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Biometric Template Protection: Bridging the

Performance Gap Between Theory and Practice
Karthik Nandakumar, Member, IEEE, and Anil K. Jain, Fellow, IEEE

Abstract—Biometric recognition is an integral component of
modern identity management and access control systems. Due
to the strong and permanent link between individuals and
their biometric traits, exposure of enrolled users’ biometric
information to adversaries can seriously compromise biometric
system security and user privacy. Numerous techniques have
been proposed for biometric template protection over the last
20 years. While these techniques are theoretically sound, they
seldom guarantee the desired non-invertibility, revocability, and
non-linkability properties without significantly degrading the
recognition performance. The objective of this work is to analyze
the factors contributing to this performance gap and high-
light promising research directions to bridge this gap. Design
of invariant biometric representations remains a fundamental
problem, despite recent attempts to address this issue through
feature adaptation schemes. The difficulty in estimating the
statistical distribution of biometric features not only hinders
the development of better template protection algorithms, but
also diminishes the ability to quantify the non-invertibility and
non-linkability of existing algorithms. Finally, achieving non-
linkability without the use of external secrets (e.g., passwords)
continues to be a challenging proposition. Further research on
the above issues is required to cross the chasm between theory
and practice in biometric template protection.

I. INTRODUCTION

B IOMETRIC recognition, or biometrics, refers to the au-

tomated recognition of individuals based on their bio-

logical and behavioral characteristics (e.g., face, fingerprint,

iris, palm/finger vein, and voice) [1]. While biometrics is the

only reliable solution in some applications (e.g. border control,

forensics, covert surveillance, and identity de-duplication),

it competes with or complements traditional authentication

mechanisms such as passwords and tokens in applications re-

quiring verification of a claimed identity (e.g., access control,

financial transactions, etc.). Though factors such as additional

cost and vulnerability to spoof attacks hinder the proliferation

of biometric systems in authentication applications, security

and privacy concerns related to the storage of biometric

templates have been major obstacles [2].

A template is a compact representation of the sensed bio-

metric trait containing salient discriminatory information that

is essential for recognizing the person (see Figure 1). Exposure

of biometric templates of enrolled users to adversaries can

affect the security of biometric systems by enabling presenta-

tion of spoofed samples [3] and replay attacks. This threat is

compounded by the fact that biometric traits are irreplaceable
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in nature. Unlike passwords, it is not possible to discard the

exposed template and re-enroll the user based on the same trait.

Moreover, it is possible to stealthily cross-match templates

from different databases and detect whether the same person

is enrolled across different unrelated applications. This can

severely compromise the privacy of individuals enrolled in

biometric systems.

In most operational (deployed) biometric systems, the bio-

metric template is secured by encrypting it using standard

encryption techniques such as Advanced Encryption Standard

(AES) and RSA cryptosystem. This approach has two main

drawbacks. Firstly, the encrypted template will be secure only

as long as the decryption key is unknown to the attacker.

Thus, this approach merely shifts the problem from biometric

template protection to cryptographic key management, which

is equally challenging. Even if the decryption key is secure,

the template needs to be decrypted during every authentication

attempt because matching cannot be directly performed in

the encrypted domain. Consequently, an adversary can glean

the biometric template by simply launching an authentication

attempt.

One way to address the limitations of the standard encryp-

tion approach is to store the encrypted template and decryption

key in a secure environment within a smart card or a secure

chip (e.g., A8 chip on Apple iPhone61, Privaris plusID2),

which is in the possession of the user. When biometric

matching is performed on the card (or chip), the template never

leaves the secure environment. While this solution addresses

the security and privacy concerns, it requires the user to carry

an additional authentication token (smart card or a mobile

device), thereby reducing user convenience and restricting the

range of applications. Due to the above limitations of existing

solutions, biometric template protection has emerged as one of

the critical research areas in biometrics and computer security

communities.

A. Biometric Template Protection Requirements

The general framework of a biometric system with template

protection is shown in Figure 2. Rather than storing the bio-

metric template in its original form (x), a biometric template

protection algorithm generates and stores a protected biometric

reference (v) derived from the original template. Note that

the term “protected biometric reference” not only includes

the protected biometric information, but also other system

parameters or values (e.g., cryptographic hashes) that need

to be stored, as well as any biometric side information (e.g.,

1http://support.apple.com/en-sg/HT5949
2http://www.privaris.com/products/indeX.html
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Fig. 1. Examples of biometric templates extracted from (a) fingerprint, (b) face, and (c) iris images. A fingerprint image is typically represented as an
unordered set of minutiae, which encodes the location (x,y) and orientation (θ) of friction ridge discontinuities. Face images are often represented as a linear
combination of basis faces, with the vector of weight coefficients constituting the template. An iris image is usually represented as a fixed-length binary string
called the IrisCode, which is obtained by binarizing the phase responses of Gabor filters applied to the given image.

information required for alignment, quality of the biometric

features, etc.) that directly does not leak information about

the user identity. On the other hand, supplementary data

(z) refers to entities that are not stored in the database,

but are required during both enrollment and authentication.

Examples of supplementary data include a password or secret

key provided by the user in addition to his biometric trait. The

use of supplementary data is optional, but if used, it provides

an additional factor of authentication.

Feature adaptation is also an optional step in a template

protection scheme. It is well-known that biometric samples

exhibit intra-subject variations due to various factors like

sensor noise, differences in user interaction, environmental

changes, and trait aging (see Figure 3). The objective of feature

adaptation is to minimize intra-subject variations in the sensed

biometric signal and/or represent the original features in a

simplified form (e.g., a binary string) without diluting their

distinctiveness. It must be emphasized that distinctiveness of

a biometric representation is a function of both intra-subject

variations and inter-subject variations. A highly distinctive rep-

resentation should have small intra-subject variations (features

extracted from multiple acquisitions of the same biometric

trait of a person should be similar), but large inter-subject

variations (features extracted from the same biometric trait of

different individuals should be different). When minimizing

intra-subject variations, care must be taken to preserve inter-

subject variations. Otherwise, distinctiveness of the features

may degrade, resulting in lower recognition performance.

In the context of template security, the protected biometric

reference (v) is typically considered as public information

that is available to any adversary. Hence, v should satisfy the

following three properties:

• Non-invertibility or Irreversibility: It should be computa-

tionally difficult3 to obtain the original biometric template

from an individual’s protected biometric reference. This

property prevents the abuse of stored biometric data for

3A problem can be considered to be computationally hard or difficult if it
cannot be solved using a polynomial-time algorithm.

launching spoof or replay attacks, thereby improving the

security of the biometric system.

• Revocability or Renewability: It should be computation-

ally difficult to obtain the original biometric template

from multiple instances of protected biometric reference

derived from the same biometric trait of an individual.

This makes it possible to revoke and re-issue new in-

stances of protected biometric reference when a biometric

database is compromised. Moreover, this prevents an

adversary from obtaining the original template by com-

promising multiple biometric databases where the same

individual may be enrolled.

• Non-linkability or Unlinkability: It should be compu-

tationally difficult to ascertain whether two or more

instances of protected biometric reference were derived

from the same biometric trait of a user. The non-

linkability property prevents cross-matching across dif-

ferent applications, thereby preserving the privacy of the

individual.

Apart from satisfying the above three properties, an ideal

template protection algorithm must not degrade the recognition

performance of the biometric system. In many applications of

biometric recognition, especially those involving millions of

enrolled identities (e.g., border crossing and national registry),

recognition accuracy is of paramount importance. Moreover,

issues such as throughput (number of biometric comparisons

that can be performed in unit time) and template size must

also be considered in real-world applications.

II. BIOMETRIC TEMPLATE PROTECTION APPROACHES

Numerous template protection techniques have been pro-

posed in the literature with the objective of ensuring non-

invertibility, revocability, and non-linkability without compro-

mising on the recognition performance. The ISO/IEC Stan-

dard 24745 on Biometric Information Protection provides a

general guidance for the protection of biometric information.

According to this standard, a protected biometric reference

is typically divided into two parts, namely, pseudonymous
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Fig. 3. Illustration of intra-subject variations observed in biometric samples. (a) Images of the same finger may exhibit variations in translation, rotation, and
non-linear distortion. (b) Pose, illumination, and facial expression changes may change the appearance of face images obtained from the same person. (c) Iris
images of the same eye may exhibit differences due to pupil dilation, partial closure of eyelids, and change in gaze angle.

identifier (PI) and auxiliary data (AD). Depending on how

these two components are generated, biometric template pro-

tection schemes can be broadly categorized as: (i) feature

transformation approach and (ii) biometric cryptosystems. A

detailed review of biometric template protection approaches is

beyond the scope of this paper and we refer the readers to [4],

[5], [6] for such in-depth analysis.

In the feature transformation approach (see Figure 4(a)), a

non-invertible or one-way function is applied to the biometric

template (x). While the transformed template is stored in the

database as PI, the transformation parameters are stored as

AD. During authentication, the AD makes it possible to apply

same transformation function to the biometric query (x
′

) and

construct PI
′

, which is compared to the stored PI. Thus, the

biometric matching takes place directly in the transformed

domain. Biohashing [7], cancelable biometrics [8], and robust

hashing [9] are some of the well-known schemes that can be

grouped under feature transformation. Some feature transfor-

mation schemes [7] are non-invertible only when the supple-

mentary data (e.g., key or password) is assumed to be a secret.

Techniques that can generate non-invertible templates without

the need for any secrets (e.g. [8]) are sometimes referred

to as keyless biometric template protection schemes. Such

schemes can be useful in applications (e.g., law enforcement)

where it may not be feasible or desirable to allow user-specific

supplementary data.

In biometric cryptosystems, the auxiliary data is often re-

ferred to as a secure sketch (see Figure 4(b)), which is typically

derived using error correction coding techniques. While the

secure sketch in itself is insufficient to reconstruct the original

template, it does contain adequate information to recover the

original template in the presence of another biometric sample

that closely matches with the enrollment sample [10]. The

secure sketch is either obtained as the syndrome of an error

correction code applied to the biometric template or by binding

the biometric template with a error correction codeword that

is indexed by a cryptographic key (e.g., fuzzy vault [11] and

fuzzy commitment [12]). A cryptographic hash of the original

template or the key used to index the error correction codeword

is stored as PI. Matching in a biometric cryptosystem is
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Fig. 4. There are two broad approaches for biometric template protection:
(a) feature transformation and (b) biometric cryptosystem. The protected
biometric reference (denoted by v) generally consists of two distinct parts,
namely, pseudonymous identifier (PI) and auxiliary data (AD).

performed indirectly by attempting to recover the original

template (x) using the secure sketch (AD) in conjunction

with the query biometric features (x
′

). The recovered template

is used to regenerate a new pseudonymous identifier (PI
′

),

which is compared to the stored PI to determine whether

the template and query match. Secure sketch constructions

have been proposed for various biometric modalities, including

fingerprint [13], face [14], and iris [15], [16].

Both the template protection approaches have their own

strengths and limitations. The primary challenge in the feature

transformation approach is finding an appropriate transforma-

tion function that provides non-invertibility, but at the same

time tolerant to intra-subject variations [17]. The strength of

biometric cryptosystems is the availability of bounds on the

information leaked by the secure sketch if we assume that the

biometric data distribution is known [10], [18]. On the flip

side, most biometric cryptosystems require the features to be

represented in standardized data formats like binary strings

and point sets, which often leads to loss of discriminatory in-

formation and consequent degradation in recognition accuracy.

Due to the properties of linear error correction codes4 that are

commonly used in secure sketch constructions, it is difficult

to achieve non-linkability in biometric cryptosystems.

One way to overcome the above limitations is to apply

a feature transformation function to the biometric template

before it is protected using a biometric cryptosystem. Since

this involves both feature transformation and secure sketch

generation, such systems are known as hybrid biometric cryp-

tosystems [19], [20]. Another promising approach is secure

computation based on homomorphic encryption. While this

approach offers the attractive proposition of performing bio-

metric matching directly in the encrypted domain, it typically

comes at the cost of a significant increase in the computational

burden and communication overhead [21].

A. The Gap Between Theory and Practice

Most of the existing techniques do not satisfy the desired

template protection requirements in practice. As an example,

consider the results published by the on-going Fingerprint Ver-

ification Competition (FVC-onGoing5). Six algorithms were

able to achieve an equal error rate (EER) of less than 0.3% on

the FVC-STD-1.0 benchmark dataset when operating without

any template protection. On the other hand, the lowest EER

achieved by a fingerprint verification system with template

protection on the same dataset was 1.54%, which is more

than 5 times higher. Reduction in accuracy was also observed

during independent testing of template protection algorithms

in [22].

Even if we assume that a small degradation in the recog-

nition performance is acceptable in some applications, it is

imperative to precisely quantify (in terms of bits) the non-

invertibility and non-linkability of the protected biometric

reference. This is necessary to benchmark the utility of a

biometric template protection scheme. In cryptography, “se-

curity strength” (measure of the computational effort required

to break a cryptosystem using the most efficient known attack)

is one of the metrics used to compare different cryptosystems.

It is well-known that an AES system with a 128-bit key

or a RSA cryptosystem with a 3072-bit key can provide a

security strength of approximately 128 bits 6. However, there

is no consensus within the biometrics community on analogous

metrics that can be used to measure the non-invertibility,

revocability, and non-linkability properties of biometric tem-

plate protection algorithms as well as the methods to compute

these metrics [23]. Consequently, practical template protection

schemes neither have proven non-invertibility/non-linkability

guarantees nor do they achieve satisfactory recognition per-

formance. This explains why despite 20 years of research,

4In a linear error correcting code, any linear combination of codewords is
also a codeword. Consequently, if two secure sketches are derived from the
biometric data of the same user using different codewords, a suitable linear
combination of these two sketches is highly likely to result in a decodable
codeword. This paves the way for verifying whether the two secure sketches
belong to the same user, thereby making them linkable.

5https://biolab.csr.unibo.it/fvcongoing/UI/Form/Home.aspx
6Barker et al., “Recommendation for Key Management”, NIST 800-57, July

2012.
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operational biometric systems do not go beyond encrypting the

template using standard encryption techniques and/or storing

them in secure hardware.

The gap between theory and practice of template protection

can be attributed to three main reasons:

1) The template protection schemes generally require the

use of simple distance metrics such as Hamming dis-

tance or a measure of set difference to compute the sim-

ilarity between biometric features [10]. Consequently,

the burden of handling intra-subject variations observed

in the biometric samples shifts completely to the fea-

ture extraction stage. Thus, the foremost challenge in

biometric template protection is the design of feature

extractors, which not only need to extract highly robust

and distinctive features, but also represent them in a

simplified form (e.g., a fixed-length binary string) that is

suitable for applying the template protection construct.

2) Template protection techniques typically result in a

trade-off between non-invertibility and recognition per-

formance [17], [24] due to the following reason. Max-

imizing non-invertibility implies that the protected bio-

metric reference should leak as little information about

the original template as possible. However, high recog-

nition performance can be achieved only when the pro-

tected biometric reference retains all the discriminatory

information contained in the original template. This

conundrum can be solved only by understanding the

statistical distribution of biometric features and design-

ing template protection schemes that are appropriate for

the underlying feature distribution. For example, it is

well-known that bits in an IrisCode [25] or the minutiae

locations in a fingerprint [26] are neither independent

nor do they follow a uniformly random distribution. This

inherent redundancy in the biometric features could be

exploited to handle intra-subject variations without com-

promising on inter-subject variations. In many biomet-

ric cryptosystems, the template is protected by adding

noise to the true biometric information. In this case,

knowledge of the feature distribution could be useful

in selecting the appropriate noise distribution. Modeling

the biometric feature distribution is also required for

obtaining realistic estimates for the non-invertibility and

non-linkability of a protected biometric reference. If

the biometric feature distribution is known, it may be

possible to formulate biometric template protection as an

optimization problem and systematically find solutions

that maximize both recognition performance and non-

invertibility. Thus, knowledge of the statistical distri-

bution of biometric features is beneficial for biometric

template protection. However, estimating the feature

distributions is a challenging task.

3) Compared to the issue of non-invertibility, the problem

of ensuring non-linkability and revocability of protected

biometric reference has not been adequately addressed

in the literature. While many template protection con-

structs claim to provide non-linkability and revocability,

a deeper analysis indicates that this is often achievable

only with the involvement of an additional authentication

factor (supplementary data) such as a password or secret

key [27].

The primary contribution of this paper is to provide an in-

depth analysis of the above three challenges, discuss some of

the solutions that have been proposed to overcome them, and

identify unresolved issues that require further research.

III. DESIGNING INVARIANT FEATURE REPRESENTATIONS

A traditional biometric system accounts for intra-subject

variations in two ways. Firstly, the feature extraction algo-

rithm attempts to extract an invariant representation from the

noisy biometric samples. Secondly, the matching algorithm

is designed to further suppress the effect of intra-subject

variations and focus only on features that are distinctive across

individuals. Consider the example of a fingerprint recognition

system (see Figure 5). An accurate fingerprint matcher not

only handles missing and spurious minutiae, but also other

intra-subject variations like rotation, translation, and non-linear

distortion (see Figure 5(c)). When this matcher is replaced

by a simple set difference metric (that accounts for only

missing and spurious minutiae), it becomes imperative to

represent the extracted minutiae in a form that is invariant to

rotation, translation, and non-linear distortion without affecting

their distinctiveness. Failure to do so will naturally lead to

significant degradation in the recognition performance.

Even in the case of iris recognition, it is not possible to

achieve good recognition performance by directly computing

the Hamming distance between two IrisCodes. Practical iris

recognition systems compute normalized Hamming distance

(that ignores bit locations erased by noise) over multiple

cyclical shifts applied to one of the IrisCodes (to account

for rotation variations). If this practical subtlety is ignored

and a simple Hamming distance metric is enforced, the iris

recognition accuracy is likely to decrease substantially.

Rather than developing new invariant feature extractors,

which in itself is one of the fundamental problems in bio-

metric recognition, researchers working on biometric template

protection often implement a feature adaptation step on top

of the original feature extractor. It must be emphasized that

feature adaptation is not the same as feature transformation. In

feature transformation, the goal is to obtain a non-invertible

and revocable template. In contrast, adapted templates need

not satisfy the non-invertibility and revocability properties.

Instead, feature adaptation schemes are designed to satisfy

one or more of the following three objectives: (i) minimize

intra-subject variations without diluting their distinctiveness,

(ii) represent the original features in a simplified form, and

(iii) avoid the need for biometric side information (e.g.,

alignment parameters). While a feature transformation scheme

may employ feature adaptation in the process of securing the

template, the converse is not true.

The simplest and most common feature adaptation strategy

is quantization and reliable component (feature) selection. The

quantization of Gabor phase responses to generate a binary

IrisCode and selection of reliable bits within an IrisCode [28]

is a good illustration of this adaptation strategy. Another typi-

cal example is the quantization of fingerprint minutiae location
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(a) (b) (c) 

Fig. 5. Complexity in fingerprint minutiae matching. (a) and (b) are two fingerprint images from the same finger with minutiae features marked on them.
The two minutiae sets after global alignment are shown in (c). Apart from missing and spurious minutiae that can be captured well using the set difference
metric, one can observe that the matching minutiae (marked by green ellipses) are not perfectly aligned due to non-linear distortion. This explains why a
simple set difference metric is unlikely to provide accurate recognition.

and orientation features and selection of good quality minutiae

[13] when designing a fingerprint cryptosystem. Though the

process of quantization and feature selection reduces intra-

subject variations, it is also likely to decrease inter-subject

variations. Thus, the challenge is to strike an optimum balance

between reducing intra-subject variations and preserving inter-

subject variations. Moreover, if quantization and reliable com-

ponent selection is user-specific, the quantization parameters

and selected components need to be stored as auxiliary data,

which is likely to decrease the non-invertibility and non-

linkability of the protected biometric reference [29].

Other strategies for feature adaptation include biometric

embedding and alignment-free representation. In biometric

embedding, the goal is to obtain a new representation for the

given biometric features so that simple distance metrics (e.g.,

Hamming distance or set difference) can be used to compare

biometric samples in the modified representation space. Con-

version of a real/complex vector or point set into a fixed-length

binary string is an example of biometric embedding. On the

other hand, the objective of an alignment-free representation

is to generate templates that can be directly matched without

the need for any alignment parameters. Such a need often

arises when dealing with biometric traits like fingerprint

and palmprint. Many practical feature adaptation schemes

involve a combination of different adaptation strategies. For

instance, quantization and feature selection are often applied

in conjunction with biometric embedding or alignment-free

representation to obtain the adapted features. Similarly, some

alignment-free representations proposed in the literature also

perform embedding in a new feature space.

A. Biometric Embedding

Biometric embedding algorithms can be classified based on

their input and output representations. Two types of embedding

algorithms that are commonly used for biometric feature

adaptation are: (i) real vector into a binary string, and (ii)

point set into a binary string.

1) Real Vector to Binary String: Conversion of a real

vector into a binary string involves two essential steps: (i)

quantization - mapping continuous values into discrete values,

and (ii) encoding the discrete values as bits. The critical

parameters in quantization are the number of quantization

levels and the quantization intervals. The Detection Rate

Optimized Bit Allocation (DROBA) scheme [30] proposes

an adaptive bit allocation strategy, where the total number

of bits in the binary string is fixed and the number of bits

allocated to each feature dimension is varied based on the

feature distinctiveness. Specifically, a higher number of bits

(i.e., more levels of quantization) is allocated to a particular

feature dimension if the mean feature value of that subject is

very different from the population mean. Furthermore, this

scheme advocates the use of equal-probability quantization

intervals in order to maximize the entropy of the resulting

binary string. While the DROBA approach optimizes the

detection rate (genuine accept rate) at the minimum (low) false

accept rate, it requires many training samples per subject in

order to determine user-specific feature statistics. Furthermore,

the need for storing user-specific quantization information

increases information leakage when the resulting binary string

is eventually secured using a template protection scheme [29].

While the DROBA scheme focuses on the quantization step,

the Linearly Separable Subcodes (LSSC) method attempts to

develop a better encoding scheme for encoding the discrete

values as bits. The gray coding scheme, which is traditionally

used for binary encoding, maps the discrete values into bits

such that adjacent quantization levels differ only by a single

bit. The problem with the gray code approach is that it

does not preserve the distances between the samples after

encoding. Though the Hamming distances between genuine

samples is likely to remain small (because feature values

of two samples from the same subject can be expected to

be similar), it is possible that two dissimilar feature values

may also have a small Hamming distance. Consequently, the

recognition performance based on the resulting binary string
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will degrade significantly. A unary coding scheme solves this

problem, but it does not produce a compact representation. The

LSSC method attempts to generalize the idea of unary coding.

A partially linearly separable subcode was also proposed in

[31] to obtain a better compromise between compactness and

distance preservation.

2) Point Set to Binary String: The most well-known exam-

ple of point set based biometric representation is a collection

of fingerprint minutia. Techniques for converting unordered

point sets (especially fingerprint minutiae) into fixed-length

binary strings include local point aggregates [32] and spectral

minutiae [33]. In the local aggregates approach [32], the

fingerprint region is divided into a fixed number of randomized

local regions (could be over-lapping) and aggregate features

are computed based on the minutiae falling within each local

region. The resulting feature vector is then converted into a

binary string using the techniques described in section III-A1.

The main limitation of this approach is that it requires the

fingerprints to be aligned before feature adaptation.

The spectral minutiae representation is obtained by consid-

ering the minutiae set as a collection of 2-dimensional Dirac-

delta functions and obtaining its Fourier spectrum after low

pass filtering [33]. Only the magnitude spectrum is considered

and it is sampled on a log polar grid to obtain a fixed-length

vector. Theoretically, the magnitude spectrum is invariant to

rotation and translation due to the shift, scale, and rotation

properties of the Fourier transform. Hence, it is possible

to perform matching between two spectral minutiae vectors

without aligning them first. However, in practice, alignment

based on singular points (core and delta) is required to achieve

good recognition performance [33] because large rotation

or translation may lead to partial overlap between different

impressions of the same finger. Another variation of the

spectral minutiae approach is the binarized phase spectrum

representation [34], where the phase spectrum is considered

instead of the magnitude spectrum (see Figure 6). However,

this approach also requires prior fingerprint alignment.

B. Alignment-free Representation

A possible solution to the problem of fingerprint alignment

is the use of local minutiae structures, which consist of

features that characterize the relative information between two

or more minutiae (e.g., distance between two minutiae) [35].

Since such features are relative, they are invariant to global

rotation and translation of the fingerprint and hence, no a priori

alignment is needed before matching. An additional benefit is

that such features are robust to nonlinear distortion. However,

if the matching is based only on the local minutiae information

and the global spatial relationships between minutiae are

ignored, some degradation in the recognition accuracy may

occur.

The simplest local minutiae structure is based on minutia

pairs, where the distance between the pair and the orientation

of each minutia with respect to the line connecting them can

be used as the invariant attributes [19]. The most commonly

used local minutiae structure is the minutia triplet, where

relative features (distances and angles) are computed from

(a) 

(b) 

Fig. 6. An example of embedding a point set as a binary string. (a) Fingerprint
with minutiae (point set) marked on it and (b) the corresponding binary string
representation obtained using the binarized phase spectrum technique [34].

combinations of three minutiae. Rather than defining the local

neighborhood based on a fixed number of minutiae, it is also

possible to construct a local descriptor by considering all

minutiae that fall within a fixed radius of a minutia point. An

example of this latter approach is the Minutia Cylinder Code

(MCC) [35]. The MCC is obtained by dividing the cylindrical

region (with its axis along the minutia orientation) around

each minutia into a finite number of cells and encoding the

likelihood of another minutia in the fingerprint with a specific

angular difference from the reference minutia being present in

the specific cell. It is also possible to binarize the MCC to get

a fixed-length binary string describing each minutia point.

C. Open Issues in Feature Adaptation

Though a significant amount of research effort has been

devoted towards feature adaptation, three main issues remain

unresolved. Firstly, existing feature adaptation techniques in-

variably result in loss of some discriminatory information

leading to lower recognition performance. A possible reason

for this phenomenon is that most of these techniques focus

only on minimizing intra-subject variations, while ignoring

the need to preserve inter-subject variations. Hence, there

is a strong need for distance-preserving feature adaptation

strategies.

The second unresolved issue is the coupling between the

feature adaptation strategy and the template protection tech-

nique. Recall that the main objective of feature adaptation

is to generate an invariant representation that can be easily

secured using an existing template protection scheme. There-

fore, it is essential to carefully consider the requirements of
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the template protection scheme while designing the feature

adaptation strategy. For instance, the error correction scheme

used in a biometric cryptosystem may have the ability to

correct a limited amount of errors. Since this error correction

capability implicitly determines the system threshold, the

feature adaptation scheme must be designed such that the

number of errors between samples of the same user fall below

this threshold, while the number of errors encountered during

impostor comparisons is greater than the error correction

capability. A feature adaptation scheme that is designed in

isolation may not satisfy the above requirement. Alternatively,

one can argue that it may be better to design a biometric

template protection scheme that directly secures the template

in its original representation rather than attempting to adapt

the template to fit the template protection scheme. As an illus-

tration, suppose that we wish to protect a biometric template

represented as a real vector. This template can be protected

either by converting it into a binary string and applying a

fuzzy commitment scheme [12] to the binary template or by

directly applying a secure sketch designed for the continuous

domain [36]. It is not clear which of the above two strategies

will lead to a better outcome.

Finally, the statistical properties of the adapted features is

seldom given attention in the design of a feature adaptation

scheme. For example, consider the case of a feature adaptation

scheme generating a binary string as output. Apart from having

low intra-subject variations and high distinctiveness, it would

be ideal if the resulting binary string is uniformly random

(i.e., has high entropy). Such a representation is likely to have

better non-invertibility properties when it is eventually secured

using a biometric cryptosystem (cf. Section IV). Moreover, one

of the implicit benefits of feature adaptation could be a new

representation that makes it easier to characterize the statistical

distribution of biometric features. However, the design of such

feature adaptation strategies is still an open research problem.

IV. SOLVING THE RECOGNITION PERFORMANCE VS.

SECURITY CONUNDRUM

The main limitation of state-of-the-art template protection

techniques is the trade-off between recognition performance

and the level of security offered by them. The first step towards

solving this problem is to clearly define the notion of security,

establish metrics to quantify security properties such as non-

invertibility and non-linkability, and develop methodologies to

compute such metrics. Once this is achieved, algorithms need

to be developed to jointly maximize performance and security.

The lack of a well-accepted notion of security is a critical

lacuna in the area of template protection. It is important to

emphasize that a biometric template protection scheme is not

designed to prevent other adversary attacks on a biometric

system such as spoofing or zero-effort impostor attack. There-

fore, the vulnerability of a biometric system to such attacks

cannot be considered as the sole basis for evaluating a template

protection scheme. For instance, a false accept rate (FAR) of

0.01% implies that 1 in 10,000 zero-effort impostor attempts

is likely to succeed. At this FAR, it is possible to argue

that the non-invertibility of a template protection scheme can

be no more than log2(10
4) bits because, on average, only

10, 000 attempts would be required to find a biometric sample

that closely matches with the stored template. However, such

an argument is unfair since it is based on the assumption

that an attacker has access to a large biometric database and

is able to mount an off-line7 zero effort impostor attack.

Therefore, it may be better to consider vulnerability to zero-

effort attacks as a distinct threat and report the FAR of the

biometric system before and after the application of biometric

template protection. Ideally, the FAR should be included as

part of the recognition performance and not security analysis.

Furthermore, the FAR of the biometric system after template

protection should be reported based on the assumption that

the attacker has full knowledge about the system, including

access to any supplementary data (if used).

In the context of biometric template protection, the terms

security and privacy have been used ambiguously in the

literature. One of the reasons for this ambiguity is that

many biometric cryptosystems are motivated by the desire

to generate a cryptographic key from the biometric data or

securely bind a key together with the biometric data. Template

protection is only a by-product of this key generation/binding

process. Therefore, in biometric cryptosystems, security is

often defined in terms of the secret key rate, which measures

the amount of randomness in the key bound to the template

or extracted from the biometric data [18], [37]. While the

term privacy leakage is commonly used in biometric cryp-

tosystems as a proxy for measuring non-invertibility, one can

find instances where the term privacy actually refers to non-

linkability. To further complicate matters, notions such as

weak (or conditional) and strong (or unconditional) biometric

privacy have been proposed [38]. Here, weak biometric privacy

refers to non-invertibility given only the protected biometric

reference v, whereas strong biometric privacy refers to non-

invertibility given v and the associated cryptographic key (one

that is bound to the template or extracted from the biometric

data). In the literature on feature transformation, the terms

security and privacy typically refer to non-invertibility and

non-linkability, respectively. To avoid confusion, it has been

suggested that specific properties such as non-invertibility (or

irreversibility) and non-linkability (or unlinkability) must be

considered instead of employing generic terms like security

and privacy [39].

A. Metrics for Measuring Non-invertibility

Non-invertibility refers to the difficulty in obtaining (ei-

ther exactly or within a small margin of error) the original

biometric template from an individual’s protected biometric

reference. This is also referred to as full-leakage irreversibility

in [39]. A number of metrics have been proposed in the

literature to measure non-invertibility of a protected biometric

reference.

A direct measure of non-invertibility is the conditional

Shannon entropy of the original template x given the protected

7Since most practical biometric systems restrict the number of failed
authentication attempts, it is usually not possible to mount online zero effort
impostor (FAR) attacks.
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biometric reference v, i.e., H(x|v). This quantity measures

the average uncertainty in estimating x given the knowledge

of v. Note that H(x|v) = H(x)− I(x; v), where H(x) is the

entropy of the unprotected template x and I(x; v) is the mutual

information between x and v. In the literature, a normalized

quantity called the privacy leakage rate [37], which can be

expressed as H(x|v)/H(x), has also been proposed to measure

non-invertibility.

In the context of biometric cryptosystems, I(x; v) is also

referred to as entropy loss, which measures the amount of

information leaked by the secure sketch about the biometric

template. Entropy loss is a useful measure to compare multiple

template protection schemes applied to the same biometric

data. In this scenario, since H(x) is constant, the scheme

with a lower entropy loss should be preferred because it

will lead to larger H(x|v). Furthermore, when the secure

sketch is obtained by binding the template with a secret

cryptographic key (K), it is also important to consider H(K|v).
Many biometric cryptosystems (e.g., fuzzy vault and fuzzy

commitment) do not offer strong biometric privacy [40] in the

sense that it is trivial to recover the original biometric template

given K and v. In such cases, the non-invertibility should be

defined as the minimum of H(K|v) and H(x|v).
While the conditional Shannon entropy is a good measure

of the average difficulty in inverting a protected biometric ref-

erence, researchers have also proposed the use of min-entropy

[10] to account for the worst case scenario. For a discrete

random variable A with probability mass function P , Shannon

entropy is defined as H(A) = Ea(− log2(P (A = a))) and

min-entropy is defined as H∞(A) = (− log2(maxa P (A =
a))). Thus, min-entropy measures the uncertainty in pre-

dicting the most likely value of a discrete random variable.

The conditional min-entropy is defined as H̃∞(A|B) =
− log(Eb→B

[

2−H∞(A|B=b)
]

) and the corresponding entropy

loss is computed as H∞(A)− H̃∞(A|B).
In the case of feature transformation, it is difficult to

theoretically measure the entropy loss introduced by the

transformation scheme. Consequently, the non-invertibility of

feature transformation schemes is typically measured empir-

ically based on the computational complexity of the best

known template inversion attack. In particular, the coverage-

effort curve [17] was proposed to analyze the non-invertibility

of transformed templates. The Coverage-Effort (CE) curve

measures the number of guesses (effort) required to recover a

fraction (coverage) of the original biometric data. This mea-

sure is analogous to the normalized privacy leakage rate [37]

defined earlier. The main pitfall of such empirical measures

is that it is impossible to guarantee that the attacker cannot

come up with a better template inversion strategy than what

is known to the system designer.

Recall that one of the goals of biometric template protection

is to prevent the attacker from launching spoof and replay

attacks using the compromised template. To launch such

attacks, it may not be necessary to exactly recover the original

template from the protected biometric reference. Instead, it is

sufficient for the attacker to obtain a close approximation (also

known as a pre-image), which can be replayed to the system to

gain illegitimate access. Note that in a biometric cryptosystem,

it is often straightforward to recover the original template if

a close approximation of this template is available. Thus, the

vulnerability of a biometric cryptosystem to pre-image attacks

is already factored into the non-invertibility analysis of such

a system. Therefore, analysis of pre-image attacks may be

valid only for the feature transformation approach. Metrics

to evaluate the difficulty in carrying out such attacks have

been discussed in [17], [39], [41]. However, for the sake of

simplicity, we avoid a detailed discussion of these metrics in

this paper.

B. Methods for Computing Non-invertibility Metrics

Since the non-invertibility metrics for feature transformation

schemes are generally computed empirically, this section will

focus only on methods to compute the non-invertibility metrics

for biometric cryptosystems. While the metrics for measuring

non-invertibility discussed earlier are theoretically sound, they

are not easy to compute for an arbitrary biometric template

protection scheme. In most biometric cryptosystems, the in-

herent properties of the underlying error correction technique

can be used to establish upper bounds on the entropy loss [10],

[18], [40], [37]. Typically, the entropy loss is an increasing

function of the error correction capability of the system. In

other words, if larger tolerance for intra-subject variations is

desired, the entropy loss will be higher. Consequently, the

resulting protected biometric references will leak more infor-

mation about the original template. Since the above bounds are

usually derived based on simplifying assumptions about the

biometric feature distribution, their utility will depend on the

extent to which the given biometric features conform to these

assumptions. Even when a reliable estimate for the entropy

loss is available, it is still difficult to directly compute H(x|v).
This is because of the complexity in estimating the entropy of

biometric features (H(x)).
1) Biometric Entropy Estimation: The primary difficulty

in estimating the entropy of biometric features is the lack

of statistical models to accurately characterize the intra- and

inter-subject variations. A few attempts have been made in the

literature to characterize the distribution of minutiae points in a

fingerprint [26], [42]. However, these models were proposed in

the context of estimating fingerprint individuality8. Moreover,

they rely on some simplifying assumptions in order to keep the

problem tractable. Therefore, such models cannot be directly

used to infer the entropy of a fingerprint minutiae template.

Entropy of a biometric template can be estimated by com-

puting the relative entropy (also known as Kullback-Leibler

divergence) between the feature distributions of a specific user

and the feature distribution of the population as a whole [43].

This quantity measures the reduction in uncertainty about the

identity of the user due to the knowledge of his/her biometric

feature measurements. The average relative entropy among all

the users enrolled in the system can be used as an estimate

of the biometric feature entropy. However, the main drawback

of the work in [43] is the use of a simple Gaussian model to

8More precisely, the goal in [26], [42] is to estimate the probability of a
false correspondence/match between minutiae templates from two arbitrary
fingerprints belonging to different fingers.
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characterize the feature distributions, which does not hold true

for most biometric modalities.

An alternative to modeling the complex feature distributions

is to compute the entropy based on match score distributions.

A good example of estimating entropy based on match scores

is the analysis of impostor score distribution using IrisCodes

extracted from 632, 500 different iris images [44]. Based on

this approach, it has been estimated that a 2, 048 bit IrisCode

representation contains approximately 249 degrees of freedom.

However, this result is based on a simple matching model

that ignores the need to test multiple relative rotations of

the IrisCode. Therefore, one cannot directly conclude that the

entropy of an IrisCode template is 249 bits. Moreover, it is not

straightforward to obtain a precise estimate of individuality

of the IrisCode representation using the above result because

it fails to take into account the genuine score distribution

(consequently, intra-subject variations are not modeled). A

simple extension of the above approach is to measure the

relative entropy between genuine and impostor match score

distributions [45]. But this approach may grossly underesti-

mate the entropy of the biometric features and the resulting

entropy estimates should be considered as a very loose lower

bound.

C. Open Issues in Non-invertibility Analysis

Despite significant progress in analyzing the non-

invertibility of template protection schemes, there is no con-

sensus yet on the standard metrics to be used for measuring

non-invertibility and well-defined methodologies to compute

these metrics. Efforts to standardize these metrics are still

under progress [23]. Once such metrics are standardized, the

focus should shift towards the development of a suitable

framework that allows joint optimization of recognition per-

formance and non-invertibility for both feature transformation

schemes and biometric cryptosystems.

One way to overcome the inherent trade-off between non-

invertibility and recognition performance is to develop tech-

niques for multibiometric9 template protection. It is well-

known that multibiometric systems lead to a significant im-

provement in the recognition performance. When multiple

templates are secured together as a single construct, the in-

herent entropy of the template is also likely to higher, thereby

leading to stronger non-invertibility. While a few solutions

have been proposed recently for multibiometric cryptosys-

tems [46], the fundamental challenge lies in overcoming the

compatibility issues between different biometric templates and

generating a combined multibiometric template from different

modalities, which preserves the distinctiveness of individual

templates. The advancements in the area of feature adaptation

can also play a key role in overcoming the above challenge.

V. ACHIEVING REVOCABILITY AND NON-LINKABILITY

While revocability and non-linkability are also core require-

ments of a template protection scheme, the analysis of these

9Multibiometric systems accumulate evidence from more than one biomet-
ric identifier (multiple traits like fingerprint and iris or multiple fingers/ irides)
in order to recognize a person.

two properties has received considerably less attention in the

literature compared to non-invertibility. Recently, it has been

demonstrated that many well-known biometric cryptosystems

do not generate revocable or non-linkable templates [24], [27],

[47], [48]. Though feature transformation schemes are widely

proclaimed as “cancelable biometrics” in acknowledgement of

their strengths in achieving revocability and non-linkability,

the real capability of such schemes to guarantee these two

properties is still questionable. If we assume that the attacker

has full knowledge of the protected biometric reference and

any supplementary data involved, the revocability and non-

linkability of feature transformation schemes appear to depend

on the difficulty in obtaining a pre-image of the transformed

template. When the pre-image is easy to compute given the

transformation parameters and the transformed template, it

may be possible to correlate the pre-images obtained from

multiple transformed templates to invert and/or link them

[17]. Therefore, there is a critical need to develop one-way

transformation functions that do not allow easy computation

of a pre-image.

One possible way to achieve revocability and non-linkability

is to use hybrid biometric cryptosystems [19], [20]. While

a combination of secure sketch and feature transformation

enhances the non-invertibility of the protected biometric refer-

ence, the feature transformation step ensures the revocability

and non-linkability properties. However, this may come at the

cost of a degradation in the recognition performance.

Another practical solution for achieving revocability and

non-linkability is the use of two- or three-factor authentication

protocols. In such protocols, either the supplementary data

is assumed to be a secret [7] or the auxiliary data (AD)

and pseudonymous identifier (PI) are not stored together in

order to prevent the possibility that both AD and PI are

compromised simultaneously [49]. For example, the transfor-

mation parameters in a feature transformation scheme can be

dynamically generated based on a password or PIN supplied

by the user or derived based on a key stored on a smart card

held securely by the user. Similarly, the AD in a biometric

cryptosystem could be stored on a smart card, while the PI is

stored in a central database. Apart from ensuring revocability

and non-linkability, an additional advantage of such protocols

is improved robustness against zero-effort impostor (FAR)

attacks because the attacker must be able to obtain more than

one authentication factor (biometrics & password or biometrics

& smart card) for successful authentication. However, if we

assume that all the other factors except the biometric trait is

available to the attacker, the advantages of such multi-factor

authentication protocols vanish, and their properties are no

better than those of the underlying template protection scheme.

VI. SUMMARY AND FUTURE RESEARCH DIRECTIONS

While biometric template protection has been an active

research topic over the last 20 years, existing solutions are

still far from gaining practical acceptance. The key reason for

this failure is the unacceptable degradation in the recognition

performance combined with unprovable security claims. In

this paper, we have identified three main issues that must be
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addressed to bridge this gap. Designing invariant biometric

representations with high entropy will not only improve the

recognition performance, but also enhance the non-invertibility

of the protected template. This is because the information

leaked by a protected template is often proportional to the

tolerance allowed to account for intra-subject variations. Fur-

thermore, standardized metrics are required for measuring the

security properties of a template protection scheme, especially

non-invertibility. Systematic formulation of such metrics and

methodologies to compute them, followed by independent

benchmarking of template protection algorithms based on

these metrics will greatly enhance the public confidence in

biometric template protection technologies. Finally, practical

solutions must be devised to ensure revocability and non-

linkability of protected templates.

Apart from the open research issues identified earlier in

the context of feature adaptation (cf. Section III-C) and non-

invertibility analysis (cf. Section IV-C), a number of other

questions remain unanswered.

• There is a greater need for template security in scenarios

where the biometric data is stored in centralized repos-

itories. Such databases are commonplace in large-scale

identification systems (e.g., India’s Aadhaar program,

Office of Biometric Identity Management (formerly US-

VISIT) program). However, almost all existing template

protection techniques have been designed for the authen-

tication use-case (one-to-one verification) as opposed to

identification (one-to-many matching). It is not clear if

such techniques can be scaled up to meet the require-

ments of an identification system, especially given the

stringent constraints on accuracy and throughput in such

applications.

• Another lacuna in template security is the absence of

an entity similar to public key infrastructure, which can

create, manage, and revoke biometric information [50].

A related issue is how to revoke and re-issue a protected

biometric reference without re-enrolling the user, which

is often impractical.

• Attack on the template is just one of the possible adver-

sarial attacks on a biometric system [4]. It is possible that

efforts to secure the template may have a direct impact

on other types of attacks [6]. Therefore, a system level

analysis of the effect of template protection algorithms is

required.

• Finally, smartphones are turning out to be the preferred

platform for integration of biometric technologies. For

example, the Touch-ID fingerprint recognition system in

iPhone-6 enables phone unlocking capability as well as

mobile payments via the Apple Pay service. In the near

future, it may be possible to capture face, fingerprint, iris,

and voice biometric modalities using a commodity smart-

phone. The ability to securely authenticate a smartphone

user using multibiometrics can be expected to open up a

number of new applications involving mobile commerce

and transactions. In this context, it is necessary to review

whether the current state-of-the-art (storing the encrypted

biometric templates on a secure chip) is adequate for

the range of applications envisioned and develop novel

template protection strategies as well as remote biometric

authentication protocols suitable for this domain.
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