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ABSTRACT Biometric recognition is often used for adults for a variety of purposes where an individual’s
identity must be ascertained. However, the biometric recognition of children is an unsolved challenge.
Solving this challenge could protect children from identity theft and identity fraud, help in reuniting lost
children with their parents, improve border control systems in combatting child trafficking, and assist in
electronic record-keeping systems. In order to begin the development of biometric recognition systems for
children, researchers collected fingerprint, iris, and outer ear shape biometric information from infants. Each
modality provides different challenges. Where possible, the performance of existing hardware and software
that was developed for adults was assessed with infants. Where necessary, novel hardware or software was
developed. For the ear modality, existing hardware and software which have previously been applied to
adults were applied to children. For the iris modality, existing hardware was used to acquire the images,
while adjustments to the existing preprocessing algorithms were applied to cater for the localisation and
segmentation of infant irises. For the fingerprint modality, novel hardware and image processing software
were developed to acquire fingerprints from infants, and convert the images into a format which is backward
compatible with existing international standards for minutiae extraction and comparison. The advantages and
disadvantages of using each of these modalities during the first year of life were compared, based on both
qualitative assessments of usage, and quantitative assessments of performance.While there is no conclusively
best modality, recommendations of usage for each modality were provided.

INDEX TERMS Authentication, biometrics, ear recognition, fingerprint recognition, identification of
persons, identification of infants, identity management systems, iris recognition.

I. INTRODUCTION

Recognition of infants and minors precisely from birth is
becoming ubiquitous. The choice of biometric modality to
use for infants andminors has always been a bottleneck due to
imaging devices and uncooperative nature of infants. To mit-
igate these challenges a research project has been started
with the aim of developing a prototype biometric recognition
system to acquire biometric data from young children, and
determine or verify the identities of these children from birth
until they apply for their identification documents (which can
be done at the age of 16 years in South Africa). To assess the
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performance of the existing and newly developed biometric
acquisition and recognition systems for children and achieve
the aim of the project, it is required to acquire biometric data
from children and successfully compare this biometric data.

The benefits of developing such a system aremanifold. The
output of this research is meant to address issues of identity
theft and fraud against children, help combat child trafficking,
assist with reuniting small children who are lost with their
parents, and improve healthcare management systems for
children [1]–[5]

The unique challenge that is posed is that existing technolo-
gies are not capable of acquiring biometric information from
newborn infants and successfully matching it to the same
individuals during growth and adulthood with accuracy and
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reliability, thus leaving children vulnerable to exploitation in
various ways, such as identity theft and child trafficking. As a
first step in solving this challenge, this paper addresses the
acquisition of biometric information from children during the
first year of life.
There has been some research into developing biometric

recognition systems for children. However, there are still
challenges to overcome in creating a complete biometric
system for infants and minors.
A review of several modalities was performed before

reaching the decision to focus on the fingerprint, iris, and
outer ear shape. These modalities were chosen after an
assessment based on seven criteria of the desirability of
biometric characteristics, namely: universality, uniqueness,
permanence, collectability, performance, acceptability, and
resistance to circumvention [6]. The analysis is summarised
in Figure 1 and discussed in detail below.

FIGURE 1. An overview of the analysis of various modalities and their
suitability for use from birth to adulthood, based on several criteria.

Face [7]–[11] and speech [12], [13] biometrics may work
for older children but are ineffective for newborn babies and
toddlers. Footprint crease patterns [14]–[16] are promising
for newborns but become less user-friendly as people become
older and start wearing shoes. There are also concerns regard-
ing the hygiene of feet which may come into contact with
biometric sensors. These concerns also translate to research
into using friction ridge patterns of the feet [17].
However, friction ridge patterns of the fingers (also called

fingerprints) [1], [3], [18]–[21] and palms (palm prints)
[17], [22] have shown more promise. The main challenge to
acquiring fingerprints is that conventional fingerprint scan-
ners do not acquire fingerprints at a sufficiently high res-
olution to resolve the fingerprints of newborn infants, and
the contact nature of conventional scanners may, at times,
be incompatible with the soft, malleable skin of infants. One
approach has been to use higher resolution contact-based
scanners to increase the accuracy of using a single finger-
print [1], [3], [18]–[21]. Another approach has been to collect
fingerprints from all 10 fingers using a conventional scanner
and fuse the scores for higher reliability [11]. While this

latter approach has resulted in a high level of accuracy for
toddlers aged 18 months and older, it may be difficult and
time consuming to collect all 10 fingerprints from babies.
Furthermore, the reliability as children grow bigger and
the reliability of this method below the age of 18 months
remains an open question. In this paper, we have proposed
to use a novel fingerprint scanner which is a contactless
device that uses a higher resolution than the previously cited
works [1], [3], [11], [18]–[21].

While the friction ridge patterns on palms are conceptually
similar to fingerprints and may be ergonomically easier to
capture from infants, palms present other challenges. Due
to the much larger area, hardware costs and data transfer
requirements would increase if the full area of the palm
is acquired. Alternatively, if a sub-region of the palm is
acquired, consistency in repeatedly acquiring the same region
may prove challenging.

Two other biometrics which have shown promise for young
children are the outer ear shape [23]–[25] and the iris [11].
The advantage of the outer ear is that the collection of
the biometric data is unobtrusive and hygienic since it is
completely touchless. There is currently little research and
commercial work done on ear recognition for children [26].
These includes work done by Tiwari et al. [23], [24],
[27], [28] and Berra et al. [29] who attempted different recog-
nition methods of newborns using ear images from hospitals.
Kumar et al. [30] and Ntshangase et al. [31] evaluated the
performance of recognition algorithms on ear recognition
for children. There is still missing information in this field
that needs to be addressed, such as the effect of growth on
ear recognition, more details are presented in a paper by
Ntshangase and Mathekga [26]. However, a larger dataset
and longitudinal studies are required to obtain more reliable
information about the permanence of the shape of the ear and
the performance of ear recognition for children.

The iris is known to be effective for recognition from the
age of 18 months and upwards. Daugman demonstrated in
his pioneering iris recognition work that its recognition accu-
racy is seven times more than its major rival the fingerprint
[32]–[36]. Even though Daugman reported high accuracy of
the iris recognition system, no research was found where his
works were extended to iris biometric recognition for infants
and minors. The performance of iris image acquisition and
recognition for children needs to be investigated. Preliminary
findings of this research suggest that the variance in image
quality between adult and infant iris images is minute [37].

In summary, in this paper, we report on the efforts towards
developing and assessing three biometric recognition systems
for infants using the fingerprint, iris, and outer ear shape
biometric modalities. These systems have been developed
independently, however, the long-term aim is to eventually
fuse all three modalities in future work. This is done to
improve the accuracy of each individual modality before they
can be fused together.

The rest of the paper is structured in the following man-
ner. Section II discusses related work. Section III describes
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the approach taken for each biometric modality. Section IV
provided the experimental results and a discussion thereof,
as well as a discussion on the lessons learned in this endeavor.
Section V concludes the discourse and suggests avenues for
future work.

II. RELATED WORK

The chosen biometric modalities were the fingerprint,
the outer ear shape and the iris pattern. The modalities
were chosen after an assessment based on seven criteria of
desirability of biometric characteristics, namely: universality,
uniqueness, permanence, collectability, performance, accept-
ability, and resistance to circumvention [17]. In this section,
for each of the three biometrics, we discuss their use for
adults, literature research into applying them for children and
what challenges remain to be solved for adoption of these
technologies for the biometric recognition of children.

A. IRIS

Iris recognition has shown tremendous performance in adult
candidates in various imaging conditions [32], [38]–[40].
As a caveat, these results require high levels of cooperation
from the subjects, which makes it difficult for use on infants.
However, with recent advances in imaging technologies
[41]–[44] and iris recognition algorithms [45]–[53],
researchers have now started to explore iris recognition for
children.
In Jain et al. [54] various biometric modalities ranging

from face, iris and fingerprint were exploited in order to
identify, monitor and track children who are coming for vac-
cination. This was motivated by the fact that face biometric,
iris biometric, and fingerprint biometric have been widely
accepted with good recognition rates for adults but never
tested on children. Basak et al., [11] investigated various bio-
metric modalities, and their results showed good performance
for the iris and fingerprints as they performed much better
than the face biometric. The main challenge with iris biomet-
ric for children is data acquisition since iris biometric is an
active biometric. These same challenges were also observed
by Basak et al. [11]. Nelufule et al. [37], have shown that the
child irises are closely related to the adult irises in terms of
quality assessment and usability as a biometric, provided that
a clear image of the iris is obtained. Children at birth cannot
corporate and need to be directed to look into the camera
in order to capture an iris image. Therefore, in this work,
we are exploring how existing software for adults perform
on children.

B. EAR

According to literature reports, ear recognition for chil-
dren was first introduced in 1960 by Fields et al. [55],
who manually analysed ears of newborns on a database
of 206 participants. After identifying the problem of incor-
rect identification of children, the authors investigated
possible solutions to identify newborns using their ears.

Fields et al. [55] concluded that visually ears can be used to
distinguish amongst newborns.

In 2011, Tiwari et al. [23] investigated if automated ear
recognition of newborns can be done. Their investigation
was part of solving the problem of abduction, swapping and
mix ups of infants while on hospital premises. Ear images
were captured by first acquiring side face images. While this
work is similar to the work presented by Fields et al. [55],
the ear comparison methods are automated, although the ear
region is manually segmented. The main contribution of this
research was the preparation of a newborn ear database from
210 individuals. The authors had tested different ear matching
algorithms and concluded that ears can be used as a biometric
to identify newborns [23].

In 2012, Tiwari et al. [24] proposed an improvement of
ear recognition for newborns by fusing ear features and
soft biometrics. The considered soft-biometric data types are
gender, blood group, height, and weight, which were used
to enhance the accuracy for identification. The main con-
tributions of their research are the design and implementa-
tion for the fusion of ear and soft biometric for recognition
of 210 newborns, and the preparation of a combined ear
images and soft-biometric database of newborns. The authors
presented that the fusion of ear and soft-biometrics resulted in
an improvement of approximately 5.59% over their previous
identification system, which was based on ear recognition
alone [24].

In 2013 Tiwari et al. [56] gathered a multimodal database
of newborns for biometric recognition with soft biomet-
rics [56]. The database includes physiological characteristics,
namely face, ear and head print; and soft biometrics data,
namely gender, height, weight and blood group of 280 new-
borns. The database contributes identity characteristics that
may be useful for the authentication of newborns.
In 2014 Barra et al. [57] developed research on biometric

authentication of newborn identities by means of ear patterns.
The authors tested multiple ear matching algorithms to assess
the accuracy of identification using ear recognition on a
dataset of ear images of newborns. The authors concluded
that ear images can be used to identify newborns [57].
In 2015, Tiwari et al. [27] proposed fully automated ear

recognition for newborns. In addition to automatically locat-
ing, segmenting and cropping the ear region on the given ear
image, Tiwari et al. [27] investigated a unique approach for
the automatic recognition of newborns using 2D ear imag-
ing. The authors presented that their investigation contributes
a computationally effective solution to recognise newborns
automatically. The proposed algorithm yields identification
accuracy of 89.28% on a database of 210 subjects [27].
In 2015, Bargal et al. [29] developed a smartphone-based

ear recognition application for managing medical records
at on-site medical clinics in less developed countries where
many individuals do not hold IDs. A pilot study was con-
ducted on the developed application to test feasibility in
naturalistic settings. However, it was not specified if the pilot
study involved any data acquisition from children under the

VOLUME 9, 2021 38271



Y. Moolla et al.: Biometric Recognition of Infants using Fingerprint, Iris, and Ear Biometrics

age of 18 years. Their future work includes performing a
longitudinal study on infants under the age of three, whose
ears will be developing over time. [29].
In 2016, Tiwari et al. [28] evaluated if several ear recogni-

tion algorithms that were developed for adult recognition can
work on recognising newborns.

To the best of our knowledge, there has been no commer-
cial automated system that performs ear recognition on chil-
dren. However, an article released in October 2017 reported
that theMATLABHealth Research Centre in Bangladesh and
the Angkor Hospital for Children in Cambodia, will partner
to assess a range of biometric modalities such as fingerprints,
irises, palm prints, ears and feet to determine which is most
suitable for infants and young children [58].

C. FINGERPRINT

1) DEVICE RESOLUTION

It is established that scanners designed for adults do not
work for children, although the cut-off age is debated. The
age below which adult scanners are ineffective for chil-
dren is placed at 3 years according to Uhl and Wild [18],
at 4 year according to a study by the Dutch government [19]
and at 6 years according to the US National Institute of
Justice [20].

Research on fingerprint acquisition from newborns has
increased in recent years. A common measure of fingerprint
acquisition devices is dots per inch (dpi), which is also
referred to as pixels per inch (ppi). The international standard
for adult fingerprint scanners requires 500dpi resolution [59].
This is insufficient to clearly resolve the fingerprint patterns
on an infant’s fingertip. This had led to research into higher
resolution devices. Michigan State University (MSU) part-
nered with NEC to test a contact-based device with 1270dpi
resolution [1], [21], [60]. Since then, MSU has developed a
new contact-based device with 1900dpi resolution [61], [62],
while NEC has continued their research with trials in
Kenya [63].

At birth, the distance between ridges on an infant’s fin-
gerprint is 100-150 microns [17]. For an adult, this is
450-500um. Since the ridge distance is up to 5 times smaller
for infants compared to adults, we thus hypothesize that a res-
olution 5 times greater is needed to clearly resolve the ridges
for all newborn infants, i.e. 2500dpi instead of 500dpi. It is
hypothesized that the lower resolution in literature devices
so far may explain the reduced accuracy for infants below
6 months. Thus, for the purposes of the study which is
reported on in this paper, a devicewith a resolution of 2500dpi
was developed.

Concurrent to the research which is reported in this paper,
a device with a resolution of 3400dpi was developed by
Saggese et al. [64], based on the reasoning that the valley
width in relation to the entire ridge-valley distances is much
smaller for infants than it is for adults. However, technical
performance results of the increased resolution were not
reported.

2) GROWTH MODELLING AND SCALING

Since children grow and do not remain at a constant size, this
growth needs to be accounted for when comparing finger-
prints from the same child, which were acquired at different
ages. The size discrepancies must also be accounted for when
children of different ages have their fingerprints captured
using the same device.

A study by Gottslich et al. [3] which used longitudinal
data of 48 juvenile individuals, aged 6 years and upwards,
revealed two points which are relevant to this research. First,
the growth of fingers was isotropic, i.e. the rate of growth in
length and width was at a constant ratio. Second, there was
a high correlation between growth of fingers and growth in
height of the children. Gottslich et al. thus propose to use
growth charts to model the growth of fingers.

Similarly, Jain et al. [65] assessed the size of fingerprints
with participants between the ages of 6 months and 4 years.
A range of scaling factors were tested until the best compar-
ison scores could be achieved.

FIGURE 2. Adult fingerprint acquired with conventional adult fingerprint
scanner. The red block shows a region that is horizontally oriented,
the green block shows a region that is vertically oriented, and the blue
block shows a region that is diagonally oriented.

Alternately, in this work, instead of modelling the growth
of the fingers, fingerprints can be scaled to a set size based on
the ridge-valley distances, i.e. the distances between consec-
utive ridges in a fingerprint. For adult fingerprints acquired
with a conventional 500dpi scanner, the number of pixels
between two consecutive ridges is 9-10 pixels in regions
where the pattern is vertically or horizontally oriented, and
6-7 pixels in regions where the pattern is diagonally oriented.
These orientations are illustrated in Figure 2. This speci-
fication of pixels to represent a ridge and valley provides
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TABLE 1. A summary of the contributed components for each modality.

sufficient discretisation of the image data to clearly resolve
boundaries between consecutive ridges. When fingerprints
from unconstrained camera sources are resolved to the same
pixel configurations, they are then of the correct ‘‘size’’,
which is compatible with existing minutiae extraction and
matching software. Similarly, scaling to a ridge-valley dis-
tance of 7 pixels was reported in Saggese et al. [64]

3) CONTACTLESS ACQUISITION

A challenge faced by contact-based acquisition, which was
reported by Jain et al. [65], is that an infant’s skin has a
high elasticity and often suffers from folding and non-linear
distortion. Further, it is expected that the epidermal layer is
very thin for newborns, which may lead to complete loss of
ridge-valley definition when contact is made with a scanner’s
platen. This would lead to smudging in many instances.
To overcome this challenge, the scanner developed for this
study was designed to be contactless, i.e. the area of the finger
which was acquired for comparison was not in contact with
any surface.
While contactless scanners for adults are in the experi-

mental stage and slowly moving towards commercial use
[66]–[68], the only other research on contactless acquisition
for infants was the concurrent research by Saggese et al. [64],
who also report that contactless acquisition performed better
than contact-based acquisition for infants. However, no per-
formance comparison results were reported between the two
modes.

4) ILLUMINATION

Illumination also plays a role in the ability to capture clear
fingerprints with contact-less devices. There have been some
small preliminary studies into lighting. Wang et al. [69]
recommend a blue polarized light at a 45 degree angle to
the finger. They provide information on the construction of
the light source and filters over the detector. However, their
dataset is very small.
Labati et al. [70], [71] used green light and blue illumi-

nation in ambient light conditions. They show success with
a larger database. However, they also use a dual camera set

up to construct 3D fingerprint data. Saggese et al. [64] report
using polarized blue light as well.

III. PROPOSED APPROACH

Based on the assessment of related work, a different approach
was chosen for each of the three modalities. The approaches
are summarized in Table 1. Explanations for the chosen
approaches are provided below and further technical details
are provided in the subsequent subsections.

The iris modality is well established for adults. However,
the existing algorithms in literature were designed for adults,
and therefore have an underlying assumption of complete
cooperation of the subjects whose irises are being captured.
However, children who are very young do not understand and
follow instructions. They do not cooperate and often do not
look directly at the acquisition camera as required. Therefore,
while existing hardware and comparison algorithms were
used, adjustments to the preprocessing algorithms had to be
added in order to effectively segment and acquire the iris
pattern from infants.

The ear modality is very new. There are no commercially
available systems or standards as yet. For this modality,
the novelty was in applying existing adult ear comparison
algorithms from literature to children.

The fingerprint modality is also well established for adults.
However, there currently exists no commercially available
solutions for children. At the time of embarking on the
endeavor of collecting fingerprints from infants, we deter-
mined that a higher resolution was required, compared to
existing devices which were detailed in the literature.

Additionally, all reported devices were contact-based.
We decided on a contact-less approach, to overcome the chal-
lenges presented by the soft and pliable nature of an infant’s
skin. Therefore, the key novelty was in using a contactless,
high-resolution device. Once the fingerprints were acquired,
software algorithms were developed to process the images
and convert them into a format which is compatible with
existing contact-based fingerprint comparison software.

The comparison of contactless fingerprints is also an ongo-
ing challenge for adult fingerprints in literature. While the
proposed contactless fingerprint recognition solutions for
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adults in literature often choose a non-standard comparison
approach, we chose the approach of making the processed
images backward compatible with existing software pack-
ages which comply with international standards for finger-
print minutiae feature extraction and comparison. This would
allow easy and effective integration of the new developed
technology into any existing standardised and established
fingerprint recognition systems, which may already be part of
large-scale enterprise architectures with databases consisting
of millions of users. The backward compatibility will there-
fore allow for great acceptance and easier adoption of a new
technology.
The following subsections go into further detail of the

implementation of the chosen approaches for each modality.

A. IRIS

1) IRIS: ACQUISITION METHODOLOGY

The acquisition of iris images were performed by collect-
ing three images of both eyes of each child. The Iritech
IriShield BK 2121U Scanner-II was used to collect the
images. An example of this device and samples of output
images are shown in Figure 3.

FIGURE 3. A picture of (a) the iris scanning device used and (b) samples
of output images from different children.

2) IRIS: DATA ANALYSIS METHODOLOGY

These images that were collected from the children might
have been of poor quality due to the capturing device used.
The reason is the device is not designed for capturing iris bio-
metrics from very young children. Additionally, the youngest
children could not understand and fully cooperate during data
capturing.
The first step was to discard these low-quality images

from our database. These were images with insufficient iris
information available, such as the images shown in Figure 4.
Such images are due to the sleeping nature of young children
and lack of cooperation during iris image capturing. Samples
of the remaining, accepted images are shown in Figure 5.
The number of accepted and rejected images were used to
calculate the failure to acquire rate.
The second step was to apply Daugman’s iris recognition

to the sifted images, however, a few changes were added. The
reason for this is that the sifted images have differences to
adult iris images that affect the algorithm. These differences

FIGURE 4. Noisy iris images during capturing due to uncooperativeness.

FIGURE 5. Samples of manually sifted images that have usable iris
features but with some noise.

FIGURE 6. Iris Image Segmentation Process: (a) Shows a raw input iris
image, (b) a smoothed Image with localized iris and pupil regions and
(c) shows the segmented iris region without the rest of the eye region.

include poor illumination, more variability in pupil size and
fewer eyelashes for the younger children.

The following adjustments were added to address these dif-
ferences. First, normalized the pixel intensity of the images.
Second, relaxed the pupil radius parameter in the iris detec-
tion algorithm. Third, removed the occlusion as the lack of
eyelashes in the younger children causes the occlusion to
cover usable iris regions.

After these adjustments, the Daugman’s iris recognition
algorithm was applied in a verification simulation as sum-
marized in Figure 7. This method utilizes the Daugman’s
operators to segment the iris region, with an example in
Figure 6. Then uses a rubber-sheet model to normalize the
iris region to a uniform rectangular form.
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FIGURE 7. A flow diagram, illustrating the steps required to process and
compare the iris images.

The 2D complex Gabor filters were then used to encode the
rectangular iris patterns by means of phase modulation.
The process is repeated across the iris region resulting in
the 2048 bits iris feature template. The iris template was
compared to another stored iris template using the normalized
Hamming distance. The details of Daugman iris recognition
algorithm can be found in [32], [34], [36], [74].
The final step was to calculate the performance of this

approach. The equal error rate was used as a performance
measure. The results from the data analysis are shown
in Section IV.

B. EAR

1) EAR: ACQUISITION METHODOLOGY

The acquisition of 2D ear imageswas performed by collecting
photographs for both left and right ear images from children.
A 1080p LogiTech webcam was used, which provides 2MP
images for the capturing of the images from participants.
The distance between the subject and the camera was not
considered during the acquisition. The algorithmswhichwere
applied are invariant to distance, as long as the features of the
ear are clearly visible.

2) EAR: DATA ANALYSIS METHODOLOGY

Ear images captured using a standard camera can be affected
by the presence of background, such as skin, hair, and acces-
sories. Therefore, it is important that the ear is located and
segmented from the initial ear image. To perform the ear
segmentation, a method based on the active contour model
has been developed. Active Contour models were first intro-
duced in 1988 by Kass et al. and subsequently gained pop-
ularity [75]. Kass et al. described active contour models

FIGURE 8. Ear Segmentation process.

as a method to search for nearby edges and localize them
accurately. This method includes several stages as shown in
Figure 8. After capturing a 2D image with an ear, the image is
pre-processed to reduce the effect of noise and illumination.
Then, the initial active contour is initialized by locating the
region of the ear on the received image. In the end, the active
contour model is applied to localize the shape of the ear.

The pre-processing is performed by first detecting the skin
region because the ear exists in this region. Non-skin regions
are then removed from the segmented image. However, some
young children do not have much hair on their heads. This
results in the segmented skin region containing some hair.
Therefore, there is a need to remove hair by replacing hair
pixels with the nearest skin pixels. After removing hair pixels,
edges are detected using canny edge detection. The ear is
detected from these edges Since an ear contains contours,
the region with the ear will contain many small curves that
represent the ear. Even if non-ear regions contain curved
edges, the concentration differs from the region of the ear.
The original ear image is cropped using the region of an ear
and the initial contour is estimated using the boundary region
of the ear region. This process is shown in FIGURE 9.

FIGURE 9. Representation of a) original image b) detected skin region
c) detected edges d) detected ear region, and e) detected edges.

Once the region of the ear is detected, the boundary of
the region is computed in such a way that the initial contour
can be estimated and the ear image can be segmented. Five
different shape methods have been tested to estimate the
initial contour, namely, circle, rectangle, corner curved rect-
angle, ellipse and ear-region boundary. While these methods
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FIGURE 10. Representation of segmented ear region using snake model
a) mask of a detected ear region, b) initial snake as fitted as a circle,
c) ear region with initial snake and d) cropped ear region after applying
snake model.

work, some depend on how edges are presented. For example,
the ear-region boundary method lacks accuracy if edges are
not connected. It has been observed that if we generate a
mask of a circle shape around the region of the ear, the results
are better than other methods of masking. This is illustrated
in Figure 10.
Features were extracted using the Histograms of Oriented

Gradients (HOG) [76]. This type of feature was selected
because it has been presented as methodwhich is less affected
by the illumination effect [72], [73].
Extracted features are represented as a vector with his-

togram values computed from the image. During comparison,
the Hamming distance is used to compare two vectors of
features.

FIGURE 11. The contactless infant fingerprint acquisition device with
different sized attachments to cater for varying sizes of children’s fingers.

C. FINGERPRINT

1) FINGERPRINT: ACQUISITION METHODOLOGY

Based on the study of related work as discussed previ-
ously in Section C, a prototype infant fingerprint acquisition
device, as shown in Figure 11, was designed. This device
achieves a resolution of 2500dpi, a maximum capturing
area of 12mm x 16mm, with visible white light LED ring
illumination, and acquisition of contact-less fingerprints in

RGB color space. Attachments of various sizes were built
to acquire fingerprints at different ages. The purpose of the
attachments is to keep the finger steady and open during the
acquisition, and to deal with an infant’s tendency to close their
fingers into a fist. The openings in the attachments allow the
acquired area to be contact-less, which prevents smudging
and distortion which occur with contact-based acquisition
systems. As a note on differentiating terminology, the device
is contact-less but it is not touchless, since some part of the
finger, which is not acquired, is touching the device during
acquisition.

FIGURE 12. A flow diagram, illustrating the steps required to process and
compare the contactless fingerprints.

FIGURE 13. An illustration of the process from (a) the acquisition of the
image of an infant’s fingerprint, to (b) image processing to convert the
fingerprint into a format which is compatible with commercial
off-the-shelf comparison software, to (c) the extraction of minutiae
points from the fingerprint.

Once the fingerprints are acquired, they are converted into
a greyscale image using image processing algorithms using
the steps as described below and illustrated in Figure 12 and
Figure 13:

1. Background removal: When a photograph of a finger
is captured, this picture will contain some background
information. The fingertip has to be isolated from
its background. This is achieved through color-based
background segmentation.
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TABLE 2. Summary of participants and amount of data collected for each modality.

2. Scale correction: The images can be captured at dif-
ferent resolutions, all higher than the standard 500 dpi.
Therefore, the images are scaled to a similar number of
inter-ridge pixels than fingerprints from adults captured
at 500 dpi. Although this produces fingerprints of chil-
dren at a resolution higher than 500 dpi, the images will
be compatible with commercial fingerprint Software
Development Kits (SDKs).

3. Enhancement: The finger photograph that the device
captures is a color image of a finger. It is not in a
usable state for fingerprint recognition. The fingerprint
pattern still needs to be extracted from the picture.
To do this, the color image must undergo several image
enhancement techniques in order to extract the fin-
gerprint pattern. Such techniques include contrast and
illumination correction, noise filtering and sharpening.
The final usable fingerprint is presented in the Wavelet
Scalar Quantisation (WSQ) format, which is the FBI
standard for fingerprint images and is accepted by all
International Organisation for Standardisation (ISO)
compliant fingerprint technologies.

4. Quality Estimation: Since infants in general are unco-
operative, it is expected that sometimes the images
which are captured will not be of sufficient quality to
be usable for verification. For this reason, the National
Institute of Standards and Technology’s Fingerprint
Image Quality (NFIQ) scoring method was used to
assess the usability of a finger image that has been
captured. All images with quality levels of 1-3 were
included.

At this point, the image is now compatible with existing
commercial off-the-shelf minutiae extraction and compari-
son software, such as the Secugen SDK [77]. Performance
measures can then be calculated. This process is illustrated in
Figure 12.
For the purposes of performance comparison, finger-

prints were also captured with a standard conventional
contact-based fingerprint scanner with a resolution of 500dpi.
To maximize the performance of this method, a continuous
stream of fingerprints was captured, and the fingerprint qual-
ity of each frame was measured. The infant’s fingers were
moved around on the device and the images with the highest
quality scores were recorded.

2) FINGERPRINT: DATA ANALYSIS METHODOLOGY

The aim of the data analysis is to assess the effectiveness of
the prototype fingerprint-acquisition hardware and software
system in comparison to a standard fingerprint scanner.

The data analysis was further divided into two stages.
Stage 1 determined the image quality under different sce-
narios, whereas as Stage 2 determined the error rates after
simulating fingerprint verification under different scenarios.
The following steps were adopted to achieve this:

• Collect three impressions from each finger.
• Automated conversion of the photographic fingerprints
with image processing algorithms into a format which
is compatible with commercial off-the-shelf fingerprint
processing software.

• Perform the quality assessment (Stage 1). The NFIQ
quality score [78] was used.

• Perform the verification simulation (Stage 2). Commer-
cial fingerprint feature extraction and comparison soft-
ware, such as the Secugen SDK [77] was used

IV. EXPERIMENTAL RESULTS AND DISCUSSION

In the analysis of the experimental results, we utilized the
standard error rate measures, Equal Error Rate (EER) and
Failure to Acquire (FTA) to measure the performance. In this
section, the datasets, quality analysis, and performance analy-
sis are reported and discussed for the iris, ear, and fingerprint
modalities, respectively.

A. DATA COLLECTION

Data were collected from volunteer participants at a public
clinic. Due to challenges that will be discussed in the Lessons
Learned section, data was collected from participants in a
single session. The participants were split into 3 groups,
based on the vaccination schedules which determined at what
age the participants were present at the data collection loca-
tion. The first group was participants of age 16 weeks and
under. The second group were participants above 16 weeks
and below 6 months. The third group was participants older
than 6 months and younger than 1 year. The number of
participants and images are summarized in Table 2.

While the same participants were used for each modality,
it was not always possible to collect biometric data from
all of the participants in all instances. This was due to
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some babies becoming restless and crying and others falling
asleep. These challenges are discussed further in the Lessons
Learned section. While there is sufficient data to assess each
modality individually, the inconsistencies which were created
in collecting data from infants, limit the ability to assess
a multimodal system at this point in time. The following
sections will discuss the performance assessments of the
individual modalities.

B. IRIS

1) IRIS: DATA

In this study, iris images from 56 participants under the
age of 1 year were collected, with the youngest participant
being 6 weeks old. From each participant, 3 impressions
from each eye were taken. However, due to the inability of
babies to always adhere to instructions, less than 3 impres-
sions were obtained in some instances. This provided a total
of 132 unique eyes and a complete dataset of 354 iris images.
The participants were split into 3 age groups as shown

in Table 2.

2) IRIS: DATA CLEANING AND QUALITY ANALYSIS

Acquiring the iris images for children under a year are diffi-
cult. The infants at this agewere unable to follow instructions.
Furthermore, some of the infants were afraid to look into the
scanning device and resisted acquisition, while others closed
their eyes when bringing the device near their faces.
This resulted in a failure to capture iris images or capturing

images in which the iris was not visible. Data cleaning was
performed manually by removing all the images where the
iris was not visible. Only 144 of the possible 354 images were
usable. For a more detailed overview of the collected, visible
iris images and failure to acquire (FTA) rate per age group
see Table 3.

TABLE 3. The acquisition rate of usable iris images for each age group.

FIGURE 14. Samples of low-quality iris images that were captured, where
the iris is visible, with a) partially open eyes, b) bad illumination as the
eye is not in the centre of the image, and c) infant looking away from the
camera.

Furthermore, the images that were acquired with visible
irises might not have been of good quality. Figure 14 illus-
trates three possible cases. These problems affect the perfor-
mance in iris recognition.

3) IRIS: PERFORMANCE ANALYSIS

The performance of the collected data wasmeasured based on
the equal error rate (EER) calculated for different verification
scenarios.

The results of the EERs are shown in Table 4. The EERs
are significantly higher than for adults.

TABLE 4. The equal error rate (EER) for the iris comparisons in the
different age groups.

C. EAR

1) EAR: DATA

Ear images were acquired using a Logitech HD 1080p Web-
Cam camera. Ear images were successfully collected from
71 participants, from the age of 6 weeks and upwards. Six ear
images were captured from each participant, with three of the
left ear and three of the right ear.

TABLE 5. The acquisition rate of usable ear images for each age group.

2) EAR: DATA CLEANING AND QUALITY ANALYSIS

One of the advantages of using ear recognition is that it is
easy to capture ear images. Shown in Table 5 is the sum-
mary of the data collection outcome per age group, which
indicates a high acquisition rate in comparison to the iris
and fingerprint modalities for young children. However, there
were a few cases where children were scared of the camera
and they did not allow their ear images to be acquired. In such
cases, researchers stopped the acquisition process. In total,
446 ear images were collected. These are broken down into
age groups as shown in the ‘‘Collected’’ column in Table 5.
However, not all images that were collected were useful
to the study, as some were affected by pose variation, and
low image quality due either to being out of focus or due
to high brightness. As a result, only a total of 409 images
were of sufficient quality for comparisons. These are bro-
ken down into age groups as shown in the ‘‘Good Quality’’
column in Table 5. Hence, the total number of images that
were compared resulted in 553 genuine comparisons and
3314 impostor comparisons.
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3) EAR: PERFORMANCE ANALYSIS

During the comparison, HOG features extracted from two ear
images were compared by calculating the similarity between
two feature sets using the Hamming distance method. The
results are reported using the Equal Error Rate (EER) which
is computed based on the calculated Hamming distance. The
results are represented by age group as shown in Table 6. The
determined overall Equal Error Rate is 7.64%. The EER value
can be affected by pose variations, when ear images of the
same participant, which were captured in different instances,
are compared.

TABLE 6. The equal error rate (EER) for the ear comparisons in the
different age groups.

The achieved EER values indicate the performance of ear
recognition system on the collected data. This performance is
affected by the quality of ear images caused by the environ-
ment (light) and pose variation.

D. FINGERPRINT

1) FINGERPRINT: DATA

In this study, fingerprints from 66 participants under the age
of 1 year were collected, with the youngest participant being
6 weeks old. From each participant, 3 impressions from 6 fin-
gers were taken, i.e. 3 impressions each from both thumbs,
both index fingers and both middle fingers. This provided
a total of 396 unique fingerprints and a complete dataset
of 1188 total fingerprints using the prototype contactless
fingerprint scanner.
As a benchmark for comparison, fingerprints were

also collected with a standard 500dpi fingerprint scanner,
the Futronic FS-88. However, due to the restless and uncoop-
erative nature of babies, data collection had to occasionally
stop before all the fingerprints could be collected. Thus,
the number of fingerprints collected using the conventional
scanner were less than those collected using the contactless
fingerprint scanner.
The participants were split into 3 age groups as shown

in Table 2.

2) FINGERPRINT: DATA CLEANING AND QUALITY ANALYSIS

The NFIQ image quality score [78] is based on a fingerprint’s
performance in a verification system. Although it was not
designed for infants, it can still provide information regarding
the quality of the prints. The scores range from 1 to 5, with
1 being the best quality and 5 being the worst. A compar-
ison of the image quality scores for the prototype scanner
and a standard 500dpi scanner are shown in Table 7. This
comparison shows that, overall, fingerprints collected with

TABLE 7. Average NFIQ scores and standard deviation for the different
age groups.

the prototype scanner produce a better average NFIQ score
than those collected from standard scanner across all the age
groups which were studied. The NFIQ scores for the finger-
prints collected with the prototype system also have a lower
standard deviation than the NFIQ scores for the fingerprints
collected with the standard scanner.

FIGURE 15. A comparison of fingerprints collected from a 10-week-old
child using the prototype system and a standard scanner. (a) The
fingerprint obtained with the prototype; (b) the fingerprint from (a) after
processing; (c) the same fingerprint obtained using a standard scanner.

Based on the number of acquired fingerprints per partic-
ipant and the quality scores, and acquisition rate was deter-
mined with an NFIQ quality threshold set at 3. In other
words, fingerprints with a quality between 1 and 3 were
regarded as being of acceptable quality to use in comparisons,
while fingerprints with a score above 3 were regarded as
low quality and a failure to acquire. Thus, the successful
acquisition rate for fingerprints with the prototype scanner
was 75%, while the successful acquisition rate for finger-
prints with the standard scanner was nearly half of this at
40%. This shows that the prototype scanner is more effective
at acquiring fingerprints from children compared to a con-
ventional fingerprint scanner. Figure 15 shows a comparison
between infant fingerprints obtained using a standard scanner
and the prototype system. The fingerprint obtained from the
standard scanner is smudged, with insufficient pixel density
to clearly resolve the ridges and valleys of the fingerprint.
Conversely, the fingerprint obtained using the prototype sys-
tem provides sufficient pixel density to resolve the ridges
and valleys. Minutiae points are visible and can be used for
comparisons.

A breakdown of the acquisition rate for each age group
with the prototype system is shown in Table 8. The reduction
in acquisition rates for the older age groups may be due to
partially captured fingerprints, where an insufficient area of
the fingerprint was captured. Partially captured fingerprints
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TABLE 8. The acquisition rate for each age group using the prototype
system.

occurredwhen fingersmay have been too large for the capture
area of the prototype scanner which was used.

3) FINGERPRINT: PERFORMANCE ANALYSIS

The performance of the collected data wasmeasured based on
the equal error rate (EER) calculated for different verification
scenarios.

TABLE 9. The equal error rate (EER) for the same comparisons by both
scanning devices in the different age groups.

The results of the EER comparisons are shown in Table 9.
For the youngest age group, Group 1, it may appear that
the standard scanner has a better EER. However, it must be
noted that most of the fingerprints that were collected with
the standard scanner for this age group were of too low a
quality to be used in the comparisons. The standard scanner
had a high rate of failure to acquire and, therefore, there are
an insufficient number of fingerprints to state the standard
scanner’s EER score with confidence in the precision. The
prototype scanner performed better than the conventional
scanner for all age groups below 1 year.
This confirms our hypothesis that using a higher resolution

(2500dpi) and a contactless scanner will produce better match
scores compared to a standard 500dpi scanner. While these
scores are comparable to the latest results from high resolu-
tion contact-based scanners [62], these performance scores
still fall short in comparison with adult systems.
There are several possible reasons for the lower perfor-

mance, which could be addressed in future iterations of the
system. These are discussed in Section E. Lessons Learned.

E. COMPARISON OF MODALITIES

In this section, we compare the various modalities and their
effectiveness in different age groups, so as to make recom-
mendations for the future.
A summary of the improvements over literature and their

shortfalls, are summarised in Table 10.
The acquisition rates are shown in Figure 16.

FIGURE 16. A comparison of the acquisition rate for each of the
modalities across the three age groups.

The ear has the highest acquisition rate. This modality is
the easiest to collect as the ear pattern is easily visible with
the human eye and can be captured with a simple camera,
without any need for contact or active interaction with the
child. The main challenge occurs when children move around
excessively or want to turn their head to look at the camera.
With assistance from the parents to keep the child’s head still,
this challenge is overcome.

The fingerprint has a similarly high acquisition rate. The
decline in acquisition rate as the children grow is due to the
limited capturing area of the current device. This leads to
partial fingerprints which do not have an overlapping area.
A more ergonomic design will also allow for faster capture
with children who move their fingers away from the camera
too quickly.

The iris has a very low acquisition rate in the younger age
groups. This is because infants cannot understand instruc-
tions, while the iris scanner requires a high level of com-
pliance, where the individual is required to look directly at
the camera. Some children were also asleep, and their eyes
were closed. However, as children grow older, they begin to
understand instructions and stay awake for longer periods.
This allows for a higher acquisition rate for irises with older
children.

The EER for each modality across the various age groups
is show in Figure 17. The ear modality has the lowest EER.
The higher EER for the iris and for the fingerprints can, once
again, be attributed to the lower compliance of infants and
limitations in the design of the capturing device, respectively.
However, it should be noted that, since an individual has
fewer irises and ears than they have fingers, the overall dataset
size for irises and ears are smaller, which may affect the
precision of the results.

Based on the analysis of these results, we recommend that
fingerprints and ears can be used in a multimodal system for
infants from birth. On the other hand, until a technique is
developed to acquire irises more consistently from younger
children, iris recognition would be more reliable in biometric
systems which cater for children who are 1 year old or older.
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TABLE 10. A summary of the improvements which were investigated and reported on, and the shortfalls of the methods, which require further research
and investigation.

FIGURE 17. A comparison of the EER for each of the modalities across
the different age groups.

Moving forward, the following tasks are envisioned. The
acquisition device for fingerprints must be refined. A larger
dataset of all the modalities should be collected simultane-
ously to allow for an analysis of multimodal fusion tech-
niques. The child participants should have their biometrics
captured at regular intervals to assess the ability to match
these traits across different ages.

F. LESSONS LEARNED

To conduct research into infant biometrics, data must be
collected from children at regular intervals over an extended
period of time. A longitudinal data collection would allow
the assessment of change as children grow over time [3].

While initial data was successfully collected, many chal-
lenges were faced.

In an ideal world, much of the interactions between the
research group and external stakeholders would be handled
by a public relations manager. However, due to limitations
of funds, the responsibility of public relations often falls on
the shoulders of researchers, who usually have no public rela-
tions training. The following discussions should help prepare
researchers for a myriad of scenarios, which they may not
expect when embarking on data collection from participants
among the general public, and children in particular. This dis-
cussion should assist in considering, reducing and mitigating
risks involved with data collection from infant participants,
and increase the chances of success in similar projects.

This was the first attempt of this research group to embark
on a large longitudinal study with human participants in
public environments, and dealing with children in particular.
It is a situation which researchers trained in mathematical
sciences are not prepared for. To the authors’ knowledge,
there are no comprehensive publicly available guidelines for
data collection in this context. Incomplete reporting of stud-
ies involving children is a known challenge across research
fields, including the health sector, where reporting guide-
lines and protocols already exist [79]. Infancy researchers
acknowledge that, while there is a high complexity when con-
ducting research with children, there is a lack of transparency
in the details, successes and failures of applied research
processes [80].

Due to this lack of transparency and incomplete report-
ing in prior research, many unforeseen circumstances were
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encountered, even with prior planning.Many of the responses
and mitigation strategies were reactionary to make the most
of less-than-ideal circumstances. For this reason, records of
results of different approaches are more qualitative and obser-
vational, rather than quantitative. However, it is hoped that the
transparent record of these experiences will sensitise future
researchers who embark on similar endeavours to prepare
more thoroughly, and that it may set an encouraging example
for other research groups to share their experiences in a more
transparent manner as well. This may allow for smoother
research, and faster and higher quality outputs in the future,
with regards to research in the new and growing space of
biometric recognition of children, and infancy research in
general.

1) DEVICE DESIGN

If technical devices are to be used, these should be pack-
aged in a non-threatening manner. Child-friendly designs and
appearance will reduce the reservations of parents and attract
children to the study and help hold their attention.
If the device makes contact with participants and is used

with young children in medical environments, compliance
with biocompatibility standards must be included in the
design [81].
Based on the data collected thus far, several key areas of

software and hardware have been identified for improvement
of the prototype fingerprint scanner.
In terms of hardware, one of the main challenges is the

limitations with openings of set sizes. If the opening is too
large, the child’s entire finger will go through, which makes
acquisition impossible. If the opening is too small, only a
partial fingerprint will be captured. Partial fingerprints are not
representative of the entire fingerprint. When different partial
regions are acquired in different instances for the same finger,
an insufficient overlap will reduce the ability to successfully
compare two impressions from the same finger.

FIGURE 18. Samples of infant fingerprints which displayed specular
reflection under white LED ring illumination.

Specular reflections from white ring lighting often affects
the ability to clearly see some regions of the fingerprint. This
is illustrated by samples in Figure 18. Based on work in litera-
ture [64], [69]–[71], the use of blue lightingwith polarized fil-
ters may reduce reflections and allow for a clearer fingerprint.
Another alternative is the use of optical coherence tomogra-
phy (OCT) which could acquire the subsurface fingerprints

in a contactless manner and is invariant to moisture and
reflection on the surface of the skin [82]–[84]. However,
further improvements in speed, depth of field and component
costs would need to be made before OCT is suitable for mass
production and usage.

In the study performed by Basak et al. [11], fingerprints
from children 18 months and older were collected with a
conventional adult scanner. While the success rate for com-
parisons with a single finger were low, performance was
improved by score level fusion of all 10 fingers. Once a
larger dataset of individuals is collected, a similar approach
can be tested for younger infants, using data collected with a
contactless fingerprint acquisition device.

2) CHOOSING DATA COLLECTION LOCATIONS

Once ethical clearance has been obtained, individual loca-
tions may be approached for permission to use their facilities.
For continuous longitudinal access to children of varying
ages, such locations may include hospitals, clinics, day care
centres, schools and extra-curricular clubs.

An exhaustive search may need to be performed to find
suitable facilities, especially in developing countries with
limited funds and resources. Thoroughly compiled stake-
holder registers and stakeholder engagement plans may help
the process [85]. Some places are willing to assist but do not
have space or suitable time. Others may be hesitant to be
involved.

Space is often limited, especially in the context of pub-
lic facilities in developing countries. This must be taken
into account when approaching facilities for use of their
space. Many cannot accommodate researchers. Care should
be taken that equipment is compact and requires minimal
space. Tables and chairs may need to be sourced by the
researchers as the centres often do not have enough to spare.
Those costs to purchase and transport this equipment to and
from the facility should be factored into budget planning.

The effect of weather should be taken into account, espe-
cially if researchers performing the data collection have to
be stationed outdoors, either due to the nature of the data
collection or due to space limitations. Cold, rain, or extreme
heat may cause discomfort, which in turn may discourage
people from attending data collection session and reduce the
number of participants who are available in poor weather con-
ditions. Uncomfortable weather conditions may also dampen
the enthusiasm of researchers to collect data. Data collection
should be aligned with the optimal local seasons for comfort-
able weather when working in environments which cannot
provide air conditioning.

3) ENGAGING WITH CHILD PARTICIPANTS

Interactions with children vary with age. For children below
the age of 6, data collection is much more effective when
the parents are physically present after providing consent.
Their presence makes the children feel safer to interact with
researchers who they may view as strangers; and the par-
ents feel comfortable when they can witness how the data
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collection process is conducted and assist in the data collec-
tion. For these reasons, data collection at clinics was much
more productive, efficient and successful than at day care
centres.
However, some children attend the clinics for treatment

which involves injections, such as vaccinations. Receiving
an injection from the clinic’s nurses immediately prior to
data collection may then make the children uncomfortable
and temporarily distrustful of other strangers, such as data
collection researchers. In such situations, it is better to collect
the necessary data before the children see the nurses for their
vaccinations.
It was the experience of the research team that children

above the age of 6 years are generally more curious and
bolder. They feel comfortable interacting with researchers
when a teacher is present and do not need parents nearby.
In the scenario of collecting data with electronic devices,
after the older children are shown how to use a device, they
immediately show interest and excitement and are also able
to handle the device on their own without any assistance.
If the research requires data collection from very young

children, such as newborns, then medical professionals
should be included in the recruitment and data collection
process. Such professionals are better trained at dealing with
babies and will be more trusted than scientific researchers by
new parents.

4) LONG-TERM DATA COLLECTION

In the case of a longitudinal study, the repeat availability
of participants must be considered [22]. Depending on the
hosting facility, availability schedules may not fit the ideal
data collection intervals, and researchers may need to com-
promise and be flexible to prioritise repeat data samples from
participants over a regularly spaced schedule. Additionally,
it should be expected that repeat participants may reduce over
time, as people relocate or lose interest in contributing to the
study. The movement of children from day care centres to
primary schools and then to high schools over a number of
years should also be taken into consideration. Researchers
may need to record the contact details of parents. Researchers
could then contact the parents via phone numbers and email
addresses to arrange times for repeat data collection. In envi-
ronments with low English literacy, multilingual approaches
should be considered. In many countries, it is illegal to pro-
vide monetary incentives for participation in research studies.
In such cases, researchers need to impress on the importance
and social value of continuous voluntary participation in lon-
gitudinal studies. Researchers should factor in a large portion
of time to follow upwith participants at the required intervals,
and should factor in the possibilities of a high drop-out rate,
if participants have to put in too much effort to attend data
collection sessions to continue contributing to the study.

5) PARTICIPANT DEMOGRAPHICS AND LOCATION CHOICE

In an ideal scenario, a balanced representation of data would
be obtained. However, in the real-world scenario, access may

be obtained to facilities where there is a bias in demographics
which may skew representation. For example, representa-
tive participants of certain demographic factors such as age,
race or economic groups may be more present than others.
When collecting a dataset for the development of a biometric
system, the prevalence of certain biometric traits, such as ear
lobes for ear biometrics, may be affected by some of these
factors. Thus, the dataset which is collected will influence
the performance of the final system. Therefore, the dataset
should be representative of the final population which it is
meant to serve. The distribution of population demographics
should be taken into account when choosing locations for data
collection.

V. CONCLUSION AND FUTURE WORK

We presented biometric systems for recognising infants by
their fingerprints, irises and outer ear shape. Each of the
modalities have different strengths and weaknesses.

It has been found that ear biometrics are easy to acquire
from birth and existing algorithms which were developed for
adult ears do work for infants’ ears as well.

We have shown that is it possible to develop a hardware
device to acquire fingerprints from infants, with participants
as young as 6 weeks of age, and record infants’ fingerprint
information in a format that is compatible with existing fin-
gerprint comparison software.

We have also shown that iris biometrics can be used to
successfully match individuals from as early as 6 weeks
and that the acquisition rate improves as children become
older.

Recommendations were provided on ways in which to
combine these modalities in future work, to create more
robust and more accurate biometric recognition systems for
infants and to extend these systems for effective use from
birth to adulthood. Further work will include improvements
on the acquisition hardware and the multimodal fusion of
biometrics to create strong, flexible and more robust bio-
metric recognition system for infants. The introduction of
different biometrics at different ages in various use-cases will
be investigated.
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