusion is 
described in Section 3. Section 4 details the data corpora 
used and the experimental evaluation of the proposed fusion 
approach, with Section 5 summarizing the conclusions drawn 
from this work and plans for further research. 
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II. MOTIVATION FOR JOINT FEATURE ANALYSIS

The motivation to use joint feature analysis technique for 
modeling the spatio-temporal relationship between co-
occurring face and voice signals during speech production is 
based on the following two observations: The first 
observation is in relation to any video event, for example a 
speaking face video, where the content usually consists of 
the co-occurring audio and the visual elements. Both the 
elements carry their contribution to the highest level 
semantics, and the presence of one has usually a “priming” 
effect on the other: for example, when hearing a dog barking 
we expect the image of a dog, seeing a talking face we 
expect the presence of her voice, images of a waterfall 
usually brings the sound of running water etc. A series of 
psychological experiments on the cross-modal influences [9, 
10] have proved the importance of synergistic fusion of the 
multiple modalities in the human perception system. A 
typical example of this kind is the well-known McGurk 
effect [9]. Several independent studies by cognitive 
psychologists suggest that the type of multi-sensory 
interaction between acoustic and orafacial articulators 
occurring in the McGurk effect involves both the early and 
late stages of integration processing [9,10]. It is likely that a 
human brain uses a hybrid form of fusion that depends on the 
availability and quality of different sensory cues.   

Yet, in audiovisual identity verification systems, the 
analysis is usually performed separately on different 
modalities, and the results are brought together using 
different types of heuristic and ad hoc fusion methods. 
However, in this process of separation of modalities or the 
technique used for extraction of features, we lose valuable 
joint cross-modal information about the whole event or the 
object we are trying to analyze and detect. There is an 
inherent association between the two modalities (although 
complex) and the analysis should take advantage of the 
synchronized appearance of the relationship between the 
audio and the visual signal. The second observation relates 
to different types of fusion techniques used for joint 
processing of audiovisual speech signals. The late-fusion 
strategy, which comprises decision or the score fusion, is 
effective especially in case the contributing modalities are 
uncorrelated and thus the resulting partial decisions are 
statistically independent. Feature level fusion techniques, on 
the other hand, can be favoured (only) if a couple of 
modalities are highly correlated.  

However, jointly occurring face and voice dynamics 
during speech production is neither highly correlated 
(mutually dependent) nor loosely correlated nor totally 
independent (mutually independent). A complex and 
nonlinear spatiotemporal coupling consisting of highly 
coupled, loosely coupled and mutually independent 
components may exist between co-occurring acoustic and 
visual speech signals [11, 12].  The compelling and 
extensive findings by authors in [11] validate such complex 
relationship between external face movements, tongue 
movements, and speech acoustics when tested for consonant 
vowel (CV) syllables and sentences spoken by male and 

female talkers with different visual intelligibility ratings. 
They proved that the there is a higher correlation between 
speech and lip motion for C/a/ syllables than for C/i/ and 
C/u/ syllables. Further, the degree of correlation differs 
across different places of articulation, where lingual places 
have higher correlation than bilabial and glottal places. Also, 
mutual coupling can vary from talker to talker; depending on 
the gender of the talker, vowel context, place of articulation, 
voicing, and manner of articulation and the size of the face. 
Their findings also suggest that male speakers show higher 
correlations than female speakers. Further, the authors in 
[12] also validate the complex, spatiotemporal and non-
linear nature of the coupling between the vocal-tract and the 
facial articulators during speech production, governed by 
human physiology and language-specific phonetics. They 
also state that most likely connection between the tongue and 
the face is indirectly by way of the jaw. Other than the 
biomechanical coupling, another source of coupling is the 
control strategy between the tongue and cheeks. For 
example, when the vocal tract is shortened the tongue does 
not get retracted.  

Due to such a complex nonlinear spatiotemporal coupling 
between speech and lip motion, this could form a good 
candidate for detecting liveness. Modeling the speaking 
faces by capturing this information can make the biometric 
authentication systems less vulnerable to spoof and 
fraudulent replay attacks, as it would be almost impossible to 
spoof a system which can accurately distinguish the 
artificially manufactured or synthesized speaking face video 
sequences from the live video sequences. We propose an 
approach based on joint audio-visual features and subsequent 
fusion based on fuzzy logic to address this problem. Next 
two Sections briefly describe the two main aspects of the 
proposed approach.  

III. JOINT FEATURE EXTRACTION 
Joint feature extraction based on Canonical Correlation 

Analysis (CCA) was used for extracting the audio and visual 
signals from the speaking face video sequences.. The CCA 
was first proposed by Hotelling [13], and is a method of 
determining a linear space where the correlations between 
two sets of variables are maximized. This approach has been 
successfully applied to sets of variables that are 
manifestations of a set of hidden variables, examples of this 
are fMRI and image retrieval[14]. The audio-visual speaking 
face modeling is a similar candidate, since the motions of 
articulators and the speech produced are fundamentally 
linked. However, CCA is derived as a linear process and this 
limitation becomes apparent in the cases where the 
underlying relationship is non-linear [15], such as the 
complex nonlinearity in correlation relationship between the 
speech and lip-motion during speech production. To 
circumvent this linearity restriction, we have used a “kernel 
trick”, which allows replacing an inner product by a 
projection of the data into a higher dimensional space, and 
performing CCA in this realized dual representation [15]. 



We perform a kernel Canonical Correlation Analysis 
(kCCA) on Mel Frequency Cepstral Coefficients (MFCC) 
voice features and the lip motion features extracted from a 
biological inspired optical flow algorithm called Multi 
Channel Gradient Model (MCGM).  

The MCGM is a neuro-physiological and psycho-
physically inspired unified motion algorithm [15].  In 
MGCM approach, the behavior of V1/V2 cells is modeled 
by MGCM functions and the ratio of temporal and spatial 
gradients is computed to establish local velocity estimates. 
From one sequence of lip region images it is possible to 
derive two sets of visual information from MCGM, initially a 
sequential series of frames are anlaysed by MCGM 
algorithm, calculating the relative motion between successive 
frames. Additionally, a current frame of data is processed 
against a fixed open mouth frame, calculating the absolute 
motions of the mouth. MCGM processing results in a 
matrices of equal size to the input frames, each containing 
speed and angular information for a given pixel. Applying 
(linear) Principal Component Analysis (PCA) produces a 
linear space onto which the motions can be mapped, 
reducing the dimensionality of the visual features. 

Mel-Frequency Cepstral Coefficients (MFCC) are 
classical acoustic speech features used in automatic speech 
processing [16]. They are state-of-the-art features in many 
applications, including automatic speech recognition and 
speaker verification systems. For obtaining a MFFC feature 
vector, the voice signal is transformed into the frequency 
domain via windowed Fast Fourier Transform and then 
mapped on to the Mel scale, a human perceptual scale of 
frequency [16]. A (logarithmically spaced) filter bank is 
constructed over this Mel frequency spectrum, and from this 
the logarithm of the power spectrum is determined. A 
discrete time cosine transform is performed over the power 
spectrum and the MFCCs are calculated. Most of the 
information about human voice from speech can be captured 
by retaining 10-12 most significant MFCC features, the  
first-order time-derivatives(delta features), the pitch and the 
signal energy.  

To account for the lack of synchronization between speech 
features and lip motion features, rate interpolation can be 
done by up sampling the MCGM features to obtain the 
synchronized MCGM-MFCC features. Once the acoustic 
MFCC features and MCGM lip motion features are obtained, 
kCCA is implemented by first mapping them onto the kernel 
space using polynomial kernels and then performing CCA. 
Since, the kCCA involves, implementing CCA in a higher 
dimensional nonlinear space, it has the capability to capture 
and track the nonlinear correlations between different 

features. Parameter tuning for kCCA can be performed 
offline on an independent data set. 

For extracting the mutually independent components of 
the audio and visual signals, another powerful statistical 
technique called independent component analysis (ICA) is 
performed, which treats the observed variables as a mixture 
of independent sources. Two different approaches can be 
used for Independent Component Analysis, ICA1 and ICA2 
[17, 18]. In ICA1, the basis images are independent, whereas 
in ICA2 the mixing coefficients are independent. We utilize 
the ICA2 approach, where each pixel for lip images are 
considered as a mixture of independent coefficients. If X is a 
data matrix incorporating the measured variables, then it can 
be split as: X = AS where A is the mixing matrix and S 
contains the independent coefficients. The columns of A 
form a basis for the database and the columns of S provide 
ICA-features for the corresponding lip images residing in the 
columns of the data matrix X. 

For each pixel, all x and  y coordinates of a lip image are 
concatenated to a single vector. Its dimensionality is then 
reduced by applying PCA to the training set of x-y co-
ordinate vectors. Each face is then represented by the first K 
PCA coefficients. The columns of the data matrix X for the 
ICA analysis are constituted of PCA coefficient vectors. 
Then, the Fast ICA algorithm described by [17, 18] is 
applied to obtain the basis A and the independent 
coefficients S. Next section describes the .proposed fuzzy 
fusion technique used to  combine various features.  

IV. FUZZY FUSION TECHNIQUE 

First, we derive the algorithm for performing the fuzzy 
fusion using multiple features described in the previous 
Section. Let us denoted the projection of audio and lip 
features in each of the closely coupled (kCCA), and mutually 
independent (ICA) subspaces as kCCAf  and ICAf . We also 
include the projection of visual information in the PCA 
subspace as Eigenlip features PCAf   as the static spatial 
information in face images contains identity specific 
information as well. 

 According to Medasani et al [19] and Keller et al. [20], 
the most generic way of performing the fuzzy fusion is to 
normalize, fuzzify,  compute the fuzzy integral (fusion) and 
defuzzify. Figure 1 shown below describes the main steps for 
fuzzy fusion technique and the scheme is described below. 
For simplicity, the fusion between two feature sets i.e. kCCA 
features and MCGM features is described.



Fig. 1.  Block Schematic of the Fuzzy Fusion Scheme 

Step 1. We first compute Eigen lip, kCCA and MGCM 
features from the video frames.  

Step 2. The  kCCA, MGCM and Eigen lip features were 
normalized prior to fusion. The normalized vector v of an 
original vector  is defined as  

( )ΩΩ

Ω=
T
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Step 3. The purpose of fuzzification is to map input vector v 
from each modality to values from 0 to 1, representing 
evidence that the object satisfies the class hypothesis kC. The 
generation of membership function is very important [19] 
[20]. In this paper, we propose a histogram-based method for 
generating the membership function. 
Let x be the distance between input object and its class, and 
h(x) be the histogram of x, which provides information 
regarding the distribution of distance. Membership function 
u(x) can be constructed as follows  
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From Eq. 2, we construct membership function u(x) for each 
feature vector. Let 

kk vv −=ε , 

where v
k

is the vector describing the k th class. The 
fuzzification result S

k 
is computed as  
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Step 4. Fuzzy integral considers the objective evidence 
supplied by each source (called the h-function) and the 
expected worth of each source (via a fuzzy measure) 
[19][20]. Let x

1 
represent the kCCA features,  x

2 
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the MGCM features, and x
3 
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where S
kV 

is the fuzzification result of kCCA features, and S
kA is the fuzzification result of MGCM features. 



Step 5. We classify the kCCA and  MGCM features into a 
specific class if the fuzzy integral F

k 
had the output of fuzzy 

integral: 

k
F

y kmaxarg
= (5) 

V. EXPERIMENTAL RESULTS 

Experiemental evalution was done with two audio-visual 
speaking face video corpora VidTIMIT [21] and DaFEx 
[22,23], showing a significant improvement in  liveness 
check performance due to the use of fuzzy fusion technique 
and multiple correlation features (kCCA, MCGM, ICA and 
PCA). Figure 2 shows some images from the two corpora 
used for experiemental work. The details of the two corpora 
are given in [21] , [22] and [23]. For a comparative 
evaluation, experiments were also performed with 
convention late fusion technique, a deterministic fusion 
approach based on equal fusion weights for each set of 
features.  

The experiments involve a training phase and a test phase. 
The training phase involves building of statistical models 
based on Gausian mixtures from the training data sets. The 
testing stage for the liveness check scenario is different from 
the traditional testing in biometric identity verification 
scenarios. Here the impostor data is artificially synthesised 
replay attack test data emulating fraudulent attacks. Two 
different types of replay attacks were tested, the  static replay 
attacks with still photo and audio,  and the dynamic replay 
attacks, where artificial speaking face sequences are 
synthesised from still photo, few key frames from the video 
sequences, and lip-synched with pre-recorded speech signals. 

A 10-mixture Gaussian mixture model � of a client’s 
audiovisual feature vectors was built in the training phase, 
reflecting the probability densities for the combined 
phonemes and visemes (lip shapes) in the audiovisual feature 
space. In the testing phase, the clients’ live test recordings 
were first evaluated against the client’s model � by 
determining the log likelihoods log p(X|�) of the time 
sequences X of audiovisual feature vectors under the usual 
assumption of statistical independence of successive feature 
vectors. 

For testing static replay attacks, a number of “fake” or 
synthetic recordings were constructed by combining the 
sequence of audio feature vectors from each test utterance 
with ONE visual feature vector chosen from the sequence of 
visual feature vectors and keeping that visual feature vector 
constant throughout the utterance. Such a synthetic sequence 
represents an attack on the authentication system, carried out 
by replaying an audio recording of a client’s utterance while 
presenting a still photograph to the camera. Four such fake 
audiovisual sequences were constructed from different still 
frames of each client test recording. Log-likelihoods log 
p(X’|�) were computed for the fake sequences X’ of 
audiovisual feature vectors against the client model �. In 

order to obtain suitable thresholds to distinguish live 
recordings from fake recordings, detection error trade-off 
(DET) curves and equal error rates (EER) were determined. 
For testing dynamic replay attacks artificially synthesized 
speaking face video sequences were used instead of using the 
actually recorded video sequences in the data corpora. 

(a) VidTIMIT corpus images 

(b) DaFeX corpus images 
Fig. 2.  Face Images from VidTIMIT and DaFex Corpus 

Since the liveness checking is a two-class decision task, 
the system can make two types of errors.  The first type of 
error is a False Acceptance Error (FA), where an impostor 
(fraudulent replay attacker) is accepted. The second error is a 
False Rejection (FR), where a true claimant (genuine client) 
is rejected. Thus, the performance is measured in terms of 
False Acceptance Rate (FAR ) and False Reject Rate (FRR ), 
as defined as (Eqn. 6) : 
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where IA is the number of impostors classified as true 
claimants, IT is the total number of impostor classification 
tests, CR  is the number of true claimants classified as 
impostors, and CT is the total number of true claimant 
classification tests. The implications of this is minimizing the 



FAR increases the FRR and vice versa, since the errors are 
related. The trade-off between FAR and FRR is adjusted 
using the threshold �, an experimentally determined person--
independent global threshold from the training or enrolment 
data. The trade-off between FAR and FRR can be 
graphically represented by a Receiver Operating 
Characteristics (ROC) plot or a Detection Error Trade-off 
(DET) plot. The ROC plot is on a linear scale, while the 
DET plot is on a normal-deviate logarithmic scale. For DET 
plot, the FRR is plotted as a function of FAR. To quantify 
the performance into a single number, the Equal Error Rate 
(EER) is often used. Here the system is configured with a 
threshold, set to an operating point when FAR % = FRR %.  

It must be noted that the threshold � can also be adjusted 
to obtain a desired performance on test data (data unseen by 
the system up to this point). Such a threshold is known as the 
aposteriori threshold. However, if the threshold is fixed 
before finding the performance, the threshold is known as the 
apriori threshold. The apriori threshold can be found via 
experimental means using training/enrolment or evaluation 
data, data which has also been unseen by the system up to 
this point, but is separate from test data.  

Practically, the apriori threshold is more realistic. 
However, it is often difficult to find a reliable apriori 
threshold. The test section of a database is often divided into 
two sets: evaluation data and test data. If the evaluation data 
is not representative of the test data, then the apriori 
threshold will achieve significantly different results on 
evaluation and test data. Moreover, such a database division 
reduces the number of verification tests, thus decreasing the 
statistical significance of the results. For these reasons, many 
researchers prefer to use the aposteriori and interpret the 
performance obtained as the expected performance.  

Different sets of experiments were conducted to evaluate 
the performance of the audio-visual correlation features 
based on proposed fuzzy fusion of correlation features 
(kCCA) and motion (MCGM) features). The performance 
evaluation  for different features in terms of DET curves and 
EERs is shown n Table 1 to Table 4, and Figure 3 and Figure 
4. As can be seen from Figure 3, Figure 4 and Table 1, the 
results for VidTIMIT data set are quite promising for fuzzy 
fusion of kCCA correlation features and MCGM motion 
features when combined with features in ICA and PCA space 
as compared to conventional fusion based on equal weights 
for each type of features. As can be seen in Table 2, 3 and 4, 
similar improvement can be seen for other data sets as well.  

Further, the DET curves show not only the importance of 
fuzzy fusion technique but also the role of the joint 
correlation and motion features. This is because the use of 
PCA and ICA features on their own does not have the 
capability to capture the hidden correlation relationship 
between co-occurring signals. However, when combined 
with correlation and motion features extracted by kCCA and 
MCGM technique and combined with fuzzy fusion approach,  
they result in significant improvement in verification error 

rates.   
Moreover, the error rates achieved comparatively for 

DaFeX corpora show the robustness of the approach for 
more challenging operating scenario (face data with 
expression variations). As expected, the performance 
achieved for this data is lower as compared to VidTIMIT. 
However, DaFex data represents more challenging and 
realistic operating scenario as compared to VidTIMIT, 
representing a laboratory setting suitable for benchmarking 
purposes.   

Figure 3: DET curves for audio visual features based on fuzzy fusion of 
mutual dependency features  for   VidTIMIT data set 

Figure 4: DET curves for audio visual features based on fuzzy fusion of 
mutual dependency features  for   DaFeX dataset 



TABLE I 
ERROR RATES (EERS) FOR VIDTIMIT  MALE DATASET 

Audio 
Visual Features 

Score Fusion 
% EER 

Fuzzy Fusion 
% EER 

eigLipmfcc ff + 16.8 % 16.2% 

kCCA

eigLipmfcc

f
ff

+

+ 17.2 % 14.7% 

MGCMkCCA

eigLipmfcc

ff
ff
++

+ 13.03% 11.68% 

ICA

MGCMkCCA

eigLipmfcc

f
ff

ff

+
+

++ 10.26% 8.06% 

TABLE 2 
ERROR RATES (EERS) FOR VIDTIMIT  FEMALE DATASET 

Audio 
Visual Features 

Score Fusion 
% EER 

Fuzzy Fusion 
% EER 

eigLipmfcc ff + 16.88 % 16.2% 

kCCA

eigLipmfcc

f
ff

+

+ 17.87 % 15.18% 

MGCMkCCA

eigLipmfcc

ff
ff
++

+ 14.12% 11.86% 

ICA

MGCMkCCA

eigLipmfcc

f
ff

ff

+
+

++ 10.26% 8.85% 

VI. CONCLUSIONS 

In this paper we proposed a novel fuzzy fusion technique 
for liveness checking in biometric security systems based on 
combining multimodal features extracted using kernel kCCA 
and MCGM features, which model the close coupling 
between audio and visual signals during speech production, 
and combine with PCA and ICA features which model 
independent and loose coupling.  Performance evaluation in 
terms of DET curves and EERs on VidTIMIT and DaFeX 
corpora, showed a significant reduction in verification error 
rates. 

TABLE 3 
ERROR RATES (EERS) FOR DAFEX MALE DATASET 

Audio 
Visual Features 

Score Fusion 
% EER 

Fuzzy Fusion 
% EER 

eigLipmfcc ff + 15.7 % 16.64% 

kCCA

eigLipmfcc

f
ff

+

+ 15.9% 14.81% 

MGCMkCCA

eigLipmfcc

ff
ff
++

+ 13.12% 11.79% 

ICA

MGCMkCCA

eigLipmfcc

f
ff

ff

+
+

++ 10.46% 9.23% 

TABLE 4 
ERROR RATES (EERS) FOR DAFEX FEMALE DATASET 

Audio 
Visual Features 

Score Fusion 
% EER 

Fuzzy Fusion 
% EER 

eigLipmfcc ff + 15.7 % 15.7 % 

kCCA

eigLipmfcc

f
ff

+

+ 15.54 % 15.28% 

MGCMkCCA

eigLipmfcc

ff
ff
++

+ 14.4% 11.17% 

ICA

MGCMkCCA

eigLipmfcc

f
ff

ff

+
+

++ 10.46% 9.31% 
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