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ABSTRACT

The plant breeding process begins with the selection of parents and crosses.
Promising progeny from these crosses progress through a series of selection stages that
typically culminate in multi-environment trials. | evaluated best linear unbiased
predictors (BLUP). other predictors and prediction models at the initial (cross
prediction), early replicated testing and late (multi-location) stages of a sugarcane
breeding selection cycle. Model and predictor accuracy was assessed in the first two
stages by using cross-validation procedures. | compared statistical models of progeny
test data in their ability to predict the cross performance of untested sugarcane crosses.
Random parental etfect predictors and a random cross effect predictors were compared
to mid-parent values (MPV) derived from a fixed female-male parental effect model.
The cross effect model was evaluated with and without incorporating the genetic
relationships among tested crosses into the BLUP derivation. Models with BLUP-based
predictors showed smaller mean square prediction error and higher fidelity of top cross
identification than the MPV for all traits evaluated. The MP-BLUP was consistently the
best one.

Prediction of per se (genotype) performance is needed during the selection
process and requires combining information from different trials. The study
investigated three mixed models involving three versions of BLUPs estimated under
different strategies, a fixed least squares genotype means model, and four check-based

methods for combining information at early replicated stages. BLUP-based predictors

vi
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were superior to the currently used predictor (average percent of check cultivar). In
addition, BLUP accuracy was not dependent on check values.

In later selection stages, when few and highly selected genotypes are evaluated,
genotype effects may be assumed fixed. By assuming genotype-by-environment
interaction effects as random, the modeling of the covariance matrix allowed direct
estimation of stability and genotype-by-environment measures. Closely related mixed
models involving covariance parameters related with genotype-by-environment
interaction were estimated. The covariance structure of the observations under the
mixed models adjusted the genotype mean separation. Stability parameters were
integrated into broad (across environment) and narrow (environment specific)
inferences about genotype yield performances. A procedure to obtain visual
representation of the genotype-by-environment interaction (BIPLOT) under a mixed

AMMI model was also derived.

vii
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CHAPTER |

PLANT BREEDING DATA AND MIXED MODELS
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1. INTRODUCTION
1.1. Plant Breeding and Statistical Modeling

The ultimate goal of plant breeding is to generate productive cultivars improved for
one or more traits. The breeding process begins with the selection of parents that
possess desired attributes. Parents are typically derived from advanced stages of
selection or they are recognized commercial lines or cultivars. Hybridization of these
parents generates progeny that are typically screened via a series of selection stages.
The choice of parents and hybrid combinations affect the quality of the progeny.

The selection process at the initial stages of the breeding process, when there is a large
amount of new material, typically uses small unreplicated plots or only limited
replication. As progressive selection for desired traits reduces the size of the progeny
population, breeders collect more objective data and use larger plots and more
replications. Researchers commonly use replicated multi-environment trials in the final
stages of the selection process.

Phenotypic data are generated at each stage in which the genotypes are tested. The
data can be analyzed for purposes such as parent selection, ranking of genotypes for
progressive advancement in stages, and comparing performance of advanced genotypes
in different environments. The data can also be used to diagnose the population and
prescribe the most appropriate strategies to maximize progress toward short and long-

term breeding goals.

When analyzing cross performance to select appropriate parental combinations for

crossing, it is important to note that parental generations are rarely discrete. They
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commonly originate from different selection and crossing series. Because the genotypes
that represent potential parents often derive from different stages ot selection, the
amount and precision of the data may dramatically vary. Per se variety (parent)
evaluation usually requires several years (Brown and Dale, 1998). Selecting superior
genotypes in the early generations might be highly ineftective for several crops.
especially those clonally propagated (Skinner, 1971; Caligari et al., 1986: Gopal et al.,
1992). Several researchers have demonstrated the gain in efficiency of selection by
using cross prediction trials or progeny tests for family selection (Hogarth, 1971; Brown
et al.. 1988; Zaunbrecher 1995; Cox et al., 1996; Simmonds, 1996). Thus, cross
appraisal or progeny tests are commonly employed at the beginning of each breeding-
cycle (Milligan and Legendre, 1991; Cox and Hogarth, 1993). However, only a few of

all potential hybrid combinations are actually made and evaluated in progeny trials.

Typically. the performance of a new or untested cross combination is predicted by
calculating mid-parent values (MPV) of the raw or scaled parental mean. These means
are based on observed (per se) records of potential parents. Improved estimates of
parental means for a trait are often obtained with some form of an additive linear model.
Such models adjust observed values for non-genetic effects to obtain better estimates of
the genetic effects (Panter and Allen, 1995). A classic method of obtaining parental
genetic effects is by combining data across progeny tests and considering all effects in
the model as fixed (White et al., 1986). Unfortunately, cross appraisal databases are
typically incomplete and unbalanced, which creates theoretical concerns about the fixed

linear model underlying the mid-parent value prediction (Henderson, 1973).
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Mixed models provide alternative analytical approaches that may overcome
limitations of the fixed analytical approach (Henderson, 1974, 1975). Best Linear
Unbiased Prediction (BLUP), as it is presented in a mixed linear model framework
(Henderson, 1975; Searle et al., 1992), has been used for prediction and estimation of
genetic merit of tested material in plant breeding (Bridgess. 1989; Chang and Milligan,
1992; Chang, 1996, Cox and Stringer, 1998). Mixed model-based prediction has also
been proposed for predicting the performance of untested crosses in the production of
hybrid crops such as com (Zea mays L.) (Bernardo. 1994) and soybean (Glycine max L.
Merr.) (Panter and Allen, 1995). This method demonstrates better prediction accuracy
than that obtained by using a fixed linear model. The mixed model prediction of

untested crosses relies on the genetic relationship between tested and untested crosses.

Efficient selection and advancement of individual genotypes from one stage to the
next assumes the current data predicts the future per se (genotype) performance. It
ideally uses all the information that is available from past trials. Yet the trials from
different stages vary in number of entries, plot size, replication. genetic level of elitism,
and experimental precision. To overcome these incongruities among trials and stages.
breeders often incorporate commercial check cultivars into the tests. Typically,
experimental entry values are expressed relative to the check(s) (Hill and Rosenberg,
1985). But, usually with time, the checks are changed as the experimental population
exceeds the performance of older checks or when new and more relevant commercial
checks become available. Commercial checks are individual genotypes or cultivars that

generally vary in performance among trials and themselves. Thus, the use of checks to
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combine information has limitations. Moreover, during the selection stages many
related individuals are tested, yet classic analysis seldom incorporates the correlated
information into individual performance predictions. Mixed linear model approaches
may circumvent the problems of fixed ANOVA methods for combining information
from different trials and incorporating genetic correlations by treating genotype effects

as random variables (Stroup, 1989: Littell et al.. 1996; Federer and Wolfinger, 1998).

Most agricultural and economically important traits of commercial crops are
quantitative in nature, are controlled by polygenes with various kinds of genetic eftects
and are affected by the environment. Thus, the variety trials commonly conducted in
the latest stages of a breeding cycle involve a few highly selected genotypes tested in
several environments. Broad (across environments) inference, narrow (environment-
specific) inference and genotype-by-environment interaction implications are important
considerations (Milliken and Johnson, 1994; Littell et al., 1996; Kang and Gauch, 1996:
Shafii and Price, 1998). The information related to variety trials is often incomplete
over time since not all genotypes are evaluated in all environments. The genotype
effects are seldom treated as random effects, whereas environments and/or genotype by
environment interaction may be regarded as random. A random approach for
environment and genotype-by-environment interaction effects allows the modeling of
correlation structures throughout their associated variance components (Cullis et al.,

1996; Magari and Kang, 1997; Piepho 1994, 1997, 1998a).
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The Louisiana Agriculturai Experiment Station (LAES) sugarcane breeding
program provides a good example of a common plant breeding data structure (Milligan,

1994).

Sugarcane (Saccharum spp.) is a clonally propagated crop where crosses among
clones. used as female and male parents, are used to obtain new genetic material. The
breeding program uses several sequentially planted selection stages to identify and
select the best clones within each crossing series. Material with commercial potential is
ultimately evaluated in yield trials in several environments (year and location
combinations). Sugarcane is planted in Louisiana in late summer or early fall and is
typically harvested three times (plant cane, first ratoon and second ratoon crops), once
cach fall, prior to fallowing for replanting. The program uses 10 selection stages. and
requires 12 years from crossing to varietal release. The process typically begins by
planting about 50,000 seedling progeny each year, representing 150 to 250 crosses

among 70 to 80 parents (Table 1.1).

A replicated progeny test of crosses is planted each year. Family selection among
progeny is based on objective data from the progeny test and is used to initially select
the most promising families (crosses). Subsequently. individual plant selection is
performed within the selected families. Stool weight, freedom from diseases, and hand-
refractometer-Brix serve as the visual selection criteria for the single-plant selection
stage. A subjective cane yield rating followed by selection for high Brix is used in the
first clonal trials. Objective yield data through the second ratoon crop are collected from

the second clonal stage and successive stages.
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Replicated yield trials are initiated in the third clonal trial (Increase) and
experimental clones might be first used as parents in year six. Replicated testing of no
more than 10 experimental clones culminates in the advanced variety trials (Outfield).
[n any given year. populations exist in all stages of the selection program.

Table 1.1. Number of locations, replications and crops used in a typical year of the
Louisiana Sugarcane Variety Development Program +

Year Stage Locations Replications  Crops Total harvested yield
harvested  plots available when
planting next stage §

number

1 Crossing - - - -

2 Seedling 1 1 1 0
3 1st Clonal 1 1 2 0
4 2nd Clonal | 1 3 0
5 Increase 2 | 3 0
6 Nursery 3 2 3 2
7 Infield/Nurs. 173 22 373 4
8 Infield 1 1 1 12
9 Outfield 10 3 3 28
10 Outfield 10 3 3 52
11 Outfield 10 3 3 90
12 Outtield 10 3 3 150
13 Release 240

t Abridged from Milligan, 1994, Table !.

$ First ratoon second clonal plots are harvested prior to planting the nursery plots. This is earlier than
normal. Otherwise, plots are not harvested until after planting, hence there is a two-year delay in harvest
information prior to planting.
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The LAES database is characterized by a complex structure involving several types
of genetic and experimental correlations. It contains incomplete and unbalanced
information for each genotype, i.e., information on all genotypes is not available at the
same selection stage and in the same trial. To make informed decisions. statistical
models and estimation procedures that can effectively handle the database features are

needed.

The particular characteristics ot cach stage in the breeding process demand
different statistical modeling strategies. The general objective of this study was to
compare biometrical models for three general stages of the breeding process. The first
part compared models for predicting cross performance in the hybridization stage. The
second part analyzed per se (genotype) prediction performance at early stages of the
breeding process when considering genotype etfect as a random variable might be
convenient. The last part looked at predicting per se (genotype) performance at late
stages of the breeding process when highly selected genotypes, usually assumed fixed,

are evaluated across several environments.

The research explores mixed linear models to improve predictions of cross
performance and genotype per se performance in a typical sugarcane breeding program.
It analyzes models and performs estimation procedures of the underlying variance-
covariance structures at three different stages of the Louisiana Sugarcane Variety

Development program, i.e., crossing, selection stages, and advanced variety trials.
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Identifying the best parents and cross combinations should improve the likelihood
of producing elite progeny and selecting superior genotypes for potential release as
cultivars. The prediction of per se performance would aid genotype selection across
stages and enhance variety recommendations. By increasing the probability of selecting
the best parents and lines, breeders may increase the selection intensity in early stages.
Hence, better predictions in a breeding program may accelerate early stage selection and
ultimately shorten and or enhance the effectiveness of the selection cycle.

1.2. Predicting Genotype Performance: The Modeling Strategy

Statistical modeling is based on the specification of the expected value and the
variances and covariances of observed data. Predictions depend on that modeling. The
conventional general linear model coupled with ordinary least squares estimation
procedures (OLS), useful as it is in many experiments in agriculture, is too restrictive L0
perform satisfactory data analyses for the typical data structure of most breeding
programs. Error structure in “real world” experiments is often more complex than used

in standard linear models for conventional data analysis (Stroup. 1989).

In contrast, the general linear mixed model can accommodate covariance structure
among observations. Standard linear models usually assume independence. The mixed
model handles these correlations with random effects and their associated variance
components, modeling variability over and above the component associated with
residual error (Wolfinger and Tobias, 1998). Mixed linear model approaches can
circumvent the troublesome ANOVA for handling unbalanced data and complex

models.
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Mixed model analysis applies particularly to research involving factors with a few
levels that usually can be controlled by the researcher (fixed) as well as factors with
levels that are beyond the researcher’s control (random). These random factors vary
from experiment to experiment, and may be interpreted in the context of a symmetric
probability function. Most breeding trials have some mixed model aspect. The two
parents of each hybrid variety contribute randomly by one half of its genetic make-up.
The allelic complement passed on to its progeny is different for each descendent. The
number of potential genotypes involved in the crossing process is large, but the number
of realized effects is substantially less. Additionally, the distribution of genetic effects is
reasonably symmetric for most important quantitative traits. Therefore, genetic effects
may be reasonably assumed as random (Stroup, 1989 Henderson, 1990; Robinson.
1991). Federer (1997) commented on the random nature of genotypes in the early

stages of a selection program.

However, at the later selection stages genotypes might be assumed as fixed since
research is focused on a few selected genotypes. In the later selection stages,
environmental and/or genotype by environment interaction effects may be considered

random (Bridges, 1989; Piepho, 1994).

The mixed model framework is flexible enough to adjust to the structural changes
and factors that affect the selection process during its different stages. It is generally
applicable to a wide variety of quantitative genetics and breeding prediction problems.

Mixed models have not been used in a unified framework in plant breeding.

10
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Traditionally, mixed model applications in plant breeding have focused on
population variance component estimation and identification of appropriate error terms
to be used for testing fixed effect hypothesis (Cockerham, 1963 Falconer, 1989).
Rarely have they have been used for the most general purpose of modeling the

underlying covariance structure in the data.

Liang and Zeger (1986) and Zeger et al. (1988) discussed the interpretation of the
mixed model estimates in both a subject-specific and population-average sense. A
subject-specific approach focuses on the prediction of random effects for individuals
and their relation to the population parameters (fixed parameters). With a population-
average approach, the interest is primarily on fixed parameters. Variability arising from
random effects is treated essentially as a nuisance parameter. The best linear unbiased
predictor (BLUP), as a technique for predicting random effects (Harville. 1990:
Robinson, 1991). should be understood as a subject-specific mixed model prediction

(Wolfinger and O"Connell, 1993).

Henderson's work (1973,1974,1975) on BLUPs of genetic random effects in
animal sciences represents the best known use of mixed model theory to predict future
performance for breeding purposes. BLUPs of random genetic effects have been used
for predicting genetic performance in crop plants on only a limited basis (White et al..
1989; Panter and Allen, 1995; Bernardo, 1994,1995,1999; Chang and Milligan, 1992;

Piepho, 1994; Cox and Stringer, 1998).
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The prediction value of unobserved or future performance is an important
consideration in plant breeding. Prediction of random variable outcomes, in general. is
a fundamental problem in statistics (Hinkley, 1979: Butler, 1986; Bjornstad. 1990).
Assuming that there is a priori knowledge about the distribution of the parameters
defining the variable to be predicted, predictions are obtained by finding the posterior
distribution of the variable, given the data, from a Bayesian point of view (Gelman et

al., 1993).

Besides the Bayesian approach to the prediction problem, the general mixed model
allows prediction in a frequentist framework via the concept of conditional expectation
without using a priori distribution. The conditional expectation of the random effects.
given the observed data, is the BLUP of those random effects, and is also a Bayes
estimator under normal priors (Robinson. 1991; Searle et al.. 1992). Theoretically,
BLUPs have the smallest mean squared error of prediction among all linear unbiased
predictors, provided the assumed model holds and the parameters of the model are
known (Searle et al., 1992). In practice, estimates replace parameters and different
models for the variance-covariance structure of the observations lead to different
BLUPs. Thus. the term BLUP is quite general and a precise identification of the

underlying model is needed to avoid confusion.

Applications of a more general mixed model framework to combine information,
estimate fixed and random parameters, and improve per se performance prediction
produce smaller prediction errors when compared with the ordinary least squares

approach for analyzing agricultural experiments (Wolfinger et al., 1997).
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Using mixed model equations and simple correlation structures, Hill and
Rosenberger (1985) showed the efficiency of BLUP for combining information for
germplasm evaluation. Similar BLUPs, i.e., assuming random effects as stochastically
independent, were reported effective by Piepho (1994) for modeling muiti-environment
variety trials. Oman (1991) and Gogel et al. (1995) have shown how to fit models of
complex variance-covariance structure to genotype by environment data. Magari and
Kang (1997) used mixed model estimation to consider the interaction of individual
genotypes with environments for stability analysis. Interaction-term variance
components were estimated for each genotype by using the mixed model equations.
The variance components were used as stability measures. They are equivalent to
Shukla’s stability variances (Shukla, 1972). but it is important to note that they were
estimated as parameters of a mixed model. Piepho (1998) put difterent well-known

stability measures (Kang and Gauch, 1996) into a unifying mixed model perspective.

Mixed models have been successfully used for recovering inter-effect information
from experiments that use designs such as augmented and lattice designs (Federer,
1997). Federer and Wolfinger (1998) have shown that the expected error mean square
for differences (contrasts) of means is smaller when random effect information is
recovered than when it is ignored. The variance components estimated in the mixed
model framework are themselves informative in breeding. Heritabilities and response to
selection are obtained from the variance components of the mixed model without

regarding data unbalance.
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Random variable predictions that involve estimation of fixed and random effects
may be obtained using appropriate BLUPs and treatment (fixed effects) means. Under a
general mixed linear model, the predictions account for involved variance and
covariances.

Mixed model background has been developed over many years (Anderson and
Bancroft, 1952; Henderson, 1953, 1974, 1975:; Scheffé, 1956 Hayman, 1960; Searle,
1971, 1987. LaMotte. 1973, 1988; Rao, 1973, 1988 Harville. 1976. 1977. 1990
McLean et al., 1991, Searle et al., 1992; Khuri, 1998). The new mixed linear model
approaches offer opportunities for plant breeders to better deal with complex databases.
However, mixed linear models have rarely been applied in plant breeding before
software such as PROC MIXED (SAS Inst.. 1996) became available to overcome the
computational demands of this approach (Littell et al.. 1996: Piepho 1998; Wolfinger et
al., 1997, Federer and Wolfinger. 1998).

1.3. The Mixed Linear Model: General Overview

The mixed model contains fixed effects that determine the mean of the data and
random effects to model variance and covariance. Several authors attempted to give
general definitions for fixed and random effects (Scheffé, 1956; Searle, 1971: Stroup.
1989; Robinson, 1991; Searle et al., 1992). Most of them approached the problem from
a theoretical frequentist point-of-view and did not develop a clear definition.
Analytically, clear reasons may exist for treating a factor as random or fixed. If the
factor has a large number of levels, which are related to some probability function. it

may be best to treat the factor as random.
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The researcher should use a BLUP if the prediction of specific levels for the

random effects, in a particular experiment, have importance.

The general form of a linear mixed model is

y=Xp+Zu+e

where y is a n vector of observable random variables (data), X and Z are known
design matrices. B is a p vector of effects parameters having fixed values, and u
(random effects) and e (error terms) are unobservable random m and n vectors,
respectively. Usually Z = [Z,, . . ., Z,] where each Z, represents the model design
matrix for the irh random factor and u = [u,.....u,] where u, is a m, random vector. Note
that m = Zm,. Assumptions about E(u), E(e). G -the variance-covariance matrix of the
random effects in u-, R -the variance-covariance matrix of the random error terms in e-,
and the covariance between u and e will define a particular mixed model.

When the vector of observations is normally distributed, the probability distribution
of the data is completely determined by its mean and the variance-covariance matrix.
The typical assumption of independence made in the general linear model is eliminated
in the mixed model by modeling statistical correlations through V, which is the matrix
containing the variances and covariances of each observation. Models for the variance-
covariance of the data, V, are obtained by specifying the structure of Z, G, and R.

Non-constant variance and covariance for both the random effects and the residual
errors, as well as dependence of the variances on the levels of fixed and random factors

can be introduced throughout different structures of the variance-covariance matrix V.
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A simple. yet important class of linear mixed models contains only one source of

random effects and assumes E(u) = 0, E(e) =0, G = oi ILR= oZ' 1. and Cov(u,e) = 0.

. 2 2 .
The variance components, o and o, . are scalar-valued parameters. According to the
previous assumptions, the expected value of the data is E(y) = X B . and the variance-

. s 2 b2 2 : 2.2
covariance matrix i1s V=2GZ'+ R = o, YAV RS o, I= a ( i+yZZ'). where vy = s, /o,
is a variance component ratio. Note that the variance of the data is a linear function of
the variance components.

In plant breeding, this model could be used when y contains the measured

responses, such as plot yields from m genotypes. each represented by a random genetic

effect u = [u,.....u,] to be predicted. and § might be the vector of fixed parameters

. . . 2.0 . .

related to trial effects. The model assumption, G = o, I, implies that the genetic effects
. . 2

are independent with zero mean and homogeneous variance denoted by o . The model

‘, . - . . 3
R = a_ I for the variance-covariance of error terms implies that the error terms are
uncorreclated with each other and that the residual variance is homogeneous, i.e. the
2 . . . 2 2 2
same o for all observations. Note that the parametric functiony / (1+ )=o, A o, ta, )

may be interpretable as a broad-sense heritability estimate for an individual plot-basis
scenario (Nyquist, 1991). Thus, the simplest form for G and R is one that arises from
independence and constant variances of the random effects and the error terms.

However, the independence in the random effects does not imply that the observations

are independent. The V matrix for this simple between-within mixed-model ANOVA is

16
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a block diagonal matrix indicating that observations within the same level of the random
effects are equally correlated. and observations between difterent levels of the random
effects are independent. Thus. if Z is a model matrix with s and Os, each of the sub-
matrices in the block diagonal of V will be a type of matrix with the property called

compound symmetry (Jenrich and Schluchter, 1986). This is because all the diagonal

’ ’ . . 3 . ~
elements are equal to o, ta,. which is the variance of any observation, and the oft-
. 2 o . ..
diagonal elements are equal to o . which is the covariance between any pair ot
observations sharing the same random effect. Therefore, by considering u as random

)
effects with vartance G = o, L. this sets up a common correlation among all observations

having the same level of u.

The extension of the model to allow several random effects is straightforward.
Assume that q > | random factors are considered in the model. For example. suppose
family. plots within family. and rows within plots are all random sources of variation.

If the levels within each factor are assumed to be independent and with homogeneous

variance, say G, = 0;': 1. and random effects are uncorrelated between sources then
E(y)=XB
b 2 ki ]
V=ZGZ+R=0 ,ZZ +...+ c;q ZZ; +o 1=0_( 1+y,22' +.+y,ZZ))

where y,..... Y, represent the variance ratios for the respective random sources.

17
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Different models may be assumed for the variance-covariance matrices,G,..... G,.
One may generalize this model by allowing one or more of the variance components to

vary from group to group or in accord with some covariates.

The model descriptions above correspond to models known as variance component
models (Searle et al.. 1992). They do not include covariances between the random
effects. Models that include covariances come when the effects within and/or between
source of variation are correlated. Therefore, G as well as R may contain non-zero off-
diagonal elements. Laird and Ware (1982) consider the unstructured model for a
covariance matrix, i.e. the more general case where all elements of the matrix are
allowed to be different. For example, if the genotypes. as in the previous example. were
genetically related, a matrix of genetic relationship. A, may be used to adjust the
variance-covariance matrix of genetic effects. These relationships may be computed

frora pedigree or molecular based analyses (Falconer, 1989: Bernardo. 1994).
- ‘ . 2
Therefore, the matrix of variance-covariances for the u vector is G=°u A where

elements in A arc used to represent genetic relatedness between any two genotypes and
is expressed as a proportion of the genetic variance. Thus, A = I represents the special

case of unrelated genotypes. For example in an experiment evaluating half-sib
. . . 2 2 - . .
genotypes, the genetic variance is 1/4 o where o represents additive genetic variance,

if the parents themselves are not related (Kang, 1994). So, the parameter function
4y/(1+ y) represents a narrow-sense heritability. By defining A as a matrix with the
coefficients of the additive variance for the covariance between genotype i and j as the

if-th element of the matrix, more complex pedigree structures can be considered to

18
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estimate additive variances. Experimental correlations among observations may be
modeled by the off-diagonal elements of R. When data are indexed in space,

covariances in R may reflect correlations due to the spatial unit arrangements

Searle et al. (1992) and Khuri et al. (1998) widely discuss estimation in mixed
lincar models. A brief discussion is presented here to outline common procedures that

will be used to fit plant breeding-orientated mixed models in the subsequent chapters.

Extending the normal equations to allow estimation by generalized least squares
(GLS) procedures, Henderson (1975) proposed the mixed mode! equations (MME).
Solving this equation system, estimations of fixed etfects and predictors of random
effects can be obtained. If G, R. and Z, and hence V are known, the generalized least
squares solution for f is the best linear unbiased estimators (BLUE). and the solution
for the estimation (prediction) of the random effect is thc BLUP (Searle et al., 1992).
However, in practice, V is usually unknown. Therefore, estimation of covariance
parameters usually comes prior to the estimation of B and u. After obtaining the

estimates of G and R, and Z (if it is not known), the fixed and random effects can be

A 3
estimated by solving the mixed model equations with V replacing V. Assuming that the
parameterization of the design and variance-covariance matrices is such that the
matrices to be inverted are full rank matrices, the mixed model equations may be

represented by

X'R'X X'R'Z XR'y

s> T

XR'Z ZR'Z+G" ZRy|
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The solutions can be written as
A
B - (x'v—l x)—l xvv—ly
A A
u=GZV"'(y-Xp).
Under normality, they are equivalent to the maximum likelihood-based solutions
(Searle et al.. 1992). Kackar and Harville (1984) gave approximations of standard
errors of estimators of fixed and random effects in mixed linear models. and showed

that GLS solutions were more efficient than corresponding OLS estimators with

unbalanced data.
Several authors have discussed why one would be interested in estimating random

effect values, i.e. G (Henderson 1975, Harville. 1990, Robinson, 1991). The BLUP of a
random effect represents the expected value of the random effect given the observed

data. If the joint distribution of y and u is

y xa] [v c])
[u]*‘v[[ 0 'lca)
where C = Cav(y.u) = ZG. Then the conditional distribution of u given y is

(u|y)~N ( E(u)+C'V'(y-Xp). G-C'V''C ).

Assuming normality the conditional expectation, E(u| y), is equal to GZ'V"' (y - Xp)
when E(u) = 0. This is a common expression for the BLUP of the random vectoru. In
reality, the conditional expectation above will be the BLUP of u only when V is known

(Searle et al., 1992). The equation is also a Bayes estimator under a normal priori

20
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(Robinson, 1991). In practice, the variance covariance structure of the data is

estimated.

The BLUP of a linear combination of fixed and random effects is the linear
combination of the BLUE of fixed effects and the BLUP of random effects (Searle et
al., 1992). Consider a simple model with one random effect representing genotypic

effects and y phenotypic data. The prediction equation for genotype j, = p+ u, is
A A N A
©, = K+ h* (Y]'“ ).

where p is the population mean, and h’ is the weighting or shrinkage factor. If G and R

are the traditional structures of the between and within mixed model ANOVA. the
. 2 2 2 . . . e
elements of C'V ' are functions of o, /(ou tao, ) which is the heritability measure

associated withy. A BLUP is a centered, fixed effects estimate shrunken toward .
with more shrinkage taking place for smaller values of the estimated variance

components in C'V™', i.e. heritability for this model.

Hitherto. it should be clear that variance components relating to random effects and
error terms are needed to obtain estimates of fixed and random effects. Variance
component parameter estimates in plant breeding have been typically derived from the
expected mean squares of ANOVA tables (Falconer, 1989). This approach, at its best
with balanced experiments, is awkward, and at its worst, with unbalanced data, it can
seem intractable (Stroup, 1989). ANOVA-based estimators of variance components.
which rely on equating mean squares to their expectations and solving for the unknown

variance, have nice statistical properties when data are balanced.
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By specifying a Gaussian (normal) distribution for the random effects. the
estimation of the unknown parameters is usually obtained using likelihood-based
procedures (Hayman, 1960; Harville. 1977). A restricted maximum likelihood method
(REML) (Patterson and Thompson, 1971) is usually preferred for estimating the
variance components in a mixed model (Searle et al., 1992). Searle (1971) indicated
that REML estimates in balanced designs are identical to estimates based on the
expected mean squares of ANOVA. For unbalanced data, REML can offer significant
advantages over ANOV A-based estimators because REML estimates are unique, non-
negative, and have maximum likelihood. large sample statistical properties. The
asymptotic standard errors of the estimated variance components can be derived readily
as part of the estimation procedure (Searle et al., 1992). In many plant breeding
situations, a normal distribution for the data can be realistically assumed. and hence
REML approaches are appropriate. Nevertheless, Banks et al. (1985) demonstrated that

REML estimates of variance components are robust to violations of this assumption.

The REML procedure of estimating variance components maximizes the residual
likelihood function, which is the likelihood function of a set of linear combinations of’
observed values whose expectations are zero (error contrasts or residuals). Those values
are usually obtained by transforming the observations with the transformation matrix
M = -X(X'X) X’ (Searle et al., 1992). The error contrasts are free of any fixed effects
in the model. Thus, the residual likelihood function depends only on the unknown
parameters that belong to the variance-covariance structure. The maximization of this

function requires numerical procedures. Computation may be extensive with many
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variance-covariance parameters. Over-parameterized models may be avoided by an
appropriate experimental design in relation to the number of parameters to be estimated
(Wolfinger and Tobias, 1998).

To do model selection in the mixed model framework, a log likelihood-ratio test
criterion can be used with nested models. The procedure demands the evaluation ot the
restricted log-likelihood (LL;) for the reduced model (model with smaller number of
parameters) and for the full model (model with higher number ot parameters).

The test criterion for the likelihood ratio test is,

L =-2{ LL, (reduced model) — LL, (full model)}.

Under normality for the null hypothesis that the reduced model is not different
from the full model. the likelihood ratio statistic is distributed as a * with degrees of
freedom equal to the difference in the number of parameters of both models. If the
fixed part of the two mixed models under comparison is the same, the test is comparing
the covariance structure models. Information criteria such as the Akaike's Information
Criterion (AIC) (Sakamoto et al., 1987) are used to compare any set of mixed models.
The AIC is the LL; adjusted for the number of parameters (p) in the model. The
adjustment tends to favor parsimonious models. The larger the AIC the more preferable
the model (Wolfinger, 1993).

Finally, it is important to note that when using mixed model prediction, optimality
properties of the predictors are unknown when the variance parameters are estimated.
The typical database structure of a breeding program, i.e., multiple factors with

incomplete and unbalanced data, further complicates the analytic evaluation of the
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predictions. From an applied perspective, cross-validation and simulation have been
used as validation procedures to assess the accuracy of several types of predictors under
particular plant breeding circumstances (Hill and Rosenberg, 1984; Piepho. 1994:
Bernardo 1994, Panter and Allen, 1995).

This study compared various mixed models for predicting cross performance. and
per se performance at early and late stages of a sugarcane-breeding program. Models

were assessed for empirical prediction accuracy using cross-validation procedures.
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CHAPTER 2

USING MIXED MODELS TO PREDICT SUGARCANE CROSS
PERFORMANCE

30
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1. INTRODUCTION

The initiation of a sugarcane selection cycle starts with the hybridization of parents.
Cross appraisal or progeny-tests are often used to focus selection for the best individuals
from the best crosses (Hogarth, 1971; Cox et al., 1996; De Sousa-Vieira and Milligan,
1999). The parental information obtained from cross appraisal tests may also be used to
predict the best (high mean performance) new hybrids to make.

Commonly, statistical models of progeny test databases adjust data for tixed trial
and replication effects and then estimate, from the adjusted data. the untested cross
value as a function of the genetic worth of tested crosses (Panter and Allen, 1995). To
predict the mean performance of new crosses (crosses that have never been tested
before) using progeny test data, the raw means or perhaps rank percentiles of the tested
parents are averaged to obtain the mid-parent value (MPV) for a new cross (Caligari and
Brown, 1986). Databases developed after some years of progeny tests are commonly
incomplete and unbalanced because not all possible crosses between the potential
parents are made, only a few parental combinations may be repeated across time, and
certain parents are typically used more than others. The irregular data structure creates
theoretical and practical concerns about the fixed model approach underlying the MPV
prediction (Henderson, 1973; White et al., 1986).

If a narrow inference space is acceptable, an alternative mixed model regarding
genetic effects as random and other effects, such as year and location (trial effects). as
fixed can be used (McLean, 1991). Several types of best linear unbiased predictors
(BLUPs) obtained from the mixed model framework, have been used successfully to

help plant breeders choose parents for the best hybrid combinations (Panter and Allen,
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1995: Bernardo, 1994, 1995,1996a, 1996b. 1999). Chang and Milligan (1992), Chang
(1996), and Cox and Stringer (1998) published BLUP-based analyses related to cross
selection in sugarcane. The objective of these analyses was to rank the tested crosses
according to the BLUP of their genetic effect (population selection) rather than to
predict performance of untested crosses.

When using genetic eftect-BLUPs, different random effects and structures for
the covariance matrix among those random eftects can be postulated. Henderson (1975)
described BLUPs of breeding values of potential parents, by using the additive genetic
variance relationship among individuals (Henderson. 1976) as the variance-covariance
matrix of random genetic effects for each individual. He assumed that the additive
genetic variance is the only component of the covariance between observations taken on
different individuals.

Models involving female and male random parental effects and genetic
covariances among parents have been used successfully to predict single-cross
performances of untested hybrids in maize (Bernardo. 1994, 1996b, 1999). Chang
(1996) suggested that using the genetic covariances among the parents of the sugarcane
crosses to modify the predictions would not be fruitful. He speculated that the highly
selected nature of the parents might vitiate the value of such covariances since the
genetic covariances estimated from pedigree analysis assume randomly selected parents.
Parents used in sugarcane crosses are highly selected.

The offspring used in a progeny test are not selected and hence using the genetic
covariances among crosses may enhance the predictive value of BLUPs that incorporate

such relationships. Pedigree and/or molecular marker information may be used to set up
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genetic covariances (based on coancestry) among clones (Bernardo, 1994). Sugarcane
molecular information about yield traits is lacking at this time; therefore genetic
relationships must be based on the pedigree.

This study compared four predictors for the mean performance of future sugarcane
crosses. The predictors were the traditional MPV (fixed model prediction) and three
versions of BLUP (mixed model prediction) based on regularly available progeny test
information.

2. MATERIALS AND METHODS
2.1. Cross Prediction Models

All cross performance predictors were obtained from models adjusted for fixed trial
and replication within trial effects (Panter and Allen, 1995; Table 2.1). The mid-parent
BLUP (MP-BLUP) is based on a two-way classification model for the genetic effects
involving random “female” and “male” parental effects. | assumed no relationships
among the parents. The other two predictors, independent-cross BLUP (IC-BLUP) and
related-cross BLUP (RC-BLUP), were based on a one-way classification model
involving a random cross effect to model the genetic portion of the response. The
difference between these two is that for [C-BLUP the cross effects are assumed to be
independent, whereas for RC-BLUP, the additive genetic relationship among crosses is
used to set up covariances among the cross effects. By tracking the parent identification
of each cross and assuming parents are not related, covariances among crosses within
and between trials are simple to obtain based on the cross parentship. | used coancestry
coefTicients (Falconer, 1989) to establish the additive genetic relationship (covariances)

between cross effects when it was required by the predictor equation.
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Table 2.1. Models used to predict cross performance.

Modeilt Effect assumptions Predictor name
MYu=u+T +R(T)+F +M, all fixed effects Mid-parent value
(MPV)

RIYu=u+T +R(M+F +M F, and M, random Mid-parent BLUP
else fixed (MP-BLUP)

BlYu=n+T +R(T)+C, C,random independent  Independent cross
else fixed BLUP (IC-BLUP)

4] Yu=u+ T, +R(T)+C, C, random relateds Related cross BLUP
else fixed (RC-BLUP)

t T, represents &-th trial effect, R(T) replication / within trial k effect, F, i-th female parent effect, M, /-
th male parent effect, C, effect of the combination between female i and -male j: all model equations

-
include a N(O, c, ) random variable as an error term.

1 Covariances among C, random etfects are obtained from coancestry coefTicients.

[n matrix notation, the model and derived predictors are specified as:
Model [1] - “Fixed female-male or mid-parent model”
y = Xp+e
where y is an N vector of observed progeny data; VN is the total amount of data for a
trait; f is the vector of fixed parameters including trial. replications within trials, and
tfemale and male parent effects; X is incidence matrix relating y with B: e is an N vector

of error terms assumed to be normally distributed with zero mean and variance-
covariance matrix R = o_ly, where 1y is a NxN identity matrix. To obtain the mid-

parent values (MPV), i.e., the predictors, female and male parent means, after adjusting

by trial and replication effects, were first calculated for each clone used as a parent in
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crosses evaluated in cross appraisal trials. For each potential new cross, corresponding
female and male-parent adjusted means were averaged. Note that the parental means
were based on progeny data, not per se performance data.

Model [2] - *Random female-male model”

y=Xp+Za+Z,a,+e

where B contains the fixed trial and replication within trial effects. The general
combining ability (GCA) effects of female parents are in the fxIrandom effect vectors.
a,. where frepresents the number of distinct clones used as female parents across trials.
The random GCA effects for the male parents are the elements of the mx1 vector, a,,. [t

is assumed that a, and a,, were vectors of normal independent random variables with
. 2 2 . .
mean zero and variance op and o The performance predictor for an untested cross

evaluated under this model, is the mid-parent BLUP (MP-BLUP). The MP-BLUP is the
mean of the BLUPs for the female and male effects of the parents involved in the new
Cross.
Model [3}-"Random independent cross model™ is
y=Xp+Zu+e
where y. X, B and e are as before and u is a c-dimensional vector of random effects

representing the genetic effects of ¢ tested crosses; u is assumed to be normally
. : ) . o 2
distributed with zero mean and variance-covariance matrix given by G=o_I. The

performance predictor for potential crosses, y,, was obtained under the assumption of a
normal joint distribution for the random variables in the ¢ + p vector of c tested cross

effects and p potential or untested cross effects.
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Therefore, y, = CV" [(Z°Z)" Z'(y- Xp)], where B’is the generalized least squares
solution for the vector of tixed effects, and C is a pxc matrix of genetic covariances

between the p potential crosses and the ¢ actually tested crosses. Covariances were
2 . . . . 2
equated to 2ro . where r, is the coancestry coefficient between cross i and j and o, was

the additive genetic variance. According to the assumptions of unrelated parents. most
of the crosses in the data set were either half-sib (2r, = '2), or unrelated (2r, = 0). Thus.
by using C as the genetic variance-covariance matrix among tested and untested crosses.
related crosses contribute to the predicted value for one another. Since cross eftects for
the tested crosses were treated as independent, the phenotypic variance-covariance

matrix for the observed average performance of tested crosses, V. contains phenotypic
. 2 2 T . .
variances equal to o] + o /n, on the main diagonal and zeros on the off-diagonal: n, is

the number of replications for the i-th cross. The cross predictor under this approach

was named cross independent-BLUP (IC-BLUP) because of the structure of G.

Model [4]-*Random related cross model” was the same as [3] but G = oiA, where

’ . . .
o represents additive genetic variance and A is a matrix of 2r, values among tested

Crosses.
2.2. Data and Validation Procedure

Mean cross performance with regard to cane yield per plant, stalk number per plant,
stalk weight, stalk diameter and stalk height was predicted using data from the
Louisiana Agricultural Experiment Station (LAES) Sugarcane Variety Development

Program’s cross appraisal trial data of 719 crosses evaluated between 1992 to 1996 at
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the St. Gabriel Research Station (Bischoff et al., 1994; BischofT et al. 1995; BischofY et
al., 1996). These trials employed a two replication, randomized complete-block design
with approximately 32 progeny from each cross in each 2-row plot. Each row contained
approximately 16 plants spaced 41 cm apart within the row and 1.8 m between rows.
Not all female parents were combined with each male parent, and only rarely were the
same female-male combinations repeated in different years. Between 130 and 200
crosses were tested each year. Cane yield per plant was estimated from stalk counts and
estimated stalk weights. Stalk weights were estimated from stalk height and diameter

measures from five stalks per row with each stalk from a ditterent plant.
. 2 2 2 2 .
Variance components, oeand oy, 0 . Of g , were estimated by REML (Scarle et

al., 1992). For model |2], the female and male parent BLUPs were obtained from the
solution of the mixed model equations, after substituting appropriate estimated variance
components into a SAS-Proc Mixed (SAS Inst.. 1997) program. The covariance
coefficients of matrix C, for models [3] and (4], as well as those for A of model [4]

were determined from the parental pedigree of each cross, assuming the parents

. 2 . . . 2
themselves were unrelated. Estimates of o] were obtained using the assumption that o}
=Vic:and o’ = Ya o
= maan o’m— 40‘3.

The optimality properties for BLUPs and its linear combinations are known
when variances are known. [n this study, variance component estimates are used, so the
analytical properties of the final predictors are unknown. Therefore. | investigated their
prediction accuracy when applied to sugarcane data by a “leave-one-trial-out™

procedure. The five-year progeny-test database was divided into two data sets, one with
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four years of trials and the other with the information from the remaining trial. The
four-trial predictor data set was used to obtain the cross predictors for the left-out
validation trial. The crosses in the left-out trial simulated untested cross performances,
since there was no direct information about them in the predictor data set. Predicted
values from the four models were obtained for each “untested cross™ and compared to
mean values of the cross in the validation data set. The validation process was repeated
five times, each time using a different (test) year as a validation data set. The squared
difference between predicted and observed values was used to approximate prediction
error. At each iteration of the validation procedure, counts were made to ascertain how
many of the top 50% crosses in the validation set would have been identified by
selecting the top 50% of these crosses using the predictions obtained from the prediction
database. The average percent of crosses in the top 50% of both groups were expressed
as P(50/50). This measure was derived to assess the functional effect of these predictors
on selection efficiency. The predictors in the mixed model framework were obtained by
a SAS/IML code written to solve genetic mixed models by obtaining parameter
estimates from SAS/Proc Mixed. In some cases, they were coupled with calculations of
genetic coancestry coefficients from SAS/Proc Inbred (SAS Inst., 1997).
3. RESULTS AND DISCUSSION

In cases of balanced data, known variance parameters and no correlation among
genotypes, the MP-BLUP and MPV should lead to the same relative ranking of the
genotypes (White et al., 1986). In this study, different results were expected because of
the highly unbalanced structure characterizing the progeny test database. For a total of

165 female and 147 male parental clones, only information from 719 parental
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combinations was available after five years of cross appraisal trials. Almost 90% of the
crosses were tested in only one year. Some parents were used in only two hybrid
combinations, whereas others were tested in more than 50 crosses. The small number of
crosses actually tested is not surprising considering the resource requirements of
sugarcane crossing and testing. It draws attention to the importance of cross predictions
in sugarcane breeding.

To predict a primary random variable, such as a genetic value, the BLUP first
adjusts available data for the fixed effects. After this initial adjustment, the random
effects are further adjusted by the fraction of the total variance for which the primary
variance accounts, e.g., by heritability (Henderson, 1975). Unbalance is taken into
account in the weighting process. For all traits evaluated, the predictor of cross
performance with smallest mean square prediction error (MSPE) was based on BLUPs
(Table 2.2). The improvement (smaller MSPE) in the prediction accuracy of the BLUP-
based predictors with respect to the MPV was consistent across validation data sets.
Among the BLUP versions, the MP-BLUP followed the observed data in the trial left
out rather closely. The MP-BLUP was the predictor with the smallest MSPE.

The random cross-effect models [3.4] allow one to predict the performance of
untested crosses by using the genetic variance-covariance matrix as a link between
tested and untested crosses. In this study, the BLUP based on the random cross effect
models [3.4] did not perform better than the model constructed from combinations of

female and male parent BLUPs [2].
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Table 2.2. Prediction accuracyt under four cross performance prediction models for
five traits and five test years of sugarcane progeny testing.

Model? [IIM+F RIM+F [3]C 4] C
Fixed Random Random Ind. Random Rel.
Predictor MPV MP-BLUP IC-BLUP RC-BLUP
Year oeemecccemoeee- Root mean square prediction error-----------------
Cane yield 1992 1.09 0.94 0.99 0.97
[kg/plant) 1993 0.88 0.69 0.70 0.68
1994 0.95 0.91 0.95 0.95
1995 1.04 0.88 0.90 0.87
1996 1.05 1.00 1.03 1.02
mean 1.00 0.88 0.91 0.90
Stalk 1992 1.61 1.38 1.52 1.49
diameter 1993 1.11 1.03 1.24 1.24
[mm) 1994 1.26 1.17 1.31 1.33
1995 1.61 1.24 1.51 1.50
1996 1.54 1.38 1.65 1.65
mean 1.43 1.24 1.45 1.44
Stalk 1992 17.51 15.58 16.32 16.14
height 1993 13.19 12.29 13.16 13.14
[cm] 1994 12.06 9.76 11.55 11.57
1995 17.08 16.49 17.00 16.50
1996 13.25 11.69 12.36 11.97
mean 14.62 13.16 14.08 13.86
Stalk 1992 1.34 0.98 1.03 0.99
number 1993 1.30 0.89 0.89 0.85
[plant’] 1994 1.13 .16 1.11 1.12
1995 1.39 1.19 1.28 1.23
1996 1.96 1.81 1.84 1.81
mean 1.42 1.21 1.23 1.22
Stalk 1992 11.40 10.54 11.02 10.59
weight 1993 8.42 6.27 7.25 7.13
[kg x 10°] 1994 10.32 9.03 10.32 9.73
1995 11.59 791 10.01 8.98
1996 9.56 8.09 9.53 9.46
mean 10.26 8.37 9.63 9.18

t Square root of the mean square prediction error (difference between predictor and target values for each
cross obtained by an iterative “leave-one year-out” validation procedure).
3 All models take the form: Y, =p + T + R(T) + [as indicated in the column heading ] + £. Notation for

model effects is T - trial, R- replication, C - cross, F - female, M — male, e~ N(0, a: ).
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The one-way (cross) fixed model was not included in the study because it can not
be used to make inference about new crosses. It only offers information about crosses
already made.

Possible factors for the behavior of BLUPs based on cross effects [3.4] with regard
to MP-BLUP [2] might be related to an insufficient number of related crosses per cross,
equal weighting of female and male parent related crosses. and high dominance
variance. The median for the number of relatives (usually half-sibs) per cross in the
database was 34, the first quartile 18. and the third quartile 50; in other words, 50% of
the crosses had less than 34 related crosses in the database. Some of them could be
related through the female parent and others through the male parent, but all of them

were equally weighted in the cross-effects-based BLUPs [3.4]. On the contrary, under

model {2]. BLUPs of female effects are estimated using the estimation ol'cﬁ and BLUPs

. .. 2
of male effects the estimation of oy

Even under a half-sib structure, both variance components should theoretically lead
to the same additive genetic variance among crosses. In this study there were consistent
differences between both variance component estimates for all the traits (Table 2.3).
The control of experimental errors related to identification of female and male parents is
different when crossing sugarcane at LAES. Sugarcane crosses in the LAES, as in
many sugarcane breeding programs, are made in cubicles with a designated “male”
parent tassel suspended above several designated “female” parent tassels. The
functional sex of the clone is usually assessed as a function of the amount of pollen the

clone produces. In many cases, the functional female is not completely male sterile and
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hence could, and probably does, perform some cross-pollination of other females in the
same cubicle. Thus, the female parent is known with certainty and the male parent is

known with less certainty. The lack of male parent certainty may explain the trend of

larger u"; than oi‘ for cane yield, stalk weight and stalk height, but it does not explain the

,
tendency for a larger °§1 being larger than o for stalk diameter and stalk number.
Perhaps the differences are not real or perhaps the sampled populations were just
ditferent in the tested years. Parental genotypes do change somewhat each year.

Table 2.3. Female and male variance component estimates for five traits and test years
of sugarcane progeny testing.

Test Variance Cane Stalk Stalk Stalk Stalk
year component vield weight height diameter number
(kg/plant)” (kg x 10°y  cm’ mm-* (no/plant)’
1992 2
S¢ 0.114 0.221 51.74  0.554 0.126
b
%m 0.030 0.131 1600 0.720 0.123
1993 2
O¢ 0.090 0.186 56.02  0.423 0.050
2
m 0.052 0.106 2249 0493 0.101
1994 2
O 0.114 0.181 63.43  0.390 0.031
,
%m 0.065 0.107 18.72  0.429 0.092
1995 2
S¢ 0.128 0.208 37.77  0.484 0.064
2
®m 0.103 0.106 2184  0.605 0.108
1996 2
S¢ 0.113 0.186 5590 0.359 0.032
2
m 0.035 0.126 21.21 0477 0.090
Mean
residual o 1.208 0.958 22240 1.920 1.184
variance ¢ +0.043 +0.034  +4.602 +0.061 +0.059
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The G and C matrices used for the BLUPs based on cross effects are narrow-
sense genetic covariance matrices since they are based on additive variance coefficients.
Models introducing dominance variance and specific combining ability may improve
predictions. Previous research identified significant dominance effects for yield
components in sugarcane (Milligan, 1988). The accuracy of the prediction for the
different traits indicated better predictions for stalk diameter, stalk height, and stalk
weight than for cane yield and stalk number. This probably reflects the relative
heritability of these traits (Milligan, 1988).

The rank correlations between predicted and observed performances of untested
crosses ranged from non-significant values for stalk number to an average correlation of

0.52 (P=0.001) tor stalk diameter when using MP-BLUP as the predictor (Table 2.4).

Table 2.4. Mean rank correlation between predicted and observed cross valuest.

Predictor
Trait,
MPV MP-BLUP IC-BLUP RC-BLUP
mean rank correlation

Cane yield 0.23 0.35 0.29 0.34
Stalk number ns ns ns ns
Stalk weight 0.34 0.46 0.3§ 0.38
Stalk diameter 0.34 0.52 0.37 0.42
Stalk height 0.35 048 0.39 0.39

+ Mean of significant correlations. For MPV and MP-BLUP values are average of five years. For IC-
BLUP and RC-BLUP, values represent 2average across three (significant) out of a total of five test years;
ns=no significant correlations (P>0.05).
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The average correlations of MP-BLUPs and observed values were also close to
0.50 for stalk height and stalk weight. Cane yield showed smaller correlation
coefficients than the other traits did (except stalk number). Correlation coefficients
based on MP-BLUPs were consistently better than those obtained from the RC-BLUP,
IC-BLUP or MPV. Correlations tended to be higher or more likely significant when the
ratio of the genetic to residual variance among untested crosses was higher (Table 2.5).
The maximum expected correlation between the predicted and the observed value is not
unity but it depends on the heritability of the trait (Bernardo, 1999). This is because we
are correlating predicted genotype with phenotypic values. Heritability for cane yield is
not superior to 0.30 (Milligan et al., 1990), thus the correlation between genotype and

phenotype. (0.30)'*= 0.55. is the upper bound for an observed correlation.

Table 2.5. Rank correlations between predicted and observed cross performances under
tour cross prediction models for cane yield in five years of sugarcane progeny testing.

Model and predictort

I [IJM+F [2IM+F [31C [4] C
Year o,/0.°3 Fixed Random Random Ind. Random Rel.
MPV MP-BLUP IC-BLUP RC-BLUP
Rank Correlation

1992 0.35/0.86 0.21 0.32 0.27 0.30
1993 0.23/0.70 0.19 0.30 0.30 0.32
1994 0.14/1.71 0.26 0.36 ns ns
1995 0.23/1.07 0.24 0.38 0.29 0.39
1996 0.23/1.56 0.24 0.40 ns ns

+ All models take the form:Y, =p + T + R(T) + [column heading ] + €. Notation for model effects is T -
trial, R- replication, C - cross, F - female, M - male, e~ N(0, o: ).

1 Ratios of REML estimators of broad-sense genetic variance and residual variance in the test year left
out for validation purposes; ns - no significant correlation, other correlation are significant at « =0.0S.
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Bemardo (1992) indicated that a correlation between predicted and true genetic
value around 0.60 would allow a breeder to select the top 20% crosses while
maintaining at least an 80% chance of retaining the best hybrid in the selected group.
Using LAES data, correlations around 0.50 were obtained for stalk diameter, stalk
weight, and stalk height, but correlations for cane yield were smaller than 0.40 and
several non-significant correlations were detected for stalk number (Table 2.4). Thus,

ranking of potential crosses should be better when based on stalk diameter and height.

Madifications to the current testing methodology that should enhance the quality of
the test data have been initiated. DeSousa-Vieira and Milligan (1999) demonstrated that
increasing the intra-row plant spacing would significantly increase the genetic variance
and functional heritability of cane yicld and stalk number. A wider intra-row plant
spacing (about 60 cm), is now used by the LAES in its progeny testing program than
that previously used to generate the data in this study. An additional expected
improvement in the progeny testing methodology is the implementation of weighing the
entire plot as opposed to estimating cane yield from stalk counts and an estimated stalk
weight.

The MP-BLUP [2] improved selection efficiency more than the cross-based BLUPs
[3,4] compared to the traditional MPV [1] (Table 2.6). Differences of 10 to 20%, for
the percent of top crosses identified when selecting 50% of the potential crosses based
on the predictor values, were observed between MP-BLUP and MPV, with consistently
higher percentages for MP-BLUP. Identification of top 50% crosses varied from 54%

to 72%, depending on the trait and model. They ranged from 54% to 62% of the top
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half of the crosses identified when using the MPV, versus 59% to 72% for the MP-
BLUP, which represents a substantial improvement in selection efficiency.

Table 2.6. Percent of top 50% crosses retained in the validation data set also in the top
50% of the predicted cross performances for four prediction models.

Trait Model and Predictort
[1]M+F [2IM+F 31C [4) C
Fixed Random Random Ind. Random Rel.
MPV MP-BLUP IC-BLUP RC-BLUP
e %
Cane yield 56 68 60 61
Stalk diameter 60 72 65 69
Stalk height 61 70 61 60
Stalk number 54 59 59 60
Stalk weight 62 71 62 63

t All models take the form: Y, =p + T + R(T) + |as indicated in the column heading } + €. Notation for
model effects is T - trial, R- replication, C - cross, F - female. M - male, e~ N(0, a: ).

Despite predictors from model [3] and [4] showing smaller MSPE than the MPV
(Table 2.2), there was not a substantial improvement over the fixed MPV (1] regarding
correlations and P(50{50) (Table 2.4 and 2.6). The preference of BLUPs based on tested
cross effects [3.4] over MP-BLUP is doubtful for sugarcane. Cox and Stringer (1998)
worked with mid-parent BLUPs in sugarcane. They estimated BLUPs based on a
complex trait, Net Merit Grade, for parents of families harvested from 1993 to 1995 at
the core breeding program in Australia. BLUP estimates were correlated with clonal

performance of those families at stage 1 (first clonal stage) in 1994, 1995, and 1996.
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Correlations were 0.60-0.65. It is important to note that they evaluated progeny
performance using whole plot weights in a way similar to that now employed in the
LAES. Their results indicated that MP-BLUP is also advantageous for selecting
families to advance genotypes in early generations.

4. CONCLUSIONS

Progeny testing has proved to be effective and cost efficient for sugarcane breeding
because it improves efficiency of early generation selection. It can also be exploited to
generate BLUPs of untested crosses. Predictors based on progeny tests can be obtained
after one year of testing of new parents, whereas parental selection based only on clonal
per se information requires several years of testing and probably is more biased by the
presence of non-additive genetic effects. No additional field experiments are required to
calculate cross performance predictors in sugarcane breeding programs involving

progeny tests.

Cross prediction mixed models or BLUP-based predictions consistently
improved over the fixed MPV model the accuracy of the predicted performance of
crosses that have never been tested. A 2-way random model with female and male
effects performed better than a one-way cross effect model with covariances adjusted by
additive genetic relationship among crosses in sugarcane. The results suggest that the
MP-BLUP obtained from the databases of regular sugarcane progeny tests would
facilitate the identification of material to be crossed. The accuracy of predictions might

be increased by maximizing experimental efficiency of cross appraisal tests, i.c. more
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replications, better procedures for recording data and combining plant cane with first

ratoon data.
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CHAPTER 3

COMBINING DATA ACROSS TESTS TO PREDICT FUTURE PER SE
PERFORMANCE IN A SUGARCANE BREEDING PROGRAM
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1. INTRODUCTION

Breeders routinely select genotypes or lines in a series of selection stages.
The earliest stages after the initial hybridization are typically unreplicated tests
in which large numbers of genotypes are screened. As the material advances
through stages. the screened number of genotypes or lines drastically shrinks
and the extent of testing (replications, plot size. number of locations and
amount of data) proportionally increases. Selection and advancement decisions
may be based upon several tests. These tests are often carried out in different
time periods and vary in experimental dimensions such as the number of
entries, plot size, number of replications, genetic level of elitism, and
experimental precision. The breeder must computationally, or at least
mentally, combine the data to make decisions. He will typically weigh the
relative precision of the various experiments and will commonly scale the
results in some manner to make the numbers comparable. Therefore. many of
the challenges in combining information to improve genotype prediction
reduce to matters of scaling and weighting for relative confidence in the data.

Weighted and unweighted analysis of variance provides a useful statistical
technique for combining data to analyze treatment (genotype) differences
(Milliken and Johnson, 1989). The traditional ANOVA under a fixed model
approach assumes independent observations (Searle, 1987). This assumption
limits the quantity of data gleaned from breeding databases. Least squares
means analysis obtained under a fixed linear model often ignores the

underlying correlation structure in the data (Latour and Littell, 1996). A mixed
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linear model, however, allows an analytical approach to account for genetically
and/or experimentally correlated data (Stroup, 1989; Searle et al., 1992). The
random nature of genotype effects in early testing may be taken into account in
a mixed model approach. Other variables, besides genotype effects, such as
blocks, and trial effects. might qualify for consideration as random effects
(Wolfinger et al., 1997). Mixed models may account, through the variance-
covariance structure, for heterogeneity of standard errors and genetic as well as
non-genetic correlations.

Given the typical size of plant breeding data sets, estimation procedures
under a regular mixed or a random model (Searle et al., 1992) that involves
replications may require extensive computer time and memory (Piepho, 1998).
A practical solution is to work with genotype-test means. However, with
incomplete designs and heteroscedastic data, the analysis may not be valid
(Piepho, 1998). An estimation procedure called weighted two-stage analysis
has been applied successfully to sort out the challenges associated with fitting
mixed models in the analysis of cultivar trials (Cullis et al., 1996a,b;
Frenshman et al., 1997). The main idea behind this procedure is first to
estimate variance components for each test and then work with a means model.,
using the estimated variances as known parameters to weight observations.
Mixed models further use best linear unbiased predictors (BLUPs) to estimate
random effects (Henderson, 1975; Harville, 1990). Thus, performance
predictions for genotypes will be expressed by a BLUP instead of a mean, as is

common in the fixed model approach (White et al., 1986; Panter and Allen,
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1995). Various versions of BLUPs might be defined depending on the
underlying mixed model and goals of the prediction.

Many breeding programs worldwide use check cultivars to facilitate
combining information from different sources (Yates and Cochran, 1938;
Cochran, 1954; Mclntosh, 1983; Hill and Rosenberg, 1985). For example, the
Louisiana Sugarcane Variety Development Program (LSVDP) expresses
experimental genotype yields as a percentage of each check in the same
replication in a given trial. The overall mean of these percent-of-the-check
values is used in selection and advancement decisions (Milligan et al.. 1994).
The use of check varieties is not free from concerns. The checks may be
unstable in performance and usually change with time, as ditferent and more
relevant varieties become important reference cultivars. Furthermore. check
cultivars may be quite different from the experimental population under
investigation. Treating them as a member of the experimental genotype
population may bias genetic variance component estimates and hence
predictors.

This study investigated three mixed models, involving three versions of
BLUPs estimated under different strategics, least squares genotype means
under a fixed model, and four check-based methods for combining information.

The goal was to compare strategies to predict future genotype performance.
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2. MATERIALS AND METHODS
2.1. Models for Combining Early Selection Stage Data

All models combined trial information into a single estimate to predict the
genotype performance in future trials. Besides the overall arithmetic mean. two types of
predictors were analyzed: check-based predictors and linear model-based predictors.
2.1.1. Check based-predictors

I examined four genotype performance predictors that used checks in their
derivation (Table 3.1). The first one was the ““average percent of the check™ (APCH)
where experimental genotype yields were expressed as a percentage of different
commercial check values in the same replication. The predictor, APCH, [1]. is the
average of these values across checks, trials and replications for genotype .

The second check-based predictor expresses the genotype values in a trial as a
percentage of the mean of all the checks in that trial. The predictor, PACH, [2]. is the
average of this value over all tests that contain the genotype J.

The third check-based predictor is the average difference. AD, (3], between each
experimental genotype ; in rep & and trial i, and the mean of all the checks in that trial.

The predictor, AD,, is the average across all trials and replications for genotype /.
The fourth predictor is the standardized experimental genotype value within each trial
and replication (SP,,) using mean and standard deviation of the checks in the trial. The

SP, value for a given genotype j, is the average across all trials and replications.
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Predictor

(1] Average Percent of Checks (APCH)

[2] Percent of Average Check (PACH)

{3] Average Difference (AD)

(4] Standardized Performance (SP)

(5) Least squares Means (LSM)
(6] BLUPs of genotype effects (BGa)

{7) BLUPs of genotype effects (BGb)

(8) BLUPs of genotype effects (BGTa)

[9]) BLUPs of genotype effects (BGTb)
[10] B1.UPs of genotype effects (BGTla)

{11] BLUPs of genotype effects (BGTib)

Table 3.1 Predictors of per se genotype performance.

Formula/Model+

M
APCH, = .‘E( ’f (100y,, / C, . YMK)l

1=l k=l.m=1|

PACH, - $ (0o yu/ C)K
i=1h=1

AD = E (Y - CVIK
=lh=1

SP, = ¢ ¥ - C..)o VIK
i=1 k=1

yql = p + Tn + R(T)ll + G| M el;&

yl]l = p + Tu + R(T)A t G. + en;&

)'.,u = "‘l + T| * R(T)A M Cu + G| + cly\
)’lpl = p T Tu + R(T)A + G' + el]‘

)’.,L = p + Tn + R(T)nk + Cn + G| + cn)l
Yy =T, G, GT,

)‘l] = p * TI + G] + GTI]

Assumptions and comments

Check based

Check based

Check based

Check based

All effects fixed except e,y
G, random, T, and R(T), fixed
Checks (C,, ) separated; G, random,

¢lse fixed

All effects random

Checks (C,, ) separated, all effects
random cxcept checks

Trial means used; all effects random;
unweighted

Trial means used; all effects random;
weighted

t C,, trait value for check m (m=1,... M) at trial i. replication k: o, std. deviation of check values attrial i, y,,, (i = ), ... L j =1, ..., J, k=1,..., K) trail
value for j-th genotype at trial i; general mean; G, genotype effect; T, environment effect; R(T), block within trial; GT, interaction.



2.1.2. Two-way linear model-based predictors

Another set of predictors was obtained using the regular linear model:
Y= W+ T, +R(T), +G,+GT, +e,

wherey, (i=1,..Lj=1,...J. k=1, .., K) was the trait value of the replicate &,
genotype j and trial i, T, was trial  effect, R(T), was replication k in trial / effect, G, was
genotype j effect. GT, was the genotype by trial interaction effect, and e, was the error
term associated with y,,. In a fixed linear model all model components except the error
terms are considered fixed values. Least squares means (LSM) (5] of genotype levels
across a given set of trials for a model without GT interaction (interaction terms are
non-estimable) were used as genotype performance predictors (Table 3.1). Six versions
of BLUPs of genotype performance were obtained using different mixed models. The
models varied in their inclusion of R(T), or GT, effects, whether or not check genotype
(C, m=1,.... M) were considered fixed or random, and whether or not T, and R(T),
were considered random or fixed. All models considered genotype effects as random.

Predictors BGa [6] and BGb [7] were BLUPs from a model that did not include GT
effects and considered trial and rep(trial) effects as fixed. Predictor BGa included the
checks among the genotype random effect, whereas predictor BGb considered the check
effects as fixed and separated them from the experimental genotype effects in the
model. Predictors BGTa [8] and BGTb [9) BLUPs were generated using the same
models as used for [6] and [7]. However, in addition to genotype effects, trial and
replication-within-trial effects were considered random. Predictor BGTa grouped
checks with experimental genotypes (all effects random). Predictor BGTb separated

checks from the experimental genotypes by considering check eftects as fixed.
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Predictors BGTla [10] and BGTIb [11] modeled trial means instead of plot values and
included the GT. Predictor BGTla was unweighted for trial residual variances. BGTIb
weighted for trial residual variances using r/ 5%, as weights where r, is the number of
replications in trial / and s’, was the error mean square in the same trial obtained from a
previous ANOVA for each trial. Working with trial means instead of individual plot
data made the incorporation of the GE effects computationally feasible. The predictor
value of each method was expressed in the original trait value range (Table 3.2).

Table 3.2. Predictor conversion to trait unit values.

Predictor Conversiont
check- based
[1] Average Percent of Checks (APCH) yj= (APCH;jXuc)/ 100
[2] Percent of Average Check (PACH) yj = (PACHj)(pc)/IOO
[3] Average Difference (AD) ¥j= (ADj) + u¢
[4] Standardized Performance (SP) yj= (SPj) oc+ ue
fixed model

(5] Least squares Mean genotype effects (L.SM) yj= LSM;j

mixed model
[6] BLUPs of genotype effects (BGa) yj= BGaj +u°
[7] BLUPs of genotype effects (BGb) yj = BGbj + p°
(8] BLUPs of genotype effects (BGTa) yj= BGTaj +p°
(9] BLUPs of genotype effects (BGTb) yj = BGThj + u°
[10] BLUPs of genotype effects (BGTla) yj = BGTlaj + p°
[11] BLUPs of genotype effects (BGTIb) yj = BGlej +u°

to.and p, equaled the across trials mean and standard deviation for the checks; u° is the generalized least

squares estimator of the overall mecan.

For all mixed models, the random effects were considered independent and

normally distributed random variables. [ assumed that number of replications per
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genotype might be different within and between trials (unbalanced data) and that not all
genotypes were evaluated in all trials in the database (incomplete data). The variance
components were estimated by REML using a SAS code based on Proc Mixed/SAS
(SAS Inst., 1997) (Appendix A). In addition to model differences regarding the
characteristics mentioned, the predictors for genotype pertormance under the mixed
models were empirical BLUPs of genotype effects. The adjective “empirical” is
appropriate since the variance components used in the calculation of BLUPs were
estimate
2.2. Data and Validation Procedure

The LSVDP database of early yield trials between 1988-1995 was used to
compare different models. Personnel in the LSVDP select advance and plant genotypes
(clones) among nine clonal stages in sequential years (Table 3.3; Milligan, 1994).
Replicated testing begins in the third clonal stage (Increase stage) and multi-location
testing in the fourth clonal stage (Nursery stage). The first two clonal stages after
crossing are unreplicated due to the high number of plots established in these stages
(about 3000 reduced to 1000). About 50 to 70 clones are replicated at three locations in
the fourth clonal stage (Nursery). A new series is initiated every year and plots are
harvested once a year for three years (plantcane, first ratoon and second ratoon crops).

Only plantcane data were considered in this study. The commercial sugarcane
varieties, CP65-357 (Breaux et al., 1974), CP70-321 (Fanguy et al., 1979), CP72-370
(Fanguy and Breaux, 1981), CP74-383 (Fanguy et al., 1983), and LCP82-089 (Martin et

al., 1992) were used as checks. A subset of 35 genotypes, involving different
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assignment series and including the 5 checks, was chosen as the set of genotypes tor
which performance would be predicted.

Varieties from different assignment scries are rarely tested in the same trial. All
trials involving these genotypes and all the genotypes included in those trials made the

“working data set”. Variety data accumulates each year (Table 3.3).

Table 3.3. Stages, dimensions and plantcane yield information of the Louisiana
Sugarcane Variety Development Program.

Dimension Plots Harvestedt

Year Stage Entries Area Loc Reps Annua Total

No. m* No. l
| Crossing
2 Seedling 50,000 0.8 1 1 0 0
3 1" clonal 3,000 3.3 | 1 0 0
4 2" clonal 900 23.8 l 1 0 0
5 Increase 300 23.8 1 2 ! 1
6 Nursery 70 238 3 2 3 4
7 Nurs./Intield 30 23.8/71.3 3 2 9 13
8 Introduction} 10 -- 1 18 44
9 Outfield 8 53.5 10 3 16 60
10 Outfield 3 53.5 10 3 40 100
11 Outfield 2 53.5 10 3 60 160
12 Outfield 1 53.5 10 3 90 250
13 Release 1

+ Actual amount of data is typically less because some tests may not be planted (Infield) or something
prevents harvest.
1 No new data collected: seed-cane increase only.
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To assess model prediction accuracy, predictors were derived from earlier years
in the selection process (calibration data set) to predict yields in more advanced stages
of the program (validation data set). The comparison used data from the 2™, 3", and 4"
clonal stages (2™ clonal, Increase, and Nursery trials from vear 6) as the calibration data
set to predict yields in the 5" clonal stage (Nursery and Inficld data from year 7). The
second clonal stage, an unreplicated stage, was treated as a third replication of the 3"
clonal stage (Increase stage) that included cultivars of the same assignment series.

Prediction errors were obtained by calculating the difference between the
predicted value and the value observed in the validation data set (5" clonal stage). The
square root of the average of square differences (RMSPE) was reported as estimations
of prediction errors. The procedure was repeated with ten sets of 35 genotypes to
calculate mean prediction accuracy. The response variables (traits) predicted were cane
yield (Mg ha™"), stalk weight (g). sucrose content (g sucrose kg 'cane) and stalk number
(no. m?). Rank correlations between the predictors based on the 2™ through 4" clonal
stage and the mean genotypic values in the 5" clonal stage (validation data set) were
also calculated.

3. RESULTS AND DISCUSSION
Prediction errors for all predictors ([1] to [11]) were smaller than those for the raw
mean for all traits (Table 3.4). Other than the raw mean. the best and worst predictors
varied by trait. The lowest prediction errors were obtained by BGTa (8] for cane yield.
stalk weight and sucrose content. This mixed model-based method considered all
effects random. The best method for stalk number was the standardized prediction

method [4], which used the check trial mean and standard deviation to standardize the
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experimental genotype value. Of the non-mixed model-based methods ([1] to [5]). the
SP [4] was the most effective predictor. This result also indicated the importance of
adjusting genotype data not only for average trial yield but also for intra-trial variability.
Table 3.4. Prediction accuracy for twelve methods of combining early selection stage

data to predict genotype performance in a more advanced stage of a sugarcane breeding
program for four traits.

Predictor Cane Stalk Sugar Stalk

yield weight content number

Mg ha’ g gkg' no. m-

Root mean square prediction error-----=-=----

(1] APCH 19.1 5717 6.74 0.843
(2] PACH 17.2 54.5 6.77 0.802
(3]AD 17.9 61.3 6.17 0.788
(4] PS 15.3 51.3 6.14 0.777
[S]LSM 18.5 64.9 7.28 0.846
[6] BGa 16.6 60.4 5.7 0.827
[7] BGb 16.8 62.2 5.64 0.841
(8] BGTa 14.9 48.6 5.42 0.836
[9] BGTb 15.0 48.6 543 0.838
(10] BGTIma 15.7 58.1 6.10 0.856
[11] BGTImb 15.0 53.1 5.80 0.853
[12] Raw mean 26.2 130.8 14.96 1.015

Trait mean

Mean 72.8 1117 128.7 8.013

t Square root of the mean square prediction error (difference between predictor and target values for each
genotype obtained by an iterative validation procedure).

In general, scparating the checks from the experimental genotypes and then
considering them as fixed did not improve the predictive value of the mixed model-
based predictors. Even with checks that might have high effect values, the number of
check varieties is small compared with the set of varieties that participate in the

calculation of genotypic variances.
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Predictors with the lowest prediction error generally produced higher rank
correlations between the calibration data set (2™, 3" and 4" clonal stage) and the
validation data set (5" clonal stage) (Table 3.5). There were some slight exceptions to
this observation in that the BGTImb predictor (weighted mean based predictor [11])
produced somewhat higher correlations than one would expect from the prediction
errors. This is a mean-based predictor.

Table 3.5. Rank correlations between predictor based on 2™ through 4™ clonal stage
data and raw mean of 5" clonal stage (Nursery/Infield stage).

Predictor Cane Stalk Sugar Stalk
yield weight content number

APCH 0.24 0.53 0.61 0.78

PACH 0.24 0.53 0.59 0.76
AD 0.22 0.50 0.63 0.83

PS 0.26 0.55 0.63 0.86
LSM 0.28 0.52 0.66 0.82
BGa 0.30 0.54 0.72 0.74
BGb 0.30 0.54 0.73 0.71

BGTa 0.36 0.59 0.74 0.76
BGTb 0.35 0.58 0.74 0.75
BGTIma 0.35 0.57 0.70 0.74
BGTImb 0.42 0.63 0.73 0.74
Raw mean 0.08 0.48 0.18 0.59

Piepho (1998) comments about the advantage of computational simplicity of the
analysis of means compared to a full model that incorporates replications. In this data
set, it was not computationally feasible to incorporate genotype-by-environment (GE)
effects using replicated data. Using genotype-trial means enabled the incorporation of a

GE term into a predictive model dealing with numerous genotypes.
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The resulting predictors, BGTIma and BGTImb. essentially equaled the best
predictor for cane yield (RMSE ;1. = 15.0 vs. RMSEyr, = 14.9 Mg ha'' ; Table 3.4),
but were not as low as the best predictors in the other traits. Weighting the predictor for
the trial residual variance improved this predictor for all traits and, as earlier observed,
appeared to improve the correlation to a small degree.

Using eight years of alfalfa (Medicago sativa L.) variety trials, Hill and
Rosenberger (1984) compared check-based methods for combining germplasm data
against three versions of BLUPs. They used a fixed 2-way analysis with trials and
genotypes as factors and a cross-validation procedure to predict the performance of
genotypes in a “left out” trial from the entire data set. The smallest average prediction
crror was obtained with the trial-heritability version of BLUP, which is equivalent 1o
Henderson's (1977) procedure with variance components estimated from the
unbalanced two-way analysis. No relationships were assumed among the genotypes
(the different entries in the series of trials were considered unrelated in this study). If
the set of genotypes being evaluated within a database are related, further advantages
may be gained from BLUPs by using these genetic relationships in all the models with
genotype regarded as a random factor (Panter and Allen, 1995). Genetic relationships
among genotypes cvaluated for yield in a few trials improved prediction in soybean
(Panter and Allen, 1995). A genetic relationship-adjusted BLUP for genotype effects is
worth considering at the early stages of breeding. This is because the large number of
genotypes evaluated in these stages allows a good estimation of variance components.
Poor variance component estimates, i.e., large standard errors of variance component

estimates, are expected if the number of genotypes is very small. Furthermore, in early
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selection stages there are few direct observations but likely a number of observations
from sibling clones is large. Genotype by environment interaction was not modeled in
the alfalfa and the soybean data-set analyses (Panter and Allen. 1995). Attempts to
combine trials into a single estimate of yield for sugarcane would introduce interactions
that are known to exist (Bull et al., 1992; Mirzawan et al., 1993).

This study used only plantcane data. In practice, sugarcane breeders use more data
than used in this study to make their selection decisions. Although advancement
decisions are made prior to harvesting the trials planted in the previous year, stalk
numbers of the previous year's trials is recorded before the selection decisions have
been made. Furthermore, trials are harvested three times. once each year. Although
yvield data are not independent among crops for a given plot, additional yicld data are.
however, provided by the ratoon crop (Milligan et al.. 1996). A mixed mode! approach
for combining data might account for the serial correlation among crop values.

Broad (overall) and narrow (environment-specific inference) inferences have been
discussed in a mixed model context (MacLean, 1991). Even when at early stages of a
breeding program, breeders are not feigning to predict performance of genotypes in
specific environments. The incorporation of a GT term in the model is important
because it modifies genotype BLUPs by better estimating the genetic and residual
variances. Although the number of replications used in the selection stages involved in
the analysis is not very different (two or three), the genetic and residual variances by
stage demonstrated substantial range (Table 3.6), which is not surprising. The
population is dramatically reduced by selection as it progresses from the pre-Nursery

stages (1000 to 250 clones) to the Infield stage (20 to 30 clones).
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Table 3.6. Broad-sense genetic and residual variance components for three stages of
selection in the Louisiana Sugarcane Variety Development Program.

Variance Cane Stalk Sucrose Stalk
component yield weight content number
(Mg ha'y’ (8 x 107 (gkg') (no. m~y
Infield stage
3
% 29.3 1.09 35.6 0.861
5
% 85.8 0.9! 65.7 0.932

Nursery stage

°§ 67.3 1.73 47.7 0.792

"5 233.0 1.38 59.4 1.188
pre-Nursery stage

°§ 120.3 3.51 75.1 0.808

°i 359.6 297 132.1 0.517

The methods of measuring vield and the range of environments also vary quite a
bit. In the Infield stage, an entire plot is weighed compared to the carlier stages in
which yields are estimated from stalk counts and sample stalk weights. The pre-
Nursery stages are evaluated on two soil types but basically at only one location. The
Nursery stage is planted at three locations, whereas the Infield stage is planted at one or
two locations. The main testing location for the Infield stage is where the population
was selected in the previous four stages. Hence one sees error variances for cane yield
for instance, range from 85.8 (Mg ha'')’ in the Infield stages to 359.6 (Mg ha')’ in the
pre-Nursery stages. Such range suggests that a two stage-analysis to account for
variance heterogeneity by appropriate weighting based on the reciprocals of the standard
errors might be useful. Freshman (1997) successfully applied this estimation strategy in

a wheat breeding program.
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The analysis can be done by setting up a weight matrix W with the diagonal
elements, r,/s’, obtained from a previous ANOVA for each trial, and by replacing R=o§l

by W' RW™'" to generate a new variance-covariance matrix for the residual term in
the model of phenotypic means.

The small differences between version a and b of BLUPs procedures [6] through [9]
(Table 3.4.) suggested that BLUP accuracy was not dependent on check values. BLUPs
for genotypes can be obtained also when check varieties fail or dramatically vary in
component values under a mixed model approach. Multiple check varieties are used to
provide backup in case of failure and to establish commercial comparison tor minimum or
maximum commercial productivity levels; e.g.. CP74-383 was a high cane yield, low
sucrose content-type check. On occasion, new commercial varieties may set dramatically
higher standards. This was the case with the cultivar LCP85-384 (Milligan ct al.. 1994),
which yielded 24 to 38% higher than the commercial varieties it replaced. Experimental
cultivars tested against LCP85-384 and analyzed with the percent-of-the-check method
(1] could not be realistically compared to experimental genotypes compared against older
checks. This method (APCH, [1]) is the standard method used in the program. BLUP
based methods provide a practical and usually better alternative to check based-predictors
at least partly because of their freedom from this constraint.

4. CONCLUSIONS

Performance testing of new material is an important and expensive facet of all plant

breeding operations. This study investigated the check-based predictor of per se

(genotype) performance commonly used in the LSVDP. The simultaneous evaluation,
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obtained from the empirical validation based on LSVDP data, indicated that statistical
methods exist that can improve prediction accuracy compared to the standard percent-of-
the-check method [1] without increasing resource demands. BLUP procedures and
standardization within a trial with respect to checks produced better predictions than those
obtained by the average of percentage of checks. There are several other mixed models
that could be investigated to maximize the accuracy of the estimate of the performance of
a genotype from fewer evaluations. Research should be conducted to propose better
models that are feasible from a computational point ot view. All the BLUPs evaluated in
this paper can be obtained using Proc Mixed/SAS (SAS Inst.. 1997) run on PCs.
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CHAPTER 4

INTEGRATING GENOTYPE-ENVIRONMENT COVARIANCE
INTO THE COMPARISON OF GENOTYPE MEANS
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1. INTRODUCTION

Replicated yield trials involving several environments are often used in late stages
of breeding programs to select genotypes based on yield and other economically
important traits. Each genotype is commonly tested in more than one environment
represented by locations or years or their combinations. A usual feature ot all multi-
environment trials (MET) is the attempt to represent a relatively large target population
of environments by a number of representative elements (Littell et al.. 1996). In multi-
environment trials, environments might be reasonably assumed as random effects
(Piepho 1994). However. the genotype effects might be treated as fixed since only a
few highly selected genotypes are usually involved in late breeding stages. Comparing
genotype performance of new cultivars is the main aim of multi-environment yield trials
in plant breeding. Two types of inference about genotype performance are of interest
(1) broad inference - the general performance of a genotype, and (2) environment-
specific or narrow inference — the performance of a genotype within a specific
environment (McLean, 1991).

The traditional analytical approach for broad inference is based on genotype means
that are subjected to multiple pairwise comparisons. Narrow inference from multi-
environment trials relies on comparisons of genotypic means in specific environments
(Littell et al., 1996). Unfortunately, this procedure does not use all the available
information. It is only possible to infer about performance in a specific environment for
genotypes that have been tested in that environment. Mixed model prediction may use

information from an entire data set to obtain environment-specific inferences.
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The need to identify genotypes specifically adapted to some target environments
(environment-specific genotype recommendations) has prompted extensive research
about genotype-by-environment interaction (GE) (Kang, 1990: Kang and Gauch, 1996).
The stability approach to address GE (Lin et al.. 1986; Becker and Leon. 1988; Crossa.
1990; Lin and Binns, 1994; Kang and Gauch, 1996). which has been used for
simultaneous selection for yield and stability, has been regarded as beneficial for
breeders, official test stations. and growers (Weber et al.. 1996). Most of the analytical
procedures to quantify a genotype's contribution to the overall GE are based on a fixed
effects model approach. Such fixed models are applicable only to balanced data. Kang
and Magari (1996) used the restricted maximum likelihood (REML) method under a
mixed model to estimate stability variances in unbalanced data sets when analyzing GE
for ear moisture loss rate in corn (Zea mays L.). The REML variance components.
assignable to each genotype, estimate the same parameters as Shukla’s stability variance
(Shukla, 1972). The mixed model with heterogeneous (by genotype) GE terms is ¢
priori more tenable than the traditional mixed analysis of variance in the sense that it
allows different stability parameters for each genotype but it assumes independence
among the GE effects.

By further modeling the variance-covariance structure of environment and
interaction random effects, well known stability measures can be expressed as
parameters of closely related mixed models (Piepho, 1998a). The common regression
approach for studying genotype sensitivities to environmental changes with
multiplicative models for the GE terms (Yates and Cochran, 1938; Finlay and

Wilkinson 1963; Eberhart and Russell, 1966) can be handle by integrating a factor
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analytic variance-covariance structure into a mixed model for the observed yield
(Oman, 1991; Piepho, 1997; Piepho, 1998b).

Among the analytical methods involving multiplicative interaction, the “Additive
Main effects and Multiplicative Interaction” (AMMI) models have been widely used
because the GE can be interpreted in more than one dimension (Vargas, 1998). In
AMMI models, the interaction terms are explained by the sum of multiplicative
functions of genotype and environment scores (Gauch, 1988: Zobel et al.. 1988). The
AMMI models for analyzing GE were proposed in relation to former ideas of modeling
interaction in factorial experiments (Williams, 1952) where the factors, in this case
environments and genotypes, are assumed to be fixed. In the fixed model framework.
the genotype and environment score vectors (principal components, PCs) are obtained
from the singular value decomposition (SVD) of the matrix containing the residuals
after adjusting the data for environment and genotype main effects (Mandel. 1971). The
resulting genotype and environment scores are commonly visualized in biplots (Gabriel,
1971; Price and Shafii, 1993). Biplots from AMMI models are usetul tools in plant
breeding because they allow the identification of genotypes that show smaller
interaction with environment and higher yield values. They can also identify genotypes
that perform well at specific sites (Yau, 1995; Shafii and Price, 1998). SVD strictly
requires a complete data set (observation of all genotypes within all environments).
However, a common feature of yield trials is that lists of entries vary from year to year
because new entries are included as they become available and those with poor
performance are deleted from further consideration (Hill and Rosenberg, 1985). The

deletion and substitution results in unbalanced data. Even within a year, it is rare to
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have balanced data since some replications or locations may not be planted with all
genotypes.

Mixed model and restricted maximum likelihood-based estimation procedures for
the parameters in the models (Searle et al., 1992) provide a more flexible analytical
approach for the analysis of multi-environment trials because balanced data are not
required (Hill and Rosenberg. 1985; Stroup and Mulitze, 1991; Piepho. 1994, 1997,
1998a). Mixed model analysis basically models the underlying covariance structure.

In particular, the regression approach and AMMI mixed model analysis are based
on a covariance matrix for the genotypic means within an environment, with features of
the factor analytic type of variance-covariance structure (Jenrich and Schluchter, 1986;
Denis et al.. 1996; Piepho, 1997). They account for possible correlations among the
interaction terms, which can be realistically expected. When some environments or
some genotypes are correlated, the GE terms involving those environments and
genotypes may be correlated.

Nowadays, it is possible to apply mixed models with factor analytic and even more
sophisticated, variance-covariance structures in SAS (SAS Inst., 1997) and other
statistical packages with mixed model applications. However, the biplots are not readily
obtained from regular outputs. In addition, the interpretation goals are the same
whether one use an AMMI mixed model or a traditional AMMI (fixed) model; the
parameter-types used to identify interaction patterns change. however.

The purpose of this study was to compare five classes of mixed models for
analyzing multi-environment yield trials under a unified approach. The development of

mixed model AMMI derived biplots was a related goal.
roo1s
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2. MATERIALS AND METHODS
Mixed models involving parameters analogous to Shukla's stability variances.

Eberhart and Russell’s sensitivity coefficients, and genotype-environment scores, as in
the fixed AMMI models, were compared with the simplest mixed model that assumes
homogeneous and independent GE terms with and without homogeneous variance for
the error terms. The traditional fixed model approach was included for reference.
Parameter estimates and a proposed procedure to obtain biplots under a mixed AMMI
model was illustrated with a set of sugarcane (Saccharum spp.) multi-environment yield
trials .
2.1. Medels for Multi-Environment Trials

The models employed in this study to analyze yield trials use a variation of the
following model.

Y=k +E+R,+G+GE, +¢g,

where y,, is the k-th observation for the j-th genotype in the i-th environment, u . E,, G, .
R..,» GE, denote the overall mean, the environmental effect [i =1....,s|, the genotype
eftect [j =1....,g], the replication-within-environment effect [k =1,....r], and the
genotype-by-environment interaction effect, respectively; €, is the error term associated
withy,,. All models assumed genotype effects as fixed. In addition to the regular fixed
model which considers all effects, except the error term, as fixed the models used in this
study assumed environments, blocks-within-environment effects, interaction and the

crror terms as random. The assumptions for the random effects are: environmental
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effects, E,, are iid N(O, cé) and replication effects, R,,,, are iid N(0, o;). The GE terms

are also regarded as normal random effects with zero means but with a variance-

covariance matrix not necessarily implying independence and homogeneity of
. . 2 .
variances. Error terms are assumed to be iid N(0, ce) for all models, except model [5]

where the residual variance is allowed to be different at each environment.
Environmental, replication, interaction and error effects are independent of one another.
As a direct consequence of the model assumptions, the variance of the yield values
is the sum of the variances of each random effect. For simplicity. | assumed
independence not only of error term but also of environmental and replications-within-
environment effects. The assumption implies that the environments provide
independent information. Although one is assuming that environment effects are not
correlated. the response means within a given environment will be correlated because of
the type of variance-covariance matrix associated with the mixed model. The means of

any two genotypes in a specific environment, y, and y, . have the covariance
Cov (¥,.,) = o+ CoV(GE, GE ). for j #j’
The mixed models evaluated in this study varied in the variance-covariance

structure imposed on the interaction term, Cov(GE, GE ) (Table 4.1).

Model [1] (MIXED ANOVA) assumed that the GE terms have the same variance
and are independent. Model [2] (MIXED SHUKLA) enabled GE terms to have
different variances but assumes they are independent. The model [2] assumes that all

GE terms involving a particular genotype have the same GE variance, thus there will be

n
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as many different GE variance components as the number of genotypes. so they are
analogous to Shukla's stability variances. Hence the name given to the model even
though Shukla (Shukla, 1972) did not express stability variances as parameters of a

mixed model.

Model [3] (MIXED AMMI) considers multiplicative GE effects,

GE,= § 1, x,+d,
m=|

oy Xom
where the first part ( § Ay Xm) 1 the sum of multiplicative terms used to explain

m=i
interaction signals and d, is the residual interaction term. Each multiplicative term
represents a linear regression model of the residuals from the main effect model for the
Jj-th genotype on a latent unobservable variable related to the i-th environment. A sum
of multiplicative terms is used to model GE variability pattern in more than one
dimension. The subscript m indexes the axis of variability on which the fixed genotype
and random environment scores are obtained. Thus, for each axis of variation, the
genotypic score A, can be interpreted as the response of the j-th genotype to changes in
some latent environmental variable with value x, in the i-th environment. The model for
the GE terms resembles the non-additive part of the traditional AMMI models (Gauch,
1988; Zobel et al., 1988), but in the fixed AMMI models, environment scores are fixed.
The sum of multiplicative terms is part of the expected value of y,, in the fixed
approach, whereas under the mixed model, this belongs to its covariance structure. The
models imposed on the GE terms lead to specific variance-covariance matrix types for

the vector y,;, containing the genotypic means in the i-th environment (Table 4.1).
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Model [4] (MIXED E&R) does not contain the main effect for environment and
also considers multiplicative GE effects,
GE,= A x+d,
where A, is the sensitivity of the j-th genotype to a non-observed environmental variable

x,and d, is the unexplained part of the genotype-by-environment interaction. The
. . . 2 .
deviations d, are allowed to have a separate variance for each genotype. o 4o Despite

the fact that environmental variable is assumed as random, the model rescmbles the
Eberhart-Russell (1966) regression model to study genotype-by environment
interaction. A genotype with large A absolute value of shows a large sensitivity to
changes of the underlying random variable x, .

Model [5] (MIXED HetR) is the same that model [1]. i.e. assumed that the GE

terms have the same variance and are independent, but allows for heterogeneous by
. . . 2 :
environment residual variances, R= S .Model parameters were estimated by REML

(Searle ct al.. 1992). All calculations including fixed and random effects estimates were
done using Proc Mixed/SAS (SAS Inst., 1997) which solved the mixed model equations
on the REML estimates. The decision about the appropriate number of multiplicative
terms to use in the MIXED AMMI was based on the difference between -2 Residual
Log Likelihood (-2 Res LL) of nested AMMI models, i.e., AMMI with 1.2.3...
multiplicative terms. For example, D= (-2ResLL(AMMI(1))) - (-2ResLL(AMMI(2)))
was employed as a statistic to evaluate the need of incorporating a second multiplicative

term in an AMMI model with one multiplicative component.
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Table 4.1. Mixed models employed in the analysis of multi-environment yield trials.

Model Model Equationt Interaction effects Assumptions Covariance structure
fOl' Y‘l)z
[IIMIXED ANOVA  y,=p+E+R,+G+GE,+ey  GE, -iid N, og;p) Tienw = oy + 1 0(’“
_ i . 2 2 2
[2) MIXED SHUKLA Ya=h+ E+Ry,* Gj + GE s TEL GE, ~ iid N(0, GGE(j)) Zlenv = Ja +1 OGEU)
[3] MIXED AMMI Yu=H+ E+ le+ G)+ GE y T Ep GE, - N(0, § P 03 ) for all i. Z/env = Joé + AN+ loi
m=1
- ¥

GE.J m.;.l)'m, xm|+ dq Cov(GE“ GE“.)—'- mg_j_l Aﬁnj)‘m)' fOl’j gjr
[4] MlXED E&R )’,,;= 1} + Rt(.) + G;+ GE ) + ely\ GE' ~ N(O, 7.:| + Oim) for all i. Lienv = AN + dug( o(zjm)

GE = A x+d,

Cov(GE, GE,)= AA,. forj#

(3] MIXED HetR Yw=R+E+R,+G+GE +e5  GE,-iid N, o) Tenv = Joy +1 021.;

2
R=o" 1

e

t u: overall mean; E;: random environment i effect; R,,,: random replication-within-environment effect; G,: fixed genotype j effect, GE, random genotype-by-
environment interaction; A, (j =1,....g) genotype factor loading on the m-th multiplicative interaction term, x,,, : m-th predicted score for a latent environmental

variable in environment ;; d

(]

: residual interaction term; €,, error terms associated to the response y,, . R is the variance-covariance of the error terms.

1 y., : vector of genotype means in environment i ; Yenv : variance-covariance matrix of y,,; J: gxg matrix of 1's; I gxg identity matrix; A: gxAM matrix of
genotype factor loadings for each multiplicative term m=1,,,A1.



The likelihood ratio-based test (LRT) obtained by comparing those likelihoods was
also used to compare models [2] to [5] against the simplest mixed model [1].
Differences, D, between —2ResLL were compared with a %’ variable with degrees of
freedom equal to the difference in the number of covariance parameters between the two
models being compared.

Generalized least squares means for each genotype were used for broad inference.
Pairwise comparisons among these genotype means used a sampling error variance for
the mean difference that incorporates all covariance parameters (Littell et ai., 1996). |
used the SAS macro ‘pdmixmac612’ (SAS Inst.. 1997) to align the means, obtained in
Proc Mixed/SAS. in accord with the significance of pairwise multiple comparisons
(Appendix B). BLUPs (Searle et. al.. 1992) were used to predict the performance of
genotype / in environment j (narrow inference). For narrow inference under a mixed
model, one is interested in the BLUP of the conditional expectation pjj. BLUP(y;j).
BLUP(p;j) is a linear combination of the estimated genotype mean for genotype
(estimated fixed effect) and the estimated random effects for environment / and the GE
term ji, BLUP(E)) and BLUP(GE)), respectively .

Mixed AMMI models were employed to analyze GE, by constructing biplot
representations. A MIXED AMMI is essentially a multi-level factor analysis (Gollob,
1968) model with M levels. Latent factors at level m (m=1,...,M) represent
environmental random variables. I deduced the values of those random environmental

scores, X, . by pre-multiplying the vector of BLUPs of GE terms in environment i,
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obtained in Proc Mixed/SAS, to the inverse of the estimated loading matrix A that can
be constructed also from the regular Proc Mixed/SAS output.

Biplots representing GE variability in two dimensions, i.¢., two multiplicative
terms, were constructed by superimposing the standardized genotype factor loading on
multiplicative terms m=1 and m=2 with random environmental scores on the same
multiplicative terms. To facilitate simultaneous interpretation of yield values and GE.
genotype scores on the first and second multiplicative terms are plotted against trait
mean values. Appendix D contains a program to obtain biplots for a MIXED AMMI.
2.2. Data and Validation Procedure

In the Louisiana Sugarcane Variety Development Program (LSVDP) replicated
tests culminate in outfield trials (Milligan, 1994). Outtield trials usually overlap
experimental material from different series with check or commercial varieties. For
example, varieties one to eight (Table 4.2) were check commercial varieties in the
outfield trials conducted between 1996 and 1998. Regular outfield tests involves 10 to
12 genotypes per trial. Trials are conducted at several (7 to 10) commercial farms
distributed throughout the 158 000-ha crop region. Each trial is laid out in a
randomized complete-block design with three replications and use 53.5 m’ (three 1.8m
wide rows by 9.7m long) plots. To compare prediction accuracy of different mixed
models, | used both components of sugar yield, i.e., cane yield (Mg ha™') and sucrose
content (g sucrose kg 'cane). The data set used Louisiana advanced variety trial
plantcane data (outfield tests) from 1996 to 1998 (Quebedeaux et al., 1996, Quebedeaux

etal., 1997, Guillot et al., 1998).
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Table 4.2. Sugarcane yield trials conducted in Louisiana across five years (1996-1998).
Codes for participating genotypes (varieties) and environments (farms).

Test year Variety Codet Farm Code?
1996 1.2,3.5.6,7.8,9,10,11.12,16 1,2.4,5.6.7.8.9,10
1997 2.3.4,5,6,7.8,10,11,14,15 2.34.5.6.8.10
1998 2.7,8,10,14,17,18.19,20,21 1.2.3.5.6.10,11

t 1:All.-A.V.Allain & Sons, 2:B.S.-Bon Secour, 3:Geo.-Georgia, 4:GIn.-Glenwood, 5: Lan.-Lanaux, 6:
Mag.-Magnolia, 7:0ak.-Oaklawnhy, 8: P.A -Palo Alto, 9:R.L.-Raceland, 10;: R.H.-Ronal Hebert, | 1:StJ.-
Levert-St. John.

1 1:CP65-357, 2:CP70-321, 3:CP72-370, 4:CP79-318, 5:LCP82-089, 6:LHo-LHo-83153, 7:LCP85-384,
8:HoCP85-845, 9:HoCP91-552, 10: HoCP91-555, 11:LH092-3 14, 12:L92-315, 13: HoCP92-618, 14:
HoCP92-624, 15: HoCP92-648, 26: HoCP92-674, 17: HoCP93-754, 18:1.94-426, 19:1.94-428, 20:1.94-
432, 21:HoCP94-806.

Predictive accuracy of narrow inference from models (Table 4.1) was obtained
by a “leave-one-block-out” cross-validation procedure (Appendix C). Independent
cross-validation was run for each test year. For each outfield trial. the data set was split
into two subsets, one with two replications per environment (calibration data) and the
other with one replication per environment (validation data). The calibration data set
was used to predict variety performance in each environment. Predicted performance
was compared to the observed yield for cach variety in the validation data set. The
process was repeated 30 times for different randomizations, i.c., different sets of two
blocks per environment. The average of squared differences between predicted and
observed values of each genotype were used to approximate prediction accuracy of
narrow inference. At each iteration of the validation procedure, counts were made for
each environment to ascertain how many of the top 50% varieties in the validation set

would also have been ranked in the top 50% of a variety list sorted in accord with the
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variety BLUPs for that particular environment. The average percent of varieties in the
top 50% of both lists is denoted by P (50/50).
3. RESULTS AND DISCUSSION
Cane yield data revealed significant GE variance components for each year in the
sugarcane yield trials from 1996 to 1998 (Table 4.3). Significant GE for sucrose content
(x=0.05) was observed only in 1997.

Table 4.3. Vanance component estimates for environmental (E) and genotype-by-
environment (GE) effects for three years (1996 to 1998) of sugarcane variety trials

Variance Cane Yield Sucrose Content
Component (Mg ha''y’ (g sucrose kg 'cane)’
1998
oo 21.68 24.73
E
(0.166) t (0.113)
og,[: 25.58 8.83
’ (0.001) (0.057)
o 41.319 40.38
1997
o 26.02 134.98
E
(0.116) (0.088)
oi‘p 10.65 10.62
' (0.012) (0.010)
03- 33.191 31.88
1996
g 30.80 81.52
E
(0.060) (0.055)
= 11.67 1.12
GE
(0.001) (0.667)
o 31.77 39.02

t In parenthesis P-values for the hypothesis of variance component equal to zero (Z test).
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The variance component standard errors obtained from REML procedures and Z
tests for the hypothesis that the variance components equal zero are only asymptotically

valid. Poor approximations should be expected when dealing with variance components

. . oy 2 . 2
estimated with a small degrees of freedom. such as with op. Tests fora common o, .

are more reliable. The F-test P-value of fixed variety effects was smaller than 0.001 for
both traits in each multi-environment trial.

Least square means (LSMeans) are commonly used for broad genotypic
inferences across environments. Standard errors for each LSMeans were computed
using the general formula for the variance of an estimable function under the mixed
model. Therefore, the variance of an estimated genotype mean involves the variances of
all random effects in the model (Littell et al., 1996). Because of the differences in
variance-covariance structures, genotype groupings differ among the approaches
relative to different models. The larger the GE , the larger the expected grouping
differences. The GE in this sugarcane data set is not as important as is often observed in
variety trials of other crops (Kang and Gauch, 1996) or previously reported GE
interactions for sugarcane (Kang and Miller, 1984). However, different assessments of
the yield performance of varieties across a range of environments were observed in each
MET. The genotype mean separation obtained using 1998 MET data and different
models, is presented in Tables 4.4 and 4.5 for cane yield and sucrose content,
respectively. Differences in standard errors among genotypes means for mixed models

[2] to [4] are due to difference in GE response. The mixed model approach to stability
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analysis allows one to obtain genotype (broad) mean separations that combine yield
measures and stability parameters.

If the data are completely balanced and the residual variance is assumed to be
constant, then model [1] should assign the same variance to all observations. The data
set of this study contained three replications per variety at most of the farms, but for
some variety-environment combinations there were only two replications. Slight
differences in standard errors for the broad inference means under model [ 1] reflect this
unbalance.

Models [2] to [4]. as expected, showed larger differences among the standard errors
of the genotypic means. For example, for 1998 data both Mixed Shukla [2], Mixed
AMMI model [3], and Mixed E&R [4] assigned larger standard errors to varieties L.94-
428, LCP85-384, and CP70-321 than to other varieties. The stability variance estimates
(GEj) for L94-428, LCP85-384, and CP70-321 were 35.17, 63.88, and 88.74 (Mg ha'')’.
respectively. whereas the average variance for the remaining varieties was about 13.00
(Mg ha')’. Thus, a larger standard error was used for mean separation of genotypes

involving larger GE interaction components. Because the number of environments is not
- 2 .
large in this data set (seven farms in 1998), the stability parameters IGEG) for

j = 1,...,10 are estimated with large standard errors and hence the Z test for the
covariance parameters was not employed. The variance components reported above
should be interpreted only for a tentative ranking of the stability of those varieties in
1998. When the number of environments is large and greater than the number of

genotypes, the Z test may be employed to test if those values reflect a genotype feature.
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Multiplicative interaction models in addition to models that use a Shukla-type
variance component in the GE also provide extended standard errors. The parameters
related to genotype stability in multiplicative models (genotype factor loadings) such as
those of Eberhart and Russell (1966) and AMMI models (Gauch, 1988) are covariance
parameters, i.e, they make up the variance and covariance of the data. They can be used
to visualize GE interaction but also to construct an extended standard error for genotype
mean separation integrating genotype yield and stability. The product of the genotype
loadings estimates the covariance between genotype GE effects of pairs of genotypes in
a particular environment (Table 4.1). Comparison ot genotype means under a
multiplicative model like models [3] and [4] will account for this aspect of GE. A
multiplicative model for GE implies that the difference of two genotypes in a particular
environment depends on the differences of genotypes scores and the magnitude of the
environmental random scores predicted for the particular environment.

The approach, treating all factors as fixed, compares genotype means without
regard to GE variances. It only accounts for residual error variances. The reported
standard errors for genotype mean comparisons were smaller under the fixed approach
than the mixed models because the fixed model ignores variability due to GE (Tables
4.4 and 4.5). The mixed models model [5] produced a finer separation than the mixed
model [1] indicating the importance of controlling for heterogeneous residual variance
in the LSVDP outfield trials when modeling cane yield data. Differences in mean
separation among models were smaller for sucrose content, probably, because of the

smaller GE interaction associated with this trait.
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The relatively small GE observed in these trials is likely a direct result in the pre-
outfield multi-location testing (Milligan, 1994). Successful varieties must display high
yields across all tested environments to be advanced to the outfield trials. Hence, they
have been screened for low GE prior to testing in the outfield trials.

Comparing likelihoods among the mixed models allows one to select the most
appropriatec model from among those under consideration. Likelihood ratio tests are
obtained by comparing the differences between the quantities -2 Residual Log
Likelihood" for a given pair of models. The difference can be compared against a x°
with degrees of freedom equal to the difference in the number of GE covariance
parameters between the models. For example using 1998 data. to compare the simplest
Mixed ANOVA against the Mixed Shukla model. i.e model [1] vs. model [2]. the
difterence between the respective functions of likelihoods, D=1453.21-1442.53 = 10.68.
is compared to a with %® variable from a distribution with 14-4=10 degrees of freedom.
A lower residual likelihood score is better than a higher score. The results of comparing
the four mixed models with homogeneous residual variance indicate that an AMMI
model [3] with two multiplicative terms (AMMI(2)) was better model for cane yield
data than was the simple homogeneous and independent GE model [ 1] for test years
1998 and 1997 (Table 4.6). However, improvements over the Mixed ANOVA [1] were
non-important for 1996. In this data, the Mixed Shukla [2] and the Eberhart and Russell
[3] model did not improve, over the Mixed ANOVA (1], the model for cane yield.

These results suggest that modeling the correlation between interaction terms may

be a good strategy when analyzing cane yield trials at the LSVDP.
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Table 4.4. Cane yield least squares meanst using five mixed modeling approaches for1 998 sugarcane yield trials.

Variety Mixed ANOVA Mixed Shukla Mixed AMMI(2) Mixed E&R Mixed HetR 5] Fixed
() (2] 13) (4] Model
Least Squares Means (Mg ha')
1.94-428 6920 A 6899 AB 68.8%8 AB 6899 AB 7037 A 6891 A
+3.00 +4.18 14.32 +4.27 +2.77 +1.45
LCP85-384 68.56 A 68.57 AB 68.51 AC 68.57 AB 69.61 AB 68.66 A
£2.97 13.72 :3.88 :13.92 12.73 t1.41
HoCP91i- 68.29 AB 68.28 A 68.29 AC 68.28 A 68.19 ABC 68.29 A
5555 12.98 +2.84 :2.76 +3.09 +2.75 £1.40
HoCP94-806 66.72 AB 66.72 A 66.72 AB 66.72 A 66.10 ABCD 66.72 A
+2.98 1217 +2.32 +2.50 +2.75 +1.40
L94-426 65.88 AB 65.88 AB 65.90 ABC 65.88 AB 65.07 ABCDE 65.80 ABC
1298 +2.53 :2.47 +2.55 +2.75 +1.41
HoCP92-624 65.77 ABC 65.69 AB 65.88 ABC 65.70 AB 65.31 ABCDE 65.88 AB
13.03 £2.22 +2.75 +1.77 12.78 +1.40
HoCP85-845 65.16 ABC 65.09 ABC 64.87 ABCD 65.12 ABC 64.34 BCDE 6541 ABC
12.95 +2.68 +2.59 +2.85 :2.71 +1.35
CP170-321 62.82 ABC 62.83 ABC 62.92 BDE 62.83 ABC 62.50 CDE 62.87 BCD
+295 +3.10 13.21 13.04 1271 t1.35
1.94-432 61.80 BC 61.84 BC 61.78 CDE 61.84 BC 62.00 DE 61.67 CD
+3.00 +2.33 +2.6] +2.16 +2.77 +1.45
HoCP93-754 59.08 C 59.08 C 59.08 D 59.08 C 60.02 E 59.08 D
+2.98 +3.08 +3.07 +3.13 +2.75 +1.45

+ Means followed by the same letter following are not significantly different from each other at the @=0.05.

1 For model description see Table 4.1. "Fixed Model’ is two way factorial model with all effects as fixed.



Table 4.5. Sucrose content least squares meanst using four mixed modeling approaches for1998 sugarcane yield trials.

Variety Mixed ANOVA Mixed AMMI(2) Mixed E&R Mixed HetR (5] Fixed

) 3] {4] Modcl

Least Squares Means (g sucrose kg cane)

L94-432 13992 A 13992 AB 13994 A 140.12 A 139.86 A
12.61 +2.21] +2.76 +2.61 +1.47
L94-428 13893 AB 13896 AC 13893 AB 138.81 AB 13893 AB
+2.59 +2.37 +2.2§ +2.59 +1.42
LCP85-384 136.22 ABC 136.03 AC 136.21 ABC 136.11 AB 136.35 ABC
+2.57 +3.53 +3.44 +2.58 +1.42
HoCP94-806 13598 ABC 13598 AB 13596 ABC 136.03 AB 13598 ABC
+2.59 +2.05 +1.87 +2.59 +1.42
CP70-321 135.83 ABC 135.69 ABC 135.69 ABC 135.63 AB 13596 ABC
12.55 12.35 +2.35 +2.56 +1.37
HoCP91- 13545 ABC 135.45 ABC 135.45 ABC 135.53 AB 135.45 BC
5555 +2.59 :12.03 +1.73 :2.59 t14]
L94-426 134.83 ABC 134.83 ABCD 13483 C 13476 B 13483 C
+2.59 12.62 12.37 12.59 +1.42
HoCP93-754 134.76 BC 134.76 BDE 134.76 ABC 13453 B 134.76 C
+2.59 +3.49 +3.28 +2.59 +1.42
HoCP92-624 13346 C 133.31 CDE 133.21 BC 13384 B 133.33 C
+2.63 +2.10 +2.39 12.63 +1.53
HoCP85-845 12594 D 12591 D 126.07 D 126.03 C 12599 )
+2.57 :2.71 +3.19 +2.56 +1.37

‘uolssiwiad noyum payqiyosd uononpoidas Joyung Jaumo JybuAdoo ayy jo uoissiwiad yum paonpoiday

1 Means followed by the same letter are not significantly different from each other at the a=0.05.
1 For model description see Table 4.1. REML algorithm did not converge for a Mixed Shukla model.



Correlation among locations might affect correlations among the GE terms.
AMMI(3) models were not necessary to model interaction patterns in this data set
(results not shown).

Comparisons of model fitting information for sucrose content indicated that an
AMMI model should be preferred for analyzing 1998 and 1997 data, whereas in 1996,
the simplest MIXED ANOVA might be adequate. AMMI models with two
multiplicative terms were not suitable for sucrose content. This may be related to the
relatively smaller GE interaction for sucrose content than for cane yield in the data sets.

Table 4.6. Model fitting information for five models employed to analyze cane yicld
and sucrose content in three years of multi-environment sugarcane trials

Model Number of -2 Residual Log Likelihood
Covariance 1998 1997 1996
Parameters

eeeeeerenfor cane yield

Mixed ANOVA 4 1453.21 1496.46 2039.06
Mixed SHUKLA 4+g 1442.53 1460.10 NA

Mixed AMMI(1) d+g 1444.62 1460.97 2031.87
Mixed AMMI (2) 4+g+(g-1) 1414.53 1442 .81 2010.70
Mixed E&R 3+2%g 1440.08 1460.02 2030.02
Best model AMMI(2) AMMI(2) ANOVA

for sucrose content

Mixed ANOVA 4 1416.08 1468.17 2068.72
Mixed SHUKLA 4+g NA 1450.45 2063.55
Mixed AMMI(1) 4+g 1396.98 1432.44 2055.21
Mixed AMMI (2) 4+g+(g-1) 1388.98 1416.09 2047.71
Mixed E&R 342%g 1397.35 1448.12 2061.52
Best model AMMI(1) AMMI(1) ANOVA

+ NA: non available because of REML algorithm does not converge
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Biplot analysis can often provide better insight into genotype by environment
interaction responses than means or GE test alone. As an example, the 1998 cane yield
and sucrose content GE scores were plotted. The biplot representing the genotype and
environment scores on the two multiplicative terms for a Mixed AMMI(2) indicates that
genotypes CP70-321 (2), LCP85-384 (7) and L94-428 (19) contributed more to the
cane yield GE variability in 1998 than the other varieties (Fig 4.1). This is indicated by
the fact that the genotype scores are far from the origin of either axis. The relative poor
yield of genotype 19 in environment 6 contrasts the very high yields observed
environments such as 2,10, and 11 (Table 4.7). Genotypes 2 and 7 yield performances
were negatively correlated with environment 5 effects whereas genotype 19 was
negatively correlated to environment 6. They are situated in opposite diagonal quadrants
in the biplot.

Table 4.7. Canc yield from sugarcane variety trials conducted in 1998

Variety Code Environments
1 2 3 5 6 10 11
Mg ha'
CP70-321 2 5829 6285 6501 5149 7683 67.55 58.05
LCP85-384 7 7092 7584 70.66 46.08 76.16 73.39 67.03
HoCP85-845 8 5770 7418 68.11 6742 71.04 6548 53.92

HoCP91-555 10 71.54 76.66 6680 6209 8042 60.74 59.74
HoCP92-624 14 60.13 6848 6800 63.77 7346 6636 62.43
HoCP93-754 17 5454 7312 6634 5005 51.08 59.60 58.79

L94-426 18 57.14 7824 65.19 7042 6508 6393 61.12
L94-428 19 67.64 8706 6589 5723 5396 79.16 70.25
L94-432 20 6142 7383 5794 5953 5868 6027 62.24

HoCP94-806 21 63.60 77.54 6105 62.16 7394 63.02 65.70
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Plotting the genotype and environment scores for the first multiplicative interaction
terms against cane yield values, it is possible to observe that vanety 19 (experimental),
with a high yield across environments, is one of the most unstable variety (Fig 4.2).
Varieties 7 and 10 (both commercial varieties) followed in yield but with more stable
performance.

Sucrose content GE variability was much smaller than that for cane yield GE. One
multiplicative term adequately explained GE (Table 4.6). In 1998, varieties 17. 7. 14
and 10 displayed relatively high GE responses (Fig 4.3). Sucrose contents for sugarcane
varicty trials conducted in 1998 are shown in Tablc 4.8.

Although the estimation of genotype and environment scores under a fixed model
involves procedures that are quite a bit different than those under a Mixed AMMI
model, both approaches lead to similar interpretations from graphical representations.
Biplots of the first principal GE component versus sucrose content (fixed AMMI model)
(Fig. 4.4) suggested similar conclusions about variety yield potential and stability as
indicated by the mixed AMMI model (Fig. 4.3). If factor loadings as estimated by SAS
are multiplied by -1, the same representation is obtained for both fixed and mixed
AMMI-based procedures. Although biplots derived from the fixed model approach,
i.e., using the SVD could be obtained tor 1998 since the MET in that year was balanced.
they cannot be used to analyze other METS or in an analysis combining METs across
years. Hence, using a mixed AMMI approach provides a decisive functional advantage

to the fixed AMMI approach.
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Table 4.8. Sucrose content for sugarcane variety trials conducted in 1998.

Variety Code Environments
1 2 3 5 6 10 11
kg sucrose Mg’ cane
CP70-321 2 131 134 135 147 140 137 129
LCP85-384 7 122 139 143 150 138 134 130
HoCP85-845 8 117 122 133 136 136 117 120
HoCP91-555 10 135 126 140 137 137 136 137
HoCP92-624 14 137 128 142 135 134 133 123
HoCP93-754 17 119 135 140 147 136 131 136
L.94-426 18 128 140 138 142 137 130 129
L94-428 19 138 143 139 148 141 129 135
L94-432 20 139 140 145 144 150 129 133
HoCP94-806 21 136 134 138 141 142 131 130
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Figure 4.1. Genotype and environment scores on first and second multiplicative term of
a Mixed AMMI (2) for cane yield. Environments in blue — Genotypes in red.
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Figure 4.2. Genotype and environment scores on first multiplicative term of a Mixed
AMMI vs. cane yield means [Mg ha™']. Environments in blue - Genotypes in red.
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Figure 4.3. Genotype and environment scores in the multiplicative term of a Mixed
AMMI (1) vs. sucrose content [ g sucrose kg cane] for year 1998.
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Figure 4.4. Genotype and environment scores in the multiplicative term of a FIXED
AMMI (1) vs. sucrose content [ g sucrose kg cane] for year 1998

The results from the crossvalidation procedure carried out to evaluate narrow
inference showed that the fixed model approach consistently produced larger prediction
errors than the other models (Table 4.9). On average, the fixed model approach
produced errors of 11.406 Mg ha' compared with the mixed models mean values
between 9.738 and 10.399 Mg ha'. The model with the lowest root mean square error,
however, varied by year and location. The mixed AMMI model (3] produced the lowest
errors in nine out of 23 location-year combinations. However, the other two mixed
models, the mixed ANOVA [1] and the mixed Shukla [2], each produced the lowest
errors in seven out of 23 tests. The mixed E&R [4] model showed larger prediction error
for this data set. The modeling of heterogeneous residual variances [5] produced larger
improvement over model [1] that the models involving heterogencous GE. This may be
related with the small GE interaction observed in the LSVDP outfield trials. Such

variability among the different predictive models was also observed for sucrose content

9%
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(data not shown). Even though, the empirical nature of the prediction errors reported
here, the observed trends in the simultaneous comparison of the models support one to
prefer a mixed model instead of a fixed model. The researcher should use a likelihood
ratio test when deciding on what model approach to use for a given analysis. To
facilitate comparison of the mixed models to the fixed model, prediction errors were
obtained for only test years involving a particular location. The fixed approach
(genotype-environment mean) can be applied only in environments with data.

However, by using a mixed model approach, predictions can also be done for genotype-
environment combinations not actually evaluated.

Mixed model narrow inferences incorporate expected GE effects. P(50/50)
values were used to assess the functional effect of the models in cane yield rankings by
variety (Table 4.10). As with the conclusions drawn from the root mean square
prediction errors, the mixed approaches were generally better than the fixed approach.
Adjusting for inter-trial residual variability was important. The best model varied with
year and location.

Although the mixed ANOVA (5] and [2] models were on average better than the
other models, the AMMI model [3] most often gave the best predictor. The model with
heterogeneous by environment residual variance showed significant improvement. One
should note that these are results based on typically 10 genotypes within a location.
Simultaneous comparison of these models with regard to narrow inferences in METs

involving a larger genotype list will provide more insight.
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Table 4.9. Prediction errort for environment-specific inferences for six models to

analyze cane yield in multi-environment sugarcane yield trials for four traits.

Farm Year Fixed Mixed Mixed Mixed Mixed Mixed
Test  Model ANOVA Shukla AMMI E&R HetR

(1] (2] (3] (4] (5]

Mg ha"!

I:ALL. 1998 4.079 3.746 3918 3.660 3.981 3.830
1996 4.707 3.920 3.730 3.901 3.912 4.065

2:B.S. 1998 13.550 12.609 13.344 12.130 12.591 12.180
1997 7.083 5.728 5.837 6.158 6.044 5.669

1996 11.420 9.610 8.305 9.872 10.261 10.080

3:Geo 1998 6.511 5.744 6.220 6.028 6.041 5.900
1997 10.508 10.500 10.163 9.702 10.197 10.243

4:Gln. 1997 3.700 3.700 3.458 2.886 3.524 3.284
1996 17.081 13.766 15.65 11.968 14.635 13.880

S:Lan. 1998 20.552 17.090 18.520 21.488 23.422 18.720
1997 13.611 10.260 9.940 10.024 10.489 9.940

1996  7.633 7.170 6.540 7.370 7.551 7.543
6:Mag. 1998 24.665 23.340 24.50 23.05 24.092 24.940
1997 6.432 6.267 6.470 6.612 6.930 6.094

1996 11.165 9.374 8.400 8.300 9.290 9.193

7:0ak. 1996 8.655 7.990 5.620 8.570 9.062 7.903
8:P.A. 1997 10.283 8.661 8.863 9.549 9.795 8.351
1996 7.092 5.566 5.140 5.043 5.633 5.723

9:R.L. 1996 7.327 6.441 5.468 7.010 6.689 5.307
10:R.H 1998 13.176 10.947 11.482 11.460 11.420 10.234
1997 21.183 18.483 18.751 17.813 20.22 17.623

1996 14478 12.130 10.162 13.192 13.179 12.380
11:StJ. 1998 17458 12.167 13.490 13.260 13.567 11.978
Mean 11.406 9.792 9.738 9.959 10.399 9.785

t Square root of the mean square prediction error (difference between predictor and target values for
each genotype obtained by an iterative validation procedure).
t L:All.-A.V.Allain & Sons, 2:B.S.-Bon Secour, 3:Geo.-Georgia, 4:GIn.-Glenwood, §: Lan.-Lanaux, 6:

Mag.-Magnolia, 7:0ak.-Oaklawnhy, 8: P.A.-Palo Alto, 9:R.L.-Raceland, 10: R.H.-Ronal Hebert, 11:St).-

Levert-St. John.
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Table 4.10. Percent of top 50% varieties in a particular environment also in the top 50%
of the environment specific variety performances predicted by six statistical models

Fixed Mixed Mixed Mixed Mixed Mixed
Farm Year Model ANOVA Shukla AMMI E&R HetR

%
1:ALL. 1998 78 80 84 86 80 85
1996 79 84 85 84 83 84
2:BS. 1998 62 67 66 73 67 A
1997 78 79 80 80 80 80
1996 59 64 62 62 60 64
3:Geo 1998 53 54 53 53 52 53
1997 mn 77 77 80 77 80
4:Gin. 1997 75 75 75 81 73 78
1996 69 73 71 74 72 7
5:Lan. 1998 67 70 67 64 65 68
1997 72 72 72 70 72 75
1996 66 81 75 68 75 78
6:Mag. 1998 68 73 64 74 68 70
1997 89 98 98 97 97 98
1996 54 67 70 64 69 69
7:0ak. 1996 74 83 84 77 83 85
8:P.A. 1997 56 68 67 72 65 70
1996 78 78 79 79 77 77
9:R.L. 1996 79 73 79 75 75 75
10:R.H 1998 53 41 42 43 40 42
1997 85 78 77 70 77 80
1996 67 64 69 65 68 64
11:StJ. 1998 54 60 55 62 60 64
Mean 69.2 72.1 71.8 71.9 71.6 73.1

+ 1:All.-A.V.Allain & Sons, 2:B.S.-Bon Secour, 3:Geo.-Georgia, 4:Gln.-Glenwood, §: Lan.-Lanaux, 6:
Mag.-Magnolia, 7:0ak.-Oaklawnhy, 8: P.A.-Palo Alto, 9:R.L.-Raceland, 10: R.H.-Ronal Hebert, 1 1:StJ.-
Levert-St. John.

4. CONCLUSIONS
The use of mixed models to analyze advanced variety trials offers the potential to
improve predictive precision at virtually no additional cost. [t also enables the
researcher to objectively incorporate GE stability measures with mean performance.

More complex mixed models that may model within environment covariance or
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consider environmental factors linked to GE are possible (Biames-Dumoulin et al.,
1996; Cullis, et al., 1997; Magari and Kang, 1997; Wolfinger and Tobias, 1998).
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Best linear unbiased prediction is an important tool for plant breeders that can be
employed at several stages of the selection process. The BLUP of genetic effects may
substitute cross and genotype means in progeny tests and early selection stages. In
progeny tests and early selection stages, the random nature of genotypes supports the
use of mixed models. A large number of genotypes facilitates estimation of genetic
variance components and random effects. In later selection stages. genotypes may be
assumed as fixed effects. By assuming environments and genotype-environment terms
as random, variances and covariances may be modeled and hence more information can

be integrated into broad and narrow genotype inferences and GE analysis.

BLUP prediction is not a new technique. What is relatively new for plant breeders,
since software for handling general mixed model has become available, is the
possibility of casily defining BLUPs of random effects that contemplate the model
complexity and the size of databases in typical crop improvement programs. A single
important “BLUP™ does not exist in plant breeding. There are a large number of
different combinations of fixed and random effects that can be predicted. For each
value to be predicted, there are many alternative models differing with regard to the
variance-covariance structure of the random effects.

Even when the main interest is in the fixed effects, parsimonious models of the
covariance structure increase the prediction accuracy of performance predictors. Mixed
model approaches can integrate genotype-by-environment covariances into the
comparison of the genotype means. Mixed models in yield trials in several

environments unifies under one general procedure the estimation of stability parameters,
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the study of GE and yield mean performances. Mixed AMMI models and
corresponding biplots to visualize predictable GE patterns should be obtained from
specific procedures, but their interpretation is analogous to that from fixed AMMI
models. Assumptions of balanced data are not made. but normality is required for
maximum likelihood estimation procedures to be performed. This later point may be a
limitation. There, however, exists an important amount of phenotypic information
where these procedures can be applied. Other limitations to the use of mixed model
analysis are related to computer time and the possible lack of convergence of likelihood-
based algorithms employed to estimate variance components. Both problems may be
tackled by adjusting the number of model parameters to be simultaneously estimated.
Usually there exists more than one strategy to fit the same model. Working with mean
values instead replications may be a functional alternative.

BLUP-based cross predictions consistently improved. with respect to MPV
prediction, the accuracy of predicted performance of crosses that have never been made
or tested. Different versions of BLUP could be obtained depending on the procedure
selected to connect tested and untested cross effects and the model for random genetic
effects. A mixed linear model adjusting progeny test data for fixed trial effects and
partitioning the genotype effect into random female and male effects performed better
than the model that used random cross effects. Results indicated that there was no gain
by using information from “rclated by pedigree” crosses. This failure was attributed to
the low genetic variance components and to the crossing techniques involved in

sugarcane breeding.
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BLUPs to combine genotype effects from early sugarcane clonal stages
demonstrated improvement compared to the percent of the check methods. BLUPs of
genotype-environment combinations in yield trials also performed better than the mean
to predict genotype performance in a particular environment. Progeny testing has
proved to be effective and cost efficient for sugarcane breeding because it improves the
efficiency of early generation selection. It can also be exploited to generate BLUPs of
untested crosses and to choose parental germplasm to combine in new hybrids. The MP-
BLUP obtained from the databases of regular sugarcane progeny tests would facilitate
the identification of material to be crossed. Predictors based on progeny tests can be
obtained after one year of testing of new parents, whereas parental selection based only
on clonal per se information requires several years of testing and probably is more
biased by the presence of non-additive genetic effects. No additional field experiments
are required to calculate cross performance predictors in those programs that are already
performing progeny tests. When using genotype BLUPs for prediction of future
selection stages, BLUPs and SP were superior to the predictor APCH used by the
LSDVP. In addition, BLUP accuracy was not dependent on check values, thus they can

still be effectively used when check varieties fail.

Better performance predictions increased the probability of selecting the best
genotypes at crossing, early and late selection stages of the breeding program. The
improved prediction methodology may enable the breeders to increase the selection

intensity at earlier stages and possibly shorten selection cycles.
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APPENDIX A

MODELS TO PREDICT GENOTYPE PERFORMANCE

108

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note: All codes assume that a SAS data set named ‘FULLT is available with variables
Y. GENO, TRIAL and REP related to the trait values y,, and codings for genotypes,
trials involving at least one of the GENO for which a performance prediction is
required, and replicates. respectively. FULLT contains all the data regarding trials that
involve the varieties of interest, the file should contain a variable CTXPARS whit value
equal to | for the varieties of interest and equal to zero otherwise. The variety TRIAL
could be a combination of year, locations, series, etc. For description of the models used

to obtain performance predictors see Table 3.1, pag. 57.

MODELS (1] TO |4] : Check-based predictors

/* DEFINE THE VARIETIES THAT SHOULD BE USED AS CHECKS */
DATA CHECKID;

INPUT GENO 08;

CHECK="YES';

CARDS ;
65357 70321 74383 72370
82089 83153 85384 85845

PROC SORT DATA=FULLT;BY TRIAL;
PROC MEANS NOPRINT;BY TRIAL;
VAR Y;

OUTPUT OUT«TRIALID N=NTRIAL;

DATA _NULL_;

SET TRIALID END=EOF;

CALL SYMPUT('GROUP' ||LEFT(_N_),TRIM(TRIAL));
IF EOF THEN CALL SYMPUT ('TOTAL', _N_);

RUN;

DATA _NULL_;

SET CHECKID END=EOF;

CALL SYMPUT('CHECK'||LEFT(_N_), TRIM(GENQ)):;
IF EOF THEN CALL SYMPUT (*NCHECK', _N_);
RUN;

¥MACRO PREDICT;

DATA WORKDS;
SET FULLT;
XDO C=1 XTO &NCHECK;

DATA CHECK&C;

SET WORKDS;

IF TRIM(GENO)="8&&CHECKEC" ;

Y&C=Y;

KEEP TRIAL REP Y&C;

PROC SORT DATA=CHECK&C;BY TRIAL REP;
PROC SORT DATA=WORKDS;8Y TRIAL REP;
DATA WORKDS ;

MERGE CHECK&C WORKDS;8Y TRIAL REP;
PCTCH&C=100* (Y/Y&C) ;

XEND

DATA APCTCH;

SET WORKDS;

IF CTXPARS=l;

APCTCH=MEAN(OF PCTCH1 PCTCH2 PCTCH3 PCTCH4
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PCTCHS PCTCHE PCTCH7? PCTCHS);
PROC SORT DATA=CHECKID;BY GENO;
PROC SORT DATA=FULLT;BY GENO;
DATA ACHECK;
MERGE FULLT CHECKID;BY GENO;
IF CHECK='YES';

PROC SORT DATA=ACHECK ;BY TRIAL;

PROC MEANS DATA=ACHECK MEAN NOPRINT; BY TRIAL:;
VAR Y;

OUTPUT OUT=ACHECKT MEAN=YCHECKT STDERR=SCHECKT;

DATA VARLST;

MERGE ACHECKT APCTCH;BY TRIAL;
YPCT_EC=100* (Y/YCHECKT) ;
Z=(Y-YCHECKT) /SCHECKT;
DIFF=Y-YCHECKT;

PROC SORT DATA=VARLST; BY GENO;

PROC MEANS MEAN NOPRINT;BY GENO;

VAR Y APCTCH YPCT_EC Z DIFF;

OUTPUT OUT=FIXED MEAN=YM1l YM2 YM3 YM4 YMS;

PROC RANK DATA=FIXED OUT=RANKF;VAR YM1l YM2 YM3 YM4 YMS _TYPE_;
RANKS MIRANK M2RANK M3RANK M4RANK MSRANK MT;

PROC MEANS DATA=ACHECK MEAN NOPRINT;

VAR Y;

OUTPUT OUT=MUCHECK MEAN=MUCHECK STD=SCHECK;
DATA PREDICT;

MERGE RANKF MUCHECK;8Y _TYPE_;

KEEP GENO YM1 YM2 YM3 YM4 YM5 Pl P2 P3 P4 PS
M1RANK M2RANK M3RANK M4RANK MSRANK ;

PlayMl;

P2=(YM2*MUCHECK) /100;

P3=(YM3*MUCHECK) /100;
P4=(YM4*SCHECK ) +MUCHECK ;

PS=YM5+MUCHECK ;

PROC PRINT;

XMEND PREDICT;
XPREDICT

MODEL (5): LSMean from a Fixed Model as predictor

XMACRO PREDICT;

DATA WORKDS ;
SET FULLT;
CLON=GENO;

PROC MIXED DATA=WORKOS NOITPRINT NOCLPRINT METHOD=REML;
CLASS TRIAL GENO REP;

MODEL Y=TRIAL REP(TRIAL) GENO;

LSMEANS GENO;

MAKE 'LSMEANS' NOPRINT QUT=LSMEAN;

PROC SORT DATA=WORKDS ;8Y CLON;
PROC SUMMARY NWAY;

CLASS CLON;

ID CTXPARS;

OUTPUT OUT=VARLST;

DATA PREDICT;

MERGE LSMEAN VARLST;

IF CTXPARS=1l;

Pl=_LSMEAN_; DROP VARIETY;
DATA PREDICT;

SET PREDICT;

VARIETY=CLON;

PROC RANK DATA=PREDICT OUT=RANKF;VAR P1l;
RANKS M1RANK;

XMEND PREDICT;
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MODEL [6]: BLUP of genotype effect -BGa-

XMACRO PREDICT;

DATA WORKDS;
SET FULLT;
CLON=GENO;

PROC MIXED DATA=WORKDS noitprint noclprint method=REML;
CLASS TRIAL GENO REP;

MODEL Y=TRIAL REP(TRIAL)/SOLUTION;

RANDOM GENO/S:

MAKE ‘SOLUTIONR' NOPRINT OUT=BLUP;

MAKE ‘SOLUTIONF' NOPRINT OUT=MU;

DATA MU;

SET MU;

IF _EFFECT_='INTERCEPT';
MU=_EST_,KEEP MU CTXPARS;
CTXPARS=1;

PROC SORT DATA=WORKDS ;B8Y CLON;
PROC SUMMARY NWAY;

CLASS CLON;

ID CTXPARS;

OUTPUT OUT=VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF CTXPARSs]1;
Ul=_EST_;

DROP GENO;

DATA PREDICT;

MERGE PREDICT MU;BY CTXPARS;
GENO=CLON;

Pl=MU+Ul;

PROC PRINT;
PROC RANK DATA=PREDICT OUT=RANKF;VAR Pl;
RANKS M1RANK ;

XMEND PREDICT;

MODEL [7): BLUP of genotype effect -BGb-

XMACRO PREDICT;

DATA FULLT;
SET FULLT;
IF GENO=65357 OR GENO=70321
OR GENO=74383 QR GENO=72370 OR GENO=82089 THEN NEw=O0;
ELSE NEwsl;
IF (NEW) THEN GENTYPE=999999;
ELSE GENTYPE=GENO;

DATA WORKDS ;
SET FULLT;
CLON=GENO;

PROC MIXED DATA=WORKDS noitprint noclprint method=REML ;
CLASS TRIAL GENO REP gentype;

MODEL Y=TRIAL REP(TRIAL) gentype/SOLUTION;

RANDOM GENO*new/S;

1smeans gentype;

MAKE ‘SOLUTIONR’ noprint OUT=BLUP;

MAKE ‘SOLUTIONF' NOPRINT OUT=MU;

DATA MU;

SET MU;

IF _EFFECT_='INTERCEPT';
MUus=_EST_.KEEP MU CTXPARS;
CTXPARS=l;

PROC SORT DATA=WORKDS ;BY CLON;
PROC SUMMARY NWAY;
CLASS CLON;
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ID CTXPARS NEW;
OUTPUT OQUT=VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF CTXPARS=];
Ul=_EST_;

DROP GENO;

DATA PREDICT;

MERGE PREDICT MU;BY CTXPARS;
GENO=CLON;

Pl=MU+Ul;

IF NEw=l;

XMEND PREDICT;

MODEL (8): BLUP of genotype effect -BGTa-

XMACRO PREDICT;

DATA WORKDS;
SET FULLT;
CLON=GENO;

PROC MIXED DATA=WORKDS NOITPRINT NOCLPRINT METHOD=REML ;

CLASS TRIAL GENO REP;

MODEL Y=/SOLUTION;

RANDOM TRIAL REP(TRIAL) GENO/S;
MAKE 'SOLUTIONR' NOPRINT OUT=BLUP;
MAKE ‘SOLUTIONF' NOPRINT OUT=MU;

DATA BLUP;
SET BLUP; IF _EFFECT_='GENO';

DATA MU;

SET Mu;

IF _EFFECT_=' INTERCEPT';
MU=_EST_;KEEP MU CTXPARS;
CTXPARS=1;

PROC SORT DATA=WORKDS;BY CLON;
PROC SUMMARY NWAY;

CLASS CLON;

ID CTXPARS;

OUTPUT OUTwVARLST;

DATA PREDICT;

MERGE BLUP VARLST;
IF CTXPARS=];
Ul=_EST_; DROP GENO;

DATA PREDICT;
MERGE PREDICT MU;BY CTXPARS;
VARIETY=CLON; PlaMU+Ul;PROC PRINT;

PROC RANK DATA=PREDICT OUT=RANKF;VAR Pl;
RANKS M1RANK;

XMEND PREDICT;

MODEL (9]: BLUP of genotype effect -BGTb-

XMACRO PREDICT;

DATA FULLT;
SET FULLT;
IF GENO=65357 OR GENO=70321
OR GENO=74383 OR GENO=72370 OR GENO=82089 THEN
ELSE NEwxl;
IF (NEW) THEN GENTYPE=999999;
ELSE GENTYPE=GENO;

DATA WORKDS ;
SET FULLT;
CLON=GENO;

NEW=0;
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PROC MIXED DATA=WORKDS NOITPRINT NOCLPRINT METHOD=REML ;
CLASS TRIAL GENO REP GENTYPE;

MODEL Y= GENTYPE/SOLUTION;

RANDOM TRIAL REP(TRIAL) GENO*NEW/S;

LSMEANS GENTYPE;
MAKE 'SOLUTIONR' NOPRINT OUT=BLUP;
MAKE 'SOLUTIONF' NOPRINT OUT=MU;

DATA BLUP;
SET BLUP;
IF _EFFECT_='NEW*GENO';

DATA MU;

SET MU;

IF _EFFECT_='INTERCEPT';
MU=_EST_;KEEP MU CTXPARS;
CTXPARS=1;

PROC SORT DATA=WORKDS;B8Y CLON;
PROC SUMMARY NWAY;

CLASS CLON;

ID CTXPARS new;

OUTPUT OUT=VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF CTXPARS=1;
Ul=_EST_;

DROP GENO;

DATA PREDICT;

MERGE PREDICT MU;BY CTXPARS;
GENO=CLON;

PlxMU+U];

IF NEW=l;

¥MEND PREDICT;
MODEL [10]: BLUP of genotype effect -BGTla-

XMACRO PREDICT;

DATA WORKDS;
SET FULLT;
CLON=GENO;

PROC SORT;BY TRIAL GENO ;

PROC MEANS DATA=WORKDS MEAN NOPRINT;BY TRIAL GENO;
VAR Y;

ID CTXPARS TRIAL;

OUTPUT OUT=YMEAN MEAN=;

PROC MIXED DATA=YMEAN NOITPRINT NOCLPRINT METHOD=REML;
CLASS TRIAL GENO;

MODEL Y«wTRIAL/SOLUTION;

RANDOM INT/SUBJECT=GENO S;

REPEATED GENO/SUBJECT=TRIAL R:

MAKE 'SOLUTIONR' OUT=8LUP;

MAKE 'SOLUTIONF®' OuT=MU;

DATA MU;

SET MU;

IF _EFFECT_='INTERCEPT';
MU=_EST_;KEEP MU CTXPARS;
CTXPARS=1;

PROC SORT DATA=WORKDS;BY CLON;
PROC SUMMARY NWAY;

CLASS CLON;

I0 CTXPARS;

OUTPUT OUT=VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF CTXPARS=1;
Ul=_EST_;DROP GENO;

DATA PREDICT;
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MERGE PREDICT MU;:BY CTXPARS;
GENO=CLON;
PlaMU+UL;

PROC PRINT;
PROC RANK DATA=PREDICT OUT=RANKF;VAR P1l;
RANKS M1RANK ;

XMEND PREDICT;

MODEL {11}: BLUP of genotype effect -BGTIb-

XMACRO PREDICT;

*HERESTIMATE WEIGHTS ****;

PROC SORT DATA=FULLT;BY TRIAL GENO:
PROC MEANS MEAN NOPRINT;BY TRIAL GENO;
VAR Y;

I0 CTXPARS;

OUTPUT OUT=YMEAN MEAN=;

PROC MIXED DATAsYMEAN NOITPRINT NOCLPRINT METHOD=REML ;
CLASS TRIAL GENO;

MODEL Y=TRIAL/SOLUTION;

RANDOM INT/SUBJECT=GENO S:

REPEATED TRIAL/SUBJECT=GENO R;

MAKE 'COVPARMS' OUT=VC;

DATA VC_R:

EST=l;

OUTPUT;

DATA VC;

SET VC VC_R;

PROC SORT DATA= FULLT;BY TRIAL;

PROC GLM DATA= FULLT OUTSTAT=FIRSTS; BY TRIAL:
CLASS REP GENO;
MODEL Y=REP GENO;

DATA WEIGHTL;

SET FIRSTS;

IF _SOURCE_="'REP"';
REP=DF;

KEEP TRIAL REP;

DATA WEIGHT2;

SET FIRSTS;

IF _SOURCE_='ERROR';
SIGMA2=SS/DF;

KEEP TRIAL SIGMA2;

DATA WEIGHT;

MERGE WEIGHT1 WEIGHTZ;

8Y TRIAL;

IF DF=0 THEN DO;SIGMA2=10;REP=1;END;
WT=1/(SIGMA2/REP) ;

PROC SORT DATA=SOURCEL.FULLT;BY TRIAL;
DATA FULLT;
MERGE FULLT WEIGHT;BY TRIAL;

DATA WORKDS ;
SET FULLT;
CLON=GENO;

PROC SORT;B8Y TRIAL GENO ;

PROC MEANS DATA=WORKDS MEAN NOPRINT;BY TRIAL GENO;
VAR Y WT;

ID CTXPARS;

OUTPUT OUT=YMEAN MEANsY WT;

PROC MIXED DATA=YMEAN METHOD=REML ;
CLASS TRIAL GENO;

WEIGHT WT;

MODEL Y=TRIAL/SOLUTION;

RANDOM INT/SUBJECT=GENO S;

RANDOM TRIAL/SUBJIECT=GENO;
REPEATED;

PARMS /PDATA=SOURCEL.VC EQCONS=3;

114

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



MAKE 'SOLUTIONR' NOPRINT OUT=8LUP;
MAKE 'SOLUTIONF' NOPRINT OUT=MU;

DATA BLUP;
SET BLUP;
IF _EFFECT_='INTERCEPT';

DATA MU;

SET MU;

IF _EFFECT_='INTERCEPT';
MU=_EST_;KEEP MU CTXPARS:
CTXPARS=1;

PROC SORT DATA=WORKDS;BY CLON;
PROC SUMMARY NWAY;

CLASS CLON;

ID CTXPARS;

OUTPUT OUT=VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF CTXPARS=1;
Ul=_EST_;

DROP GENO;

DATA PREDICT;

MERGE PREDICT Mu;BY CTXPARS;

GENO=CLON;

Pl=Mu+Ul;

PROC PRINT;

PROC RANK DATA=PREDICT QUT=RANKF;VAR Pl;
RANKS M1RANK;

XMEND PREDICT;
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APPENDIX B

SAS CODES FOR MIXED MODELS IN MULTI-ENVIRONMENT
YIELD TRIALS.
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Note: All codes assume that a SAS data set named ‘YLD’ is available with variables Y,
GENO, ENV and REP related to the trait values y,, and codings for genotypes,
environments and replicates, respectively. The file pdmixmac.sas contains a SAS macro
named PDMIXMAC612 which show mean separation results from a mixed model
fitting by using letter groups. It can be obtained from the SAS web page.

MODEL [1] : Mixed ANOVA
Fixed genotypes, random environmental and replication(environment) effects.
Assumptions for the GE terms: homogeneous variance and independence

PROC MIXED DATA=YLD COVTEST;
CLASS ENV GENO REP;

MODEL Y=sGENO;

RANDOM ENV REP(ENV) GENO™ENV;
LSMEANS GENO/PDIFF;

MAKE 'DIFFS' OUT=P NOPRINT;
MAKE ‘'LSMEANS' OUT=M NOPRINT;

%XINCLUDE ‘A:PDMIXMAC.SAS';
%POMIX612(P,M,ALPHA=.05,SORT=YES) ;

MODEL (2] : Mixed Shukla

Fixed genotypes, random environmental and replication(environment) effects.
Assumptions for the GE terms: Heterogeneous by genotypes variances and
independence

PROC MIXED DATA=YLD COVTEST;
CLASS ENV GENO REP;

MODEL Y=GENO;

RANDOM INT REP/SUBJIECT=ENV;

RANDOM GENO/SUBJECT=ENV TYPE=UN(1);
LSMEANS GENO/PDIFF;

MAKE 'DIFFS' OUT=P NOPRINT;

MAKE 'LSMEANS' OUTsM NOPRINT;

%INCLUDE ‘A:PDMIXMAC.SAS';
XPOMIX612 (P ,M,ALPHA=,(5,S0RTsYES) ;

MODEL [3a] : Mixed AMMI(1)

Fixed genotypes, random environmental and replication(environment) effects.
Assumptions for the GE terms: Heterogeneous by genotypes variances and
covariances between GE terms of two genotypes in the same environment.

PROC MIXED DATA=YLD COVTEST;
CLASS ENV GENO REP;

MODEL Y=GENO;

RANDOM INT REP/SUBIECT=ENV;

RANDOM GENO/SUBJIECT=ENV TYPE=FAOQ(1);
LSMEANS GENO/PDIFF;

MAKE 'DIFFS'  OUT=P NOPRINT;

MAKE 'LSMEANS' OUTsM NOPRINT;
XINCLUDE ‘A :PDMIXMAC.SAS';
XPOMIX612 (P ,M,ALPHA=.05,SORT=YES) ;
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MODEL [3b] : Mixed AMMI(2)

Fixed genotypes, random environmental and replication(environment) effects.
Assumptions for the GE terms: Heterogeneous by genotypes variances and
covariances between GE terms of two genotypes in the same environment.

PROC MIXED DATA=YLD COVTEST;

CLASS ENV GENO REP;

MODEL Y=GENO;

RANDOM INT REP/SUBJECT=ENV;

RANDOM GENO/SUBJECT=ENV TYPE=FAOQ(2):
LSMEANS GENO/PDIFF;

MAKE 'DIFFS' OUT=P NOPRINT;

MAKE LSMEANS oUT=M NOPRINT'
YINCLUDE 'A:PDMIXMAC.SAS'
%XPOMIX612(P,M,ALPHA= .05, SORT-VES).

MODEL (4] : Mixed E&R

Fixed genotypes, random replication(environment) effects.

Assumptions for the GE terms: Heterogeneous by genotypes variances and
covariances between GE terms of two genotypes in the same environment.

PROC MIXED DATA=YLD COVTEST;

CLASS ENV GENO REP;

MODEL Y=GENO;

RANDOM REP/SUBJECT=ENV;

RANDOM GENO/SUBJECT=ENV TYPE=FA1l(1l);
LSMEANS GENO/PDIFF;

MAKE ‘DIFFS' OUT=P NOPRINT;

MAKE LSMEANS OUT=M NOPRINT;
XINCLUDE ‘'A:PDMIXMAC.SAS';
XPOMIX612 (P ,M,ALPHA=, 05, sonr-ves).

MODEL (5] : Mixed HetR

Fixed genotypes, random environmental and replication(environment) effects.
Assumptions for the GE terms: homogencous variance and independence
Assumptions for the error tems: heterogencous by environment variance.

PROC MIXED DATA=YLD COVTEST;
CLASS ENV GENO REP;

MODEL Y=GENO;

RANDOM ENV REP(ENV) GENO®ENV;
LSMEANS GENO/POIFF;
REPEATED/GROUP=ENV;

MAKE 'DIFFS’ ~ OUT=P NOPRINT;

MAKE ‘LSMEANS' OUT=M NOPRINT;
%XINCLUDE 'A:PDMIXMAC.SAS'
XPOMIX612(P,M,ALPHA=,0S, sonr-ves).

118

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C

CROSSVALIDATION IN MULTI-ENVIRONMENT TRIALS INVOLVING
RANDOMIZED COMPLETE BLOCK DESIGNS
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Note: The macro RCBD_CV input variables are the number of runs for the validation
procedure (NCHECK) and the data set name (DATA) containing the variables Y,
GENO, ENV and REP related to the trait values y,, and codings for genotypes.
environments and replicates. respectively.

The macro RCBD_CV calls another macro (RUNMIX) which is attached to the end of
the RCBD_CV macro. The macro RUNMIX allows to run several models for multi-
environment trial at each run of the cross-validation procedure. RUNMIX needs the file
pdmixmac.sas. The file pdmixmac.sas contains a SAS macro named PDMIXMAC612
which show mean separation resuits from a mixed model fitting by using letter groups.

It can be obtained from the SAS web page.

%MACRO RCBD_CV (NCHECK=100,DATA=YLD);

PROC SORT DATA=&DATA;BY ENV;
PROC MEANS MEAN NOPRINT;BY ENV;
VAR Y;

OUTPUT OUT=QUTENV MEAN=;

PROC SORT DATA=&DATA;BY REP;
PROC MEANS MEAN NOPRINT;BY REP;
VAR Y;

OUTPUT OQUT=QUTREP MEAN=;

DATA _NULL_;

SET OUTENV END=EOF;

CALL SYMPUT ('ENV'||LEFT(_N_),ENV);
IF EOF THEN CALL SYMPUT('NENV',6 _N_);

DATA _NULL_;
SET OUTREP END=EOF;
IF EOF THEN CALL SYMPUT('NREP',_N_):

DATA CHECKDS;
%XDO K=l XTO ENCHECK;

%XDO I=m1l XTO &NENV;
CHECK=&K ;
ENV="&BENVEI";
REP_OUT=CEIL (RANUNI(100)*&NREP);
OUTPUT;

%END;

XENO ;

/* CREATING BASE FILES FOR APPENDING RESULTS*/;
DATA A.NI;
LENGTH STRUCTR $20;
LENGTH GENO $12;
LENGTH MSGROUP $20;
LENGTH ENV $20;
STRUCTR=' ' ;VARIETY='' ;ENvVa''; SE_s=.;
_PRED_=. ;CHECK=.; Y=.; SPE=.;MSGROUP=' °';

XDO K=1 XTO &NCHECK;
DATA SAMPLE;
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SET CHECKDS;

IF CHECK=&K;

PROC SORT DATA=SAMPLE;BY ENV;
PROC SORT DATA=&DATA;BY ENV REP;

DATA WORKDS;

MERGE &DATA SAMPLE ;BY ENV;
IF REP NE REP_OUT;

XLET DSNAME=WORKDS ;

DATA VALIDS;
MERGE &DATA SAMPLE;BY ENV;
IF REP=REP_OUT;

DATA ESTIM;

LENGTH STRUCTR $20;
LENGTH GENO $12;
LENGTH ENV $12;
LENGTH MSGROUP 520i
STRUCTR="' ' ;GENO='';ENV=' ';
_SE_=.;_PRED_=.; MSGROUP=' ';

/* FITING MODELS */:

*MIXED ANOVA;
XRUNMIX(METHOD=METHOD=REML ,
2=RANDOM ENV REP(ENV) GENO®ENV,
COMMENT=2W) ;

*MIXED SHUKLA;

XRUNMIX (METHOD=METHOD=REML ,
Z=RANDOM INT REP/SUB=ENV ;
RANDOM GENO/SUB=ENV TYPE=UN(1),
COMMENT=SV) ;

*MIXED E&R;

XRUNMIX (METHOD=METHOD=REML ,
Z=RANDOM REP/SUBS=ENV ;

RANDOM GENO/SUB=ENV TYPE=FAl(l),
COMMENT=FW, OUTLSM=ESTIM);

*MIXED AMMI(2);

XRUNMIX (METHODsMETHOD=REML ,
Z=RANDOM INT REP/SUB=ENV ;
RANDOM GENO/SUB=ENV TYPE=FAQ(2),
COMMENT=ER) ;

*MIXED ANOVA WITH HETEROGENEOUS RESIDUAL VARIANCE;
XRUNMIX (METHOD=METHOD=REML ,

Z=RANDOM ENV REP(ENV) GENO™ENV;
REPEATED/GROUP=ENV;

COMMENT=H2W) ;

*FIXED MODEL;
XRUNMIX(METHOD=METHOO=REML ,
Z=RANDOM REP,
COMMENT=2WF) ;

/*START CALCULATION OF PREDICTION ERRORS*/;
PROC SORT DATA=VALIDS;8Y ENV GENO;

PROC SORT DATA=ESTIM;BY ENV VARIETY;

DATA SPCI&K;

MERGE VALIDS ESTIM;BY ENV VARIETY:

CHECK=&K ;

KEEP ENV VARIETY _PRED_ Y STRUCTR CHECK SPE MSGROUP _SE_;
SPE= (Y-_PRED_)*(Y-_PRED_);

PROC SORT;BY CHECK ENV STRUCTR _PRED_;
PROC APPEND BASE=A.NI DATA=SPCI&K FORCE;

XRCBD_CV;
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/*MACRO RUNMIX */

%MACRO RUNMIX(METHOD=,2=,COMMENT=)
XLET _PRINT_=OFF;

%IF (&COMMENT NE 2wF) %THEN %DO;
PROC MIXED DATA=&DSNAME &METHOD;
ID GENO ENV;

CLASS GENO ENV REP;
MODEL Y=GENO/P;

’
LSMEAN GENO/PDIFF;
MAKE 'PREDICTED' OUT=PRD&COMMENT NOPRINT;
PROC SORT DATA=PRD&COMMENT;BY ENV GENO;
PROC MEANS DATA=PRD&COMMENT NOPRINT;BY ENV GENO;
VAR _PRED_ _SEPRED_:
OUTPUT OUT=ESTIMS MEAN=;
DATA ESTIMS;
SET ESTIMS;
KEEP STRUCTR _PRED_ MSGROUP ENV GENO _SE_;
_SE_=_SEPRED_;
MSGROUP=' *;
STRUCTR="&COMMENT " ;
PROC APPEND BASE=ESTIM DATA=ESTIMS FORCE;

XEND;

XIF (LCOMMENT=2WF) %THEN XDO;

PROC SORT DATA=&DSNAME;BY ENV;

PROC MIXED DATA=&DSNAME &METHOD;BY ENV;
CLASS GENO REP ;

MODEL Y=GENO;

&2;

LSMEANS GENO/PDIFF;

MAKE 'OIFFS' OUT=P&COMMENT NOPRINT;

MAKE 'LSMEANS' OUT=M&COMMENT NOPRINT;
PROC PRINT DATA=M&COMMENT;

PROC PRINT DATA=P&COMMENT;

XINCLUDE 'A:PDMIXMAC.SAS';

XPOMIX612 (PLCOMMENT , MACOMMENT ,ALPHA= , 05 ,SORT=YES) ;

DATA ESTIMS;

SET MSGRP;

STRUCTR="&COMMENT" ;

_PRED_=_LSMEAN_;

KEEP STRUCTR _PRED_ MSGROUP ENV VARIETY _SE_;
STRUCTR="&COMMENT " ;

PROC APPEND BASE=ESTIM DATA=ESTIMS FORCE;

%END;

XLET _PRINT_=ON;
XMEND RUNMIX;
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BIPLOTS FOR MIXED AMMI MODELS

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Note: This program fit Mixed AMMI with one and two multiplicative terms and
produce Biplots to visualize results.

It assumes that there exists a file data set named YLD containing the variables related to
the trait values y,, and codings for genotypes. environments and replicates. respectively.

Genotype and environment should assume numeric values.

GOPTIONS CBACK=WHIVE;

OPTIONS NOCENTER LS=75;

LIBNAME A 'A:’;

/'titttt"ttt'aem IN DATA"'Q'Q'/

%LET ENV.N = 7; /*** SET THE NUMBER OF ENVIRONMENTS **w/
XLET GEN_N= 11; /*** SET THE NUMBER OF GENOTYPES bl
XLET REP_N= 3; /*** SET THE NUMBER OF REPLICATES ***/

XLET VAR = Y; /*** SET THE NAME OF THE RESPONSE VARIABLE www/
XLET ENV = ENV; /*** SET THE NAME OF THE ENVIRONMENT VARIABLE ***/
XLET GEN = GEN; /*** SET THE NAME OF THE GENOTYPE VARIABLE wwn/
%LET REP = REP; /*** SET THE NAME OF THE REPLICATION VARIABLE ***/

/'...."'FITTING "IXED Mxttttﬁtﬁtﬁti'iﬁﬂtti.tﬁ/
XMACRO MIXED;

PROC MIXED DATA=YLD;

CLASS &ENV &GEN &REP;

MODEL &VAR = &GEN/P PM;

RANDOM INT &REP/SUBJECT=ENV;

RANDOM &GEN/SUBJECT=ENV TYPE=FAO(1l) S;
MAKE 'PREDICTED' OUT=A.PREDLIFR NOPRINT;
MAKE ‘PREDMEANS' OUT=A.PRED1F NOPRINT;
MAKE ‘SOLUTIONR' OUT=A.GBYEL;

MAKE ‘COVPARMS' OUT=A.COV1;

MAKE 'FITTING'  OUT=A,.FAl;

I0 4GEN &ENV &REP;

DATA GBYE;

SET A.GBYEL;

IF _EFFECT_='GEN';
GEls_EST_;

KEEP GEl;

PROC SORT DATA=YLD;

BY &ENV &GEN;

PROC MEANS DATA=YLD NOPRINT;
BY &ENV &GEN;

VAR &VAR;

OUTPUT OUT=MEANS MEAN=YIJ;
DATA VEC;

MERGE MEANS GBYE;

KEEP &ENV &GEN GE1l YI);

PROC MIXED DATA=YLD;

CLASS &ENV &GEN &REP;

MODEL &VAR = &GEN/P PM;

RANDOM INT &REP/SUBJIECT=ENV;

RANDOM &GEN/SUBJIECT=ENV TYPE=FAQ(2) S;
MAKE 'PREDICTED' OUT=A.PRED2FR NOPRINT;
MAKE 'PREDMEANS' OUT=A.PRED2F NOPRINT;
MAKE ‘SOLUTIONR' OUT=A.GBYE2;

MAKE 'COVPARMS' OUT=A.COV2;

MAKE 'FITTING' OUTs=A.FA2;

ID &GEN &ENV &REP;

DATA GBYE;
SET A.GBYE2;

IF _EFFECT_="GEN';
GE2=_EST_;
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KEEP GE2;

DATA A.VEC;

MERGE VEC GBYE;

KEEP &ENV &GEN GE1l GE2 YIJ;

XMEND MIXED;
XMIXED;

DATA VECGL;

SET A.COV1:KEEP GEN_1;

IF SUBSTR(COVPARM,6,1)='1' OR SUBSTR(COVPARM,7,1)='1";
GEN_1=EST;

KEEP GEN_1;

DATA VECG21;

SET A.COV2;

If SUBSTR(COVPARM,6,1)='l"' OR SUBSTR(COVPARM,7,1)='1’;
GEN_Z21=EST;

KEEP GEN_21;

DATA VECG22:;

SET A.COV2;

IF SUBSTR(COVPARM,4,1)="'2' AND SUBSTR(COVPARM,6,1)='l' THEN FLAG=l;
IF SUBSTR(COVPARM,6,1)='2' OR SUBSTR(COVPARM,7,1)='2' THEN FLAG=l ;
IF FLAG=1;

GEN_22=EST;

KEEP GEN_22;

DATA VECG;

MERGE VECGl VECG21l VECG22;
GEN_1=-1"GEN_1;
GEN_21=-1*GEN_21;
GEN_22=-1*GEN_22;

GEN+1;

KEEP GEN_1 GEN_21 GEN_22 GEN;

PROC SORT DATA=mA.VEC;
BY ENV GEN:

PROC IML;

USE VECG;

READ ALL INTO GLOAD;
K2=GLOAD([,2:3]);
COEFFaI(&ENV_N)OK2;

USE A.VEC;

READ ALL INTO GBYE;
GBYE2=GBYE[,5]);
ELOAD2=GINV(COEFF)*GBYEZ;
PRINT ELOADZ;
KI-GLOADE.I]:
COEFF=I(&ENV_N)OK];
GBYEl=GBYE[,4];
ELOAD1=GINV(COEFF)*GBYEL;
PRINT ELOAD1:;

GSCORE=K1] |K2;
ELOAD2M=SHAPE (ELOAD2,7);

VECE=ELOAD1| | ELOAD2M;

CREATE GSCORE FROM GSCORE [COLNAME={GEN_1 GEN_21 GEN_22}];
APPEND FROM GSCORE;

CREATE VECE FROM VECE [COLNAMEs={wIl wI2l wI22});

APPEND FROM VECE;

/*standardization of the genotype scores*/
PROC MEANS DATA=GSCORE MEAN STD NOPRINT;
VAR GEN_1 GEN_21 GEN_22 ;

OUTPUT OUTsSALG ;

PROC PRINT DATA=SALG;

DATA NEWVEC;

SET GSCORE;

GEN1_Z=(GEN_1+0.3619)/1.1371;  /*USE MEAN AND STANDARD DEVIATION OF GEN_1*/
GEN21_2=(GEN_21+0.2775)/1.1346; /*USE MEAN AND STANDARD DEVIATION OF GEN_1*/
GEN22_2=(GEN_22-0.4428)/1.1275; /*USE MEAN AND STANDARD DEVIATION OF GEN_1*/

PROC SORT DATA=YLD;
8Y &ENV;

PROC MEANS DATA=YLD NOPRINT;
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VAR &VAR;
BY &ENV;
OUTPUT OUT=ENVA MEAN=YDOT;

PROC SORT DATA=YLD;
BY &GEN;

PROC MEANS DATA=YLD NOPRINT;
VAR &VAR;
BY &GEN;
OUTPUT OUT=GENA MEAN=YDOT;

DATA ENVA;
MERGE ENVA VECE;

DATA GENA;

MERGE GENA NEWVEC; KEEP &GEN YDOT GEN21_Z GEN22_Z GEN1_2Z;
IF YDOT~. THEN DELETE;
PROC PRINT DATA=GENA;

/Qtﬂtttitt.tt.lt'aIpLoT 1: Two fisrt mu]tip]icative CErms * oavneusasuntannnn/

DATA ENVANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT § 8;
SET ENVA;
TEXT=&ENV;
STYLE = 'SWISSB';
XSYS='2';: YSYS='2'; COLOR='BLUE'; POSITION='S'; FUNCTION='LABEL';
SIZE=1.S;
X=WwI21;
Y=WI22;

DATA GENANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT § 8;
SET GENA;
TEXT=&GEN;
STYLE = 'ZAPFB'i
XSYS='2'; YSYS='2'; COLOR='RED'; POSITION='S'; FUNCTION='LABEL';
SIZE=];
X=GEN21_2Z;
Y=GEN22_2;

DATA VECANN1;
SET ENVANNO GENANNO;

DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA=VECTORS;
SYMBOL1 V=NONE I=NONE COLOR=WHITE;
PLOT GEN22_Z*GEN21_2Z=1 WI22*WI21l=1/ANNO=VECANN1 OVERLAY VREF=0 HREF=0;
TITLE]l 'MIXED AMMI(2). FIRST AND SECOND MULTIPLICATIVE TERM;
TITLE2 'GENOTYPE NUMBER IN RED - ENVIRONMENT NUMBER IN BLUE;
RUN;

[reserennannannanegiplor 2, First multiplicative term vs yield mean **reerexssaauay

DATA ENVANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT § 8;
SET ENVA;
TEXT=EENV;
STYLE = 'SWISSB';
XSYS='2'; YSYS='2': COLOR='BLUE'; POSITION='S'; FUNCTION='LABEL';
S12E=1.S;
X=YDOT ;
YaWI2l;

DATA GENANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT § 8;
SET GENA;
TEXT=&GEN;
STYLE = 'ZAPFl'i
XSYS='2'; YSYS='2'; COLOR='RED'; POSITION="'5'; FUNCTIONs'LABEL';
SIZE=]l;
X=YDOT ;
Y=GEN21_2;

DATA VECANNZ2;
SET ENVANNO GENANNO;
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DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA=VECTORS;
SYMBOL1 V=NONE I=NONE COLORaWHITE;
PLOT GEN21_Z*YDOT=1 WI21*YDOT=1/ANNO=VECANN2 OVERLAY VREF=0;
TITLE1l ‘MIXED AMMI(2) FIRST MULTIPLICATIVE TERM VS, YIELD MEAN';

/tttt..ttttttttﬁ.tsecouo MULTIPLICATIVE TEM vs YIELD MEAN ttt.ttt.nnttttttt'./
DATA ENVANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE):

LENGTH TEXT § 8;

SET ENVA;

TEXT=&ENV;

STYLE = 'SwWISSa’';

XSYS='2': YSySa'2'; COLOR='BLUE'; POSITION='S'; FUNCTION='LABEL';

SIZE=1.3;

X=YDOT;

Y=WI22;

DATA GENANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT $ 8;
SET GENA;
TEXTn&GEN;
STYLE = 'ZAPFB';
XSYS='2'; YSYSs‘'2'; COLOR='RED'; POSITION='5'; FUNCTION='LABEL';
SIZE=];
X=YDOT ;
Y=GEN22_2;

DATA VECANN3;
SET ENVANNO GENANNO;

DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA=VECTORS;
SYMBOL1 V=NONE I=NONE COLOR=WHITE;
PLOT GEN22_2*YDOT=1l WI22*YDOT=1/ANNO=VECANN3 OVERLAY VREF=0;
TITLELl 'MIXED AMMI(2) SECOND MULTIPLICATIVE TERM VS. YIELD MEAN';

RUN;
/“****FIRST MULTIPLICATIVE TERM VS YIELD MEAN FOR AN AMMI(1) ****sersvesnseuavwn

DATA ENVANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT § 8:
SET ENVA;
TEXT=&ENV;
STYLE = 'SWISSB';
XSYS='2'; YSYS='2'; COLOR='BLUE'; POSITION='S'; FUNCTION='LABEL';
SIZE=1.5;
X=YDOT;
Y=WIl;

DATA GENANNO(KEEP=XSYS YSYS X Y COLOR FUNCTION POSITION SIZE TEXT STYLE);
LENGTH TEXT § 8;
SET GENA;
TEXT=&GEN;
STYLE = 'ZAPF!'i
XSYS='2';: YSYS='2'; COLOR='RED'; POSITION='S'; FUNCTION='LABEL';
SIZE=];
X=YDOQT;
Y=GENL1_2:

DATA VECANN?;
SET ENVANNO GENANNO;

DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA=VECTORS;
SYMBOL1 VeNONE I=NONE COLOR=WHITE;
PLOT GEN1_2*YDOT=l WI1*YDOT=1/ANNO=VECANN2 OVERLAY VREF=0;
TITLE1l ‘MIXED AMMI(1) FIRST MULTIPLICATIVE TERM VS. YIELD MEAN';

RUN;
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