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Health data is being increasingly sensed from the health-based wearable Internet of Things (IoT) devices, 
providing much-needed �tness and health tracking. However, data generated also presents opportunities 
within computer security, speci�cally with biometric systems used for identi�cation and authentication 
purposes. This paper performs a systematic review of health-based IoT data collected from wearable IoT 
technology. This involved performing research in the underlying data sources, what they are collected for in 
terms of their health monitoring, and the underlying data characteristics. Furthermore, it explores existing 
work in computer security using these data sources, identifying key themes of work, key limitations and 
challenges. Finally, key opportunities are provided as summaries to the potential of health-based IoT data, 
highlighting challenges that are yet to be addressed, which motivate areas of future work.
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1 INTRODUCTION

Health data is now being collected on a large-scale, primarily driven by the Internet of Things (IoT) 
for healthcare [42] and the curiosity of public citizens in understanding their health. There is a 
wide range of devices available that collect, analyse and report health-related data of the end-user. 
There are also many electronic devices dedicated to providing health data functionality, and these 
can include �tness watches and consumer heart rate monitors. Furthermore, �tness capabilities are 
embedded as secondary functionality in other devices, such as smartphones. These devices and 
companion apps are often sold as lifestyle accessories but can provide a valuable data source for 
both health analysis and biometric systems. A fundamental di�erence is often both the quantity 
and quality of information being sensed. For example, a smartphone will mostly record movement
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data, whereas a smartwatch in physical contact with a person can sense other information (e.g.,
heart rate) in addition to movement data.

Although these devices are collecting data privately for utilisation by the sensed individual, their
security is paramount as the data falls into the category of personal and sensitive data, which also
raises privacy issues. There is a large body of research discussing techniques to improve security
and minimise risk [8, 122]. However, this paper is focused on a di�erent task – that of understanding
health data generated through the wearable IoT technology and reviewing, discussing, and making
recommendations as to its use as a biometric in computer security.
Techniques that utilise biometric data can involve automated recognition and authentication

of a human being by their intrinsic biological data, which is based on physical or behavioural
properties [85]. Using biometrics can provide a reliable, accurate, e�cient, user-friendly and low-
cost solution. A biometric data source should su�ciently satisfy the following properties among
individuals to be utilised for security purposes:

(1) Distinctive – Should be distinguishable among individuals i.e., there is a high degree of
uniqueness among individuals;

(2) Permanent – Should be su�cient, reproducible and remain constant over a signi�cant time
period, which is preferably the lifetime of an individual;

(3) Universal – Should be present in the entire population of individuals;
(4) Measurable – It has to be possible to collect and quantify among individuals;
(5) Resource e�ective – Should be easily acquirable in a reasonable time and consume a minimum

amount of resources to process;
(6) Invulnerable – Should be challenging to reproduce and robust to malicious attacks; and
(7) Acceptable – Should be accurate, applicable and stable.

There are many forms of biometrics that are in wide-scale use for both identi�cation and
authentication of individuals. For example, �ngerprint technology is used in applications from
access control of electronic devices to the tracking of individuals involved in criminal activity. An
individual’s iris pattern is another biometric frequently used for authentication purposes, including
passport control.
Both �ngerprint and iris are an example of static biometric data, whereby the observed charac-

teristic is static and is mostly stable, except fro slow deterioration due to ageing or injury. There
are, however, dynamic biometric measures which are linked to individuals behavioural and biologi-
cal characteristics. For example, an individual’s written signature and their voice can be used as
biometric measures. However, it is often the case that dynamic biometrics can su�er from reduced
accuracy because of variation in samples and poor repeatably (i.e., an individual’s signature is likely
to have small di�erences every time).

Each biometric source involves a di�erent collection method. For example, an iris pattern requires
a photo to be taken, whereas a �ngerprint requires a map of high/low markings. Taking a photo
of an iris pattern is regarded as passive as it does not require too much involvement from the
individual, whereas providing a �ngerprint through a mechanism whereby an individual has to
place their �ngerprint on a reader is classed as invasive. In general passive biometrics are regarded
as the most user-friendly; however, they often su�er from a reduced accuracy. Biometric systems
aiming to use health data based on behavioural and biological characteristics are using data that is
not classi�ed as static. It is also the case that for the majority of applications, physical contact is
required to sense the necessary information. The use of behavioural and biological characteristics,
coupled with multiple sensing mechanisms of di�erent accuracy, results in it being challenging to
implement a biometric system.
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Several surveys [6, 14] claim that as new security issues are found regularly, researchers are con-
tinuously researching e�ective authentication techniques by identifying and using new biometric
mechanisms. Large-scale studies [56, 109] have also been conducted regarding health biometrics.
Analysing data from over 400 subjects over the duration of 17-months results in an accuracy of over
90%. This demonstrates the continuing uptake of biometric applications by researchers in academia
and industry along with the positive acceptance by end-users. However, these inevitably require
the individual to be sensed in new ways. In this research, we are focused on understanding the
potential of health data acquired through wearable IoT devices as a future biometric source. There
are three reasons why this review of wearable devices based techniques has been undertaken. First,
there has been a considerable increase in the usage of wearable devices due to wider availability,
low cost and acceptance by users [92], encouraging the development and rigorous testing of novel
biometric techniques. Second, the wearable devices perform non-invasive data collection [31].
This means, unlike conventional biometric systems, the wearable devices do not require large and
complicated hardware setups, therefore, easier to deploy and utilise. Third, as a wearable device
is essentially a set of portable sensors, it serves multiple and diverse purposes, such as �nancial
payments, health-related monitoring and alerts, exercise and sports analytics, etc. Furthermore, a
comparative study [123] has shown signi�cant security advantages, such as reliable authentication,
discouraging impostors and constrained access control. It is worth mentioning here that apart from
the bene�ts, using wearable devices for biometrics can introduce new challenges and limitations
that are usually not present in conventional biometric systems. Most of the wearable devices tend
to be cheaper to target a larger market. This raises some concerns over the credibility and accuracy
of the devices as cheap sensors might output noisy and inaccurate readings. Moreover, as the
devices do not have su�cient computational resources, the data is o�-loaded to other systems for
processing and analysis, which brings data con�dentiality and integrity related security risks. Such
issues can compromise the authenticity and security of the biometric system itself.

The existing biometric identi�ers fall under the following three categories [10]: what you know,
what you have and what you are. The ‘what you know’ includes password, pin number, memorable
phrase, signature, etc. The ‘what you have’ includes security badge, identity card, keys, etc. The
‘what you are’ includes face, �ngerprint, heart rate, body odour, etc. Figure 1 shows a taxonomy of
all ‘what you are’ biometrics that are or can be used for human identi�cation and authentication.
The �gure is based on previously published surveys on biometric types, and is also used as a guide
in this survey to conduct a systematic literature search. The ‘what you are’ category has further
two subcategories: extrinsic and intrinsic. The extrinsic biometrics are based on the physical aspects
of a human body, including �ngerprint, face, gaze tracking, etc. The intrinsic biometrics considers
inner body characteristics, depicted under Medico-chemical in the �gure, such as heartbeats, brain
activity, blood pressure, etc. This paper only discusses intrinsic ‘what you are’ biometrics, where
the data is related to healthcare, can be acquired through wearable IoT devices and is currently
used for human identi�cation (details in Section 2).
The biometric data is acquired through wired/wireless sensor nodes/devices that are attached

in-body, on-body and around-body, also known as Wireless Sensor Networks (WSNs) for healthcare
monitoring. Using WSNs for obtaining the data is particularly bene�cial in terms of costing,
deployment/integration, portability, autonomy and longer hardware life. However, it should be
noticed here that the heterogeneity and scalability of connected devices in WSNs also raise a
number security-related concerns [16]. Therefore, the authors have recommended to integrate
security when designing data storage, networking protocols, user applications, computing resource
distribution and trust management components of WSNs. In fact, it is imperative for all types
of connected devices (WSNs, Cyber Physical Systems, etc.) to be secure by design as they have
impact on the daily lives of users [96]. The authors propose to implement the following practices:
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Fig. 1. List of all biometric types to guide literature search for biometrics. Gathered from multiple survey

studies [14, 15, 92, 105]

strong password, least privilege access, segmentation, need-to-know, identity and authentication
management, etc. Another research study presented a four-factor approach to build secure WSNs
for healthcare systems: (1) anticipate potential security breaches and implement remedial actions
accordingly, (2) design a transparent security infrastructure, (3) provide awareness of latest threat
landscape to users, and (4) build trust in devices, applications and users [119].
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Fig. 2. Illustration of all data sources

To the best of the authors’ knowledge, a systematic literature review of biometric systems
utilising health-related data acquired from wearable devices is absent, taking an overview of this
research discipline looking at both challenges and opportunities. The paper is structured in the
following manner: it starts by surveying di�erent health-based biometric data, followed by their
uses within computer security. After that, a table is provided that summarises the current key
works, the challenges they present, and the opportunities for the research discipline.

2 HEALTH DATA SOURCES

As mentioned before, the focus of this paper is to determine the applications of intrinsic ‘what you
are’ biometrics that are related to healthcare. This section explores di�erent types of data sources
for such biometrics, along with the wearable IoT technologies that can extract the corresponding
data. Figure 2 provides a graphical aid to help communicate the origin of existing ‘what you are’
data sources. The purpose of investigating these biometrics is to determine what research has taken
place into its use in computer security. We adopt a categorisation, which is in�uenced by Figure 1
and also a recent survey into the IoT technologies within healthcare [42], to provide subsections
discussing each category of health data. The following structured approach for discussing each
di�erent data source follows:

(1) What the data source is, why it is used in health, and generally how it is collected;
(2) Speci�cs on the data, including its structure, and where possible an example is provided; and
(3) What research is taking place that involves the progression of new technology and techniques

to collect the data.



6 Saad Khan, et al.

0 500 1,000 1,500 2,000 2,500 3,000 3,500

1,000

1,200

1,400

Samples

M
v

Fig. 3. ECG Example for a 10 second period comprising of 3600 data points. Data acquired from [79]

It is important to note that the below subsections contain a description of data sources and their
acquisition technologies, whereas, their applications in computer security are presented later in
Section 3.

2.1 Electrocardiogram (ECG) monitoring

Electrocardiograph (ECG) is widely acknowledged as being one of the most widely used bio-
medical sensing procedures [73]. The popularity of performing an ECG is down to its signi�cance
in diagnosing of heart-related diseases. This is performed by monitoring the electrical signals
produced from the heart beating. An ECG can help to identify if a patient has a fast, slow, or
irregular heartbeat (arrhythmias) and related conditions such as coronary heart disease. An ECG
is typically conducted by attaching electrodes onto the patient’s body in key areas to monitor
electrical activity generated by the heart. In general, there are three main types of ECG: (1) a
resting ECG, (2) stress or exercise ECG, and (3) an ambulatory ECG. The core technology and data
acquisition stay the same; however, the key di�erence is the activity and setting of the patient
during analysis. A resting ECG is where the patient is relaxing, a stress or exercise ECG involves
them engaging in physical activity, and an ambulatory ECG is a portable device worn for a longer
duration (e.g., one day) to acquire a longer data sample.

Performing an ECG requires the use of multiple strategically positioned sensors to measure the
electrical potential di�erence. This process typically involves the positioning of multiple sensors
to acquire su�cient information to produce a single data set constructed of amplitude (voltage)
and time. There are two types of approaches that can be used to recognise ECG signals; �ducial
dependent and independent [1]. The �ducial dependent methods employ spatial and temporal
measures within heartbeats, whereas the independent �ducial methods utilise the entire heartbeats
to formulate the ECG signal. A recent survey [64] has produced a comprehensive list of ECG signal
databases, which have been used in several research studies. It also describes the acquisition of
hardware, protocols, and methodologies of how data was collected. Figure 3 presents 3600 data
points representing a 10-second segment of an ECG reading acquired and used in one recent
study [79].
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Considering the value of performing an ECG to determine and monitor heart-related conditions,
researchers are consciously deriving new mechanisms to acquire, analyse and utilise ECG data
for biometric identi�cation. This is mainly due to the following reasons [21, 51]: (1) enables better
classi�cation ability due containing relatively large feature set, (2) di�cult to spoof, (3) multi-
purpose applications, (4) less a�ected by surrounding environment, (5) easy integration into the
existing system and (6) does not require any special action from users during data acquisition phase.
In one recent work, the authors develop an IoT ECG monitoring system where data is collected
using a low-cost ECG monitoring device, shared via an internet connection to cloud servers, where
it is processed and made available for healthcare practitioners [117]. This work concentrates on
the development of the architecture design, both in terms of software and hardware; however, the
work is focused purely on data acquisition and distribution and gives little insight into how the
data might be processed. Furthermore, in another piece of work, researchers review challenges
facing ECG devices in relation to the IoT [48]. The authors identify key challenges in data analysis,
which centre around the ability to �lter out interfering data adequately.

2.2 Photoplethysmography (PPG) monitoring

The photoplethysmography (PPG) sensor measures heart-rate based on detecting blood volume
changes in the vessels [5]. A research study has demonstrated that there is a high similarity
between heart rate signals/values measured by ECG and PPG devices [118]. Therefore, it is a
suitable alternative of ECG that employs a simple optical technology. There are several reasons
why PPG is preferred over ECG. It is a simple, low cost and portable sensor that also enables the
multi-biometric system [115]. A multi-biometric is de�ned as a solution that contains two or more
biometric identi�ers collectively processing and recognising a single user. Due to the small form
factor, the PPG sensors are easily embedded in wearable devices, such as wrist-worn smartwatches.
They emit visible green or red light onto the surface of the skin from a moderate distance using
Light Emitting Diodes (LEDs). The green light technology is more commonly used as the human
blood (especially haemoglobin) is a good absorber of green and re�ects red light. A PPG sensor
records the variation in light intensity based on the quantity of absorption and re�ection and applies
signal processing to convert the variations into a heart rate. PPG technology is applicable in a wide
range of clinical measurements, mainly in the cardiovascular systems. It can be used for measuring
oxygen saturation, blood pressure, heartbeats, and also detecting heart-related abnormalities and
diseases.

In terms of research and development in PPG monitoring, a recent survey has identi�ed that the
number of publications detailing research into PPG is continuing to increase [100], with recent
advancements being discussed in terms of the portability of PPG technology and in data processing
with the primary driver of improving data quality [65]. The survey and other recent publications also
provide extensive coverage as to the development of PPG techniques for medical applications [65].
In one recent and related research paper, authors focus on establishing whether wearable devices
implementing PPG can accurately measure heart rate variability, which concludes that they provide
promising capability; however, further empirical-based analysis is necessary to establish their true
capability [28].

2.3 Electronic nose (e-nose)

Each human body has di�erent body odours due to di�erent chemical composition, which can
be used to distinguish individuals [29]. E-nose is a device that is used to detect body odours and
�avours [88]. Researchers have developed and used it for di�erent applications. The e-nose is
created by combining an array of metal-oxide sensors that can detect volatile organic compounds
(VOC). These sensors react to VOC, which decreases the density of O2 on the surface of the sensor
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and reduces the electrons trapped; this is then translated into a measurable signal. A pattern
recognition algorithm then analyses these signals with a reference database of known compound
reaction. The body odour is considered safe for identi�cation purposes as it is believed to a have
high degree of uniqueness [83]. Unlike conventional methods, collecting body odour signals using
e-nose is non-invasive and does not require any additional actions from the user [116]. This also
makes it feasible for wearable IoT devices. For example, in recent advancements, a portable e-nose
device has been developed, called Tru�eBot, which is low-cost and recognises 9 distinctive odours
in a chemical compound [111]. We believe Tru�eBot is the �rst step towards a wearable e-nose
sensor that can acquire and analyse body odour samples. Nonetheless, no such sensor has been
found in biometric recognition/authentication related application.

2.4 Electroencephalogram (EEG)

Every human brain generates electrical activity and magnetic �eld due to the synchronised activity
of thousands or millions of neurons [72]. The EEG is a non-invasive process that measures electrical
activity (in volts) of the brain by placing electrodes in standardised locations over the scalp. The
number of electrodes is typically between 4 and 256, and each operational electrode is called an EEG
channel. The EEG signals have �ve major wave rhythms: Delta, Theta, Alpha, Beta, and Gamma.
The Delta rhythm indicates deep sleep and has a frequency of 0.5 − 4 Hz. The Theta rhythm is
associated with the unconscious mind and arousal and has a frequency of 4 − 8 Hz. The Alpha
rhythm shows a relaxed state and has a frequency of 8 − 12 Hz. The Beta rhythm indicates a
busy/active state and has a frequency of 12 − 30 Hz. The Gamma rhythm has a rare occurrence, is
associated with cognitive functions and has a frequency of 30 − 45 Hz. Although using EEG for
user identi�cation and authentication is still in its infancy stage [61], several biometric solutions
can be found that have used EEG signals for the following reasons [18]: (1) EEG signals provide
stable features and high recognition accuracy, (2) wealth of evidence that shows EEG signals are
unique and invariable for each individual, especially Alpha rhythm, (3) brain waves change under
stress removing the potential to force an individual to authenticate during an attack, and (4) EEG
signals cannot be acquired in the absence of an individual.

2.5 Galvanic Skin Response (GSR)

The GSR sensor is used to detect the electrodermal activity/response of a human body, i.e., changes
in the amount of skin sweat [87]. The sensor is situated anywhere on the body as it requires direct
skin contact. It is composed of two Ag/AgCl (silver-chloride) electrodes, where one electrode sends
the electric current, and the other one receives it. The GSR sensor determines the di�erence of
intensity between sent and received current, and outputs the skin conductance level. The GSR
signal has a sampling rate of 1 − 10 Hz and shows the distinctive peaks that are a direct response
and mapping of events, for example, physical activity, images, pain, anger, stress, relief and sounds
stimuli. In other words, the GSR sensor is used to determine the emotional state of an individual.

According to the existing literature, GSR cannot be used as a standalone biometric but it can be
combined with other (intrinsic or extrinsic) biometrics to improve the identi�cation accuracy as
evident by the following works: ECG and GSR [17], Gaze/Eye tracking and GSR [70], and possibly
GSR and EEG [103]. The skin sweating is highly coupled with the nervous system, which controls
the signals of the entire body. The signals are generated in a distinct manner/pattern and vary from
person to person. Recognising and utilising such patterns contribute to the improvement of the
underlying biometric system.
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2.6 Actigraphy and Proximity sensors

Actigraphy and Proximity sensors are used to measure the sleep cycle [7]. The Actigraphy tracks
the overall sleep cycle, which includes deep sleep, light sleep, and awake time during sleep. The
state of sleep is commonly identi�ed by the lack of movement of the wearable device. For this
purpose, a sensor is used called Actimetric, which records and measures the body movements
(both subtle and intense), and the output data is plotted on a graph and analysed to determine the
sleep cycle. The additional Proximity-sensor is used to identify the presence of skin. This means
if the wearable device is sitting idle on a table, that period would not be considered as asleep,
hence providing an accurate sleep measurement. It should be noted here that considering sleep
patterns whilst developing activity-related (i.e. using heartbeats, steps count, calorie consumption,
intensity, etc. as features) biometric solutions have signi�cantly improved accuracy. This is due to
the uniqueness and invariability in the sleeping cycles and habits of each individual [108].

2.7 Digital stethoscope

Digital or electronic stethoscope [23] is a wearable device that is used to collect natural heart acoustic
signals by placing it on a subject’s chest. The signals are transmitted via Bluetooth to a computing
machine, where they are stored in a digital format for analysis and usage. The signals are �ltered,
ampli�ed, normalised and segmented for e�ective results. These signals have a strong potential to
determine heart-related diseases and abnormalities due to their distinctive frequencies [101] and
acoustic patterns [54]. Although the research is still on-going, many researchers have successfully
used heart sounds as a biometric due to achieving high identi�cation accuracy within a reasonable
time.

2.8 Other potential sources

Several other data sources exist that are only used for healthcare and other related applications
at this point. These sources include blood pressure, body temperature, breath sensor and DNA.
However, current research suggests that these sources have the potential to be utilised for biometric
authentication in future. Furthermore, multi-biometric systems can be developed as a wearable
device can accommodate multiple sensors. This will enhance the accuracy, usage and adaptability
of existing uni-biometric systems [34].

Blood pressure is a vital indicator in clinical and healthcare [84]. Diagnosis is performed by mon-
itoring the patient’s systolic (highest) and diastolic (lowest) pressure that their heart is producing.
It can be used in the detection of hypertension which can increase the risk of stroke or heart failure,
to hypotension, which can lead to fainting or dizziness. One way to collect this data, which a health-
care practitioner would usually opt for is a sphygmomanometer. As mentioned in ECG monitoring,
similarly, a portable device can also be worn to measure BP over a prolonged period for a larger
data sample, which can then be reviewed and analysed to detect any anomalies. The most common
way to perform this fast, non-invasive procedure is to use and fasten the sphygmomanometer
containing an in�atable fabric cu� to the patient’s upper arm and let the machine take data readings
for approximately one minute so that the systolic and diastolic results can be produced. Collection
of this health data allows for endless possibilities in its use. In one interesting progress, Samsung
Electronics has �led a patent [43] that will enable the user authentication through processing blood
pressure patterns, measured by sensors in mobile phones and smartwatches. According to the
patent, the atrial conduction system (contraction and expansion of heart muscles) of every human
being is di�erent. Therefore, the blood �ow patterns are di�erent as well.

Body temperature helps in the identi�cation several health issues (e.g., infection and in�amma-
tion) [39] and should be appropriately monitored to allow the preservation of homeostasis (the
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Technology Origin Location Described in Section

Electrocardiogram (ECG) Heart Chest Heart-based biometrics (3.1)
Photoplethysmogram (PPG) Heart Wrist Heart-based biometrics (3.1)
Electronic nose (e-nose) Skin All body Skin-based biometrics (3.3)
Electroencephalography (EEG) Brain Head Brain activity based biometrics (3.4)
Galvanic skin response (GSR) Skin All body Skin-based biometrics (3.3)
Actigraphy and Proximity sensors (AP) Sleep Wrist or All body Sleeping patterns based Biometrics (3.2)
Electronic stethoscope (ES) Heart Chest Heart-based biometrics (3.1)

Table 1. Specification and constraints of existing wearable technologies that have biometric applications

conditions where our body can function normally). Body temperature is of the utmost importance
in health and is especially true for young children and the elderly alike to maintain bodily functions.
In most cases, a digital thermometer is used to take readings. Advancements in body temperature
sensing are on the rise. There is no work published regarding employing body temperature for bio-
metric authentication; however, one research study [19] has developed a low-power, wireless sensor
to measure body temperature that can be used in wearable biometrics and healthcare systems.
Breath sensors have long been used in healthcare monitoring and clinical applications [33].

They operate in a portable and noninvasive manner, and determine the composition/contents of
breath in terms of over 870 compounds. The sensors are also capable of performing quick breath
analysis by using an online system. Although the current research suggests no biometric-related
application, we believe that breath sensors carry a strong potential for real-time and convenient
user identi�cation and authentication.
DNA (Deoxyribonucleic acid) is one of the best biometric for identifying human beings. It is

unique and deemed impossible to fabricate or mimic [52]. However, it cannot be used in biometrics
because it takes a signi�cant amount of time to match, needs expensive equipment, and performs
complex steps for extracting, inspecting and matching the DNA [36].

3 REVIEW OF APPLICATIONS IN BIOMETRICS

At this stage, a review has been performed to gain an understanding of what types of health-based
data sources are collected and used by computing systems. The next stage is to perform a detailed
literature review of how each data type, speci�cally those acquired from wearable IoT sensors,
is used for biometric purposes. In this section, a systematic review is performed into the use of
the identi�ed data sources in computer security as biometrics. In order to perform this systematic
literature review, Table 1 is followed whereby literature is searched to identify biometric uses of each
data source (signal type), as well as searching for constraints a�ecting their use. These sources have
biometric applications because the data generated is su�ciently distinctive, universal, permanent,
measurable, resourceful, portable, consumes reasonable time, acceptable and reproducible. It should
be noted here that some data sources (blood pressure, body temperature, breath sensor and DNA)
are not included in this section as they remain unused in biometric systems based on the literature
search and current technology status.
The biometrics discussed in this section are categorised based on the origin of data sources

(presented in Table 1). The biometrics are organised in terms of the origin of signals, rather than
the signals themselves. Therefore, all literature/information regarding a particular data source is
accumulated into a single section. For example, ECG and PPG are di�erent types of signals and
acquired from di�erent locations of a body; however, both signals are used for heart rate monitoring
and have common underlying origin or data source. We have discussed all intrinsic ‘what you are’
properties (or features) of a human body, where signals can be acquired, processed and e�ciently
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used in biometric-related applications. Each section reviews key research, identifying key strengths
and weaknesses.

3.1 Heart-based Biometrics

An ECG signal is a combination of three sub-sequences or electrical components; the % wave, the)
wave, and the &'( complex (i.e., %&'() waves) that shows the depolarisation and repolarisation
of the di�erent muscles involved in a heartbeat [1]. The % wave reports the depolarisation of atrial
muscles, which have a time duration of 120 milliseconds (ms) and the frequency of 10 − 15 Hz.
The T wave describes the repolarisation of ventricular muscles and is usually observed after 300
ms intervals. The QRS complex depicts the depolarisation of the right and left ventricles, and is
signi�cantly larger than the P wave and T wave. For a QRS complex, the duration is 70 − 110

ms, the frequency is 10 − 40 Hz and has steep slopes in terms of wave heights. A research study
proposed a technique that extracts T wave, QRS Complex and P wave feature space from ECG
signal, and formulates a polynomial function and coe�cients (template) of heartbeats [98]. To
authenticate an individual, it matches the template within the existing database using Polynomial
Distance Measurement (PDM) method. Using PDM is deemed 12 times quicker than the existing
mechanisms and requires 6.5 times less storage with up to 100% accuracy on 15 individuals.
Another research work [95] proposed uni- and multi-biometric authentication scheme using ECG
biometrics, which stores PQRTS features of each individual in the database, and later use a statistical
matching threshold for authentication. The uni-biometric solution demonstrated 90% accuracy
on 73 individuals, whereas, the multi-biometric system presented 96.98% accuracy with face and
98.48% accuracy with �ngerprint. Although the ECG biometric systems rely on the QRS complex
as it is dominant among others, in one paper, the authors used P and T waves to delineate (detect
and track waves of) ECG signals [94]. These delineators are then utilised along with QRS complex
to build a feature space consisting of time duration between heartbeats, amplitudes, and angles.
These features are stored in the database, where the individual recognition process is performed
using correlation-based Template Matching technique. This solution has presented an accuracy of
99% by evaluating 50 individuals.
A simple approach uses Multi-layer Perceptron (MLP) and Radial Basis Function (RBF) neural

networks to classify QRS complexes to perform user authentication [60]. The MLP is a super-
vised linear classi�cation technique that uses a feed-forward neural network. Similarly, the RBF
determines input’s similarity within the training set to perform classi�cation. Both techniques
were tested on 18 subjects containing 324 QRS samples and presented 98% accuracy for MLP and
97% for RBF. It should be noted here that the approach did not use P and T waves and generated
viable accuracy. A similar paper [69] proposed the use of Neural Network (NN) to perform the
classi�cation of normalised QRS complexes in ECG signals for user authentication. This was tested
on 90 individuals and presented 99.54% accuracy. Furthermore, this technique was embedded in
a low-powered chip that authenticates the user based on heart rate and false negative rate. A
study [57] proposed a new apparatus for ECG biometric system, which is attached to the subject
hand (right thumb and left index �ngers) without pre-gelled electrodes or conductive paste on the
skin. The developed solution uses a �ducial approach, where a normalised waveform is created
to represent a single mean of all heartbeat signals. The amplitudes of the waveform are directly
considered as features. Upon testing the solution on 16 individuals, the extracted signal had more
noise than the usual and showed 94.3% accuracy using Euclidean distance. The noise is a type of
electromagnetic energy that is collected by transmission conductors. It is inversely proportional to
the accuracy of the biometric-based authentication system.
In another study, the authors proposed a new ECG biometric recognition system that does not

utilise P wave, QRS complex, and T wave [78]. This is known as the non-�ducial detection system.
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It extracts features from heartbeat signals by conducting Discrete Cosine Transform (DCT) of the
Autocorrelation (AC) and uses :-nearest neighbourhood ( NN) for classifying them to provide
a correct and resource-e�cient individual identi�cation system. The AC method combines all
heartbeat samples from an individual into one signal and DCT is used to reduce feature dimension-
ality of the signal. According to the evaluation of 14 healthy individuals with 1, 000 samples each,
the proposed solution showed 100% recognition rate. However, the performance of non-healthy
individuals is yet to be determined. Another research paper presents a similar DCT and AC based
approach that additionally performs Template Matching (TM) before the dimensionality reduction
process in order to prune the search space [2]. The TM is a high-performance classi�cation that
lowers the number of classes and reduces the overall classi�er scope. This technique showed 96.3%

accuracy on 27 subjects. Traditionally, the sensors for extracting ECG signals are strapped on the
human chest.
A research study claims that the heart sound signal can also be used as a biometric [74]. It is

claimed that the heart acoustics are distinct for everyone, even if two people have same heart
disease, and does not require several electrodes to obtain the signal. The proposed solution employs
a feature extraction scheme based on cepstral analysis to provide a low-dimensional and su�ciently
unique discrimination feature space. The solution was developed in real-time using a combination
Vector quantisation and Gaussian mixture modelling techniques, and can be used to identify/verify
an individual. The empirical analysis consists of two di�erent experiments; �rst, 128 heart sounds
from 128 subjects produced 99% accuracy and second, 1000 heart sounds from 10 subjects generated
96% accuracy. Another research study proposed a new approach that combines heartbeat and
acoustic signals to recognise the identity of individuals [26]. The heartbeat signals are obtained
via ECG, whereas, the acoustic signals are collected by Phonocardiogram (PCG), a technique that
records sounds and murmurs of heart. The Vernier sensor and Littmann Electronic Stethoscope
Model 4100WS were used to conducting PCG. In order to extract features, the approach uses the
entire ECG signal for heartbeats and the Short-Time Fourier Transform (STFT) along with the DCT
coe�cients to process heart acoustics. The developed solution was tested on 21 individuals and has
presented an accuracy of 97% using Gaussian mixture modelling. Another paper [120] developed a
heart sound biometric system for user identi�cation by employing a new approach called marginal
spectrum analysis (a feature extraction technique). This solution performs an additional step on the
acoustic signal, where lung, body movement and other sounds are removed. The experiment was
conducted on 280 heart sounds from 40 subjects, each in relaxed form for 10 seconds, using Vector
quantisation algorithm. The results demonstrated the recognition rate of 94%, which is higher than
the Fourier-based technique (84.32%) on the same data. An interesting fact about this study is that
the heart sounds were acquired through stethoscope attached with a simple computer sound card.
A recent paper extracted RR-intervals from ECG signals and used an e�cient 128-bit Random

Binary Sequence (RBS) generation algorithm to improve security for biometric applications [76].
The algorithm is called Multiple Fiducial-points based Binary Sequence Generation (MFBSG)
algorithm [121]. The RR-interval is the time between QRS complexes. The technique ensures that
the RBS is random and distinct enough to be used for authentication and unique for every individual.
It uses Hamming distance with a user-de�ned threshold to �nd the match between two RBSes. The
empirical analysis has shown a reduction in execution time as the solution only uses inter-pulse
intervals and an accuracy of 99.3% over 89 individuals. Another technique [55] starts by applying
Discrete Waveform Transform (DWT) on ECG signals using heartbeat time intervals and extracts
several features to represent the di�erent cardiac states (resting, exercising and recovering) of an
individual e�ciently. The features are classi�ed using Gaussian-mixture-model (GMM) and Hidden-
Markov-Model (HMM) algorithms with user-speci�c thresholds. The GMM performs K-means
clustering to depict a collection of features for an individual, whereas HMM is used to identify
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the progression/changing of cardiac states for each individual. This solution has achieved 89%

identi�cation rate on 786 individuals. A new feature extraction algorithm, called Pulse Active Ratio
(PAR) [90] performed ECG signal analysis for authentication purposes. The PAR determines the
maximum amplitude and duration of the ECG signal and outputs a vector of 98 features as a pulse
waveform. The users can also manually input the values into the PAR algorithm to generate ECG
signals. The authors claim that the proposed solution is better in performance than the traditional
methods. It was tested on 112 individuals (14 healthy and 98 with arrhythmia) with two samples
each and demonstrated an accuracy of 94.54% using Euclidean distance.
The ECG signals are collected for longer periods of time to recognise subtle variations among

the heartbeats of individuals. However, if the signal is short-term, the variations are signi�cantly
reduced, hence making it di�cult to di�erentiate among individuals. To tackle this issue, a research
study proposed a new technique that can distinguish among short-term ECG signals [110]. This
technique �rst removes the noise from the QRS-centred signal and uses a deep learning procedure,
known as Principal Component Analysis Network (PCANet), to extract the features. The PCANet
identi�es the linear patterns in the signal data and represents them (i.e., principal components or
features) in lower dimensions without much loss of information. After the feature extraction, linear
kernel support vector machine (or linear-SVM) is utilised for classi�cation and recognition process.
This technique achieved 94.4% accuracy on 12 samples with 5 heartbeats each. Another similar
publication [20] created a non-expensive, portable chip for biometric authentication. The process
begins by removing noise from a low-quality ECG signals using low/high-pass �lters. After that, it
extracts eight �ducial features and uses linear-SVM for classi�cation. This solution achieved over
98% accuracy by testing 175 individuals.
Research has used heart rate variability (HRV) feature as well to authenticate the identity

of a patient in a Wireless Body Area Network (WBAN) [75]. The HRV is a unique physiological
phenomenon that determines the di�erent time intervals between heartbeats. The proposed solution
measures the HRV through R-peak detection of ECG waves. The R-peaks are easier to detect as
they have the highest amplitudes among other waves. The HRV is used as an input to calculate
the message authentication code (MAC), which is exchanged between the sender and receiver to
maintain data integrity and authenticity of a biometric-based cryptosystems. This solution was
tested on 24 healthy subjects and presented 99.3% accuracy. Another paper presents a solution for
biometric authentication based on the long-term/historic ECG signals using Higher-Order Statistics
(HOS) [97]. The HOS is a powerful technique that can represent the signals of arbitrary length in
the third or higher power forms. It can also directly extract the features (PQRST complexes) in
implicit form without needing �ducial points. So by using HOS, the proposed solution extracts
the ECG signals, determines HRV feature space and reduces the dimensions to output a unique
feature pattern for each individual. The patterns are compared with existing patterns in terms
of similarity to perform the authentication. The authors also probed the e�ect of heart-related
anomalies and their e�ect on classi�cation accuracy. They determined that the more historical
data is used, the more error rate is reduced. This technique showed 98.6% accuracy for 4 subjects
using 5-minute time window samples. One paper proposed a new technique to create a heartbeat
template for each individual based on a raw, noisy ECG signal [27]. The main contribution of this
work lies in the detection and pre-processing of instrumental heartbeats for extracting templates.
It takes the raw ECG signal, applies DWT to acquire a time-frequency domain, and then performs
re-sampling and normalisation to extract PQRST waves. The DWT is an implementation of the
wavelet transform that provides signi�cant information about the signal within a reduced time.
After getting the template, it uses the correlation technique to identi�es a suitable match in the
database. This solution has demonstrated an accuracy of 99.61% for 14 individuals.
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Another study [53] used PPG signals with a feed-forward neural network to perform biometric
authentication. The solution was tested on 708 datasets from 10 individuals and presented 95.1%

accuracy. This is one of the long-term studes that established: (1) the feasibility of using PPG
signals in biometric authentication based on features, such as wave angles, area and in�ection point
and (2) di�erent physical and mental conditions might cause failure in the authentication as they
introduce irregularities or abnormalities in the heart rate. Similar work [3] used PPG signals for
HRV based biometric application where the authors designed a physical component to measure the
RR-intervals, i.e., the time duration between two adjacent R-peaks of the signal. In this case, the
RR-intervals were used as a feature to perform the  NN classi�cation. This technique successfully
recognised 92.26% of the 40 individuals. Due to motion artefacts (MA), the PPG sensors are prone to
distortion and noise, which makes it di�cult to collect signal features. Existing methods use manual
feature selection and extraction techniques based on domain knowledge. To automate this process,
a recent research study [25] presents a data-driven four-layer Deep Neural Network (DNN) that
contains Convolution Neural Network (CNN) and Long and Short Term Memory (LSTM). The CNN
automatically detects user-de�ned patterns in the data and uses as a feature extractor for PPG signal.
The LSTM mines dependencies in the data, and is used for capturing the temporal dependency
within the extracted features. The proposed DNN is capable of authenticating individuals based on
heartbeat biometric collected through PPG sensors and has shown a 96% accuracy on 12 individuals.
An extension of this work has been developed as a framework, called CorNET [12], for ambulant
environments using custom sensors. It also uses a combination of CNN and LSTM, and presented
96% accuracy on 20 individuals (while doing di�erent, voluntary physical activities). The CorNET
is capable of biometric identi�cation as well as heart rate estimation.

Most of the related work uses ECG biometric as it has a number of advantages in terms of easy to
measure, di�cult to mimic/replay signals for malicious reasons, as well as not requiring expensive
equipment and applicable in practical environments. The key advantage of using ECG is high
accuracy, which is integral to the authentication systems. There is an extensive study on using
heart rates as a biometric and there are distinctive approaches with varying results. We believe
it is bene�cial to present a summary of the �ndings as shown in Table 2. Based on the literature,
we have identi�ed that the area of heart-related biometrics is the most developed and therefore,
it is possible to construct a summary table, whereas, other areas are less mature and do not have
enough articles to provide a comparison summary. Notice that the table presents a sorted list of
research studies based on the highest-to-lowest number of subjects and classi�cation accuracy.

3.2 Sleeping pa�erns based Biometrics

One research study has proposed the use of IoT bed sensors to determine and analyse sleep
depth [35]. This is carried out by attaching sensors that are connected to the WiFi on a single
bed mattress which in turn are connected to a remote server containing. The server has several
features, for example, detecting if the user is laid �at and sleeping rather than just sat on the bed
by use of body pressure in certain areas. A research study utilised actigraphy, which is a non-
invasive monitoring technique containing 63 features, for the identi�cation of sleep-wake states
within infants [91]. The authors employed statistical and neural network-based algorithms, and
showed an accuracy range of 77 − 92% for 26 subjects. It is claimed that actigraphy is a comparable
alternative to the similar polysomnography technique, which usually achieves 85 − 95% accuracy.
The polysomnography is an overnight examination of sleep, typically recorded by cameras and
sensors that are attached to the head and chest of the subject. It is di�cult to use and intrusive
in nature. A recent patent proposed the use of sleep physiology for authentication of subjects by
creating biometric pro�les in order to either verify or disprove the identity of the individual [68].
The data suggested for collection during the di�erent stages of sleep include heart rate, heart rate
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Work Signal /

Technology

Features Matching algorithm Number of

subjects

Classi�cation

Accuracy (%)

Additional information

[55] ECG Discrete Waveform
Transform

GaussianMixtureModel and
Hidden Markov Model

786 89 Considers di�erent cardiac and other
user-speci�c conditions along with ECG
signals

[20] ECG PQRST waves Linear Kernel Support Vec-
tor Machine

175 98 Created a portable mobile chip to ac-
quire, clean and classify ECG signals

[90] ECG Pulse Active Ratio Euclidean Distance 112 94.54 Claims to develop a better feature ex-
traction method and tested regular and
arrhythmia heart signals

[69] ECG QRS waves Neural Network 90 99.54 Developed a low-powered and fully op-
erational electronic chip for authentica-
tion

[76] ECG RR-intervals using
Random Binary
Sequence

Hamming Distance 89 99.3 Demonstrates that using inter-pulse in-
tervals reduces processing time, whilst,
preserving accuracy

[95] ECG PQRST waves Statistical Matching 73 90 Demonstrates that multi-biometric
sytems are better than uni-biometric
systems

[94] ECG Time duration be-
tween heartbeats,
amplitudes and
angles

Correlation-based Template
Matching

50 99 Presents an e�cient feature extraction
technique

[120] Heart acous-
tics

Marginal spectrum
analysis

Vector Quantisation 40 94 Indicates that de-Noising of heart acous-
tic signals is crucial for better accuracy

[3] PPG RR-intervals k-nearest neighbours 40 92.26 Proposed a new feature extractionmech-
anism that can measure RR-intervals of
a PPG signal

[2] ECG Autocorrelation / Dis-
crete Cosine Trans-
form

Correlation-based Template
Matching

27 96.3 Rea�rms that non-fuducial features pro-
duce promising accuracy

[75] ECG Amplitudes of R
waves

Message Authentication
Code

24 99.3 Proposed a cost and resource e�cient
solution that can be used in biometric
cryptosystems

[26] ECG and
Heart acous-
tics

Short-Time Fourier
Transform and
Discrete Cosine
Transform

Gaussian Mixture Modelling 21 97 Shows that heart acoustics is quite fea-
sible for a multi-biometric system

[12] PPG Convolution Neural
Network

Long and Short Term Mem-
ory

20 96 Presents a data-driven deep learning ap-
proach for ambulant environments us-
ing custom sensors

[60] ECG QRS waves Multi-Layer Perceptron and
Radial Basis Function Neural
Networks

18 98 A�rms that only QRS waves are su�-
cient to obtain higher accuracy

[57] ECG Amplitudes of heart-
beats waveform

Euclidean Distance 16 94.3 Uses subject’s �nger to collect signals,
instead of chest

[98] ECG PQRST waves Polynomial Distance Mea-
surement

15 100 Presents a mechanism for quicker and
e�cient signal acquisition and process-
ing

[78] ECG Autocorrelation / Dis-
crete Cosine Trans-
form

k-nearest neighbours 14 100 Provided a better and easier non-�ducial
feature extraction technique

[27] ECG PQRST waves Correlation-based Template
Matching

14 99.6 Proposed an e�cient pre-processing
mechanism of raw, noisy ECG signals
and feature extraction

[25] PPG Convolution Neural
Network

Long and Short Term Mem-
ory

12 96 Presents a data-driven deep learning ap-
proach that does not require feature ex-
traction

[110] ECG Principal Component
Analysis Network

Linear Lernel Support Vector
Machine

12 94.4 Developed a technique that can classify
short-term ECG signals

[74] Heart acous-
tics

Cepstral analysis Vector Quantisation and
Gaussian Mixture Modelling

10 96 Claims that heart acoustics are easier to
obtain and similar to ECG in accuracy

[53] PPG Angles, area and
in�ection point of
waves

Neural Network 10 95.1 Demostrated that PPG signals can be
used for biometric authentication

[97] ECG PQRST waves Higher-Order Statistics 4 98.6 Investigated the a�ect of heart-related
anomalies on the user identi�cation abil-
ity

Table 2. Summary of heart-related biometrics
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variability, acceleration, and breathing rate. Using this data, a biometric pro�le can be created for
each subject. Following on, classi�cation algorithms, such as the random forest model, logistic
regression, or neural network can be used for subject identi�cation.

Monitoring sleep patterns for other purposes is a popular area and there are many pieces of new
technology that have either been released or are in development. One such patent device covers
the patients’ nose and measures the air pressure produced. The purpose is to detect conditions,
such as sleep apnea or airway blockage [99]. However, this device was created in 1993. A more
recent patent recommends the use of a device that can be used for both medical diagnosis and
identity veri�cation [47]. This is achieved by the use of multiple sensors attached to the patient (or
bed in the case of sleep analysis) constantly collecting data and authenticating the patient(s). After
that, the collected data is sent to a remote location for analysis and diagnosis. A pulse oximeter on
the patient’s �ngertip represents an example of this approach. A recent study employed Support
Vector Machine (SVM) classi�er for the identi�cation and authentication of subjects based on a
multi-biometric system [109]. The data set used in this paper was collected from the undergraduate
students of the University of Notre Dame. The original data set, named as NetHealth [56], contained
approximately 700 subjects but this paper considered and analysed 421 subjects. This is one of the
large-scale studies that also extracted 108 (sedentary) and 109 (non-sedentary) features from sleep
status, step count, heart beat, calorie burn and metabolic equivalent of task (MET). The results have
shown 0.93% and 0.90% accuracy for sedentary and non-sedentary periods, respectively.

The potential of being able to utilise these techniques and analyse a user’s pattern allows for an
array of possibilities in identity veri�cation and authentication. However, it is recommended that
the data from wearable and non-invasive devices are collected for a minimum period of one to two
weeks, and complemented by other sensors to achieve better accuracy. It is also not uncommon for
actigraphs to misinterpret insomnia within patients, despite them not having it, making the use of
them questionable for identi�cation purposes.

3.3 Skin-based biometrics

A recent paper used skin temperature and electrodermal activity acquired through a smartwatch to
perform the authentication process [24]. The signal features were extracted using wavelet entropy
method, which is based on Shannon, energy, threshold, sure, norm and power entropy values.
After that, it employed feed-forward neural network to perform the classi�cation. This solution
was tested on 30 individuals and achieved reasonable accuracy. A patent [4] proposed a mobile
communication device coupled with electronic skin tattoo that is applied to the throat region. It
consists of a microphone to capture audio signals, controller to process the signals, transceiver for
wireless communication and a power supply. The main purpose of this device is to improve audio
detection by reducing the signal-to-noise ratio.

Another study [40] proposed a theoretical framework that uses an electric nose (e-nose) to extract
the body odour samples and perform biometric authentication. It uses a simple clustering technique
for training and recognising the closest match of a given sample in the knowledge base. The e-nose
apparatus consists of several expensive components for sni�ng, delivering, receiving, computing
and authenticating the body odour along with the complex electric circuitry that connects them. A
similar paper [112] used e-nose to detect and recognise the individuals through the armpit odour.
The proposed method uses Principal Component Analysis (PCA) to recognise patterns and achieved
95% accuracy by conducting multiple tests on 4 individuals. The authors claim that the accuracy
of e-nose is a�ected by the degree of humidity and application of deodorant (noise). Therefore,
they developed a novel methodology based on hardware and software that can perform noise
correction. The hardware-based technique uses a heat bath to create a constant humidity level
between the human skin and background environment and then allows the sensor to collect the
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body odour sample. The software-based technique measures skin conductance at various noise
levels and builds a mathematical model, which is then used to calibrate the acquired signal by
identifying and eliminating the noise. Both hardware and software approaches are applied at the
same time to gain maximum accuracy.
An extension of the aforementioned technique has also been proposed that takes sensor drift

into consideration [113]. Sensor drift is caused by physical changes in the sensor over time due to
external factors (heat, sweat, etc.) and leads to erroneous measurements. The sensor drift correction
is performed by a mathematical model that was obtained by comparing the baselines of puri�ed air
and human odour signals. Another paper presents a technique that can convert a body odour into a
unique digital signature/password [41]. All signatures are stored in a database, which is then used
for the automated identi�cation of individual’s body odour by employing correlation techniques.
Another paper applied multi-class SVM and kNN algorithms in order to perform the classi�cation
of the e-nose signals [32]. The technique was evaluated on 30 di�erent combinations of 60 training
samples and 20 test data samples. It achieved 87% and 86% accuracy for SVM and kNN, respectively.
After that, the same test data was formulated into a decision tree structure, which increased the
accuracy to 93% and 96% for SVM and kNN, respectively.

3.4 Brain activity based biometrics

A recent survey shows that the EEG signals have great potential of being used for biometric purposes,
and a large community of researchers has started working in its practical deployment [104]. The
EEG signals are well-suited in terms of stability and uniqueness. A study conducted on 50 individuals
shows that the EEG signals have more distinct characteristics when collected in the resting/relax
state [38]. It also suggests that the recording of EEG signals for training or identi�cation should be
approximately 2 minutes to obtain better accuracy. One of the initial work regarding the use of EEG
for biometric authentication is based on feed-forward neural classi�er [37]. This technique was
tested on 6 individuals and resulted in the accuracy of 97.5%. Another paper proposed a two-step
biometric authentication process using EEG signals [71]. The process starts by reducing the feature
dimensions of the signals using PCA alongside removing the redundancies and overlapping. After
that, it employs Manhattan distance based on two threshold values for reducing false accept/reject
error and performs the authentication. This technique was tested on the EEG signals gathered from
5 individuals in di�erent states, such as relax, solving mathematical problems, letter writing, etc. It
showed 100% accuracy. Another paper utilised the MLP neural network to perform classi�cation of
EEG signals [93]. The technique applies two di�erent methods, Discrete Fourier Transform (DFT)
and Wavelet Packet Decomposition (WPD), to extract two di�erent sets of features. It achieved
100% accuracy for 3 individuals in a relaxed and quiet state.

Bashar et al. proposed [9] three separate methods to extract features from the EEG signals in 2016:
Multiscale Shape Description (MSD), multiscale Wavelet Packet Statistics (WPS) and Multiscale
Wavelet Packet Energy Statistics (WPES). The features were extracted after removing the noise and
artefacts through the band-pass �lter. After that, it used the SVM algorithm for the training and
recognition and achieved 94.44% on 9 individuals. A similar paper [45] followed the same approach,
but added another feature extraction method, called Alpha-Beta Statistics, along with MSD, WPS,
and WPES. It also used neural networks along with the SVM to perform a better classi�cation
process. Another study presents an EEG-based biometric authentication tool, called BrainID [44].
The EEG signals were collected by asking the user to visualise a prede�ned 4-digit number. After
that, Common Spatial Patterns (CSP) approach is used for feature extraction that converts Alpha
and Beta rhythms of the signal into a lower-dimension matrix. The extracted features were used as
input to Linear discriminant analysis (LDA) algorithm that performed classi�cation. At the time
of authentication, the user is asked to visualise the same number that was used for training. The
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evaluation of BrainID shows 96.97% accuracy on 12 individuals. A similar paper also employed LDA
for the classi�cation of EEG signals [50]. The features were extracted by analysing the relationship
among EEG channels with the help of phase synchronisation approach. This technique achieved
95 − 99% accuracy in identifying individuals. Another paper proposed the use of Fuzzy Entropy
(FE) to extract the features of EEG signals from di�erent electrodes [66]. The FE measures and
represents the degree of fuzziness in fuzzy sets based on numerical values. The Fisher distance
algorithm is used to analyse and distinguish among the features using dissimilarity approach and
outputs a matrix. After that, the technique used Back Propagation (BP) neural network for the
classi�cation of signals. Evaluation of this technique on 10 individuals shows that the accuracy is
greater than 87.3%.

A paper proposed the use of a Convolution Neural Network (CNN) to perform the identi�cation
of individuals [59]. This system uses the EEG signals collected in a resting state with open/close
eyes and yielded an accuracy of 88% on 10 individuals. Another paper used CNN for the EEG-
based biometric identi�cation [62]. The proposed system was tested on 100 subjects and showed
high performance and accuracy of 97%. A research study applied two pattern matching methods,
Euclidean Distance (ED) and Dynamic Time Warping (DTW), on EEG signals for identi�cation [30].
The signals were acquired from 30 individuals by showing illegal strings andwords, which is claimed
to generate more distinguishable brain activity patterns. The ED method yielded a maximum
accuracy of 81.17%, whilst DWT showed 67.17%. A recent paper proposed a new method to capture
EEG signals using invisible visual stimuli [67]. An image is embedded in a video having a frame
rate of 144 Hz and shown to the individual. The feature set from the EEG signals is acquired using
the spectral di�erence of four di�erent stimulation conditions, ranging from 0% (no visual stimuli)
to 100% (visible visual stimuli). After that, the technique uses Euclidean distance to determine the
match for identi�cation and presented an accuracy of 80% on 20 individuals. Another recent study
successfully demonstrates the use of Flower Pollination Algorithm (FPA) to reduce the number of
sensors required to capture the EEG signal [89]. The FPA is an evolutionary-based optimisation
algorithm that determines a su�ciently good solution. This paper used FPA to select the best subset
and an optimum number of sensors without a�ecting the quality of EEG signal. For identi�cation,
the authors used Optimum-Path Forest algorithm, which is a graph-based classi�cation process.
The empirical analysis of this solution showed 87% accuracy while reducing the number of sensors
in half as compared to other conventional systems. Another paper proposed a simple approach to
use EEG as biometrics [86]. This approach removes the noise from the signal and uses time and
frequency-based analysis to extract features template. After that, it uses neural network classi�er
to �nd a match between current and stored templates for identi�cation.

3.5 Summary

Reviewing existing literature highlighted several medical-based biometric systems that can be used
for enrolment, authentication, and identi�cation of individuals. These systems possess a reasonable
amount of accuracy and can be used in the real world. A general trend that has been followed in
existing studies is described in the following:

(1) Acquire corresponding signals (heart, brain, etc.) from the individuals;
(2) Perform discretisation of the signals and extract the �ducials or non-�ducials features;
(3) Train the classi�cation algorithm with one or more feature sets of the individuals to build a

model. This is known as the enrolment phase; and
(4) Use the model to recognise individuals, also known as authentication and identi�cation.
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4 LIMITATIONS AND FUTURE CHALLENGES

At this stage, the use of health-based data within biometric systems has been investigated, looking
at the di�erent data sources and how they are utilised to build or improve security systems. In this
section, we present limitations and their impact, and key future challenges of using wearable IoT
health devices as a future biometric source. We also provide a brief discussion on each limitation
and challenge, followed by a summary table at the end. Moreover, the limitations and impacts
are linked to the survey/review of the existing literature presented in the previous sections for
providing a reference.

Limitation 1. Existing approaches are limited by the stability, variability and reliability of the

biometric data source [53].

Impact 1. The inability to adequately handle the continuous change in biometric data source

reduces wider adoption and usability due to a decreasing accuracy [97]. More speci�cally, an increase

in false positives and a decrease in true positives.

Challenge 1. Unlike existing evaluation methodologies, researchers should conduct experiments

over longer periods of time to consider greater variation and deteriorating characteristics.

The physical and mental traits of a human body constantly change and behave di�erently
depending on time, age, environment, and circumstances. For example, the heart rate changes
under stress, coercion, intense physical activity, etc. This is one reason as to why heart-based
authentication might result in lower accuracy, as it would be challenging to di�erentiate between
participants. This is why it is not feasible to use a biometric data source, which is prone to constant
change. Another example can be found in the use of EEG signals, which depict the amount of
electric �eld (brain activity) around the scalp, but cannot explain the cause behind. This is generally
known as ‘inverse problem’ [102]. The brain activity of the same individual might di�er based
on the varying physical and mental states. So, during the identi�cation or authentication process,
inconsistent EEG signal patterns can lead to poor quality results. Some existing solutions have
attempted to resolve the inconsistent signals issue by taking multiple samples/templates of the
same individual over longer periods of time [58]. Therefore, such algorithms and techniques should
be created that are �exible enough to understand the constant variations in the human body and
provide accurate results.

Limitation 2. The electronic ageing of sensor’s components (sensor drift) and deterioration over-

time [113].

Impact 2. This limitation can increase signal acquisition time and reduce accuracy levels due to

noisy, inaccurate and unreliable data samples [20, 110].

Challenge 2. Hardware that is not �t-for-purpose will generate erroneous results regardless of the

data analysis technique. Therefore, electronic engineers should produce sensors of high quality, ensuring

they are reliable and are also integrated with self-checking and even automated error compensation

mechanisms.

The wearable sensors are prone to physical damage depending on the adversity of external
factors and output incorrect readings/signals [49]. This leads towards the failure of the overall
biometric system. For example, the heart-related signals acquired from ECG and PPG sensors are
usually distorted and/or have noise due to problems, such as a baseline drift, external interference,
muscle noise, etc. Most of the existing techniques use frequency band �lters to remove the noise.
This is a complicated task and might not be su�cient due to di�culties in identifying the noise
frequencies. A signal can have both internal (thermal and shot) and external (electrostatic and
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electromagnetic) noise. The identi�cation and elimination of all forms of noise and error require a
more systematic and rigorous approach [107]. Furthermore, E-nose and other similar chemical-
based sensors struggle with long stability in real operating conditions. Such sensors require constant
error correction or replacement over time, depending on the sensor life that can be improved.

Limitation 3. Current literature shows that most of the techniques have only been evaluated on

healthy individuals. There is also a critical need to test biometric systems on large-scale datasets,

representative of healthy individuals and also those deemed to have health conditions [75, 97].

Impact 3. Using datasets for development that are not representative of the general population will

result in a biased evaluation along with representing incorrect capabilities [78]. This could result in a

biometric system that either performs poorly for unhealthy subjects or unfairly discriminates against

individuals with health conditions.

Challenge 3. The experiments should be performed on a larger and balanced population, having

both healthy and unhealthy individuals, to determine the actual accuracy of the underlying technique.

However, this requires researchers and developers of biometric systems to utilise a more inclusive test

population, even if it results in a reduction in reported accuracy.

There is a need for complete and reliable e�ciency and accuracy analysis over large-scale datasets
that includes both healthy and unhealthy individuals [22]. Without this, a wider adoption and
utilisation of health-based wearable devices in biometric systems would be di�cult. For example,
the high risk of the instantaneous change in heart activity due to the physical and emotional state
and various cardiac disorders can disrupt the biometric system. Furthermore, existing studies show
that it is di�cult to determine the individuality and scalability of heartbeat signals/patterns in a
larger set of individuals. The sample sizes selected to test existing solutions are not insu�cient to
assess the performance and application in real-world, large-scale environments. It is possible that a
certain selected population may (1) not possess a particular biometric identi�er, (2) have a duplicate
biometric identi�er and (3) present properties that do not yield usable data for authentication.
Furthermore, in most studies, training, and testing data were acquired in only one session, and
the template ageing factor was ignored. Hence, balanced and large scale studies are required to
determine the actual performance and accuracy over time.

Limitation 4. Accurate sensor equipment is often expensive and there is no guarantee that expen-

sive equipment results in a quality product [40].

Impact 4. This limitation impacts the wider and practical use of medical-biometric systems. The

technology might be �nancially out of reach to many potential users, and even if it can be purchased,

the quality might severely restrict its suitability and correctness for the target application [112].

Challenge 4. The sensors should have a balance between quality and cost along with a ubiquitous

availability so that they can be utilised, tested, and integrated by a large number of researchers and

developers.

Regarding the issues in deployment, wearable biometric sensors are usually surrounded by
several constraints, such as expensive hardware and intricate, time-consuming and cumbersome
process for user authentication[80]. The second aspect of this limitation is that expensive sensing
technology does not guarantee that it is �t-for-purpose for use in a biometric system. An example
to demonstrate is that skin-based biometric requires pre-heated and pollution-free facilities [46]
that are costly to build and setup as explained in the study. Besides, such facilities might not be
available in every case due to portability concerns of bulky biometric sensor hardware. The current
process of acquiring body odour signals also takes a relatively long time to train and recognise,
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which result in it being unsuitable for practical use. Furthermore, there is not much discussion
regarding the detection and removal of perfume, deodorant, lotion, or other external smells from
the actual body odour signal. Failure to separate irrelevant smells might result in poor accuracy.
Hence, electronic engineers should design and create new sensors that are small, portable and
easy-to-use.

Limitation 5. There is a lack of standardisation in medical-biometric techniques [82].

Impact 5. A lack of standardisation could result in the development and adoption of a biometric

technology that is not suitable for the target domain [95]. This is because there is no appropriate

methodology to determine whether a certain approach will perform better in a given situation, or what

level of accuracy is permissible.

Challenge 5. The development of standards and best-practice guides required knowledge exchange

and shared working between researchers and practitioners working within private companies and

knowledge-based institutions, such as universities. Furthermore, the inclusion of special interest groups

and governing organisations can help in achieving best practices and standardisation.

Extensive studies have been conducted regarding the organised use of heartbeats, brain activity,
skin sweat and so on for clinical diagnosis; however, its current biometric-related application has not
been standardised [77]. For example, the existing works concerning feature extraction and selection
(�ducials) only depends on the validity of empirical analysis by the respective authors. It is evident
from Table 2 that di�erent kinds of feature extraction mechanisms have been used. Therefore, a
universally accepted, standard set of �ducials is yet to be de�ned. It has been widely accepted in
literature that the manner in which features are selected can signi�cantly improve the performance
and accuracy of the overall biometric authentication. Also, the biometric systems are relatively
di�cult to design, develop and deploy as compared to traditional password/pin security systems.
Hence the current biometric solutions lack wider accessibility and integration [13]. Furthermore,
the number of standard, real-time and publicly available biometric datasets remain limited as
compared to other similar areas. There is a need for a shared benchmark dataset that can be
used to perform evaluation and cross-comparison between the developed techniques, wherever
possible. Self- or home-made dataset may ful�l the requirements of individual experiments and
depict accurate results, but such results cannot be considered as conclusive. Furthermore, some
researchers may not have the tools and equipment to acquire an appropriate dataset for the
development of methodologies. These are some of the reasons for biometric systems in lacking
industry-wide standards.

Limitation 6. There is an absence of considering security whilst collecting, storing and utilising

signals in existing techniques [76].

Impact 6. The acquisition and usage of signals can raise privacy implications as they are not only

the indication of health status but also the identity of the individual [81].

Challenge 6. Wearable devices and data processing tools are prone to several attacks during data

communication and storage, such as leakage, theft, fabrication, and alteration. New security protocols

should be developed in accordance with the needs of a biometric system and considered as an integral

part of biometric systems to prevent such attacks.

A large amount of personal and sensitive information is collected by biometric systems in
the form of individuals’ medical data and signals. This information can be used to expose the
identity and record of the corresponding individual, along with violating several legal and ethical
rules [63]. This is why it is crucial for a wearable IoT device to keep the data secure. The current
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research studies are focused only on the application-side (authentication) and do not consider
or present any procedure to secure the storage and communication of data. Although biometric
systems are required to provide security, they need to be secured themselves as well by deploying
certain protocols [11]. Lack of considering security aspects can lead towards serious attacks on
the con�dentiality (breach and theft of user’s biometrics data) and integrity (forgery and altering
of user’s biometrics data) of the biometric system. There is a need to secure each layer or point
of entry in the biometric system. Furthermore, there is a possibility of exploiting the biometric
system by the malicious insiders, who in most cases have partial or full administrative access to
the system. Insu�cient security is limiting the wider usage and adaptability as the users are not
comfortable in using biometrics technology.

Limitation 7. The techniques used for the recognition and identi�cation of individuals inherit

all associated bottlenecks and related issues regarding Arti�cial Intelligence and Machine Learning

algorithms, such as de�ning volume and quality of the training data, data labelling and building

learning model con�dence.

Impact 7. This negatively a�ects the accuracy and overall processing time of the proposed solutions

alongside a large amount of consumption of computing resources.

Challenge 7. There is room to improve (or even create newly specialised) detection or classi�cation

algorithms for biometric data, such that they can increase the performance and accuracy of implemen-

tation and enable e�ective use of implemented technology. There is also a need to increase the feature

quantity and uniqueness aspects.

A general observation made from the reviewed literature is that there are several kinds of classi-
�cation algorithms for the purpose of both authentication and identi�cation processes. However,
such algorithms have practical limitations due to the nature of the data and the context of the
application. Moreover, the justi�cation or explanation for using certain classi�cation algorithm(s)
for a particular kind of data that has a speci�c set of features is insu�cient. The training set used
by classi�cation algorithms requires complete and large amounts of prepared and structured data
that is also of high quality [106]. Without this, the algorithms would not be able to perform appro-
priate categorisation and distinctly identify the individuals, hence resulting in poor accuracy. The
data is required to be e�ectively represented so that the algorithm can easily recognise biometric
patterns [114]. These algorithms also demand larger computing resources in terms of memory
and processing. In a traditional password-based system, the user will always be authenticated if
correct credentials are entered. However, in the biometric systems, the user veri�cation cannot
be guaranteed, albeit inputting the correct signals, due to classi�cation error. Another general
trend seen in the existing studies is that they provide a minimal discussion of negative and non-
signi�cant results, hence their true accuracy and behaviour cannot be fully determined. A further
issue regarding the biometric systems is the poor scalability. Larger datasets might have a higher
error due to a lack of clear distinction among the training data items. Such issues can be tackled
properly whilst building a new biometric-based authentication system.

4.1 Summary

Table 3 provides a list of limitations, their impact on the application and associated challenges
determined in this survey of health-based wearable biometric technologies. Although derived from
recent research activity, the presented knowledge gaps are speculative in nature. Furthermore, it
is not an all-inclusive list and there is a potential that some have been missed. As the research
continues in biometrics and related areas, many new gaps will be discovered and will need to be
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Limitation Impact Challenge

The constant change of char-
acteristics of a human body
(i.e., deterioration of �nger
prints)

• Lack of adoption and usabil-
ity

• Poor accuracy

• Experiments need to be per-
formed over longer dura-
tion’s

• Research required a wider
and diverse range of human
participants

Sensor ageing and deteriora-
tion • Increased signal acquisition

time
• Increased noise in signals

• Adoption to constant change
in sensors

• Quality sensors
• Automated error compensa-
tion mechanism

Lack of selecting an appro-
priate population for evalu-
ating a biometric system

• Incomplete evaluation could
lead to less accurate and reli-
able systems

• Standardised processes in-
volving large-scale evalua-
tion

• Include a wide array of partic-
ipants. E.g., healthy and un-
healthy

• Feasibility analysis of biomet-
ric identi�ers

Sensor cost, hardware limi-
tations and accuracy impli-
cations

• Reduced development and up-
take of biometric-based au-
thentication systems

• Establishing a between qual-
ity and cost

• Increasing access to sensors

Unavailability of standard-
ised techniques • Lack of structured biometric

approaches
• Absence of reliable and
shared dataset

• Di�cult distribution of new
technology

• Development of International
Standards and best practise
guides

• Release and maintenance of
benchmark dataset

• Public sharing and evaluation
of datasets

Almost non-existence secu-
rity measures in biometric
systems

• Potential to damage con�den-
tiality, integrity and availabil-
ity of user data

• Development of standardised
and easy to adopt security
protocols

• Integration of security into
devices and software applica-
tions (security by deign)

Bottlenecks of Machine
Learning and Arti�cial
Intelligence

• Reduced accuracy of overall
solution

• Time and e�ort required for
data pre-processing phase

• Large computation resources
for building learning models

• Improvements and advance-
ments in classi�cations algo-
rithms

• E�cient use of developed
technology

• De�ning high quality feature
set

• E�ective data representation

Table 3. Summary of existing limitations of current approaches, their impact and future challenges
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recognised. It should also be noticed that the elimination of knowledge gaps identi�ed in this survey
will require considerable research e�ort in both biometric hardware and software components.

5 CONCLUSION

This survey provides a review of state-of-the-art biometric-based technologies along with the
discussion of applications, technology constraints, and further challenges. This was performed by
�rst analysing data sources commonly used within the biometric systems that are also collected and
processed for health purposes. Following on from this, a systematic analysis of current biometric
systems was performed to identify current implementations and research utilising health-based
data sources. This review resulted in the discovery of 7 key limitations, which all have di�erent
impacts and future challenges.

Literature has informed that the state of the research discipline is varied; new wearable biometric
applications are being investigated and developed, but are yet to overcome limitations centred
on usability and accuracy. It is foreseen that considering the 7 key �ndings when developing
health-based biometric systems in the future would help improve both usability and accuracy. The
wealth of research literature examined states the diversity of the research �eld and that wearable
biometric solutions are gaining popularity, largely due to the increasing use of wearable devices
collecting health data for purposes such as �tness tracking.
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