
Louisiana State University Louisiana State University 

LSU Digital Commons LSU Digital Commons 

LSU Historical Dissertations and Theses Graduate School 

2000 

Biometrical Models for Predicting Future Performance in Plant Biometrical Models for Predicting Future Performance in Plant 

Breeding. Breeding. 

Monica Graciela Balzarini 
Louisiana State University and Agricultural & Mechanical College 

Follow this and additional works at: https://digitalcommons.lsu.edu/gradschool_disstheses 

Recommended Citation Recommended Citation 

Balzarini, Monica Graciela, "Biometrical Models for Predicting Future Performance in Plant Breeding." 

(2000). LSU Historical Dissertations and Theses. 7178. 

https://digitalcommons.lsu.edu/gradschool_disstheses/7178 

This Dissertation is brought to you for free and open access by the Graduate School at LSU Digital Commons. It 
has been accepted for inclusion in LSU Historical Dissertations and Theses by an authorized administrator of LSU 
Digital Commons. For more information, please contact gradetd@lsu.edu. 

https://digitalcommons.lsu.edu/
https://digitalcommons.lsu.edu/gradschool_disstheses
https://digitalcommons.lsu.edu/gradschool
https://digitalcommons.lsu.edu/gradschool_disstheses?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F7178&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.lsu.edu/gradschool_disstheses/7178?utm_source=digitalcommons.lsu.edu%2Fgradschool_disstheses%2F7178&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:gradetd@lsu.edu


INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films 

the text directly from the original or copy submitted. Thus, some thesis and 

dissertation copies are in typewriter face, while others may be from any type of 
computer printer.

The quality of this reproduction is dependent upon the quality of the 

copy submitted. Broken or indistinct print, colored or poor quality illustrations 

and photographs, print bleedthrough, substandard margins, and improper 
alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript 
and there are missing pages, these will be noted. Also, if unauthorized 

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by 

sectioning the original, beginning at the upper left-hand comer and continuing 

from left to right in equal sections with small overlaps.

Photographs included in the original manuscript have been reproduced 

xerographically in this copy. Higher quality 6* x 9” black and vtfiito 

photographic prints are available for any photographs or illustrations appearing 

in this copy for an additional charge. Contact UMI directly to order.

Bell & Howell Information and Learning 
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA 

800-521-0600

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



BIOMETRICAL MODELS FOR PREDICTING FUTURE PERFORMANCE
IN PLANT BREEDING

A Dissertation

Submitted to The Graduate Faculty o f the 
Louisiana State University and 

Agricultural and Mechanical College 
in partial fulfillment o f the 

requirements for the degree of 
Doctor o f Philosophy

in

The Department o f Agronomy

By
Monica Graciela Balzarini 

B.S., Universidad Nacional de Cordoba, Argentina, 1984 
M.Sci. in Biometry, Universidad de Buenos Aires, Argentina, 199S

May, 2000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



UMI Number: 9979242

UMI
UMI Microform9979242 

Copyright 2000 by Bell & Howell Information and Learning Company. 
All rights reserved. This microform edition is protected against 

unauthorized copying under Title 17, United States Code.

Bell & Howell Information and Learning Company 
300 North Zeeb Road 

P.O. Box 1346 
Ann Arbor, Ml 48106-1346

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



To Walter, Carla, Jose and Federico

ii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ACKNOWLEDGEMENTS

I am specially grateful to Dr. Scott Milligan whose own work, based on 

continuous plant breeding and genetic research, has clarified my thinking. He provided 

excellent guidance and support for the realization o f this study. I deeply appreciate the 

constructive advice from Dr. Lynn LaMottc, Dr. Luis Escobar. Dr. Manjit Kang, and 

Dr. Brad Venuto, members o f my advisor committee. My sincere thanks to the faculty, 

staff, and fellow graduate students I met at Louisiana State University for creating a 

friendly and constructive atmosphere so encouraging during these years. I must 

recognize my friends and work mates from Facultad de Ciencias Agropecuarias, 

Universidad Nacional de Cordoba, Argentina, for their continuous support throughout 

the years I postponed my activities in that Institution. My gratitude to Universidad 

Nacional de Cordoba and FOMEC-Ministerio de Educacidn de la Nacion Argentina for 

their financial support.

I wish to thank Walter, my husband, for offer me a great companion in all project I 

have started, and I must especially thank my three kids for their patience and 

enthusiastic support. I hope this work benefit them.

iii

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



TABLE OF CONTENTS

Dedication.....................................................................................................................iii

Acknowledgements......................................................................................................iii

Abstract.........................................................................................................................vi

Chapter 1: Plant breeding data and mixed models.......................................................... 1
1. Introduction...............................................................................................................2

1.1. Plant Breeding and Statistical Modeling.............................................................2
1.2. Predicting Genotype Performance: The Modeling Strategy................................9
1.3. The Mixed Linear Model: General Overview....................................................14

2. References...............................................................................................................24

Chapter 2: Using Mixed Models to Predict Sugarcane Cross Performance...................30
1. Introduction............................................................................................................. 31
2. Materials and Methods............................................................................................ 33

2.1. Cross Prediction Models...................................................................................33
2.2. Data and Validation Procedure.......................................................................... 36

3. Results and Discussion............................................................................................ 38
4. Conclusions.............................................................................................................47
5. References...............................................................................................................48

Chapter 3: Combining Data Across Tests to Predicte Future per se Performance in a
Sugarcane Breeding Program.......................................................................................51
1. Introduction.............................................................................................................52
2. Materials and Methods............................................................................................ 55

2.1. Models for Combining Early Selection Stage Data.......................................... 55
2.2. Data and Validation Procedures....................................................................... 59

3. Results and Discussion............................................................................................ 61
4. Conclusions.............................................................................................................67
5. References...............................................................................................................68

Chapter 4: Integrating Genotype-Environment Covariance Into the Comparison of 
Genotype Means..........................................................................................................71
1. Introduction.............................................................................................................72
2. Materials and Methods............................................................................................ 76

2.1. Models for Multi-Environment Trials................................................................76
2.2. Data and Validation Procedure......................................................................... 82

3. Results and Discussion............................................................................................ 84
4. Conclusions.............................................................................................................99
5. References............................................................................................................. 100

iv

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chapter 5: Conclusions and Final Remarks................................................................104

Appendix A: Models to Predict Genotype Performance............................................108

Appendix B: SAS Codes for Mixed Models in Multi-environment Yield Trials 116

Appendix C: Crossvalidation in Multi-environment Trials Involving Randomized 
Complete Block Designs...........................................................................................119

Appendix D:Biplots for Mixed AMMI Models........................................................ 123

Vita.............................................................................................................................128

V

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



ABSTRACT

The plant breeding process begins with the selection o f parents and crosses. 

Promising progeny from these crosses progress through a series o f selection stages that 

typically culminate in multi-environment trials. I evaluated best linear unbiased 

predictors (BLUP). other predictors and prediction models at the initial (cross 

prediction), early replicated testing and late (multi-location) stages o f a sugarcane 

breeding selection cycle. Model and predictor accuracy was assessed in the first two 

stages by using cross-validation procedures. I compared statistical models o f progeny 

test data in their ability to predict the cross performance o f untested sugarcane crosses. 

Random parental effect predictors and a random cross effect predictors were compared 

to mid-parent values (MPV) derived from a fixed female-male parental effect model.

The cross effect model was evaluated with and without incorporating the genetic 

relationships among tested crosses into the BLUP derivation. Models with BLUP-based 

predictors showed smaller mean square prediction error and higher fidelity o f top cross 

identification than the MPV for all traits evaluated. The MP-BLUP was consistently the 

best one.

Prediction o f per se (genotype) performance is needed during the selection 

process and requires combining information from different trials. The study 

investigated three mixed models involving three versions o f BLUPs estimated under 

different strategies, a fixed least squares genotype means model, and four check-based 

methods for combining information at early replicated stages. BLUP-based predictors
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Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



were superior to the currently used predictor (average percent o f check cultivar). In 

addition, BLUP accuracy was not dependent on check values.

In later selection stages, when few and highly selected genotypes are evaluated, 

genotype effects may be assumed fixed. By assuming genotype-by-environment 

interaction effects as random, the modeling o f the covariance matrix allowed direct 

estimation o f stability and genotype-by-environment measures. Closely related mixed 

models involving covariance parameters related with genotype-by-environment 

interaction were estimated. The covariance structure of the observations under the 

mixed models adjusted the genotype mean separation. Stability parameters were 

integrated into broad (across environment) and narrow (environment specific) 

inferences about genotype yield performances. A procedure to obtain visual 

representation of the genotype-by-environment interaction (BIPLOT) under a mixed 

AM M I model was also derived.

vii
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CHAPTER 1

PLANT BREEDING DATA AND MIXED MODELS

I
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I. INTRODUCTION

1.1. Plant Breeding and Statistical Modeling

The ultimate goal of plant breeding is to generate productive cultivars improved for 

one or more traits. The breeding process begins with the selection o f parents that 

possess desired attributes. Parents are typically derived from advanced stages of 

selection or they are recognized commercial lines or cultivars. Hybridization of these 

parents generates progeny that are typically screened via a series o f selection stages.

The choice o f parents and hybrid combinations affect the quality o f the progeny.

The selection process at the initial stages o f the breeding process, when there is a large 

amount of new material, typically uses small unreplicated plots or only limited 

replication. As progressive selection for desired traits reduces the size o f the progeny 

population, breeders collect more objective data and use larger plots and more 

replications. Researchers commonly use replicated multi-environment trials in the final 

stages of the selection process.

Phenotypic data are generated at each stage in which the genotypes arc tested. The 

data can be analyzed for purposes such as parent selection, ranking o f genotypes for 

progressive advancement in stages, and comparing performance o f advanced genotypes 

in different environments. The data can also be used to diagnose the population and 

prescribe the most appropriate strategies to maximize progress toward short and long­

term breeding goals.

When analyzing cross performance to select appropriate parental combinations for 

crossing, it is important to note that parental generations are rarely discrete. They

2
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commonly originate from different selection and crossing series. Because the genotypes 

that represent potential parents often derive from different stages o f selection, the 

amount and precision of the data may dramatically vary. Per se variety (parent) 

evaluation usually requires several years (Brown and Dale. 1998). Selecting superior 

genotypes in the early generations might be highly ineffective for several crops, 

especially those clonally propagated (Skinner, 1971; Caligari et al., 1986: Gopal et al., 

1992). Several researchers have demonstrated the gain in efficiency o f selection by 

using cross prediction trials or progeny tests for family selection (Hogarth, 1971; Brown 

et al., 1988; Zaunbrecher 1995; Cox et al., 1996; Simmonds, 1996). Thus, cross 

appraisal or progeny tests are commonly employed at the beginning o f each breeding- 

cycle (Milligan and Legendre, 1991; Cox and Hogarth, 1993). However, only a few o f 

all potential hybrid combinations are actually made and evaluated in progeny trials.

Typically, the performance o f a new or untested cross combination is predicted by 

calculating mid-parent values (MPV) o f the raw or scaled parental mean. These means 

are based on observed {per se) records o f potential parents. Improved estimates of 

parental means for a trait arc often obtained with some form o f an additive linear model. 

Such models adjust observed values for non-genetic effects to obtain better estimates o f 

the genetic effects (Panter and Allen, 1995). A classic method o f obtaining parental 

genetic effects is by combining data across progeny tests and considering all effects in 

the model as fixed (White et al., 1986). Unfortunately, cross appraisal databases are 

typically incomplete and unbalanced, which creates theoretical concerns about the fixed 

linear model underlying the mid-parent value prediction (Henderson, 1973).

3
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Mixed models provide alternative analytical approaches that may overcome 

limitations o f the fixed analytical approach (Henderson, 1974, 1975). Best Linear 

Unbiased Prediction (BLUP), as it is presented in a mixed linear model framework 

(Henderson, 1975; Searle et al., 1992), has been used for prediction and estimation of 

genetic merit o f tested material in plant breeding (Bridgess, 1989; Chang and Milligan. 

1992; Chang, 1996; Cox and Stringer, 1998). Mixed model-based prediction has also 

been proposed for predicting the performance o f untested crosses in the production o f 

hybrid crops such as com (Zea mays L.) (Bernardo, 1994) and soybean (Glycine max L. 

Merr.) (Panter and Allen, 1995). This method demonstrates better prediction accuracy 

than that obtained by using a fixed linear model. The mixed model prediction of 

untested crosses relies on the genetic relationship between tested and untested crosses.

Efficient selection and advancement of individual genotypes from one stage to the 

next assumes the current data predicts the future per se (genotype) performance. It 

ideally uses all the information that is available from past trials. Yet the trials from 

different stages vary in number o f entries, plot size, replication, genetic level of elitism, 

and experimental precision. To overcome these incongruities among trials and stages, 

breeders often incorporate commercial check cultivars into the tests. Typically, 

experimental entry values are expressed relative to the check(s) (Hill and Rosenberg, 

1985). But, usually with time, the checks are changed as the experimental population 

exceeds the performance of older checks or when new’ and more relevant commercial 

checks become available. Commercial checks are individual genotypes or cultivars that 

generally vary in performance among trials and themselves. Thus, the use o f checks to

4
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combine information has limitations. Moreover, during the selection stages many 

related individuals are tested, yet classic analysis seldom incorporates the correlated 

information into individual performance predictions. Mixed linear model approaches 

may circumvent the problems o f fixed ANOVA methods for combining information 

from different trials and incorporating genetic correlations by treating genotype effects 

as random variables (Stroup, 1989; Littell et al.. 1996; Federer and Wolfmger, 1998).

Most agricultural and economically important traits o f commercial crops are 

quantitative in nature, are controlled by polygenes with various kinds o f genetic effects 

and are affected by the environment. Thus, the variety trials commonly conducted in 

the latest stages o f a breeding cycle involve a few highly selected genotypes tested in 

several environments. Broad (across environments) inference, narrow (environment- 

specific) inference and genotype-by-environment interaction implications are important 

considerations (Milliken and Johnson, 1994; Littell et al., 1996; Kang and Gauch, 1996; 

Shafii and Price, 1998). The information related to variety trials is often incomplete 

over time since not all genotypes are evaluated in all environments. The genotype 

effects are seldom treated as random effects, whereas environments and/or genotype by 

environment interaction may be regarded as random. A random approach for 

environment and genotype-by-environment interaction effects allows the modeling o f 

correlation structures throughout their associated variance components (Cullis et al.. 

1996; Magari and Kang, 1997; Piepho 1994, 1997, 1998a).

5
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The Louisiana Agricultural Experiment Station (LAES) sugarcane breeding 

program provides a good example o f a common plant breeding data structure (Milligan, 

1994).

Sugarcane (Saccharum spp.) is a clonally propagated crop where crosses among 

clones, used as female and male parents, are used to obtain new genetic material. The 

breeding program uses several sequentially planted selection stages to identify and 

select the best clones within each crossing series. Material with commercial potential is 

ultimately evaluated in yield trials in several environments (year and location 

combinations). Sugarcane is planted in Louisiana in late summer or early fall and is 

typically harvested three times (plant cane, first ratoon and second ratoon crops), once 

each fall, prior to fallowing for replanting. The program uses 10 selection stages, and 

requires 12 years from crossing to varietal release. The process typically begins by 

planting about 50,000 seedling progeny each year, representing 150 to 250 crosses 

among 70 to 80 parents (Table 1.1).

A replicated progeny test o f crosses is planted each year. Family selection among 

progeny is based on objective data from the progeny test and is used to initially select 

the most promising families (crosses). Subsequently, individual plant selection is 

performed within the selected families. Stool weight, freedom from diseases, and hand- 

refractometer-Brix serve as the visual selection criteria for the single-plant selection 

stage. A subjective cane yield rating followed by selection for high Brix is used in the 

first clonal trials. Objective yield data through the second ratoon crop are collected from 

the second clonal stage and successive stages.

6
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Replicated yield trials are initiated in the third clonal trial (Increase) and

experimental clones might be first used as parents in year six. Replicated testing o f no

more than 10 experimental clones culminates in the advanced variety trials (Outfield).

In any given year, populations exist in all stages of the selection program.

Table 1.1. Number o f locations, replications and crops used in a typical year of the 
Louisiana Sugarcane Variety Development Program t

Year Stage Locations Replications Crops
harvested

Total harvested yield 
plots available when 
planting next stage J

1 Crossing - -
number------

-

2 Seedling 1 1 1 0

3 1st Clonal 1 1 2 0

4 2nd Clonal 1 1 3 0

5 Increase 2 1 3 0

6 Nursery 3 2 3 2

7 Infield/Nurs. 1/3 2/2 3/3 4

8 Infield 1 I I 12

9 Outfield 10 3 3 28

10 Outfield 10 3 3 52

11 Outfield 10 3 3 90

12 Outfield 10 3 3 150

13 Release 240

t  Abridged from Milligan, 1994, Table I.
|  First ratoon second clonal plots are harvested prior to planting the nursery plots. This is earlier than 
normal. Otherwise, plots are not harvested until after planting, hence there is a two-year delay in harvest 
information prior to planting.

7
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The LAES database is characterized by a complex structure involving several types 

of genetic and experimental correlations. It contains incomplete and unbalanced 

information for each genotype, i.e., information on all genotypes is not available at the 

same selection stage and in the same trial. To make informed decisions, statistical 

models and estimation procedures that can effectively handle the database features are 

needed.

The particular characteristics o f each stage in the breeding process demand 

different statistical modeling strategies. The general objective o f this study was to 

compare biometrical models for three general stages of the breeding process. The first 

part compared models for predicting cross performance in the hybridization stage. The 

second part analyzed per se (genotype) prediction performance at early stages o f the 

breeding process when considering genotype effect as a random variable might be 

convenient. The last part looked at predicting per se (genotype) performance at late 

stages o f the breeding process when highly selected genotypes, usually assumed fixed, 

are evaluated across several environments.

The research explores mixed linear models to improve predictions o f cross 

performance and genotype per se performance in a typical sugarcane breeding program. 

It analyzes models and performs estimation procedures o f the underlying variance- 

covariance structures at three different stages of the Louisiana Sugarcane Variety 

Development program, i.e., crossing, selection stages, and advanced variety trials.

8
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Identifying the best parents and cross combinations should improve the likelihood 

of producing elite progeny and selecting superior genotypes for potential release as 

cultivars. The prediction o f per se performance would aid genotype selection across 

stages and enhance variety recommendations. By increasing the probability o f selecting 

the best parents and lines, breeders may increase the selection intensity in early stages. 

Hence, better predictions in a breeding program may accelerate early stage selection and 

ultimately shorten and or enhance the effectiveness o f the selection cycle.

1.2. Predicting Genotype Performance: The Modeling Strategy

Statistical modeling is based on the specification o f the expected value and the 

variances and covariances o f observed data. Predictions depend on that modeling. The 

conventional general linear model coupled with ordinary least squares estimation 

procedures (OLS), useful as it is in many experiments in agriculture, is too restrictive to 

perform satisfactory data analyses for the typical data structure o f most breeding 

programs. Error structure in “ real world”  experiments is often more complex than used 

in standard linear models for conventional data analysis (Stroup, 1989).

In contrast, the general linear mixed model can accommodate covariance structure 

among observations. Standard linear models usually assume independence. The mixed 

model handles these correlations with random effects and their associated variance 

components, modeling variability over and above the component associated with 

residual error (Wolfinger and Tobias, 1998). Mixed linear model approaches can 

circumvent the troublesome ANOVA for handling unbalanced data and complex 

models.

9
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Mixed model analysis applies particularly to research involving factors with a few 

levels that usually can be controlled by the researcher (fixed) as well as factors with 

levels that arc beyond the researcher’s control (random). These random factors vary 

from experiment to experiment, and may be interpreted in the context o f a symmetric 

probability function. Most breeding trials have some mixed model aspect. The two 

parents o f each hybrid variety contribute randomly by one half o f its genetic make-up. 

The allelic complement passed on to its progeny is different for each descendent. The 

number o f potential genotypes involved in the crossing process is large, but the number 

of realized effects is substantially less. Additionally, the distribution of genetic effects is 

reasonably symmetric for most important quantitative traits. Therefore, genetic effects 

may be reasonably assumed as random (Stroup, 1989; Henderson, 1990; Robinson.

1991). Federer (1997) commented on the random nature o f genotypes in the early 

stages o f a selection program.

However, at the later selection stages genotypes might be assumed as fixed since 

research is focused on a few selected genotypes. In the later selection stages, 

environmental and/or genotype by environment interaction effects may be considered 

random (Bridges, 1989; Picpho, 1994).

The mixed model framework is flexible enough to adjust to the structural changes 

and factors that affect the selection process during its different stages. It is generally 

applicable to a wide variety o f quantitative genetics and breeding prediction problems. 

Mixed models have not been used in a unified framework in plant breeding.

10
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Traditionally, mixed model applications in plant breeding have focused on 

population variance component estimation and identification of appropriate error terms 

to be used for testing fixed effect hypothesis (Cockerham. 1963; Falconer, 1989). 

Rarely have they have been used for the most general purpose of modeling the 

underlying covariance structure in the data.

Liang and Zeger (1986) and Zeger et al. (1988) discussed the interpretation of the 

mixed model estimates in both a subject-specific and population-average sense. A 

subject-specific approach focuses on the prediction o f random effects for individuals 

and their relation to the population parameters (fixed parameters). With a population- 

average approach, the interest is primarily on fixed parameters. Variability arising from 

random effects is treated essentially as a nuisance parameter. The best linear unbiased 

predictor (BLUP), as a technique for predicting random effects (Harville. 1990; 

Robinson, 1991), should be understood as a subject-specific mixed model prediction 

(Wolfinger and O'Connell, 1993).

Henderson's work (1973,1974,1975) on BLUPs o f genetic random effects in 

animal sciences represents the best known use o f mixed model theory to predict future 

performance for breeding purposes. BLUPs of random genetic effects have been used 

for predicting genetic performance in crop plants on only a limited basis (White et al., 

1989; Panterand Allen, 1995; Bernardo, 1994,1995,1999; Chang and Milligan, 1992; 

Piepho, 1994; Cox and Stringer, 1998).

II
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The prediction value of unobserved or future performance is an important 

consideration in plant breeding. Prediction o f random variable outcomes, in general, is 

a fundamental problem in statistics (Hinkley, 1979; Butler. 1986; Bjomstad, 1990). 

Assuming that there is a priori knowledge about the distribution o f the parameters 

defining the variable to be predicted, predictions are obtained by finding the posterior 

distribution o f the variable, given the data, from a Bayesian point o f view (Gelman et 

al., 1995).

Besides the Bayesian approach to the prediction problem, the general mixed model 

allows prediction in a frequentist framework via the concept of conditional expectation 

without using a p rio ri distribution. The conditional expectation o f the random effects, 

given the observed data, is the BLUP o f those random effects, and is also a Bayes 

estimator under normal priors (Robinson. 1991; Searle et al., 1992). Theoretically, 

BLUPs have the smallest mean squared error o f prediction among all linear unbiased 

predictors, provided the assumed model holds and the parameters o f the model are 

known (Searle et al., 1992). In practice, estimates replace parameters and different 

models for the variance-covariance structure of the observations lead to different 

BLUPs. Thus, the term BLUP is quite general and a precise identification of the 

underlying model is needed to avoid confusion.

Applications o f a more general mixed model framework to combine information, 

estimate fixed and random parameters, and improve per se performance prediction 

produce smaller prediction errors when compared with the ordinary least squares 

approach for analyzing agricultural experiments (Wolfinger et al., 1997).

12
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Using mixed model equations and simple correlation structures. Hill and 

Rosenberger (1985) showed the efficiency o f BLUP for combining information for 

germplasm evaluation. Similar BLUPs, i.e., assuming random effects as stochastically 

independent, were reported effective by Piepho (1994) for modeling multi-environment 

variety trials. Oman (1991) and Gogel et al. (1995) have shown how to fit models of 

complex variance-covariance structure to genotype by environment data. Magari and 

Kang (1997) used mixed model estimation to consider the interaction of individual 

genotypes with environments for stability analysis. Interaction-term variance 

components were estimated for each genotype by using the mixed model equations.

The variance components were used as stability measures. They are equivalent to 

Shukla's stability variances (Shukla, 1972). but it is important to note that they were 

estimated as parameters o f a mixed model. Piepho (1998) put different well-known 

stability measures (Kang and Gauch, 1996) into a unifying mixed model perspective.

Mixed models have been successfully used for recovering inter-efTect information 

from experiments that use designs such as augmented and lattice designs (Federcr,

1997). Federer and Wolfinger (1998) have shown that the expected error mean square 

for differences (contrasts) o f means is smaller when random effect information is 

recovered than when it is ignored. The variance components estimated in the mixed 

model framework are themselves informative in breeding. Heritabilities and response to 

selection are obtained from the variance components o f the mixed model without 

regarding data unbalance.

13
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Random variable predictions that involve estimation of fixed and random effects 

may be obtained using appropriate BLUPs and treatment (fixed effects) means. Under a 

general mixed linear model, the predictions account for involved variance and 

covariances.

Mixed model background has been developed over many years (Anderson and 

Bancroft, 1952; Henderson, 1953, 1974, 1975; Scheffe, 1956; Hayman, 1960; Searle. 

1971, 1987; LaMotte. 1973. 1988; Rao, 1973, 1988; Harville. 1976, 1977. 1990;

McLean et al., 1991; Searle et al., 1992; Khuri, 1998). The new mixed linear model 

approaches offer opportunities for plant breeders to better deal with complex databases. 

However, mixed linear models have rarely been applied in plant breeding before 

software such as PROC MIXED (SAS Inst.. 1996) became available to overcome the 

computational demands o f this approach (Littell et al.. 1996; Piepho 1998; Wolfinger et 

al., 1997; Federer and Wolfinger, 1998).

1.3. The Mixed Linear Model: General Overview

The mixed model contains fixed effects that determine the mean o f the data and 

random effects to model variance and covariance. Several authors attempted to give 

general definitions for fixed and random effects (Scheffe, 1956; Searle, 1971; Stroup, 

1989; Robinson, 1991; Searle et al., 1992). Most o f them approached the problem from 

a theoretical frequentist point-of-view and did not develop a clear definition. 

Analytically, clear reasons may exist for treating a factor as random or fixed. I f  the 

factor has a large number o f levels, which are related to some probability function, it 

may be best to treat the factor as random.

14
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The researcher should use a BLUP if  the prediction of specific levels for the 

random effects, in a particular experiment, have importance.

The general form of a linear mixed model is

y = Xp + Zu + e

where y is a n vector o f observable random variables (data), X and Z are known 

design matrices, p is ap vector o f effects parameters having fixed values, and u 

(random effects) and e (error terms) are unobservable random m and n vectors.

respectively. Usually Z = [Z , Zq] where each Z, represents the model design

matrix for the ith random factor and u = [u, u j  where u, is a m, random vector. Note

that m = Em,. Assumptions about E(u), E(e), G -the variance-covariance matrix of the 

random effects in u-, R -the variance-covariance matrix of the random error terms in e-, 

and the covariance between u and e will define a particular mixed model.

When the vector of observations is normally distributed, the probability distribution 

of the data is completely determined by its mean and the variance-covariance matrix.

The typical assumption o f independence made in the general linear model is eliminated 

in the mixed model by modeling statistical correlations through V, which is the matrix 

containing the variances and covariances o f each observation. Models for the variance- 

covariance o f the data, V, are obtained by specifying the structure o f Z, G, and R.

Non-constant variance and covariance for both the random effects and the residual 

errors, as well as dependence o f the variances on the levels of fixed and random factors 

can be introduced throughout different structures o f the variance-covariance matrix V.
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A simple, yet important class o f linear mixed models contains only one source o f 

random effects and assumes E(u) = 0, E(e) = 0, G = o“ I, R = a~ I, and Cov(u,c) = 0.

The variance components, o“ and o" , are scalar-valued parameters. According to the

previous assumptions, the expected value of the data is E(y) = X P . and the variance-

covariance matrix is V = ZGZ'+ R = a~ Z Z ' + o ' I = c ' (  I + yZ Z ' ) .  where y = a“ ia~
u e e ' ' u e

is a variance component ratio. Note that the variance of the data is a linear function o f

the variance components.

In plant breeding, this model could be used when y contains the measured

responses, such as plot yields from m genotypes, each represented by a random genetic

effect u = [u,.... u^] to be predicted, and p might be the vector o f fixed parameters

related to trial effects. The model assumption. G = cT I, implies that the genetic effects 

are independent with zero mean and homogeneous variance denoted by c“ . The model

R = a~ I for the variance-covariance o f error terms implies that the error terms are

uncorrclated with each other and that the residual variance is homogeneous, i.e. the

1 1 -> 
same a“ for all observations. Note that the parametric function y / (1 + y)=o" /( cr“ + cT )

may be interpretable as a broad-sense heritability estimate for an individual plot-basis 

scenario (Nyquist, 1991). Thus, the simplest form for G and R is one that arises from 

independence and constant variances o f the random effects and the error terms.

However, the independence in the random effects does not imply that the observations 

are independent. The V matrix for this simple between-within mixed-model ANOVA is
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a block diagonal matrix indicating that observations within the same level o f the random 

effects are equally correlated, and observations between different levels o f the random 

effects are independent. Thus, i f  Z is a model matrix with Is and Os, each o f the sub­

matrices in the block diagonal o f V will be a type o f matrix with the property called

compound symmetry (Jenrich and Schluchter, 1986). This is because all the diagonal

0 ->
elements are equal to o" + o f , which is the variance o f any observation, and the off-

diagonal elements are equal to a” , which is the covariance between any pair o f

observations sharing the same random effect. Therefore, by considering u as random

*>
effects with variance G = a~ I, this sets up a common correlation among all observations 

having the same level o f u.

The extension o f the model to allow several random effects is straightforward. 

Assume that q > 1 random factors are considered in the model. For example, suppose 

family, plots within family, and rows within plots are all random sources o f variation.

I f  the levels within each factor are assumed to be independent and with homogeneous

variance, say G, = a" I, and random effects are uncorrelated between sources then

E(y) = X p

V = ZGZ'+ R = o“ , Z,Z,’ +...+ cT ZqZq’ + o‘  I -  «; ( I + Y, Z,Z,' +...+ yq ZqZq') 

where y, yq represent the variance ratios for the respective random sources.
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Different models may be assumed for the variance-covariance matrices.G, Gq.

One may generalize this model by allowing one or more of the variance components to 

vary from group to group or in accord with some covariatcs.

The model descriptions above correspond to models known as variance component 

models (Searle et aL 1992). They do not include covariances between the random 

effects. Models that include covariances come when the effects within and/or between 

source o f variation are correlated. Therefore, G as well as R may contain non-zero off- 

diagonal elements. Laird and Ware (1982) consider the unstructured model for a 

covariance matrix, i.e. the more general case where all elements o f the matrix are 

allowed to be different. For example, i f  the genotypes, as in the previous example, were 

genetically related, a matrix o f genetic relationship. A, may be used to adjust the 

variance-covariance matrix o f genetic effects. These relationships may be computed 

from pedigree or molecular based analyses (Falconer. 1989; Bernardo, 1994).

Therefore, the matrix o f variance-covariances for the u vector is G -o" A where

elements in A arc used to represent genetic relatedness between any two genotypes and 

is expressed as a proportion o f the genetic variance. Thus, A = I represents the special 

case o f unrelated genotypes. For example in an experiment evaluating half-sib

i  ■)
genotypes, the genetic variance is 1/4 a~ where o" represents additive genetic variance.

i f  the parents themselves are not related (Kang, 1994). So, the parameter function 

4y/( 1 + y) represents a narrow-sense heritability. By defining A as a matrix with the 

coefficients o f the additive variance for the covariance between genotype / and j  as the 

i j-th element o f the matrix, more complex pedigree structures can be considered to

18
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estimate additive variances. Experimental correlations among observations may be 

modeled by the off-diagonal elements o f R. When data are indexed in space, 

covariances in R may reflect correlations due to the spatial unit arrangements

Searle et al. (1992) and Khuri et al. (1998) widely discuss estimation in mixed 

linear models. A brief discussion is presented here to outline common procedures that 

will be used to fit plant breeding-orientated mixed models in the subsequent chapters.

Extending the normal equations to allow estimation by generalized least squares 

(GLS) procedures, Henderson (1975) proposed the mixed model equations (MME). 

Solving this equation system, estimations o f fixed effects and predictors o f random 

effects can be obtained. I f  G, R, and Z, and hence V are known, the generalized least 

squares solution for P is the best linear unbiased estimators (BLUE), and the solution 

for the estimation (prediction) o f the random effect is the BLUP (Searle et al., 1992). 

However, in practice, V is usually unknown. Therefore, estimation o f covariance 

parameters usually comes prior to the estimation o f p and u. After obtaining the 

estimates o f G and R. and Z ( if  it is not known), the fixed and random effects can be

A
estimated by solving the mixed model equations with V replacing V. Assuming that the 

parameterization o f the design and variance-covariance matrices is such that the 

matrices to be inverted are full rank matrices, the mixed model equations may be 

represented by

X 'R 'X X R 'Z A

P
w

X'R"' y

. X 'R 'Z Z 'R 'Z  + G 1. .u. . Z ’R 'y.
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The solutions can be written as

P = (X'V-' x r '  X T V

u = GZ'V"' (y - XP).

Under normality, they are equivalent to the maximum likelihood-based solutions 

(Searle et al., 1992). Kackar and Harville (1984) gave approximations o f standard 

errors o f estimators of fixed and random effects in mixed linear models, and showed 

that GLS solutions were more efficient than corresponding OLS estimators with 

unbalanced data.

Several authors have discussed why one would be interested in estimating random

elTect values, i.e. u (Henderson 1975, Harville. 1990, Robinson. 1991). The BLUP of a 

random effect represents the expected value o f the random effect given the observed 

data. I f  the joint distribution o f y and u is

y - N

/
xp V c \

_u_ \ . 0 . C'G. /

where C = Cov(y.u) = ZG. Then the conditional distribution o f u given y is 

(u | y) ~ jV ( E(u) + C'V-'(y-XP), G -C V 'C  ).

Assuming normality the conditional expectation, E(u| y), is equal to GZ’V'1 (y • XP) 

when E(u) = 0. This is a common expression for the BLUP of the random vector u. In 

reality, the conditional expectation above will be the BLUP of u only when V is known 

(Searle et al., 1992). The equation is also a Bayes estimator under a normal priori
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(Robinson, 1991). In practice, the variance covariance structure o f the data is 

estimated.

The BLUP o f a linear combination o f fixed and random effects is the linear 

combination o f the BLUE of fixed effects and the BLUP o f random effects (Searle et 

al., 1992). Consider a simple model with one random effect representing genotypic 

effects and y phenotypic data. The prediction equation for genotypey, ra, = p + u, is

A  A  ,  A

<3,= ^+ h* (y,-p ).

where p is the population mean, and h‘ is the weighting or shrinkage factor. If G and R 

are the traditional structures of the between and within mixed model ANOVA. the

elements o f C 'V  are functions o f a“ /(o“ + a" ) which is the heritability measure

associated with y. A BLUP is a centered, fixed effects estimate shrunken toward p, 

with more shrinkage taking place for smaller values o f the estimated variance 

components in C 'V '1. i.e. heritability for this model.

Hitherto, it should be clear that variance components relating to random effects and 

error terms are needed to obtain estimates of fixed and random effects. Variance 

component parameter estimates in plant breeding have been typically derived from the 

expected mean squares of ANOVA tables (Falconer, 1989). This approach, at its best 

with balanced experiments, is awkward, and at its worst, with unbalanced data, it can 

seem intractable (Stroup, 1989). ANOVA-based estimators o f variance components, 

which rely on equating mean squares to their expectations and solving for the unknown 

variance, have nice statistical properties when data are balanced.
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By specifying a Gaussian (normal) distribution for the random effects, the 

estimation o f the unknown parameters is usually obtained using likelihood-based 

procedures (Hayman, 1960; Harville. 1977). A restricted maximum likelihood method 

(REML) (Patterson and Thompson, 1971) is usually preferred for estimating the 

variance components in a mixed model (Searle et al., 1992). Searle (1971) indicated 

that REML estimates in balanced designs arc identical to estimates based on the 

expected mean squares of ANOVA. For unbalanced data, REML can offer significant 

advantages over ANOVA-based estimators because REML estimates are unique, non­

negative, and have maximum likelihood, large sample statistical properties. The 

asymptotic standard errors of the estimated variance components can be derived readily 

as part o f the estimation procedure (Searle et al., 1992). In many plant breeding 

situations, a normal distribution for the data can be realistically assumed, and hence 

REML approaches are appropriate. Nevertheless, Banks et al. (1985) demonstrated that 

REML estimates o f variance components are robust to violations of this assumption.

The REML procedure of estimating variance components maximizes the residual 

likelihood function, which is the likelihood function o f a set of linear combinations o f 

observed values whose expectations are zero (error contrasts or residuals). Those values 

arc usually obtained by transforming the observations with the transformation matrix 

M = l-X(X 'X)*X ' (Searle et al., 1992). The error contrasts are free o f any fixed effects 

in the model. Thus, the residual likelihood function depends only on the unknown 

parameters that belong to the variance-covariance structure. The maximization o f this 

function requires numerical procedures. Computation may be extensive with many
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variance-covariance parameters. Over-parameterized models may be avoided by an 

appropriate experimental design in relation to the number o f parameters to be estimated 

(Wolfmger and Tobias, 1998).

To do model selection in the mixed model framework, a log likelihood-ratio test 

criterion can be used with nested models. The procedure demands the evaluation o f the 

restricted log-likelihood (LLR) for the reduced model (model with smaller number o f 

parameters) and for the full model (model with higher number o f parameters).

The test criterion for the likelihood ratio test is,

L — —2{ LLr (reduced model) -  LLR (full model)}.

Under normality for the null hypothesis that the reduced model is not different 

from the full model, the likelihood ratio statistic is distributed as a 2 with degrees o f 

freedom equal to the difference in the number o f parameters o f both models. I f  the 

fixed part o f the two mixed models under comparison is the same, the test is comparing 

the covariance structure models. Information criteria such as the Akaike's Information 

Criterion (AIC) (Sakamoto et al., 1987) are used to compare any set o f mixed models. 

The AIC is the LLR adjusted for the number o f parameters (p) in the model. The 

adjustment tends to favor parsimonious models. The larger the AIC the more preferable 

the model (Wolfmger, 1993).

Finally, it is important to note that when using mixed model prediction, optimality 

properties o f the predictors are unknown when the variance parameters are estimated. 

The typical database structure o f a breeding program, i.e., multiple factors with 

incomplete and unbalanced data, farther complicates the analytic evaluation o f the
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predictions. From an applied perspective, cross-validation and simulation have been 

used as validation procedures to assess the accuracy of several types of predictors under 

particular plant breeding circumstances (H ill and Rosenberg, 1984; Piepho, 1994; 

Bernardo 1994. Panterand Allen, 1995).

This study compared various mixed models for predicting cross performance, and 

per se performance at early and late stages o f a sugarcane-breeding program. Models 

were assessed for empirical prediction accuracy using cross-validation procedures.
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CHAPTER 2

USING MIXED MODELS TO PREDICT SUGARCANE CROSS
PERFORMANCE
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1. INTRODUCTION

The initiation of a sugarcane selection cycle starts with the hybridization o f parents. 

Cross appraisal or progcny-tests are often used to focus selection for the best individuals 

from the best crosses (Hogarth, 1971; Cox et al.. 1996; De Sousa-Vieira and Milligan,

1999). The parental information obtained from cross appraisal tests may also be used to 

predict the best (high mean performance) new hybrids to make.

Commonly, statistical models o f progeny test databases adjust data for fixed trial 

and replication effects and then estimate, from the adjusted data, the untested cross 

value as a function of the genetic worth of tested crosses (Panter and Allen, 1995). To 

predict the mean performance o f new crosses (crosses that have never been tested 

before) using progeny test data, the raw means or perhaps rank percentiles o f the tested 

parents are averaged to obtain the mid-parent value (MPV) for a new cross (Caligari and 

Brown. 1986). Databases developed after some years o f progeny tests are commonly 

incomplete and unbalanced because not all possible crosses between the potential 

parents are made, only a few parental combinations may be repeated across time, and 

certain parents are typically used more than others. The irregular data structure creates 

theoretical and practical concerns about the fixed model approach underlying the MPV 

prediction (Henderson, 1973; White etal., 1986).

I f  a narrow inference space is acceptable, an alternative mixed model regarding 

genetic effects as random and other effects, such as year and location (trial effects), as 

fixed can be used (McLean, 1991). Several types o f best linear unbiased predictors 

(BLUPs) obtained from the mixed model framework, have been used successfully to 

help plant breeders choose parents for the best hybrid combinations (Panter and Allen,
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1995; Bernardo, 1994, 1995,1996a, 1996b, 1999). Chang and Milligan (1992), Chang 

(1996), and Cox and Stringer (1998) published BLUP-based analyses related to cross 

selection in sugarcane. The objective of these analyses was to rank the tested crosses 

according to the BLUP o f their genetic effect (population selection) rather than to 

predict performance of untested crosses.

When using genetic effect-BLUPs, different random effects and structures for 

the covariance matrix among those random effects can be postulated. Henderson (1975) 

described BLUPs of breeding values of potential parents, by using the additive genetic 

variance relationship among individuals (Henderson. 1976) as the variance-covariance 

matrix o f random genetic effects for each individual. He assumed that the additive 

genetic variance is the only component of the covariance between observations taken on 

different individuals.

Models involving female and male random parental effects and genetic 

covariances among parents have been used successfully to predict single-cross 

performances o f untested hybrids in maize (Bernardo. 1994, 1996b, 1999). Chang 

(1996) suggested that using the genetic covariances among the parents o f the sugarcane 

crosses to modify the predictions would not be fruitful. He speculated that the highly 

selected nature o f the parents might vitiate the value o f such covariances since the 

genetic covariances estimated from pedigree analysis assume randomly selected parents. 

Parents used in sugarcane crosses are highly selected.

The offspring used in a progeny test are not selected and hence using the genetic 

covariances among crosses may enhance the predictive value o f BLUPs that incorporate 

such relationships. Pedigree and/or molecular marker information may be used to set up
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genetic covariances (based on coancestry) among clones (Bernardo, 1994). Sugarcane 

molecular information about yield traits is lacking at this time; therefore genetic 

relationships must be based on the pedigree.

This study compared four predictors for the mean performance o f future sugarcane 

crosses. The predictors were the traditional MPV (fixed model prediction) and three 

versions o f BLUP (mixed model prediction) based on regularly available progeny test 

information.

2. MATERIALS AND METHODS

2.1. Cross Prediction Models

All cross performance predictors were obtained from models adjusted for fixed trial 

and replication within trial effects (Panter and Allen, 1995; Table 2.1). The mid-parent 

BLUP (MP-BLUP) is based on a two-way classification model for the genetic effects 

involving random "female” and “ male”  parental effects. I assumed no relationships 

among the parents. The other two predictors, independent-cross BLUP (IC-BLUP) and 

related-cross BLUP (RC-BLUP), were based on a one-way classification model 

involving a random cross effect to model the genetic portion of the response. The 

difference between these two is that for IC-BLUP the cross effects are assumed to be 

independent, whereas for RC-BLUP, the additive genetic relationship among crosses is 

used to set up covariances among the cross effects. By tracking the parent identification 

o f each cross and assuming parents are not related, covariances among crosses within 

and between trials are simple to obtain based on the cross parentship. I used coancestry 

coefficients (Falconer, 1989) to establish the additive genetic relationship (covariances) 

between cross effects when it was required by the predictor equation.
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Table 2.1. Models used to predict cross performance.

Model t Effect assumptions Predictor name

[ 11 Y1JU =» + Tk + R,(T) + F, + M, all fixed effects Mid-parent value 

(MPV)

[2] Yljkl =M + Tk + R,(T) + F, + M, F, and M, random Mid-parent BLUP

else fixed (MP-BLUP)

[3 ]Y llkl =p + Tk + R1(T) + CI| random independent Independent cross

else fixed BLUP (IC-BLUP)

[4] YI|kl + Tk + Rt(T) + C,j C,j random related} Related cross BLUP

else fixed (RC-BLUP)

t  F\ represents *-th trial effect, R,(T) replication / within trial k effect. F, /-th female parent etTcct, M, /- 
th male parent effect, C„ effect of the combination between female / and -male j \  all model equations

include a N(0, cr" ) random variable as an error term, c
} Covariances among C„ random effects are obtained from coancestry coefficients.

In matrix notation, the model and derived predictors are specified as:

Model [1 ] -  "Fixed female-male or mid-parent model”

y = Xp+e

where y is an N  vector of observed progeny data; N is the total amount o f data for a 

trait; p is the vector o f fixed parameters including trial, replications within trials, and 

female and male parent effects; X is incidence matrix relating y with P; e is an N vector

of error terms assumed to be normally distributed with zero mean and variance-

1
covariance matrix R = o‘ lN, where l N is a NxN identity matrix. To obtain the mid­

parent values (MPV), i.e., the predictors, female and male parent means, after adjusting 

by trial and replication effects, were first calculated for each clone used as a parent in
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crosses evaluated in cross appraisal trials. For each potential new cross, corresponding 

female and male-parent adjusted means were averaged. Note that the parental means 

were based on progeny data, not per se performance data.

Model [2] -  “ Random female-male model”

y = Xp + Zfaf+ Z mam+c  

where P contains the fixed trial and replication within trial effects. The general 

combining ability (GCA) effects o f female parents are in the/x l random effect vectors. 

at, where/represents the number o f distinct clones used as female parents across trials. 

The random GCA effects for the male parents are the elements o f the mx 1 vector. am. It 

is assumed that ar and am were vectors o f normal independent random variables with

mean zero and variance oj: and . The performance predictor for an untested cross

evaluated under this model, is the mid-parent BLUP (MP-BLUP). The MP-BLUP is the 

mean o f the BLUPs for the female and male effects o f the parents involved in the new 

cross.

Model [3]-“ Random independent cross model”  is

y = XP + Zu + e

where y. X, P and e are as before and u is a c-dimensional vector of random effects

representing the genetic effects o f c tested crosses; u is assumed to be normally

1
distributed with zero mean and variance-covariance matrix given by G= cTl. The

performance predictor for potential crosses, yp, was obtained under the assumption o f a 

normal joint distribution for the random variables in the c + p vector o f c tested cross 

effects and p  potential or untested cross effects.
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Therefore, yp = CV'1 [(Z 'Z )'1 Z '(y- Xp0)], where p°is the generalized least squares 

solution for the vector o f fixed effects, and C is a pxc matrix o f genetic covariances

between the p  potential crosses and the c actually tested crosses. Covariances were

1 1 
equated to 2 ,̂0 “ , where r„ is the coancestry coefficient between cross i and j  and o‘  was

the additive genetic variance. According to the assumptions o f unrelated parents, most 

o f the crosses in the data set were either half-sib (2r„ = or unrelated (2r„ = 0). Thus, 

by using C as the genetic variance-covariance matrix among tested and untested crosses, 

related crosses contribute to the predicted value for one another. Since cross effects for 

the tested crosses were treated as independent, the phenotypic variance-covariance

matrix for the observed average performance o f tested crosses, V, contains phenotypic

1 1
variances equal to o" + o7n, on the main diagonal and zeros on the off-diagonal; n, is

the number o f replications for the /-th cross. The cross predictor under this approach 

was named cross independent-BLUP (IC-BLUP) because of the structure o f C.

Model [4]-“ Random related cross model”  was the same as [3] but G = a~A, where3

o“ represents additive genetic variance and A is a matrix of 2r„ values among tested 

crosses.

2.2. Data and Validation Procedure

Mean cross performance with regard to cane yield per plant, stalk number per plant, 

stalk weight, stalk diameter and stalk height was predicted using data from the 

Louisiana Agricultural Experiment Station (LAES) Sugarcane Variety Development 

Program's cross appraisal trial data o f 719 crosses evaluated between 1992 to 1996 at
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the St. Gabriel Research Station (Bischoffet al., 1994; Bischoff et al. 1995; BischolTet 

al., 1996). These trials employed a two replication, randomized complete-block design 

with approximately 32 progeny from each cross in each 2-row plot. Each row contained 

approximately 16 plants spaced 41 cm apart within the row and 1.8 m between rows.

Not all female parents were combined with each male parent, and only rarely were the 

same female-male combinations repeated in different years. Between 130 and 200 

crosses were tested each year. Cane yield per plant was estimated from stalk counts and 

estimated stalk weights. Stalk weights were estimated from stalk height and diameter 

measures from five stalks per row with each stalk from a different plant.

i  - > i  i
Variance components, c f and o|:, oj^, or a“ , were estimated by REML (Searle et

al., 1992). For model [2J, the female and male parent BLUPs were obtained from the 

solution o f the mixed model equations, afier substituting appropriate estimated variance 

components into a SAS-Proc Mixed (SAS Inst., 1997) program. The covariance 

coefficients o f matrix C, for models [3] and [4], as well as those for A o f model [4] 

were determined from the parental pedigree of each cross, assuming the parents

themselves were unrelated. Estimates o f o" were obtained using the assumption that a"

2 2 2= % a” and a~ = V* o“ . a m a

The optimality properties for BLUPs and its linear combinations are known 

when variances are known. In this study, variance component estimates are used, so the 

analytical properties o f the final predictors are unknown. Therefore, I investigated their 

prediction accuracy when applied to sugarcane data by a “ leave-one-trial-out" 

procedure. The five-year progeny-test database was divided into two data sets, one with
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four years of trials and the other with the information from the remaining trial. The 

four-trial predictor data set was used to obtain the cross predictors for the left-out 

validation trial. The crosses in the left-out trial simulated untested cross performances, 

since there was no direct information about them in the predictor data set. Predicted 

values from the four models were obtained for each “ untested cross" and compared to 

mean values o f the cross in the validation data set. The validation process was repeated 

five times, each time using a different (test) year as a validation data set. The squared 

difference between predicted and observed values was used to approximate prediction 

error. At each iteration o f the validation procedure, counts were made to ascertain how 

many of the top 50% crosses in the validation set would have been identified by 

selecting the top 50% o f these crosses using the predictions obtained from the prediction 

database. The average percent of crosses in the top 50% of both groups were expressed 

as P(50|50). This measure was derived to assess the functional effect o f these predictors 

on selection efficiency. The predictors in the mixed model framework were obtained by 

a SAS/IML code written to solve genetic mixed models by obtaining parameter 

estimates from SAS/Proc Mixed. In some cases, they were coupled with calculations of 

genetic coancestry coefficients from SAS/Proc Inbred (SAS Inst., 1997).

3. RESULTS AND DISCUSSION 

In cases of balanced data, known variance parameters and no correlation among 

genotypes, the MP-BLUP and MPV should lead to the same relative ranking o f the 

genotypes (White et al., 1986). In this study, different results were expected because of 

the highly unbalanced structure characterizing the progeny test database. For a total of 

165 female and 147 male parental clones, only information from 719 parental
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combinations was available after five years o f cross appraisal trials. Almost 90% of the 

crosses were tested in only one year. Some parents were used in only two hybrid 

combinations, whereas others were tested in more than 50 crosses. The small number o f 

crosses actually tested is not surprising considering the resource requirements of 

sugarcane crossing and testing. It draws attention to the importance o f cross predictions 

in sugarcane breeding.

To predict a primary random variable, such as a genetic value, the BLUP first 

adjusts available data for the fixed effects. After this initial adjustment, the random 

effects are further adjusted by the fraction o f the total variance for which the primary 

variance accounts, e.g., by heritability (Henderson, 1975). Unbalance is taken into 

account in the weighting process. For all traits evaluated, the predictor o f cross 

performance with smallest mean square prediction error (MSPE) was based on BLUPs 

(Table 2.2). The improvement (smaller MSPE) in the prediction accuracy of the BLUP- 

based predictors with respect to the MPV was consistent across validation data sets. 

Among the BLUP versions, the MP-BLUP followed the observed data in the trial left 

out rather closely. The MP-BLUP was the predictor with the smallest MSPE.

The random cross-effect models [3.4] allow one to predict the performance of 

untested crosses by using the genetic variance-covariance matrix as a link between 

tested and untested crosses. In this study, the BLUP based on the random cross effect 

models [3,4] did not perform better than the model constructed from combinations of 

female and male parent BLUPs [2].
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Table 2.2. Prediction accuracy + under four cross performance prediction models for 
five traits and five test years o f sugarcane progeny testing.

Model J 

Predictor

[1] M + F 
Fixed

MPV

[2] M + F 
Random

MP-BLUP

[3] C 
Random Ind.

IC-BLUP

[4] C 
Random Rel.

RC-BLUP
Year ,pA/\t mp'in cnimrf* nrprlirtinnI x U U l  I l l C i U l  S U U t U v  p i v U l H I U I !  w l l U I

Cane yield 1992 1.09 0.94 0.99 0.97
[kg/plant) 1993 0.88 0.69 0.70 0.68

1994 0.95 0.91 0.95 0.95
1995 1.04 0.88 0.90 0.87
1996 1.05 1.00 1.03 1.02
mean 1.00 0.88 0.91 0.90

Stalk 1992 1.61 1.38 1.52 1.49
diameter 1993 1.11 1.03 1.24 1.24

[mm] 1994 1.26 1.17 1.31 1.33
1995 1.61 1.24 1.51 1.50
1996 1.54 1.38 1.65 1.65
mean 1.43 1.24 1.45 1.44

Stalk 1992 17.51 15.58 16.32 16.14
height 1993 13.19 12.29 13.16 13.14
[cm| 1994 12.06 9.76 11.55 11.57

1995 17.08 16.49 17.00 16.50
1996 13.25 11.69 12.36 11.97
mean 14.62 13.16 14.08 13.86

Stalk 1992 1.34 0.98 1.03 0.99
number 1993 1.30 0.89 0.89 0.85
[plant1] 1994 1.13 1.16 1.11 1.12

1995 1.39 1.19 1.28 1.23
1996 1.96 1.81 1.84 1.81
mean 1.42 1.21 1.23 1.22

Stalk 1992 11.40 10.54 1 1 . 0 2 10.59
weight 1993 8.42 6.27 7.25 7.13

[kg x 10J] 1994 10.32 9.03 10.32 9.73
1995 11.59 7.91 1 0 . 0 1 8.98
1996 9.56 8.09 9.53 9.46
mean 10.26 8.37 9.63 9.18

t Square root o f the mean square prediction error (difference between predictor and target values for each 
cross obtained by an iterative “leave-one year-out” validation procedure).
J All models take the form: Y(| =p + T  + R(T) + [as indicated in the column heading ] +- e. Notation for 

model effects is T  - trial, R- replication, C - cross, F - female, M -  male, e~ N(0. <* ).
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The one-way (cross) fixed model was not included in the study because it can not 

be used to make inference about new crosses. It only offers information about crosses 

already made.

Possible factors for the behavior o f BLUPs based on cross effects [3.4] with regard 

to MP-BLUP [2] might be related to an insufficient number of related crosses per cross, 

equal weighting o f female and male parent related crosses, and high dominance 

variance. The median for the number o f relatives (usually half-sibs) per cross in the 

database was 34, the first quartile 18. and the third quartile 50; in other words, 50% of 

the crosses had less than 34 related crosses in the database. Some of them could be 

related through the female parent and others through the male parent, but all o f them 

were equally weighted in the cross-effects-based BLUPs [3,4]. On the contrary, under

model [2], BLUPs o f female effects are estimated using the estimation o f oj: and BLUPs

of male effects the estimation o f a2 .m

Even under a half-sib structure, both variance components should theoretically lead 

to the same additive genetic variance among crosses. In this study there were consistent 

differences between both variance component estimates for all the traits (Table 2.3). 

The control o f experimental errors related to identification o f female and male parents is 

different when crossing sugarcane at LAES. Sugarcane crosses in the LAES, as in 

many sugarcane breeding programs, are made in cubicles with a designated “ male" 

parent tassel suspended above several designated “ female" parent tassels. The 

functional sex o f the clone is usually assessed as a function o f the amount o f pollen the 

clone produces. In many cases, the functional female is not completely male sterile and
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hence could, and probably does, perform some cross-pollination o f other females in the 

same cubicle. Thus, the female parent is known with certainty and the male parent is

known with less certainty. The lack o f male parent certainty may explain the trend of

1
larger oji than for cane yield, stalk weight and stalk height, but it does not explain the

i  ■>
tendency for a larger being larger than Of for stalk diameter and stalk number.

Perhaps the differences are not real or perhaps the sampled populations were just 

different in the tested years. Parental genotypes do change somewhat each year.

Table 2.3. Female and male variance component estimates for live traits and test years 
of sugarcane progeny testing.

Test Variance Cane Stalk Stalk Stalk Stalk
year component yield weight height diameter number

(kg/plant)! (kg x 105)5 cm* mm* (no/plant):

1992 2
CTf 0.114 0.221 51.74 0.554 0.126

a~m 0.030 0.131 16.00 0.720 0.123
1993 2

Of 0.090 0.186 56.02 0.423 0.050

CTm 0.052 0.106 22.49 0.493 0.101
1994 1

° f 0.114 0.181 63.43 0.390 0.031
1

a”m 0.065 0.107 18.72 0.429 0.092
1995 ■>

° f 0.128 0.208 37.77 0.484 0.064

am 0.103 0.106 21.84 0.605 0.108
1996

af 0.113 0.186 55.90 0.359 0.032

am 0.035 0.126 21.21 0.477 0.090
Mean
residual 2 1.208 0.958 222.40 1.920 1.184
variance e ±0.043 ±0.034 ±4.602 ±0.061 ±0.059
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The G and C matrices used for the BLUPs based on cross effects are narrow- 

sense genetic covariance matrices since they are based on additive variance coefficients. 

Models introducing dominance variance and specific combining ability may improve 

predictions. Previous research identified significant dominance effects for yield 

components in sugarcane (Milligan, 1988). The accuracy o f the prediction for the 

different traits indicated better predictions for stalk diameter, stalk height, and stalk 

weight than for cane yield and stalk number. This probably reflects the relative 

heritability o f these traits (Milligan, 1988).

The rank correlations between predicted and observed performances o f untested 

crosses ranged from non-significant values for stalk number to an average correlation o f 

0.52 (P=0.001) for stalk diameter when using MP-BLUP as the predictor (Table 2.4). 

Table 2.4. Mean rank correlation between predicted and observed cross valuest.

Trait,
Predictor

MPV MP-BLUP IC-BLUP RC-BLUP

Cane yield 0.23 0.35 0.29 0.34

Stalk number ns ns ns ns

Stalk weight 0.34 0.46 0.35 0.38

Stalk diameter 0.34 0.52 0.37 0.42

Stalk height 0.35 0.48 0.39 0.39

t  Mean of significant correlations. For MPV and MP-BLUP values are average of five years. For IC- 
BLUP and RC-BLUP, values represent 2average across three (significant) out of a total of five test years; 
ns=no significant correlations (P>0.05).
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The average correlations o f MP-BLUPs and observed values were also close to 

0.50 for stalk height and stalk weight. Cane yield showed smaller correlation 

coefficients than the other traits did (except stalk number). Correlation coefficients 

based on MP-BLUPs were consistently better than those obtained from the RC-BLUP, 

IC-BLUP or MPV. Correlations tended to be higher or more likely significant when the 

ratio o f the genetic to residual variance among untested crosses was higher (Table 2.5). 

The maximum expected correlation between the predicted and the observed value is not 

unity but it depends on the heritability of the trait (Bernardo, 1999). This is because we 

are correlating predicted genotype with phenotypic values. Heritability for cane yield is 

not superior to 0.30 (Milligan et al., 1990), thus the correlation between genotype and 

phenotype. (0.30)1 := 0.55, is the upper bound for an observed correlation.

Table 2.5. Rank correlations between predicted and observed cross performances under 
four cross prediction models for cane yield in five years o f sugarcane progeny testing.

Model and predictort

Year Q
n

*•
4 

+ 
+

[1] M + F 
Fixed
MPV

[2] M + F 
Random

MP-BLUP

[3] C 
Random Ind.

IC-BLUP

[4] C 
Random Rel.

RC-BLUP

1992 0.35/0.86 0.21
--------Rank Correlation-----------

0.32 0.27 0.30

1993 0.23/0.70 0.19 0.30 0.30 0.32

1994 0.14/1.71 0.26 0.36 ns ns

1995 0.23/1.07 0.24 0.38 0.29 0.39

1996 0.23/1.56 0.24 0.40 ns ns

t  All models take the form:Y„ =p + T  + R(T) + [column heading 1 + e. Notation for model effects is T - 

trial, R- replication, C - cross, F - female, M -  male, e - N(0, a* ).

t  Ratios o f REML estimators o f broad-sense genetic variance and residual variance in the test year left 
out for validation purposes; ns • no significant correlation, other correlation are significant at a  =0.05.
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Bernardo (1992) indicated that a correlation between predicted and true genetic 

value around 0.60 would allow a breeder to select the top 20% crosses while 

maintaining at least an 80% chance of retaining the best hybrid in the selected group. 

Using LAES data, correlations around 0.50 were obtained for stalk diameter, stalk 

weight, and stalk height, but correlations for cane yield were smaller than 0.40 and 

several non-significant correlations were detected for stalk number (Table 2.4). Thus, 

ranking of potential crosses should be better when based on stalk diameter and height.

Modifications to the current testing methodology that should enhance the quality of 

the test data have been initiated. DeSousa-Vieira and Milligan (1999) demonstrated that 

increasing the intra-row plant spacing would significantly increase the genetic variance 

and functional heritability o f cane yield and stalk number. A wider intra-row plant 

spacing (about 60 cm), is now used by the LAES in its progeny testing program than 

that previously used to generate the data in this study. An additional expected 

improvement in the progeny testing methodology is the implementation o f weighing the 

entire plot as opposed to estimating cane yield from stalk counts and an estimated stalk 

weight.

The MP-BLUP [2] improved selection efficiency more than the cross-based BLUPs 

[3,4] compared to the traditional MPV [1 ] (Table 2.6). Differences o f 10 to 20%, for 

the percent of top crosses identified when selecting 50% o f the potential crosses based 

on the predictor values, were observed between MP-BLUP and MPV, with consistently 

higher percentages for MP-BLUP. Identification o f top 50% crosses varied from 54% 

to 72%, depending on the trait and model. They ranged from 54% to 62% o f the top
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half of the crosses identified when using the MPV, versus 59% to 72% for the MP-

BLUP, which represents a substantial improvement in selection efficiency.

Table 2.6. Percent o f top 50% crosses retained in the validation data set also in the top 
50% of the predicted cross performances for four prediction models.

Trait Model and Predictort

[1] M + F 
Fixed
MPV

[2] M + F 
Random 

MP-BLUP

[31 C 
Random Ind.

IC-BLUP

[41 C 
Random Rel. 
RC-BLUP

Cane yield 56

.......... ............ %--

68 60 61

Stalk diameter 60 72 65 69

Stalk height 61 70 61 60

Stalk number 54 59 59 60

Stalk weight 62 71 62 63

+ All models take the form: Y„ =n + T + R(T) + [as indicated in the column heading ] + c. Notation for

model effects is T - trial. R- replication, C - cross, F - female. M -  male, c~ N(0, a * ).

Despite predictors from model [3] and [4) showing smaller MSPE than the MPV 

(Table 2.2), there was not a substantial improvement over the fixed MPV [1 ] regarding 

correlations and P(50|50) (Table 2.4 and 2.6). The preference o f BLUPs based on tested 

cross effects [3,4] over MP-BLUP is doubtful for sugarcane. Cox and Stringer (1998) 

worked with mid-parent BLUPs in sugarcane. They estimated BLUPs based on a 

complex trait. Net Merit Grade, for parents o f families harvested from 1993 to 1995 at 

the core breeding program in Australia. BLUP estimates were correlated with clonal 

performance o f those families at stage 1 (first clonal stage) in 1994, 1995, and 1996.
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Correlations were 0.60-0.65. It is important to note that they evaluated progeny 

performance using whole plot weights in a way similar to that now employed in the 

LAES. Their results indicated that MP-BLUP is also advantageous for selecting 

families to advance genotypes in early generations.

4. CONCLUSIONS

Progeny testing has proved to be effective and cost efficient for sugarcane breeding 

because it improves efficiency of early generation selection. It can also be exploited to 

generate BLUPs o f untested crosses. Predictors based on progeny tests can be obtained 

after one year o f testing of new parents, whereas parental selection based only on clonal 

per se information requires several years o f testing and probably is more biased by the 

presence o f non-additive genetic effects. No additional field experiments arc required to 

calculate cross performance predictors in sugarcane breeding programs involving 

progeny tests.

Cross prediction mixed models or BLUP-based predictions consistently 

improved over the fixed MPV model the accuracy o f the predicted performance o f 

crosses that have never been tested. A 2-way random model with female and male 

effects performed better than a one-way cross effect model with covariances adjusted by 

additive genetic relationship among crosses in sugarcane. The results suggest that the 

MP-BLUP obtained from the databases o f regular sugarcane progeny tests would 

facilitate the identification o f material to be crossed. The accuracy o f predictions might 

be increased by maximizing experimental efficiency o f cross appraisal tests, i.e. more
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replications, better procedures for recording data and combining plant cane with first

ratoon data.

5. REFERENCES

Bernardo, R. 1992. Retention o f genetically superior lines during early-generation 
testcrossing of maize. Crop Sci. 32:933-927.

Bernardo, R. 1994. Prediction o f maize single-cross performance using RFLPs and 
information from related hybrids. Crop Sci. 34:25-30.

Bernardo, R. 1995. Genetic models for predicting maize single-cross performance in 
unbalanced yield trial data. Crop Sci. 35:141-147.

Bernardo, R. 1996a. Best linear unbiased prediction of maize single-cross performance. 
Crop Sci. 36:50-56.

Bernardo, R. 1996b. Best linear unbiased prediction o f the performance o f crosses 
between untested maize inbreds. Crop Sci. 36:872-876.

Bernardo, R. 1999. Marker-assisted best linear unbiased prediction o f single-cross 
performance. Crop Sci. 1277-1282.

Bischoff, K.P., Milligan S.B., Rodriguez, P.H., Zaunbrecher, R.D., Quebedeaux, K.L.. 
Martin. F.A. 1994. Selections, advancements, and assignments o f the Louisiana.
“ L", sugarcane variety development program for the year 1994. Sugarcane Res. 
Annual Progress Report. Louisiana State University Agricultural Center. Louisiana 
Ag. Exp. Stn., 23-76.

Bischoff, K.P., Milligan S.B., Rodriguez, P.H, Quebedeaux. K.L.. Martin, F.A. 1995. 
Selections, advancements, and assignments o f the Louisiana. L. sugarcane variety 
development program for the year 1995. Sugarcane Res. Annual Progress Report. 
Louisiana State University Agricultural Center. Louisiana Ag. Exp. Stn., 21-40.

Bischoff, K.P., Milligan S.B., Gravois, K.A., Quebedeaux, K.L., Hawkins, G. L.
Martin, F.A. 1996. Selections, advancements, and assignments o f the Louisiana.
“ L '\ sugarcane variety development program for the year 1996. Sugarcane Res. 
Annual Progress Report. Louisiana State University Agricultural Center. Louisiana 
Ag. Exp. Stn., 31-54.

Caligari, P.D., Brown, J.,Abbott, R.J. 1986. Selection for yield and yield components in 
the early generations o f a potato breeding program. Theor Appl Genet 73:218-222.

48

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Chang, Y.S., Milligan S.B. 1992. Estimating the potential o f sugarcane families to 
produce elite progeny using univariate cross prediction methods. Theor. Appl. Genet. 
84:662-671.

Chang, Y.S. 1996. Assessment o f genetic merits for sugarcane parents. Taiwan Sugar 
Res. Inst. 153:1-9.

Cox, M.C., McRae, T. A., Bull, J.K., Hogarth, D.M. 1996. Family selection improves 
the efficiency and effectiveness o f a sugarcane improvement program. In: Wilson. 
J.H., Hogarth. D.M., Campbell, J.A., and Graside, A.L. (eds). Sugarcane:Research 
Towards Efficient and Sustainable Production. CS1RO Division of Tropical Crops 
and Pastures, Brisbane, 42-43.

Cox, M.C., Stringer, J.K. 1998. Efficacy o f early generation selection in a sugarcane 
improvement program. Proc. Aust. Sugar. Cane Technol. 20:148-153.

DeSousa-Vieira, O., Milligan, S.B. 1999. Intrarow plant spacing and family x 
environment interaction effects on sugarcane family evaluation. Crop Sci. 39:358- 
364.

Falconer, D.S. 1989. Introduction to Quantitative Genetics. Ronald Press Co.. New 
York, NY Third edition. Wiley, New York.

Harville. D.A. 1990. BLUP best linear unbiased prediction and beyond. In Gianola D.,
K. Hammond (Eds.). Advances in Statistical Methods for Genetic Improvement of 
Livestock. Springer-Verlag, 239-276.

Henderson. C.R. 1973. Sire evaluation and genetic trends. In W.D.Havey (ed.) Proc. Of 
Animal Breeding and Genetics Symposium in Honor o f J.L.Lush, Virginia Polytech 
Institute and State University. Am. Soc. Animal Sci. and Dairy Sci. Assoc. 
Champaign, IL. p. 10-41.

Henderson, C.R. 1975. Best linear unbiased estimation and prediction under a selection 
model. Biometrics 31: 423-477.

Hogarth. D.M. 1971. Quantitative inheritance studies in sugarcane. (I. Correlation and 
predicted response to selection. Aust. J. Agric. Res.22:03-109.

Littell, R.C., Milliken, G.A., Stroup ,W.W„ Wolfmger, R.D. 1996. SAS® System for 
Mixed Models. Cary, N.C.:SAS Institute Inc.

McLean, R.A., Sanders, W.L., Stroup, W.W. 1991. A unified approach to mixed linear 
models. American Statistician 45:54-64.

49

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Milligan, S.B., Gravois, K.A., Bischoff, K.P., Martin, F.A. 1990. Crop effects on 
broad-sense heritabilities and genetic variances o f sugarcane yield components. Crop 
Sci. 30: 344-349.

Milligan, S.B. 1994. Test site allocation within and among selection stages o f a 
sugarcane breeding program. Crop Sci. 34: 1184-1190.

Panter, D.M.. Allen, F.L. 1995. Using best linear unbiased predictions to enhance 
breeding for yield in soybean: I. Choosing parents. Crop Sci. 35:397-405.

RoBinnson, G.K. 1991. The BLUP is a good thing: The estimation of random effects. 
Stat. Sci. 6:15-51.

SAS Institute. 1997. SAS/STAT software: changes and enhancements through release
6.12. SAS Inst., Cary, NC.

Searle, S.R., Casella,G., McCulloch, C.H. 1992. Variance components. Wiley. New 
York

White, T.L., Hodge, G.R., Delorenzo, M.A. 1986. Best linear prediction o f breeding 
values in forest tree improvement. In Workshop o f the Genetics and Breeding o f 
Southern Forest Trees, Southern Region Information Exchange Group 40.
Gainesville, FI., 99-122.

50

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3

COMBINING DATA ACROSS TESTS TO PREDICT FUTURE P E R  S E  
PERFORMANCE IN A SUGARCANE BREEDING PROGRAM
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1. INTRODUCTION

Breeders routinely select genotypes or lines in a series o f selection stages. 

The earliest stages after the initial hybridization are typically unreplicated tests 

in which large numbers of genotypes are screened. As the material advances 

through stages, the screened number o f genotypes or lines drastically shrinks 

and the extent o f testing (replications, plot size, number o f locations and 

amount o f data) proportionally increases. Selection and advancement decisions 

may be based upon several tests. These tests are often carried out in different 

time periods and vary in experimental dimensions such as the number of 

entries, plot size, number o f replications, genetic level o f elitism, and 

experimental precision. The breeder must computationally, or at least 

mentally, combine the data to make decisions. He will typically weigh the 

relative precision o f the various experiments and w ill commonly scale the 

results in some manner to make the numbers comparable. Therefore, many of 

the challenges in combining information to improve genotype prediction 

reduce to matters o f scaling and weighting for relative confidence in the data.

Weighted and unweighted analysis o f variance provides a useful statistical

technique for combining data to analyze treatment (genotype) differences

(Milliken and Johnson, 1989). The traditional ANOVA under a fixed model

approach assumes independent observations (Searle, 1987). This assumption

limits the quantity o f data gleaned from breeding databases. Least squares

means analysis obtained under a fixed linear model often ignores the

underlying correlation structure in the data (Latour and Littell, 1996). A mixed
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linear model, however, allows an analytical approach to account for genetically 

and/or experimentally correlated data (Stroup, 1989; Searle et al., 1992). The 

random nature o f genotype effects in early testing may be taken into account in 

a mixed model approach. Other variables, besides genotype effects, such as 

blocks, and trial effects, might qualify for consideration as random effects 

(Wolfinger et al., 1997). Mixed models may account, through the variance- 

covariance structure, for heterogeneity of standard errors and genetic as well as 

non-genetic correlations.

Given the typical size o f plant breeding data sets, estimation procedures 

under a regular mixed or a random model (Searle et al., 1992) that involves 

replications may require extensive computer time and memory (Piepho, 1998). 

A practical solution is to work with genotype-test means. However, with 

incomplete designs and heteroscedastic data, the analysis may not be valid 

(Piepho, 1998). An estimation procedure called weighted two-stage analysis 

has been applied successfully to sort out the challenges associated with fitting 

mixed models in the analysis o f cultivar trials (Cullis et al., 1996a,b; 

Frenshman et al., 1997). The main idea behind this procedure is first to 

estimate variance components for each test and then work with a means model, 

using the estimated variances as known parameters to weight observations. 

Mixed models further use best linear unbiased predictors (BLUPs) to estimate 

random effects (Henderson, 1975; Harville. 1990). Thus, performance 

predictions for genotypes will be expressed by a BLUP instead o f a mean, as is

common in the fixed model approach (White et al., 1986; Panter and Allen,
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1995). Various versions of BLUPs might be defined depending on the 

underlying mixed model and goals o f the prediction.

Many breeding programs worldwide use check cultivars to facilitate 

combining information from different sources (Yates and Cochran, 1938; 

Cochran, 1954; McIntosh, 1983; Hill and Rosenberg, 1985). For example, the 

Louisiana Sugarcane Variety Development Program (LSVDP) expresses 

experimental genotype yields as a percentage of each check in the same 

replication in a given trial. The overall mean o f these percent-of-the-check 

values is used in selection and advancement decisions (Milligan et al.. 1994). 

The use o f check varieties is not free from concerns. The checks may be 

unstable in performance and usually change with time, as different and more 

relevant varieties become important reference cultivars. Furthermore, check 

cultivars may be quite different from the experimental population under 

investigation. Treating them as a member o f the experimental genotype 

population may bias genetic variance component estimates and hence 

predictors.

This study investigated three mixed models, involving three versions o f 

BLUPs estimated under different strategics, least squares genotype means 

under a fixed model, and four check-based methods for combining information. 

The goal was to compare strategies to predict future genotype performance.
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2. MATERIALS AND METHODS

2.1. Models for Combining Early Selection Stage Data

All models combined trial information into a single estimate to predict the 

genotype performance in future trials. Besides the overall arithmetic mean, two types of 

predictors were analyzed: check-based predictors and linear model-based predictors.

2.1.1. Check based-nredictors

I examined four genotype performance predictors that used checks in their 

derivation (Table 3.1). The first one was the “ average percent of the check" (APCH) 

where experimental genotype yields were expressed as a percentage o f different 

commercial check values in the same replication. The predictor. APCH, [ 1 ]. is the 

average o f these values across checks, trials and replications for genotype j .

The second check-based predictor expresses the genotype values in a trial as a 

percentage o f the mean of all the checks in that trial. The predictor, PACH, [2], is the 

average o f this value over all tests that contain the genotype j .

The third check-based predictor is the average difference. AD, [3], between each 

experimental genotype j  in rep k and trial /, and the mean of all the checks in that trial.

The predictor, AD,, is the average across all trials and replications for genotype j .  

The fourth predictor is the standardized experimental genotype value within each trial 

and replication (SP„k) using mean and standard deviation of the checks in the trial. The 

SP, value for a given genotype j .  is the average across all trials and replications.
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Table 3.1 Predictors o f p e r  se genotype performance.

I*
O k

Predictor

( IJ Average Percent of Checks (APCH)

[2] Percent of Average Check (PACH)

[3] Average Difference (AD)

[4] Standardized Performance (SP)

(3) Least squares Means (LSM)

[6] BLUPs of genotype effects (BGa)

[7] BLUPs of genotype effects (BGb)

[8] BLUPs o f genotype effects (BGTa) 

19) BLUPs of genotype effects (BGTb)

[ 10] BLUPs o f genotype effects (BGTIa) 

[ I I ]  BLUPs o f genotype effects (BGTIb)

Formula/Modelt

APCH, -  i  ( ¥ ( , 0 0  y„k / ClkJ /M K )'l 
i=l k=l.m=l

PACH. -  f  
■ \ X

AD, = ^  <v

, ^  ( I0 0 y 1(l/C,..)K
i=l.k-l

, I (y„k -C.^KIK
i=l,k=l

SP.
i=l.k-l

y.,k = M + T, + R(T)a + G, r e1|k

y.,k = P + T, + R(T)a + G, + e1Jk

y.,k = F + T, + R(T)a + C . + G, + c1|k

y„k = F ̂  T, + R(T)* + G, + el)k

»  = F + T, + R(T)a + Cm + G, + e1)k

y., = F + T, T G, + G I ,, 

y.) = F + T, + G, + GT„

Assumptions and comments 

Check based

Check based 

Check based

Check based

All effects fixed except e1)k

G, random. T. and R(T)a fixed

Checks (C „ ) separated; G, random, 
else fixed

All effects random

Checks (Cm) separated; all effects 
random except checks

Trial means used; all effects random; 
unweighted
Trial means used; all effects random; 
weighted

t  C ^  trait value for check m (/n=l,...,Af)at trial i. replication k; otl std. deviation of check values at trial /; y,)k, (/ = I , .... /;y = I  J\ k = I,..., A) trait
value fory-th genotype at trial /; general mean; G, genotype effect; T, environment effect; R(T)lk block within trial; G T , interaction.



2.1.2. Two-wav linear model-based predictors

Another set o f predictors was obtained using the regular linear model: 

y,jk = P + T, + R(T)lk + G, + GT„ + eljk

where y1)k (/' = 1..... / ; /  = I  J: k = 1 K) was the trait value o f the replicate k<

genotype j  and trial /, T, was trial / effect, R(T)lk was replication k in trial i  effect G, was 

genotype j  effect, GT„ was the genotype by trial interaction effect, and eljk was the error 

term associated with y1|k. In a fixed linear model all model components except the error 

terms are considered fixed values. Least squares means (LSM) [5] o f genotype levels 

across a given set o f trials for a model without GT interaction (interaction terms are 

non-estimable) were used as genotype performance predictors (Table 3.1). Six versions 

of BLUPs o f genotype performance were obtained using different mixed models. The 

models varied in their inclusion o f R(T)lk or GTU effects, whether or not check genotype

(Cm m = I  A/) were considered fixed or random, and whether or not T, and R(T)lk

were considered random or fixed. All models considered genotype effects as random.

Predictors BGa [6] and BGb [7] were BLUPs from a model that did not include GT 

effects and considered trial and rep(trial) effects as fixed. Predictor BGa included the 

checks among the genotype random effect, whereas predictor BGb considered the check 

effects as fixed and separated them from the experimental genotype effects in the 

model. Predictors BGTa [8] and BGTb [9] BLUPs were generated using the same 

models as used for [6] and [7]. However, in addition to genotype effects, trial and 

replication-within-trial effects were considered random. Predictor BGTa grouped 

checks with experimental genotypes (all effects random). Predictor BGTb separated 

checks from the experimental genotypes by considering check effects as fixed.
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Predictors BGTIa [10] and BGTIb [11] modeled trial means instead o f plot values and 

included the GT. Predictor BGTIa was unweighted for trial residual variances. BGTIb 

weighted for trial residual variances using r,/ s2, as weights where r, is the number o f 

replications in trial / and s2, was the error mean square in the same trial obtained from a 

previous ANOVA for each trial. Working with trial means instead o f individual plot 

data made the incorporation of the GE effects computationally feasible. The predictor 

value of each method was expressed in the original trait value range (Table 3.2).

Table 3.2. Predictor conversion to trait unit values.

Predictor Conversiont

[ 1 ] Average Percent o f Checks (APCH) yf= (APC HjM pc )/100

[2] Percent of Average Check (PACH) yj = (P A C H jK pc)/100

[3] Average Difference (AD) yj== (ADj) + Pg

[4) Standardized Performance (SP) yj = (SPj)oc+Pc

[5] Least squares Mean genotype effects (L.SM) yj== LSMj

-------------------------------------------mixed model

[6] BLUPs of genotype effects (BGa) yj = BGaj +

[7] BLUPs of genotype effects (BGb) yj = BGbj + p°

[8] BLUPs of genotype effects (BGTa) yj = BGTaj + p°

[9] BLUPs of genotype effects (BGTb) yj = BGTbj + p°

[10] BLUPs of genotype effects (BGTIa) yj = BGTIaj + p°

[11] BLUPs of genotype effects (BGTIb) yj = BGTIbj +

+acand nc equaled the across trials mean and standard deviation for the checks; p° is the generalized least 

squares estimator o f the overall mean.

For all mixed models, the random effects were considered independent and 

normally distributed random variables. I assumed that number o f replications per
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genotype might be different within and between trials (unbalanced data) and that not all 

genotypes were evaluated in all trials in the database (incomplete data). The variance 

components were estimated by REML using a SAS code based on Proc Mixed/SAS 

(SAS Inst., 1997) (Appendix A). In addition to model differences regarding the 

characteristics mentioned, the predictors for genotype performance under the mixed 

models were empirical BLUPs of genotype effects. The adjective “empirical" is 

appropriate since the variance components used in the calculation of BLUPs were 

estimate

2.2. Data and Validation Procedure

The LSVDP database of early yield trials between 1988-1995 was used to 

compare different models. Personnel in the LSVDP select advance and plant genotypes 

(clones) among nine clonal stages in sequential years (Table 3.3; Milligan. 1994). 

Replicated testing begins in the third clonal stage (Increase stage) and multi-location 

testing in the fourth clonal stage (Nursery stage). The first two clonal stages after 

crossing are unreplicated due to the high number o f plots established in these stages 

(about 3000 reduced to 1000). About 50 to 70 clones are replicated at three locations in 

the fourth clonal stage (Nursery). A new series is initiated every year and plots are 

harvested once a year for three years (plantcane, first ratoon and second ratoon crops).

Only plantcane data were considered in this study. The commercial sugarcane 

varieties, CP65-357 (Breaux et al., 1974), CP70-321 (Fanguy et al., 1979), CP72-370 

(Fanguy and Breaux, 1981), CP74-383 (Fanguy et al., 1983), and LCP82-089 (Martin et 

al., 1992) were used as checks. A subset o f 35 genotypes, involving different
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assignment series and including the S checks, was chosen as the set o f genotypes for 

which performance would be predicted.

Varieties from different assignment scries are rarely tested in the same trial. All 

trials involving these genotypes and all the genotypes included in those trials made the 

“ working data set". Variety data accumulates each year (Table 3.3).

Table 3.3. Stages, dimensions and plantcane yield information of the Louisiana 
Sugarcane Variety Development Program.

Year Stage

Dimension Plots Harvested+

Entries Area Loc Reps Annua
1

Total

No. nr No.----------
1 Crossing
i Seedling 50,000 0.8 1 1 0 0

3 P1 clonal 3,000 3.3 1 1 0 0

4 2mi clonal 900 23.8 1 1 0 0

5 Increase 300 23.8 1 2 1 1

6 Nursery 70 23.8 3 2 3 4

7 Nurs./lnfield 30 23.8/71.3 3 2 9 13

8 Introduction^; 10 — 1 18 44

9 Outfield 8 53.5 10 3 16 60

10 Outfield 3 53.5 10 3 40 100

11 Outfield 2 53.5 10 3 60 160

12 Outfield I 53.5 10 3 90 250

13 Release 1

t  Actual amount of data is typically less because some tests may not be planted (Infield) or something 
prevents harvest.
J No new data collected: seed-cane increase only.
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To assess model prediction accuracy, predictors were derived from earlier years 

in the selection process (calibration data set) to predict yields in more advanced stages 

of the program (validation data set). The comparison used data from the 2nd, 3rd, and 4,h 

clonal stages (2nd clonal. Increase, and Nursery trials from year 6) as the calibration data 

set to predict yields in the 5,h clonal stage (Nursery and Infield data from year 7). The 

second clonal stage, an unreplicated stage, was treated as a third replication of the 3rd 

clonal stage (Increase stage) that included cultivars o f the same assignment series.

Prediction errors were obtained by calculating the difference between the 

predicted value and the value observed in the validation data set (5,h clonal stage). The 

square root o f the average of square differences (RMSPE) was reported as estimations 

of prediction errors. The procedure was repeated with ten sets o f 35 genotypes to 

calculate mean prediction accuracy. The response variables (traits) predicted were cane 

yield (Mg ha'), stalk weight (g), sucrose content (g sucrose kg 'cane) and stalk number 

(no. m :). Rank correlations between the predictors based on the 2nd through 4lh clonal 

stage and the mean genotypic values in the 5,h clonal stage (validation data set) were 

also calculated.

3. RESULTS AND DISCUSSION

Prediction errors for all predictors ([ 1 ] to [ 11 ]) were smaller than those for the raw 

mean for all traits (Table 3.4). Other than the raw mean, the best and worst predictors 

varied by trait. The lowest prediction errors were obtained by BGTa [8] for cane yield, 

stalk weight and sucrose content. This mixed model-based method considered all 

effects random. The best method for stalk number was the standardized prediction 

method [4], which used the check trial mean and standard deviation to standardize the
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experimental genotype value. O f the non-mixed model-based methods ([1 ] to [5]), the 

SP [4] was the most effective predictor. This result also indicated the importance of 

adjusting genotype data not only for average trial yield but also for intra-trial variability.

Table 3.4. Prediction accuracy for twelve methods of combining early selection stage 
data to predict genotype performance in a more advanced stage of a sugarcane breeding 
program for four traits.

Predictor Cane Stalk Sugar Stalk
yield weight content number

Mg ha1 g gkg'1 no. m :

[1] APCH 19.1 57.7 6.74 0.843
[21 PACH 17.2 54.5 6.77 0.802
[3] AD 17.9 61.3 6.17 0.788
[4] PS 15.3 51.3 6.14 0.777
[5] LSM 18.5 64.9 7.28 0.846
[6] BGa 16.6 60.4 5.71 0.827
[7] BGb 16.8 62.2 5.64 0.841
[8] BGTa 14.9 48.6 5.42 0.836
[9] BGTb 15.0 48.6 5.43 0.838
[10] BGTIma 15.7 58.1 6.10 0.856
[11] BGTImb 15.0 53.1 5.80 0.853
[12] Raw mean 26.2 130.8 14.96 

Trait mean--------
1.015

Mean 72.8 1117 128.7 8.013
t  Square root o f the mean square prediction error (difference between predictor and target values for each
genotype obtained by an iterative validation procedure).

In general, separating the checks from the experimental genotypes and then 

considering them as fixed did not improve the predictive value o f the mixed model- 

based predictors. Even with checks that might have high effect values, the number of 

check varieties is small compared with the set o f varieties that participate in the 

calculation o f genotypic variances.
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Predictors with the lowest prediction error generally produced higher rank 

correlations between the calibration data set (2nd, 3rd and 4th clonal stage) and the 

validation data set (5,h clonal stage) (Table 3.5). There were some slight exceptions to 

this observation in that the BGTlmb predictor (weighted mean based predictor [11]) 

produced somewhat higher correlations than one would expect from the prediction 

errors. This is a mean-based predictor.

Table 3.5. Rank correlations between predictor based on 2nd through 4,h clonal stage 
data and raw mean o f 5,h clonal stage (Nursery/Infield stage).

Predictor Cane
yield

Stalk
weight

Sugar
content

Stalk
number

APCH 0.24 0.53 0.61 0.75
PACH 0.24 0.53 0.59 0.76
AD 0.22 0.50 0.63 0.83
PS 0.26 0.55 0.63 0.86
LSM 0.28 0.52 0.66 0.82
BGa 0.30 0.54 0.72 0.74
BGb 0.30 0.54 0.73 0.71
BGTa 0.36 0.59 0.74 0.76
BGTb 0.35 0.58 0.74 0.75
BGTlma 0.35 0.57 0.70 0.74
BGTlmb 0.42 0.63 0.73 0.74
Raw mean 0.08 0.48 0.18 0.59

Piepho (1998) comments about the advantage o f computational simplicity o f the 

analysis o f means compared to a full model that incorporates replications. In this data 

set, it was not computationally feasible to incorporate genotype-by-environment (GE) 

effects using replicated data. Using genotype-trial means enabled the incorporation o f a 

GE term into a predictive model dealing with numerous genotypes.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



The resulting predictors, BGTlma and BGTlmb. essentially equaled the best 

predictor for cane yield (RMSEBaTIinil = 15.0 vs. RMSEBGTa = 14.9 Mg ha'1; Table 3.4). 

but were not as low as the best predictors in the other traits. Weighting the predictor for 

the trial residual variance improved this predictor for all traits and, as earlier observed, 

appeared to improve the correlation to a small degree.

Using eight years o f alfalfa (Medicago sativa L.) variety trials. Hill and 

Rosenberger (1984) compared check-based methods for combining germplasm data 

against three versions of BLUPs. They used a fixed 2-way analysis with trials and 

genotypes as factors and a cross-validation procedure to predict the performance of 

genotypes in a “ left out” trial from the entire data set. The smallest average prediction 

error was obtained with the trial-heritability version o f BLUP, which is equivalent to 

Henderson’s (1977) procedure with variance components estimated from the 

unbalanced two-way analysis. No relationships were assumed among the genotypes 

(the different entries in the series o f trials were considered unrelated in this study). I f  

the set o f genotypes being evaluated within a database are related, further advantages 

may be gained from BLUPs by using these genetic relationships in all the models with 

genotype regarded as a random factor (Panter and Allen, 1995). Genetic relationships 

among genotypes evaluated for yield in a few trials improved prediction in soybean 

(Panter and Allen, 1995). A genetic relationship-adjusted BLUP for genotype effects is 

worth considering at the early stages o f breeding. This is because the large number of 

genotypes evaluated in these stages allows a good estimation o f variance components. 

Poor variance component estimates, i.e., large standard errors o f variance component 

estimates, are expected i f  the number o f genotypes is very small. Furthermore, in early
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selection stages there are few direct observations but likely a number of observations 

from sibling clones is large. Genotype by environment interaction was not modeled in 

the alfalfa and the soybean data-set analyses (Panter and Allen. 1995). Attempts to 

combine trials into a single estimate o f yield for sugarcane would introduce interactions 

that are known to exist (Bull et al., 1992; Mirzawan et al.. 1993).

This study used only plantcane data. In practice, sugarcane breeders use more data 

than used in this study to make their selection decisions. Although advancement 

decisions are made prior to harvesting the trials planted in the previous year, stalk 

numbers o f the previous year's trials is recorded before the selection decisions have 

been made. Furthermore, trials are harvested three times, once each year. Although 

yield data are not independent among crops for a given plot, additional yield data are. 

however, provided by the ratoon crop (Milligan et al., 1996). A mixed model approach 

for combining data might account for the serial correlation among crop values.

Broad (overall) and narrow (environment-specific inference) inferences have been 

discussed in a mixed model context (MacLean, 1991). Even when at early stages of a 

breeding program, breeders are not feigning to predict performance of genotypes in 

specific environments. The incorporation o f a GT term in the model is important 

because it modifies genotype BLUPs by better estimating the genetic and residual 

variances. Although the number o f replications used in the selection stages involved in 

the analysis is not very different (two or three), the genetic and residual variances by 

stage demonstrated substantial range (Table 3.6), which is not surprising. The 

population is dramatically reduced by selection as it progresses from the pre-Nursery 

stages (1000 to 250 clones) to the Infield stage (20 to 30 clones).
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Table 3.6. Broad-sense genetic and residual variance components for three stages of 
selection in the Louisiana Sugarcane Variety Development Program.

Variance Cane Stalk Sucrose Stalk
component__________yield________ weight________ content_______ number

(Mg ha'1)2 (gx 10'2)2 (g kg'1)3 (no. m 'V
 Infield stage-------------------------------------------

■>

g
2

o“c

29.3 1.09 35.6 0.861
2
g 
2

al  85.8 0.91 65.7 0.932
Nursery stage

67.3 1.73 47.7 0.792

233.0 1.38 59.4 1.188
 pre-Nursery stage-------------------------------------

2
°g 120.3 3.51 75.1 0.808
2 

o“e 359.6 2.97 132.1 0.517

The methods o f measuring yield and the range o f environments also vary quite a 

bit. In the Infield stage, an entire plot is weighed compared to the earlier stages in 

which yields are estimated from stalk counts and sample stalk weights. The pre- 

Nursery stages are evaluated on two soil types but basically at only one location. The 

Nursery stage is planted at three locations, whereas the Infield stage is planted at one or 

two locations. The main testing location for the Infield stage is where the population 

was selected in the previous four stages. Hence one sees error variances for cane yield 

for instance, range from 85.8 (Mg ha1)2 in the Infield stages to 359.6 (Mg ha'1)2 in the 

pre-Nursery stages. Such range suggests that a two stage-analysis to account for 

variance heterogeneity by appropriate weighting based on the reciprocals o f the standard 

errors might be useful. Freshman (1997) successfully applied this estimation strategy in 

a wheat breeding program.
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The analysis can be done by setting up a weight matrix W with the diagonal

elements, r,/s , obtained from a previous ANOVA for each trial, and by replacing R=c“l

by W 'I'*RW 'I/2 to generate a new variance-covariance matrix for the residual term in 

the model o f phenotypic means.

The small differences between version a and b o f BLUPs procedures [6] through [9] 

(Table 3.4.) suggested that BLUP accuracy was not dependent on check values. BLUPs 

for genotypes can be obtained also when check varieties fail or dramatically vary in 

component values under a mixed model approach. Multiple check varieties are used to 

provide backup in case o f failure and to establish commercial comparison for minimum or 

maximum commercial productivity levels; e.g., CP74-383 was a high cane yield, low 

sucrose content-type check. On occasion, new commercial varieties may set dramatically 

higher standards. This was the case with the cultivar LCP85-384 (Milligan et al.. 1994). 

which yielded 24 to 38% higher than the commercial varieties it replaced. Experimental 

cultivars tested against LCP85-384 and analyzed with the percent-of-the-check method 

[1 ] could not be realistically compared to experimental genotypes compared against older 

checks. This method (APCH, [1]) is the standard method used in the program. BLUP 

based methods provide a practical and usually better alternative to check based-predictors 

at least partly because o f their freedom from this constraint.

4. CONCLUSIONS

Performance testing o f new material is an important and expensive facet o f all plant 

breeding operations. This study investigated the check-based predictor o f per se 

(genotype) performance commonly used in the LSVDP. The simultaneous evaluation,
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obtained from the empirical validation based on LSVDP data, indicated that statistical 

methods exist that can improve prediction accuracy compared to the standard percent-of- 

the-check method [1] without increasing resource demands. BLUP procedures and 

standardization within a trial with respect to checks produced better predictions than those 

obtained by the average o f percentage o f checks. There are several other mixed models 

that could be investigated to maximize the accuracy o f the estimate of the performance of 

a genotype from fewer evaluations. Research should be conducted to propose better 

models that are feasible from a computational point o f view. All the BLUPs evaluated in 

this paper can be obtained using Proc Mixed/SAS (SAS Inst.. 1997) run on PCs.
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CHAPTER 4

INTEGRATING GENOTYPE-ENVIRONMENT COVARIANCE 
INTO THE COMPARISON OF GENOTYPE MEANS
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1. INTRODUCTION

Replicated yield trials involving several environments are often used in late stages 

of breeding programs to select genotypes based on yield and other economically 

important traits. Each genotype is commonly tested in more than one environment 

represented by locations or years or their combinations. A usual feature o f all multi­

environment trials (MET) is the attempt to represent a relatively large target population 

of environments by a number o f representative elements (Littell et al.. 1996). In multi­

environment trials, environments might be reasonably assumed as random effects 

(Piepho 1994). However, the genotype effects might be treated as fixed since only a 

few highly selected genotypes are usually involved in late breeding stages. Comparing 

genotype performance of new cultivars is the main aim o f multi-environment yield trials 

in plant breeding. Two types o f inference about genotype performance are o f interest 

(1) broad inference -  the general performance o f a genotype, and (2) environment- 

specific or narrow inference -  the performance o f a genotype within a specific 

environment (McLean. 1991).

The traditional analytical approach for broad inference is based on genotype means 

that are subjected to multiple pairwise comparisons. Narrow inference from multi­

environment trials relies on comparisons of genotypic means in specific environments 

(Littell et al., 1996). Unfortunately, this procedure does not use all the available 

information. It is only possible to infer about performance in a specific environment for 

genotypes that have been tested in that environment. Mixed model prediction may use 

information from an entire data set to obtain environment-specific inferences.
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The need to identify genotypes specitically adapted to some target environments 

(environment-specific genotype recommendations) has prompted extensive research 

about genotype-by-environment interaction (GE) (Kang, 1990; Kang and Gauch, 1996). 

The stability approach to address GE (Lin et al.. 1986; Becker and Leon. 1988; Crossa. 

1990; Lin and Binns, 1994; Kang and Gauch, 1996), which has been used for 

simultaneous selection for yield and stability, has been regarded as beneficial for 

breeders, official test stations, and growers (Weber et al., 1996). Most o f the analytical 

procedures to quantify a genotype's contribution to the overall GE are based on a fixed 

effects model approach. Such fixed models are applicable only to balanced data. Kang 

and Magari (1996) used the restricted maximum likelihood (REML) method under a 

mixed model to estimate stability variances in unbalanced data sets when analyzing GE 

for ear moisture loss rate in corn (Zea mays L.). The REML variance components, 

assignable to each genotype, estimate the same parameters as Shukla's stability variance 

(Shukla, 1972). The mixed model with heterogeneous (by genotype) GE terms is a 

priori more tenable than the traditional mixed analysis of variance in the sense that it 

allows different stability parameters for each genotype but it assumes independence 

among the GE effects.

By further modeling the variance-covariance structure o f environment and 

interaction random effects, well known stability measures can be expressed as 

parameters o f closely related mixed models (Piepho, 1998a). The common regression 

approach for studying genotype sensitivities to environmental changes with 

multiplicative models for the GE terms (Yates and Cochran, 1938; Finlay and 

Wilkinson 1963; Eberhart and Russell, 1966) can be handle by integrating a factor

73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



analytic variance-covariance structure into a mixed model for the observed yield 

(Oman, 1991; Piepho, 1997; Piepho, 1998b).

Among the analytical methods involving multiplicative interaction, the “ Additive 

Main effects and Multiplicative Interaction" (AMMI) models have been widely used 

because the GE can be interpreted in more than one dimension (Vargas, 1998). In 

AMMI models, the interaction terms are explained by the sum o f multiplicative 

functions o f genotype and environment scores (Gauch, 1988; Zobel et al.. 1988). The 

AMMI models for analyzing GE were proposed in relation to former ideas o f modeling 

interaction in factorial experiments (Williams, 1952) where the factors, in this case 

environments and genotypes, are assumed to be fixed. In the fixed model framework, 

the genotype and environment score vectors (principal components. PCs) are obtained 

from the singular value decomposition (SVD) of the matrix containing the residuals 

after adjusting the data for environment and genotype main effects (Mandel, 1971). The 

resulting genotype and environment scores are commonly visualized in biplots (Gabriel. 

1971; Price and Shafii, 1993). Biplots from AMMI models are useful tools in plant 

breeding because they allow the identification o f genotypes that show smaller 

interaction with environment and higher yield values. They can also identify genotypes 

that perform well at specific sites (Yau, 1995; Shafii and Price, 1998). SVD strictly 

requires a complete data set (observation o f all genotypes within all environments). 

However, a common feature o f yield trials is that lists o f entries vary from year to year 

because new entries are included as they become available and those with poor 

performance are deleted from further consideration (H ill and Rosenberg, 1985). The 

deletion and substitution results in unbalanced data. Even within a year, it is rare to
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have balanced data since some replications or locations may not be planted with all 

genotypes.

Mixed model and restricted maximum likelihood-based estimation procedures for 

the parameters in the models (Searle et al., 1992) provide a more flexible analytical 

approach for the analysis o f multi-environment trials because balanced data are not 

required (H ill and Rosenberg, 1985; Stroup and Mulitze, 1991; Piepho, 1994, 1997. 

1998a). Mixed model analysis basically models the underlying covariance structure.

In particular, the regression approach and AMMI mixed model analysis are based 

on a covariance matrix for the genotypic means within an environment, with features of 

the factor analytic type o f variance-covariance structure (Jenrich and Schluchter, 1986; 

Denis et al.. 1996; Piepho, 1997). They account for possible correlations among the 

interaction terms, which can be realistically expected. When some environments or 

some genotypes are correlated, the GE terms involving those environments and 

genotypes may be correlated.

Nowadays, it is possible to apply mixed models with factor analytic and even more 

sophisticated, variance-covariance structures in SAS (SAS Inst., 1997) and other 

statistical packages with mixed model applications. However, the biplots are not readily 

obtained from regular outputs. In addition, the interpretation goals are the same 

whether one use an AMMI mixed model or a traditional AMMI (fixed) model; the 

parameter-types used to identify interaction patterns change, however.

The purpose of this study was to compare five classes o f mixed models for 

analyzing multi-environment yield trials under a unified approach. The development of 

mixed model AMMI derived biplots was a related goal.
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2. MATERIALS AND METHODS

Mixed models involving parameters analogous to Shukla's stability variances. 

Eberhart and Russell’s sensitivity coefficients, and genotype-environment scores, as in 

the fixed AMMI models, were compared with the simplest mixed model that assumes 

homogeneous and independent GE terms with and without homogeneous variance for 

the error terms. The traditional fixed model approach was included for reference. 

Parameter estimates and a proposed procedure to obtain biplots under a mixed AMMI 

model was illustrated with a set o f sugarcane (Saccharum spp.) multi-environment yield 

trials.

2.1. Models for Multi-Environment Trials

The models employed in this study to analyze yield trials use a variation o f the 

following model.

y„k = P + E, + Rk,., + Gj + GE„ + e,)k 

where yljk is the *-th observation for they-th genotype in the i-th environment, p . E„ G,,

RMi), GE„ denote the overall mean, the environmental effect [i =1 s|, the genotype

effect [j =1.....g], the replication-within-environment effect [k =1..... r], and the

genotype-by-environment interaction effect, respectively; el)k is the error term associated 

with yl]k. A ll models assumed genotype effects as fixed. In addition to the regular fixed 

model which considers all effects, except the error term, as fixed the models used in this 

study assumed environments, blocks-within-environment effects, interaction and the 

error terms as random. The assumptions for the random effects are: environmental
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effects, E„ are iid N(0, o^) and replication effects, R^are iid N(0, o^). The GE terms

are also regarded as normal random effects with zero means but with a variance- 

covariance matrix not necessarily implying independence and homogeneity o f

variances. Error terms are assumed to be iid N(0, o^) for all models, except model [5]

where the residual variance is allowed to be different at each environment. 

Environmental, replication, interaction and error effects are independent of one another.

As a direct consequence o f the model assumptions, the variance of the yield values 

is the sum o f the variances o f each random effect. For simplicity. 1 assumed 

independence not only o f error term but also of environmental and rcplications-within- 

environment effects. The assumption implies that the environments provide 

independent information. Although one is assuming that environment effects arc not 

correlated, the response means within a given environment w ill be correlated because of 

the type o f variance-covariance matrix associated with the mixed model. The means o f 

any two genotypes in a specific environment, y,, and y „ , have the covariance

Cov (y.jOV) = Og+ Cov(GE„ GE„ ), for j  * j '

The mixed models evaluated in this study varied in the variance-covariance 

structure imposed on the interaction term, Cov(GE„ GE „.) (Table 4.1).

Model [1 ] (MIXED ANOVA) assumed that the GE terms have the same variance 

and are independent. Model [2] (MIXED SHUKLA) enabled GE terms to have 

different variances but assumes they are independent. The model [2] assumes that all 

GE terms involving a particular genotype have the same GE variance, thus there w ill be
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as many different GE variance components as the number o f genotypes, so they are 

analogous to Shukla's stability variances. Hence the name given to the model even 

though Shukla (Shukla, 1972) did not express stability variances as parameters o f a 

mixed model.

Model [3] (MIXED AMMI) considers multiplicative GE effects.

where the first part ( 2- m̂, xmi) is the sum of multiplicative terms used to explain
m*l

interaction signals and d„ is the residual interaction term. Each multiplicative term 

represents a linear regression model o f the residuals from the main effect model for the 

7-th genotype on a latent unobservable variable related to the /-th environment. A sum 

of multiplicative terms is used to model GE variability pattern in more than one 

dimension. The subscript m indexes the axis o f variability on which the fixed genotype 

and random environment scores are obtained. Thus, for each axis o f variation, the 

genotypic score X, can be interpreted as the response o f the;-th genotype to changes in 

some latent environmental variable with value x, in the /-th environment. The model for 

the GE terms resembles the non-additive part o f the traditional AM M I models (Gauch, 

1988; Zobel et al., 1988), but in the fixed AMMI models, environment scores are fixed. 

The sum o f multiplicative terms is part o f the expected value o f yl)k in the fixed 

approach, whereas under the mixed model, this belongs to its covariance structure. The 

models imposed on the GE terms lead to specific variance-covariance matrix types for 

the vector y(j) containing the genotypic means in the /-th environment (Table 4.1).
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Model [4] (MIXED E&R) does not contain the main effect for environment and 

also considers multiplicative GE effects,

GE.J = X, x,+d,j

where A., is the sensitivity o f they'-th genotype to a non-observed environmental variable 

x, and d„ is the unexplained part o f the genotype-by-environment interaction. The

deviations d„ are allowed to have a separate variance for each genotype, a“ . Despite

the fact that environmental variable is assumed as random, the model resembles the 

Eberhart-Russell (1966) regression model to study genotype-by environment 

interaction. A genotype with large X, absolute value o f shows a large sensitivity to 

changes o f the underlying random variable x ,.

Model [5] (MIXED HetR) is the same that model [1 ]. i.e. assumed that the GE 

terms have the same variance and are independent, but allows for heterogeneous by

environment residual variances, R= o” ,,, I.Model parameters were estimated by REML

(Searle ct al.. 1992). All calculations including fixed and random effects estimates were 

done using Proc Mixed/SAS (SAS Inst., 1997) which solved the mixed model equations 

on the REML estimates. The decision about the appropriate number o f multiplicative 

terms to use in the MIXED AM M I was based on the difference between -2 Residual 

Log Likelihood (-2 Res LL) o f nested AMMI models, i.e., AMMI with 1,2.3... 

multiplicative terms. For example, D= (-2ResLL(AMMI( 1))) -  (-2ResLL(AMMI(2))) 

was employed as a statistic to evaluate the need o f incorporating a second multiplicative 

term in an AMMI model with one multiplicative component.
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Table 4.1. Mixed models employed in the analysis o f multi-environment yield trials.

Model Model Equationt Interaction effects Assumptions Covariance structure 
fory(„{

[11 MIXED ANOVA yljk= p + E, + Ri(1,+ G, + GE „ + e„L GE,, - iid N(0, a^p) 2
X/env -  Joj. + 1 a

[2] MIXED SHUKLA »  = M + E,+ r k.»+  +  GE l} +  eljk GE„ iid Z/env = Jag +■ I

[3] MIXED AMMI y.jk= R + E, + R ,̂, + G, + GE ,, + Eljk 

GE,= H X^x^+d,,
m= 1

GE, -  N(0, ^  A:m| + <t j  ) for all i. 
m -1

Cov(GE„GE„ )- £ K,>K> ■ f°r j  *}' 
m=l

2 2 
Z/env = Jop +■ AA' + 1 a d

[4] MIXED EAR y.A= R + Ru,t+ G,+ G E ., + elp 
GE,= XjX.+d,,

•)
GE, ~ N(0, +■ Oj(J)) for all i. 

Cov(GE„ GE„.)= for j  * j '

I/env  = AA' + diag(od,„)

[3] MIXED HetR = n + E, + Rkio+ G i + G E u + e.,k G E „-iid  N (0 ,a (2a.) _  2 "> 
X/env = Jap + 1 ctGj.

R =  V o 1
t  p: overall mean; E,: random environment / effect; R ,̂,: random replication-within-environment effect; G,: fixed genotype / effect, GE,, random genotypc-by-
environment interaction; A*, (j = I   jf) genotype factor loading on the m-th multiplicative interaction term, x „ ,: m-th predicted score for a latent environmental
variable in environment /; d„ : residual interaction term; el|t error terms associated to the response yl|k. R is the variance-covariance o f the error terms.
X y,„ : vector of genotype means in environment / ; I/env : variance-covariance matrix of y,„; J: gxg matrix of I ’s; I: gxjj identity matrix; A; g x A /matrix of 
genotype factor loadings for each multiplicative term m=l,„A/.



The likelihood ratio-based test (LRT) obtained by comparing those likelihoods was 

also used to compare models [2] to [5] against the simplest mixed model [ 1 ]. 

Differences, D, between -2ResLL were compared with a x* variable with degrees of 

freedom equal to the difference in the number of covariance parameters between the two 

models being compared.

Generalized least squares means for each genotype were used for broad inference. 

Pairwise comparisons among these genotype means used a sampling error variance for 

the mean difference that incorporates all covariance parameters (Littell et al., 1996). I 

used the SAS macro ‘pdmixmac612' (SAS Inst.. 1997) to align the means, obtained in 

Proc Mixed/SAS. in accord with the significance of pairwise multiple comparisons 

(Appendix B). BLUPs (Searle et. al., 1992) were used to predict the performance of 

genotype / in environment j  (narrow inference). For narrow inference under a mixed 

model, one is interested in the BLUP o f the conditional expectation gjj. BLUP(gjj). 

BLUP(pjj) is a linear combination o f the estimated genotype mean for genotype j  

(estimated fixed effect) and the estimated random effects for environment i and the GE 

term j i ,  BLUP(E,) and BLUP(GE„), respectively .

Mixed AMMI models were employed to analyze GE„ by constructing biplot 

representations. A MIXED AMMI is essentially a multi-level factor analysis (Gollob, 

1968) model with M levels. Latent factors at level m (m =l,...,M ) represent 

environmental random variables. I deduced the values o f those random environmental 

scores, xmi, by pre-multiplying the vector o f BLUPs o f GE terms in environment /,
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obtained in Proc Mixed/SAS, to the inverse o f the estimated loading matrix A that can 

be constructed also from the regular Proc Mixed/SAS output.

Biplots representing GE variability in two dimensions, i.e., two multiplicative 

terms, were constructed by superimposing the standardized genotype factor loading on 

multiplicative terms m= 1 and m=2 with random environmental scores on the same 

multiplicative terms. To facilitate simultaneous interpretation of yield values and GE. 

genotype scores on the first and second multiplicative terms are plotted against trait 

mean values. Appendix D contains a program to obtain biplots for a MIXED AMMI.

2.2. Data and Validation Procedure

In the Louisiana Sugarcane Variety Development Program (LSVDP) replicated 

tests culminate in outfield trials (Milligan. 1994). Outfield trials usually overlap 

experimental material from different series with check or commercial varieties. For 

example, varieties one to eight (Table 4.2) were check commercial varieties in the 

outfield trials conducted between 1996 and 1998. Regular outfield tests involves 10 to 

12 genotypes per trial. Trials are conducted at several (7 to 10) commercial farms 

distributed throughout the 158 000-ha crop region. Each trial is laid out in a 

randomized complete-block design with three replications and use 53.5 m: (three 1.8m 

wide rows by 9.7m long) plots. To compare prediction accuracy o f different mixed 

models, I used both components o f sugar yield, i.e., cane yield (Mg ha'1) and sucrose 

content (g sucrose kg 'cane). The data set used Louisiana advanced variety trial 

plantcane data (outfield tests) from 1996 to 1998 (Quebedeaux et al., 1996, Quebedeaux 

etal., 1997, Guillot et al., 1998).
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Table 4.2. Sugarcane yield trials conducted in Louisiana across five years (1996-1998). 
Codes for participating genotypes (varieties) and environments (farms).

Test year Variety Codet Farm Code}

1996 1,2,3,5.6,7,8,9,10,11.12,16 1,2,4,5,6,7,8,9,10

1997 2,3,4,5,6,7.8,10,11,14,15 2.3.4.5.6.8.10

1998 2,7,8,10,14,17,18,19,20,21 1,2,3.5,6,10,11

t  l :All.-A.V.Allain &  Sons. 2:B.S.-Bon Secour, 3:Geo.-Georgia, 4:Gln.-Glenwood, 5: Lan.-Lanaux, 6: 
Mag.-Magnolia, 7:Oak.-Oaklawnhy, 8: P.A.-Palo Alto, 9:R.L.-Raceiand, 10: R.H.-Ronal Hebert, I l:StJ - 
Lcvert-St. John.
X I :CP65-357, 2:CP70-321. 3:CP72-370,4:CP79-318, 5:LCP82-089,6:LHo-LHo-83153, 7:LCP85-384. 
8:HoCP85-845, 9:HoCP9l-552, 10: HoCP9l-555. 11 :LHo92-314. I2:L92-315. 13: HoCP92-6l8, 14: 
HoCP92-624, 15: HoCP92-648, 26: HoCP92-674. 17: HoCP93-754, l8:L94-426. l9:L94-428. 20:L94- 
432, 2 1 :HoCP94-806.

Predictive accuracy of narrow inference from models (Table 4.1) was obtained 

by a “ leave-one-block-out” cross-validation procedure (Appendix C). Independent 

cross-validation was run for each test year. For each outfield trial, the data set was split 

into two subsets, one with two replications per environment (calibration data) and the 

other with one replication per environment (validation data). The calibration data set 

was used to predict variety performance in each environment. Predicted performance 

was compared to the observed yield for each variety in the validation data set. The 

process was repeated 30 times for different randomizations, i.e., different sets o f two 

blocks per environment. The average o f squared differences between predicted and 

observed values of each genotype were used to approximate prediction accuracy of 

narrow inference. At each iteration o f the validation procedure, counts were made for 

each environment to ascertain how many o f the top 30% varieties in the validation set 

would also have been ranked in the top 30% of a variety list sorted in accord with the
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variety BLUPs for that particular environment. The average percent o f varieties in the 

top 50% o f both lists is denoted by P (50|50).

3. RESULTS AND DISCUSSION 

Cane yield data revealed significant GE variance components for each year in the 

sugarcane yield trials from 1996 to 1998 (Table 4.3). Significant GE for sucrose content 

(a=0.05) was observed only in 1997.

Table 4.3. Variance component estimates for environmental (E) and genotype-by- 
environment (GE) effects for three years (1996 to 1998) o f sugarcane variety trials

Variance
Component

Cane Yield 
(Mg ha'1)’

Sucrose Content 
(g sucrose kg 'cane)*’

---------------------------------1998-------------------------------------

°n
21.68 24.73

(0.166) t (0.113)
25.58 8.83

Vll<
(0.001) (0.057)

2
c

41.319 40.38

---------------------------------1997-----------------------------------

°E 26.02 134.98
(0.116) (0.088)

2/« 10.65 10.62CiF.
(0.012) (0.010)

°e
33.191 31.88

---------------------------------- 1996----------------------------------
*>

°E
30.80 81.52

(0.060) (0.055)
2 11.67 1.12

°GE
(0.001) (0.667)

2
°c

31.77 39.02

t  In parenthesis P-values for the hypothesis o f variance component equal to zero (Z test).
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The variance component standard errors obtained from REML procedures and Z 

tests for the hypothesis that the variance components equal zero are only asymptotically 

valid. Poor approximations should be expected when dealing with variance components

estimated with a small degrees o f freedom, such as with cC. Tests for a common oT...
b  Cib

are more reliable. The F-test P-value o f fixed variety effects was smaller than 0.001 for 

both traits in each multi-environment trial.

Least square means (LSMeans) are commonly used for broad genotypic 

inferences across environments. Standard errors for each LSMeans were computed 

using the general formula for the variance of an estimable function under the mixed 

model. Therefore, the variance o f an estimated genotype mean involves the variances o f 

all random effects in the model (Littell et al., 1996). Because o f the differences in 

variance-covariance structures, genotype groupings differ among the approaches 

relative to different models. The larger the GE , the larger the expected grouping 

differences. The GE in this sugarcane data set is not as important as is often observed in 

variety trials of other crops (Kang and Gauch, 1996) or previously reported GE 

interactions for sugarcane (Kang and Miller, 1984). However, different assessments o f 

the yield performance o f varieties across a range o f environments were observed in each 

MET. The genotype mean separation obtained using 1998 MET data and different 

models, is presented in Tables 4.4 and 4.S for cane yield and sucrose content, 

respectively. Differences in standard errors among genotypes means for mixed models

[2] to [4] are due to difference in GE response. The mixed model approach to stability
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analysis allows one to obtain genotype (broad) mean separations that combine yield 

measures and stability parameters.

If  the data are completely balanced and the residual variance is assumed to be 

constant, then model [1] should assign the same variance to all observations. The data 

set of this study contained three replications per variety at most of the farms, but for 

some variety-environment combinations there were only two replications. Slight 

differences in standard errors for the broad inference means under model [1 ] reflect this 

unbalance.

Models [2] to [4], as expected, showed larger differences among the standard errors 

of the genotypic means. For example, for 1998 data both Mixed Shukla [2), Mixed 

AMMI model [3], and Mixed E&R [4] assigned larger standard errors to varieties L94- 

428, LCP85-384, and CP70-321 than to other varieties. The stability variance estimates 

(GEj) for L94-428, LCP85-384. and CP70-321 were 35.17.63.88, and 88.74 (Mg ha'1)’, 

respectively, whereas the average variance for the remaining varieties was about 13.00 

(Mg ha'1) 2. Thus, a larger standard error was used for mean separation o f genotypes 

involving larger GE interaction components. Because the number o f environments is not

large in this data set (seven farms in 1998), the stability parameters for

j = 1..... 10 are estimated with large standard errors and hence the Z test for the

covariance parameters was not employed. The variance components reported above 

should be interpreted only for a tentative ranking o f the stability o f those varieties in 

1998. When the number o f environments is large and greater than the number of 

genotypes, the Z test may be employed to test i f  those values reflect a genotype feature.
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Multiplicative interaction models in addition to models that use a Shukla-type 

variance component in the GE also provide extended standard errors. The parameters 

related to genotype stability in multiplicative models (genotype factor loadings) such as 

those o f Eberhart and Russell (1966) and AMMI models (Gauch, 1988) are covariance 

parameters, i.e, they make up the variance and covariance o f the data. They can be used 

to visualize GE interaction but also to construct an extended standard error for genotype 

mean separation integrating genotype yield and stability. The product of the genotype 

loadings estimates the covariance between genotype GE effects o f pairs of genotypes in 

a particular environment (Table 4.1). Comparison of genotype means under a 

multiplicative model like models [3] and [4] will account for this aspect of GE. A 

multiplicative model for GE implies that the difference of two genotypes in a particular 

environment depends on the differences o f genotypes scores and the magnitude o f the 

environmental random scores predicted for the particular environment.

The approach, treating all factors as fixed, compares genotype means without 

regard to GE variances. It only accounts for residual error variances. The reported 

standard errors for genotype mean comparisons were smaller under the fixed approach 

than the mixed models because the fixed model ignores variability due to GE (Tables 

4.4 and 4.5). The mixed models model [5] produced a finer separation than the mixed 

model [1 ] indicating the importance o f controlling for heterogeneous residual variance 

in the LSVDP outfield trials when modeling cane yield data. Differences in mean 

separation among models were smaller for sucrose content, probably, because o f the 

smaller GE interaction associated with this trait.
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The relatively small GE observed in these trials is likely a direct result in the pre- 

outfield multi-location testing (Milligan, 1994). Successful varieties must display high 

yields across all tested environments to be advanced to the outfield trials. Hence, they 

have been screened for low GE prior to testing in the outfield trials.

Comparing likelihoods among the mixed models allows one to select the most 

appropriate model from among those under consideration. Likelihood ratio tests are 

obtained by comparing the differences between the quantities “ -2 Residual Log 

Likelihood”  for a given pair of models. The difference can be compared against a x: 

with degrees of freedom equal to the difference in the number of GE covariance 

parameters between the models. For example using 1998 data, to compare the simplest 

Mixed ANOVA against the Mixed Shukla model, i.e model [11 vs. model [2], the 

difference between the respective functions o f likelihoods, D= 1453.21-1442.53 = 10.68. 

is compared to a with x ‘ variable from a distribution with 14-4=10 degrees of freedom. 

A lower residual likelihood score is better than a higher score. The results o f comparing 

the four mixed models with homogeneous residual variance indicate that an AMMI 

model [3] with two multiplicative terms (AMMI(2)) was better model for cane yield 

data than was the simple homogeneous and independent GE model [ 1) for test years 

1998 and 1997 (Table 4.6). However, improvements over the Mixed ANOVA [I ] were 

non-important for 1996. In this data, the Mixed Shukla [2] and the Eberhart and Russell

[3] model did not improve, over the Mixed ANOVA [1 ], the model for cane yield.

These results suggest that modeling the correlation between interaction terms may 

be a good strategy when analyzing cane yield trials at the LSVDP.
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Table 4.4. Cane yield least squares meanst using five mixed modeling approaches fo ri998 sugarcane yield trials.

Variety Mixed ANOVA  

[1]

Mixed Shukla 

[2]

Mixed AM M I(2) 

13]

Mixed E&R 

(4|

Mixed HetR [5] Fixed

Model

------------------------- -Least Squares Means (Mg ha')-----

L94-428 69.20 A 68.99 AB 68.88 AB 68.99 AB 70.37 A 68.91 A
±3.00 ±4.18 ±4.32 ±4.27 ±2.77 ±1.45

LCP85-384 68.56 A 68.57 AB 68.51 AC 68.57 AB 69.61 AB 68.66 A
±2.97 ±3.72 ±3.88 ±3.92 ±2.73 ±1.41

HoCP9l- 68.29 AB 6828 A 68.29 AC 68.28 A 68.19 ABC 68.29 A

5555 ±2.98 ±2.84 ±2.76 ±3.09 ±2.75 ±1.40

HoCP94-806 66.72 AB 66.72 A 66.72 AB 66.72 A 66.10 ABCD 66.72 A
±2.98 ±2.17 ±2.32 ±2.50 ±2.75 ±1.40

L94-426 65.88 AB 65.88 AB 65.90 ABC 65.88 AB 65.07 ABCDE 65.80 ABC
±2.98 ±2.53 ±2.47 ±2.55 ±2.75 ±1.41

HoCP92-624 65.77 ABC 65.69 AB 65.88 ABC 65.70 AB 65.31 ABCDE 65.88 AB
±3.03 ±2.22 ±2.75 ±1.77 ±2.78 ±1.40

HoCP85-845 65.16 ABC 65.09 ABC 64.87 ABCD 65.12 ABC 64.34 BCDE 65.41 ABC
±2.95 ±2 68 ±2.59 ±2.85 ±2.71 ±1.35

CP70-321 62.82 ABC 62.83 ABC 62.92 BDE 62.83 ABC 62.50 CDE 62.87 BCD
±2.95 ±3.10 ±3.21 ±3.04 ±2.71 ±1.35

L94-432 61.80 BC 61.84 BC 61.78 CDE 61.84 BC 62 00 DE 61.67 CD
±3.00 ±2.33 ±2.61 ±2.16 ±2.77 ±1.45

HoCP93-754 59.08 C 59.08 C 59.08 D 59 08 C 60.02 E 59.08 D
±2.98 ±3.08 ±3.07 ±3.13 ±2.75 ±1.45

t  Means followed by the same letter following are not significantly different from each other at the a^O.OS.

% For model description see Table 4 .1. 'Fixed Model' is two way factorial model with all effects as fixed.
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Table 4.S. Sucrose content least squares meanst using four mixed modeling approaches fo ri998 sugarcane yield trials.

Variety Mixed ANOVA

(I)

Mixed A M M I(2) 

13)

Mixed E&R 

[4]

Mixed HetR [5] Fixed

Model

------------------------ — Least Squares Means (g sucrose kg 1 cane)------------------------------

L94-432 139.92 A 139.92 AB 139.94 A 140.12 A 139.86 A
±2.61 ±2.21 ±2.76 ±2.61 ±1.47

L94-428 138.93 AB 138.96 AC 138.93 AB 138.81 AB 138.93 AB
±2.59 ±2.37 ±2.25 ±2.59 ±1.42

LCP85-384 136.22 ABC 136.03 AC 136.21 ABC 136.11 AB 136.35 ABC
±2.57 ±3.53 ±3.44 ±2.58 ±1.42

HoCP94-806 135.98 ABC 135.98 AB 135.96 ABC 136.03 AB 135.98 ABC
±2.59 ±2.05 ±1.87 ±2.59 ±1.42

CP70-321 135.83 ABC 135.69 ABC 135.69 ABC 135.63 AB 135 %  ABC
±2.55 ±2.35 ±2.35 ±2.56 ±1.37

HoCP9l- 135.45 ABC 135.45 ABC 135.45 ABC 135.53 AB 135.45 BC
5555 ±2 .59 ±2.03 ±1.73 ±2.59 ±1.41

L94-426 134.83 ABC 134.83 ABCD 134.83 C 134.76 B 134.83 C
±2.59 ±2.62 ±2.37 ±2.59 ±1.42

HoCP93-754 134.76 BC 134.76 BDE 134.76 ABC 134.53 B 134.76 C
±2.59 ±3.49 ±3.28 ±2.59 ±1.42

HoCP92-624 133.46 C 133.31 CDE 133.21 BC 133.84 B 133.33 C
±2.63 ±2.10 ±2.39 ±2.63 ±1.53

HoCP85-845 125.94 D 125.91 D 126.07 D 126.03 C 125 99 D
±2.57 ±2.71 ±3.19 ±2.56 ±1.37

t  Means followed by the same letter are not significantly different from each other at the a  =0.05 
X For model description see Table 4.1. REML algorithm did not converge for a Mixed Shukla model.



Correlation among locations might affect correlations among the GE terms. 

AMMI(3) models were not necessary to model interaction patterns in this data set 

(results not shown).

Comparisons o f model fitting information for sucrose content indicated that an 

AMMI model should be preferred for analyzing 1998 and 1997 data, whereas in 1996, 

the simplest MIXED ANOVA might be adequate. AMMI models with two 

multiplicative terms were not suitable for sucrose content. This may be related to the 

relatively smaller GE interaction for sucrose content than for cane yield in the data sets.

Table 4.6. Model fitting information for five models employed to analyze cane yield 
and sucrose content in three years of multi-environment sugarcane trials

Model Number of -2 Residual Log Likelihood
Covariance 1998 1997 1996Parameters

for cane yield

Mixed ANOVA 4 1453.21 1496.46 2039.06
Mixed SHUKLA 4+g 1442.53 1460.10 NA
Mixed A M M I(l) 4+g 1444.62 1460.97 2031.87
Mixed AMMI (2) 4+g+(g-l) 1414.53 1442.81 2010.70
Mixed E&R 3+2*g 1440.08 1460.02 2030.02

Best model AMMI(2) AMMI(2) 
for sucrose content

ANOVA

Mixed ANOVA 4 1416.08 1468.17 2068.72
Mixed SHUKLA 4+g NA 1450.45 2063.55
Mixed A M M I(l) 4+g 1396.98 1432.44 2055.21
Mixed AMMI (2) 4+g+(g-l) 1388.98 1416.09 2047.71
Mixed E&R 3+2*g 1397.35 1448.12 2061.52

Best model AMM1(1) A M M I(l) ANOVA
t  NA: non available because of REML algorithm does not converge
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Biplot analysis can often provide better insight into genotype by environment 

interaction responses than means or GE test alone. As an example, the 1998 cane yield 

and sucrose content GE scores were plotted. The biplot representing the genotype and 

environment scores on the two multiplicative terms for a Mixed AMMI(2) indicates that 

genotypes CP70-321 (2), LCP85-384 (7) and L94-428 (19) contributed more to the 

cane yield GE variability in 1998 than the other varieties (Fig 4.1). This is indicated by 

the fact that the genotype scores are far from the origin o f either axis. The relative poor 

yield of genotype 19 in environment 6 contrasts the very high yields observed 

environments such as 2,10, and 11 (Table 4.7). Genotypes 2 and 7 yield performances 

were negatively correlated with environment 5 effects whereas genotype 19 was 

negatively correlated to environment 6. They arc situated in opposite diagonal quadrants 

in the biplot.

Table 4.7. Cane yield from sugarcane variety trials conducted in 1998

Variety Code Environments

1 2 3 5 6 10 11
----- IT.J, ||U

CP70-321 2 58.29 62.85 65.01 51.49 76.83 67.55 58.05

LCP85-384 7 70.92 75.84 70.66 46.08 76.16 73.39 67.03

HoCP85-845 8 57.70 74.18 68.11 67.42 71.04 65.48 53.92

HoCP91-555 10 71.54 76.66 66.80 62.09 80.42 60.74 59.74

HoCP92-624 14 60.13 68.48 68.00 63.77 73.46 66.36 62.43

HoCP93-754 17 54.54 73.12 66.34 50.05 51.08 59.60 58.79

L94-426 18 57.14 78.24 65.19 70.42 65.08 63.93 61.12

L94-428 19 67.64 87.06 65.89 57.23 53.96 79.16 70.25

L94-432 20 61.42 73.83 57.94 59.53 58.68 60.27 62.24

HoCP94-806 21 63.60 77.54 61.05 62.16 73.94 63.02 65.70
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Plotting the genotype and environment scores for the first multiplicative interaction 

terms against cane yield values, it is possible to observe that variety 19 (experimental), 

with a high yield across environments, is one of the most unstable variety (Fig 4.2). 

Varieties 7 and 10 (both commercial varieties) followed in yield but with more stable 

performance.

Sucrose content GE variability was much smaller than that for cane yield GE. One 

multiplicative term adequately explained GE (Table 4.6). In 1998, varieties 17. 7, 14 

and 10 displayed relatively high GE responses (Fig 4.3). Sucrose contents for sugarcane 

variety trials conducted in 1998 are shown in Table 4.8.

Although the estimation o f genotype and environment scores under a lixed model 

involves procedures that are quite a bit different than those under a Mixed AMMI 

model, both approaches lead to similar interpretations from graphical representations. 

Biplots o f the first principal GE component versus sucrose content (fixed AMMI model) 

(Fig. 4.4) suggested similar conclusions about variety yield potential and stability as 

indicated by the mixed AMMI model (Fig. 4.3). I f  factor loadings as estimated by SAS 

are multiplied by -  I . the same representation is obtained for both fixed and mixed 

AMMI-based procedures. Although biplots derived from the fixed model approach, 

i.e., using the SVD could be obtained for 1998 since the MET in that year was balanced, 

they cannot be used to analyze other METs or in an analysis combining METs across 

years. Hence, using a mixed AMMI approach provides a decisive functional advantage 

to the fixed AMMI approach.
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Table 4.8. Sucrose content for sugarcane variety trials conducted in 1998.

Variety Code Environments
1 2 3 5 6 10 11

CP70-321 2 131 134

-----kg sucrose Mg'1 cane —

135 147 140 137 129

LCP85-384 7 122 139 143 150 138 134 130

HoCP85-845 8 117 122 133 136 136 117 120

I!oCP91-555 10 135 126 140 137 137 136 137

HoCP92-624 14 137 128 142 135 134 133 123

HoCP93-754 17 119 135 140 147 136 131 136

L94-426 18 128 140 138 142 137 130 129

L94-428 19 138 143 139 148 141 129 135

L94-432 20 139 140 145 144 150 129 133

HoCP94-806 21 136 134 138 141 142 131 130

CEt.t

31 1

30

- I  ■

t0-t I
GEIJt

Figure 4.1. Genotype and environment scores on first and second multiplicative term of 
a Mixed AM M I (2) for cane yield. Environments in blue -  Genotypes in red.
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Figure 4.2. Genotype and environment scores on first multiplicative term o f a Mixed 
AMMI vs. cane yield means [Mg ha'1]. Environments in blue -  Genotypes in red.
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Figure 4.3. Genotype and environment scores in the multiplicative term o f a Mixed 
AMMI (1) vs. sucrose content [ g sucrose kg'1 cane] for year 1998.
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Figure 4.4. Genotype and environment scores in the multiplicative term o f a FIXED 
AMMI (1) vs. sucrose content [ g sucrose kg'1 cane] for year 1998

The results from the crossvalidation procedure carried out to evaluate narrow 

inference showed that the fixed model approach consistently produced larger prediction 

errors than the other models (Table 4.9). On average, the fixed model approach 

produced errors o f 11.406 Mg ha'1 compared with the mixed models mean values 

between 9.738 and 10.399 Mg ha1. The model with the lowest root mean square error, 

however, varied by year and location. The mixed AMMI model [3] produced the lowest 

errors in nine out o f 23 location-year combinations. However, the other two mixed 

models, the mixed ANOVA [1] and the mixed Shukla [2], each produced the lowest 

errors in seven out o f 23 tests. The mixed E&R [4] model showed larger prediction error 

for this data set. The modeling o f heterogeneous residual variances [5] produced larger 

improvement over model [ I ]  that the models involving heterogeneous GE. This may be 

related with the small GE interaction observed in the LSVDP outfield trials. Such 

variability among the different predictive models was also observed for sucrose content
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(data not shown). Even though, the empirical nature o f the prediction errors reported 

here, the observed trends in the simultaneous comparison o f the models support one to 

prefer a mixed model instead o f a fixed model. The researcher should use a likelihood 

ratio test when deciding on what model approach to use for a given analysis. To 

facilitate comparison o f the mixed models to the fixed model, prediction errors were 

obtained for only test years involving a particular location. The fixed approach 

(genotype-environment mean) can be applied only in environments with data.

However, by using a mixed model approach, predictions can also be done for genotype- 

environment combinations not actually evaluated.

Mixed model narrow inferences incorporate expected GF. effects. P(50|50) 

values were used to assess the functional effect o f the models in cane yield rankings by 

variety (Table 4.10). As with the conclusions drawn from the root mean square 

prediction errors, the mixed approaches were generally better than the fixed approach. 

Adjusting for inter-trial residual variability was important. The best model varied with 

year and location.

Although the mixed ANOVA [5] and [2] models were on average better than the 

other models, the AMMI model [3] most often gave the best predictor. The model with 

heterogeneous by environment residual variance showed significant improvement. One 

should note that these are results based on typically 10 genotypes within a location. 

Simultaneous comparison o f these models with regard to narrow inferences in METs 

involving a larger genotype list w ill provide more insight.
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Table 4.9. Prediction errort for environment-specific inferences for six models to 
analyze cane yield in multi-environment sugarcane yield trials for four traits.

Farm Year
Test

Fixed
Model

Mixed
ANOVA

[1]

Mixed
Shukla

[2]

Mixed
AMMI

[3]

Mixed
E&R
[4]

Mixed
HetR

[51

FALL. 1998 4.079 3.746 3.918 3.660 3.981 3.830
1996 4.707 3.920 3.730 3.901 3.912 4.065

2:B.S. 1998 13.550 12.609 13.344 12.130 12.591 12.180
1997 7.083 5.728 5.837 6.158 6.044 5.669
1996 11.420 9.610 8.305 9.872 10.261 10.080

3:Geo 1998 6.511 5.744 6.220 6.028 6.041 5.900
1997 10.508 10.500 10.163 9.702 10.197 10.243

4:Gln. 1997 3.700 3.700 3.458 2.886 3.524 3.284
1996 17.081 13.766 15.65 11.968 14.635 13.880

5:Lan. 1998 20.552 17.090 18.520 21.488 23.422 18.720
1997 13.611 10.260 9.940 10.024 10.489 9.940
1996 7.633 7.170 6.540 7.370 7.551 7.543

6: Mag. 1998 24.665 23.340 24.50 23.05 24.092 24.940
1997 6.432 6.267 6.470 6.612 6.930 6.094
1996 11.165 9.374 8.400 8.300 9.290 9.193

7:Oak. 1996 8.655 7.990 5.620 8.570 9.062 7.903
8:P.A. 1997 10.283 8.661 8.863 9.549 9.795 8.351

1996 7.092 5.566 5.140 5.043 5.633 5.723
9:R.L. 1996 7.327 6.441 5.468 7.010 6.689 5.307

10:R.H 1998 13.176 10.947 11.482 11.460 11.420 10.234
1997 21.183 18.483 18.751 17.813 20.22 17.623
1996 14.478 12.130 10.162 13.192 13.179 12.380

1 l:St.J. 1998 17.458 12.167 13.490 13.260 13.567 11.978
Mean 11.406 9.792 9.738 9.959 10.399 9.785

t  Square root o f  the mean square prediction error (difference between predictor and target values for 

each genotype obtained by an iterative validation procedure).
t  1 :A II.-A .V .A lla in  &  Sons, 2:B.S.-Bon Secour, 3:Geo.-Georgia, 4:Gln.-Glenwood, 5: Lan.-Lanaux, 6: 
M ag.-M agnolia, 7:Oak.-Oaklawnhy, 8: P.A.-Palo Alto, 9:R.L.-Raceland, 10: R .H .-Ronal Hebert, I l:S U .-  

Levert-St. John.
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Table 4.10. Percent o f top 50% varieties in a particular environment also in the top 50% 
of the environment specific variety performances predicted by six statistical models

Fixed Mixed Mixed Mixed Mixed Mixed
Farm Year Model ANOVA Shukla AMMI E&R HetR

.........

1:ALL. 1998 78 80 84 86 80 85
1996 79 84 85 84 83 84

2:B.S. 1998 62 67 66 73 67 71
1997 78 79 80 80 80 80
1996 59 64 62 62 60 64

3:Geo 1998 53 54 53 53 52 53
1997 77 77 77 80 77 80

4:Gln. 1997 75 75 75 81 73 78
1996 69 73 71 74 72 71

5:Lan. 1998 67 70 67 64 65 68
1997 72 72 72 70 72 75
1996 66 81 75 68 75 78

6:Mag. 1998 68 73 64 74 68 70
1997 89 98 98 97 97 98
1996 54 67 70 64 69 69

7:Oak. 1996 74 83 84 77 83 85
8:P.A. 1997 56 68 67 72 65 70

1996 78 78 79 79 77 77
9:R.L. 1996 79 73 79 75 75 75
10:R.H 1998 53 41 42 43 40 42

1997 85 78 77 70 77 80
1996 67 64 69 65 68 64

1 l:St.J. 1998 54 60 55 62 60 64
Mean 69.2 72.1 71.8 71.9 71.6 73.1
t  t :A ll.-A .V .A H a in  & Sons, 2:B.S.-Bon Secour, 3 :Geo.-Georgia, 4:G ln.-G lcnw ood, S: Lan.-Lanaux, 6: 
M ag.-M agnolia , 7:Oak.-Oaklawnhy, 8: P.A.-Palo Alto, 9:R.L.-Raceland, 10: R .H .-Ronal Hebert, I l :S(J - 
Levert-St. John.

4. CONCLUSIONS

The use of mixed models to analyze advanced variety trials offers the potential to 

improve predictive precision at virtually no additional cost. It also enables the 

researcher to objectively incorporate GE stability measures with mean performance. 

More complex mixed models that may model within environment covariance or
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consider environmental factors linked to GE are possible (Biames-Dumoulin et al.,

1996; Cullis, et al., 1997; Magari and Kang, 1997; Wolfinger and Tobias, 1998).
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CHAPTER 5

CONCLUSIONS AND FINAL REMARKS
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Best linear unbiased prediction is an important tool for plant breeders that can be 

employed at several stages of the selection process. The BLUP of genetic effects may 

substitute cross and genotype means in progeny tests and early selection stages. In 

progeny tests and early selection stages, the random nature o f genotypes supports the 

use of mixed models. A large number o f genotypes facilitates estimation o f genetic 

variance components and random effects. In later selection stages, genotypes may be 

assumed as fixed effects. By assuming environments and genotype-environment terms 

as random, variances and covariances may be modeled and hence more information can 

be integrated into broad and narrow genotype inferences and GE analysis.

BLUP prediction is not a new technique. What is relatively new for plant breeders, 

since software for handling general mixed model has become available, is the 

possibility of easily defining BLUPs o f random effects that contemplate the model 

complexity and the size o f databases in typical crop improvement programs. A single 

important “ BLUP" does not exist in plant breeding. There are a large number o f 

different combinations o f fixed and random effects that can be predicted. For each 

value to be predicted, there are many alternative models differing with regard to the 

variance-covariance structure of the random effects.

Even when the main interest is in the fixed effects, parsimonious models o f the 

covariance structure increase the prediction accuracy o f performance predictors. Mixed 

model approaches can integrate genotype-by-environment covariances into the 

comparison of the genotype means. Mixed models in yield trials in several 

environments unifies under one general procedure the estimation o f stability parameters,
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the study o f GE and yield mean performances. Mixed AMMI models and 

corresponding biplots to visualize predictable GE patterns should be obtained from 

specific procedures, but their interpretation is analogous to that from fixed AMMI 

models. Assumptions o f balanced data are not made, but normality is required for 

maximum likelihood estimation procedures to be performed. This later point may be a 

limitation. There, however, exists an important amount o f phenotypic information 

where these procedures can be applied. Other limitations to the use o f mixed model 

analysis are related to computer time and the possible lack o f convergence o f likelihood- 

based algorithms employed to estimate variance components. Both problems may be 

tackled by adjusting the number o f model parameters to be simultaneously estimated. 

Usually there exists more than one strategy to fit the same model. Working with mean 

values instead replications may be a functional alternative.

BLUP-based cross predictions consistently improved, with respect to MPV 

prediction, the accuracy of predicted performance of crosses that have never been made 

or tested. Different versions o f BLUP could be obtained depending on the procedure 

selected to connect tested and untested cross effects and the model for random genetic 

effects. A mixed linear model adjusting progeny test data for fixed trial effects and 

partitioning the genotype effect into random female and male effects performed better 

than the model that used random cross effects. Results indicated that there was no gain 

by using information from “ related by pedigree" crosses. This failure was attributed to 

the low genetic variance components and to the crossing techniques involved in 

sugarcane breeding.
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BLUPs to combine genotype effects from early sugarcane clonal stages 

demonstrated improvement compared to the percent o f the check methods. BLUPs of 

genotype-environment combinations in yield trials also performed better than the mean 

to predict genotype performance in a particular environment. Progeny testing has 

proved to be effective and cost efficient for sugarcane breeding because it improves the 

efficiency o f early generation selection. It can also be exploited to generate BLUPs of 

untested crosses and to choose parental germplasm to combine in new hybrids. The MP- 

BLUP obtained from the databases o f regular sugarcane progeny tests would facilitate 

the identification of material to be crossed. Predictors based on progeny tests can be 

obtained after one year o f testing o f new parents, whereas parental selection based only 

on clonal per se information requires several years o f testing and probably is more 

biased by the presence of non-additive genetic effects. No additional field experiments 

are required to calculate cross performance predictors in those programs that are already 

performing progeny tests. When using genotype BLUPs for prediction o f future 

selection stages, BLUPs and SP were superior to the predictor APCH used by the 

LSDVP. In addition, BLUP accuracy was not dependent on check values, thus they can 

still be effectively used when check varieties fail.

Better performance predictions increased the probability of selecting the best 

genotypes at crossing, early and late selection stages o f the breeding program. The 

improved prediction methodology may enable the breeders to increase the selection 

intensity at earlier stages and possibly shorten selection cycles.
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APPENDIX A 

MODELS TO PREDICT GENOTYPE PERFORMANCE
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Note: A ll codes assume that a SAS data set named ‘FU LLT’ is available with variables

Y, GENO, TR IA L and REP related to the trait values yl)k and codings for genotypes.

trials involving at least one o f the GENO for which a performance prediction is

required, and replicates, respectively. FULLT contains all the data regarding trials that

involve the varieties of interest, the file should contain a variable CTXPARS whit value

equal to 1 for the varieties o f interest and equal to zero otherwise. The variety TR IA L

could be a combination o f year, locations, series, etc. For description of the models used

to obtain performance predictors see Table 3.1, pag. 57.

MODELS |1| TO |4 |: Check-based predictors
/ *  DEFINE THE V A R IE T IE S  THAT SHOULD BE USED AS CHECKS * /  
DATA CHECKID;
INPUT GENO M ;
C H E C K - ' Y E S '  ;
C A R D S ;
65357  7 0 3 2 1  7 4 3 8 3  72 370  
82089  8 3 1 5 3  8 5 3 8 4  85 845

PROC SORT D A TA-FU LLT;BY T R IA L ;
PROC MEANS N O PRIN T;B Y TR IA L ;
VAR y ;
OUTPUT O U T -T R IA L ID  N -N T R IA L !

DATA _NULL_;
SET T R IA L ID  END-EO F;
CALL SYM PU T(’ GROUP’ I I L E F T (_ N _ ) , T R IM (T R IA L ))  ;
IF  EOF THEN CALL SYMPUT ( ’ TOTAL’ . _ N _ ) ;
r u n ;

DATA _NULL_;
SET CHECKIO ENO-EOF;
C A L L  S Y M P U T ( ’ C H E C K ’ | | L E F T ( _ N _ ) , T R IM (G E N O ) ) ;
IF  EOF THEN CALL S Y M P U T  ( ’ NCHECK*, _ N _ ) ;
RU N ;

XMACRO P R E D IC T ;

OATA WORKOS;
SET FULLT;
XDO C - l  XTO 4NCHECK;

DATA CHECK&C;
S E T  W O R K O S ;
I F  T R IM  ( G E N O ) - " U C H E C K & C "  ;
Y 4 C - Y ;
KEEP T R IA L  REP Y&C;
PROC S O R T  D A T A -C H E C K & C ; B Y  T R IA L  R E P ;
PROC S O R T  O A T A -W O R K O S ; B Y  T R IA L  R E P ;
D A T A  W O R K D S ;
M ERGE C H EC KSiC  W O R K O S ;B Y  T R IA L  R E P ;
P C T C H A C - lO O * ( Y / Y & C ) ;

X E N O ;

O A T A  A P C T C H ;
S E T  W O R K O S ;
I F  C T X P A R S - 1 ;
APCTCH-MEAN(OF PCTCHl PCTCH2 PCTCH3 PCTCH4
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PCTCHS PCTCH6 PCTCH7 P C TC H 8);
PROC SORT DATA-CHECKID;BY GENO;
PROC SORT D A TA *FU LLT; BY GENO;
OATA ACHECK;
MERGE FULLT CH EC KID ;BY GENO;
I F  C H E C K - 'Y E S ’ ;

PROC SORT OATA-ACHECK ; BY TR IA L;
PROC MEANS OATA-ACHECK MEAN NOPRINT; BY T R IA L  I 
VAR y ;
OUTPUT OUT-ACHECKT MEAN-YCHECKT STOERR-SCHECKT;

DATA VARLST*
MERGE ACHECKT APCTCH; BY TR IA L;
YPCT_EC«100* ( Y /YCHECKT)  ;
Z - ( Y - YCHECKT) /S C H EC K T;
D IF F - Y - Y C H E C K T ;

PROC SORT OATA-VARLST; BY GENO;
PROC MEANS MEAN N O PR INT;B Y GENO;
V A R  Y APCTCH YPCT_EC Z  0 1 F F ;
OUTPUT O UT-FIXED MEAN—YM l YM2 YM3 YM4 YM5;
PROC RANK D A TA -F IX ED  OUT-RANKF; VAR Y M l YM2 YM3 YM4 YM5 _TYPE_; 
RANKS MlRANK M2RANK M3RANK M4RANK M5RANK M T ;

PROC MEANS OATA-ACHECK MEAN NOPRINT;
V A R  y ;
OUTPUT OUT-MUCHECK MEAN-MUCHECK STD-SCHECK;
DATA PREDICT;
MERGE RANKF MUCHECK;BY _TYPE_;
KEEP GENO YMl YM2 YM3 YM4 YM5 P i  P2 P3 P4 PS 
MlRANK M2 RANK M3RANK M4RANK MSRANK;
P l - Y M l ;
p 2 - ( y m 2 * m u c h e c k ) / 1 0 0 ;
P 3-(Y M 3*M U C H E C K )/100;
p4-(YM4*SCHECK)-*-MUCHECK;
p S - y m S+m u c h e c k ;
PROC PRINT;

XMEND PREDICT;
XPREDICT

MODEL |5|: LSMcan from a Fixed Model as predictor

XMACRO PREDICT;

DATA WORKOS;
SET FULLT;
CLON-GENOi

PROC MIXED OATA-WORKOS N O ITPR IN T NOCLPRINT METHOO-REML; 
CLASS TRIAL GENO REP;
MOOEL Y -TR IA L R E P (T R IA L ) GENO;
LSMEANS GENO;
MAKE 'LSMEANS' NOPRINT OUT-LSMEAN;

PROC SORT DATA-WORKDS;BY c l o n ;
PROC SUMMARY NWAY;
CLASS CLON;
ID  CTXPARS;
OUTPUT OUT-VARLST;

DATA PREOICT;
MERGE LSMEAN VARLST;
I F  CTXPARS-1;
P l-_LSM EAN _; DROP V A R IE T Y ;

DATA PREDICT;
SET PREDICT;
VARIETY-CLON;

PROC RANK OATA-PREDICT OUT-RANKF;VAR P i ;
RANKS MlRANK;

XMEND PREDICT;
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MODEL [6|: BLUP of genotype effect -BGa-

XM ACRO  P R E D IC T ;

DATA WORKOS;
SET FULLT;
CLON-GENO;

pr o c  m ix e d  d a t a - w o rkds  n o i t p r i n t  n o c l p r i n t  m ethod-R EM L;
CLASS TR IA L GENO REP;
MOOEL Y -T R IA L  R E P (T R IA L )/S O L U T IO N ;
RANDOM GENO/S;
MAKE ' SOLUTIONR1 NOPRINT OUT-BLUP;
MAKE 1SOLUTIONF' NOPRINT OUT-MU;

D A T A  M U ;
SET m u ;
IF  .E F F E C T . - ' IN T E R C E P T ';
M U-_EST_;KEEP MU CTXPARS;
c t x p a r s - 1 ;

PROC SORT DATA-WORKDS; BY CLON;
PROC SUMMARY NWAY;
CLASS CLON;
ID  CTXPARS;
OUTPUT OUT-VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF  CTXPARS-1; 
u l-_ E S T _ ;
DROP GENO;

DATA PREDICT;
MERGE PREDICT MU;BY CTXPARS;
GENO-CLON;
P l-M U + U l;

PROC PR IN T*
PROC RANK D ATA-PREDICT OUT-RANKF; VAR P i ;
RANKS MlRANK;

XM EN D P R E D IC T ;

MODEL |7|: BLUP of genotype effect -BGb-

XMACRO PREDICT;

DATA FULLT;
SET FULLT;
IF  G E N O -65357 OR GENO-70321

OR G E N O -74383 OR GENO-72370 OR G E N O -82089 THEN NEW-O; 
ELSE NEW -1;
I F  (NEW) THEN G EN TY P E-999999;
ELSE GENTYPE-GENO;

DATA W O R KO S;
SET FULLT;
CLON-GENO;

PROC m ix e d  d a t a - w o r k d s  n o i t p r i n t  n o c l p r i n t  m ethod-REM L; 
c l a s s  t r i a l  GENO r e p  g e n ty p e ;
MOOEL Y —T R IA L  R E P (T R IA L ) g e n ty p e /S O L U T IO N ;
RANDOM G E N O *n ew /S ;
Ism eans g e n ty p e :
MAKE 'S O LU TIO N R ' n o p r in t  OUT-BLUP;
MAKE 'S O LU TIO N F ' NOPRINT OUT-MU;

DATA MU;
SET MU;
IF  .E F F E C T .- 'IN T E R C E P T ';
M U -_EST_;K EEP MU CTXPARS;
C TXPARS-1;

PROC SORT d a t a - w o r k o s ; b y  c l o n ;
PROC SUMMARY NWAY;
CLASS CLON;

I I I
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ID  CTXPARS NEW;
OUTPUT OUT-VARLST;

DATA PREO ICT;
MERGE BLUP VARLST;
IF  C TX PA RS-1;
U l-_ E S T _ ;
DROP GENO;

DATA PR ED IC T;
MERGE PR EDICT MU;BY CTXPARS;
GENO-CLON;
p I - m u + u I ;
IF  NEW -1;

XMEND PR ED IC T;

MODEL (8|: BLUP of genotype effect -BGTa-

XMACRO PR ED IC T;

OATA WORKDS;
S E T F U L L T ;
C L O N -G E N O ;

PROC M IXED DATA-WORKDS N O IT P R IN T  NOCLPRINT METHOD-REML; 
CLASS T R IA L  GENO REP;
MODEL Y -/S O L U T IO N ;
RANDOM T R IA L  R E P (TR IA L) GENO/S;
M AKE 'S O LU TIO N R ' NOPRINT OUT-BLUP;
M AKE 'S O L U T IO N F ' NOPRINT OUT-MU;

D A T A  B L U P ;
SET BLUP; IF  _E FF E C T _«'G E N O 'I

D A T A  M U ;
S E T  M U ;
IF  _ E F F E C T _ « 'IN T E R C E P T ';
M U -_EST_;K EEP MU CTXPARS;
C TXPARS-1;

PROC SORT DATA-WORKDS; B Y  CLON;
PROC SUMMARY NWAY;
CLASS CLON;
I D  C T X P A R S ;
OUTPUT OUT-VARLST;

OATA PR ED IC T;
MERGE BLUP VARLST;
I F  C TXPARS-1;
U l-_ E S T _ ; OROP GENO;

OATA PR ED IC T;
MERGE PREDIC T MU;BY CTXPARS;
V ARIETY-CLO NI P l-M U -fU l; PROC P R IN T;

PROC RANK OATA-PREDICT OUT-RANKF; VAR P i ;
RANKS MlRANK;

XM END P R E D IC T ;

MODEL |9|: BLUP of genotype effect -BGTb-

XMACRO P R E D IC T ;

D A T A  F U L L T ;
S E T  F U L L T ;
I F  G E N O -65357  O R G EN O -70321

OR G E N O -74383  OR G E N O -72370 OR G EN O -82089 THEN NEW-O; 
ELSE N EW -1;
I F  (N E W )  THEN G E N TY P E -999999;
E L S E  G E N T Y P E -G E N O ;

O A TA  W O R K D S ;
S E T  F U L L T ;
C L O N -G E N O ;
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PROC M IXED DATA-WORKDS N O ITPR IN T NOCLPRINT METHOD-REML; 
CLASS T R IA L  GENO REP GENTYPE;
MOOEL Y -  GENTYPE/SOLUTION;
RANDOM T R IA L  R E P (T R IA L ) GENO*NEW /S;
LSMEANS GENTYPE:
MAKE 'S O LU TIO N R 1 NOPRINT OUT-BLUP;
MAKE 'S O L U T IO N F ' NOPRINT OUT-MU;

DATA BLUP;
SET BLUP;
IF  _E F F E C T _-'N E W *G E N O ';

DATA MU;
SET MU;
IF  _ E F F E C T _ -'IN T E R C E P T ';
M U -_EST_;K EEP MU CTXPARS;
CTXPARS-1;

PROC SORT DATA-WORKDS; BY CLON;
PROC SU M M AR Y N W A Y ;
CLASS c l o n ;
ID  CTXPARS new ;
OUTPUT O U T-VA RLST;

DATA PREDICT;
MERGE BLUP VARLST;
I F  C TXPARS-1;
U l - _ E S T _ ;
DROP GENO;

DATA PR ED ICT;
MERGE PREDICT MU;BY CTXPARS;
G E N O -C L O N ;
p 1 - m u + u 1 ;
IF  NEW-1;

XMENO PR EDIC T;

MODEL 110|: BLUP of genotype effect -BGTIa-

XMACRO PR ED IC T;

D A T A  W O R K D S ;
SET FULLT;
CLON-GENO;

PROC SO RT;B Y  T R IA L  GENO ;
PROC MEANS DATA-WORKDS MEAN N O P R IN T ;B Y  TRIAL GENO;
V A R  Y ;
ID  CTXPARS T R IA L ;
OUTPUT OUT-YMEAN MEAN-;

PROC MIXED DATA-YMEAN NO ITPRIN T NOCLPRINT METHOD-REML; 
CLASS TR IA L  GENO;
MOOEL Y -T R IA L /S O L U T IO N ;
RANDOM IN T/SU B JE C T-G EN O  S;
REPEATED GENO /SUB1ECT-TRIAL R;
MAKE 'S O LU TIO N R ' OUT-BLUP;
MAKE 'S O L U T IO N F ' OUT-MU;

D A T A  M U ;
S E T  M U ;
IF  _ E F F E C T _ -'IN T E R C E P T ';
M U-_EST_;KEEP MU CTXPARS:
CTXPARS-1;

PROC SORT DATA-WORKDS;B Y  CLON;
PROC SUMMARY NWAY;
CLASS CLON;
ID  CTXPARS;
OUTPUT O U T-VAR LST;

DATA PR ED IC T;
MERGE B L U P  V A R L S T ;
I F  CTXPARS-1;
U l - _ E S T _ ; D R O P  G E N O ;

OATA PR ED IC T;
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MERGE P R E D IC T  M U ;B Y  C T X P A R S ;
G E N O -C L O N ;
P l - M U + U l ;

PROC P R IN T *
PROC RANK O A T A - P R E D IC T  O U T -R A N K F ;V A R  P i ;  
RANKS M lR A N K ;

XM END P R E D IC T ;

MODEL 1111: BLUP of genotype effect -BGTIb-

XMACRO PREDICT;
• • “ ESTIMATE WEIGHTS * • * * ;
PROC SORT D A TA -FU LLT;B Y  TRIAL GENO:
PROC MEANS MEAN N O P R IN T ;B Y  TRIAL GENO;
VAR y ;
I D  C T X P A R S ;
OUTPUT OUT-YMEAN MEAN-;

PROC MIXED DATA-YMEAN N O ITPRINT NOCLPRINT METHOD-REML; 
CLASS TR IAL GENO;
MODEL Y -T R IA L /S O L U T IO N ;
RANDOM IN T/SU B JEC T-G EN O  S;
REPEATED TR IAL/SUB 3ECT-G EN O  R;
MAKE 'COVPARMS' O U T-VC ;

DATA VC_RI 
E S T -1;
O U T P U T ;
D A T A  V C ;
SET VC v c _ r ;
PROC SORT D ATA- F U L L T ;B Y  TR IA L;

PROC GLM OATA- FULLT O U TSTAT-FIRSTS; B Y  T R IA L ;
CLASS REP GENO;
MODEL Y-REP GENO;

D A T A  W E IG H T l;
SET FIRSTS;
IF  _SOURCE_-' REP' ;
R E P -O F ;
KEEP TR IA L REP;

D A T A  WEIGHT2;
SET FIRSTS;
I F  _S O U R C E _-'E R R O R ';
S IG M A 2-SS /D F;
K E E P  TR IA L S IG M A 2;

DATA WEIGHT;
MERGE W EIG H Tl W EIG H T2;
B Y  T R IA L ;
IF  D F -0  THEN D O ;S IG M A 2 -1 0 ;R E P -1 ;e n d ;
W T -1 /C S IG M A 2 /R E P );

PROC SORT D A TA -S O U R C E l.FU LL T;B Y  T R IA L ;
D A T A  F U L L T ;
MERGE FULLT W E IG H T;B Y  T R IA L ;

D A T A  W O R KD S;
SET FULLT;
CLON-GENO!

PROC SORT;B Y  T R IA L  GENO ;
PROC MEANS DATA-WORKDS MEAN NOPRINT;B Y  T R IA L  GENO;
V A R  Y W T;
ID  C T X P A R S ;
OUTPUT OUT-YMEAN MEAN-Y WT;

PROC MIXED OATA-YMEAN METHOD-REML;
CLASS TR IA L GENO;
W E IG H T  W T ;
MOOEL Y -T R IA L /S O L U T IO N ;
RANDOM I  NT/SUBJECT-G ENO S;
RANDOM T R IA L /S U B 3 ECT-GENOI 
REPEATED;
PARMS/POATA-SOURCEl. VC EQCONS-3;
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MAKE ‘ SOLUTIONR’ NOPRINT OUT-BLUP; 
MAKE 'S O LU TIO N F' NOPRINT OUT-MUI

D A T A  B L U P ;
S E T  B L U P ;
I F  _ E F F E C T _ -'IN T E R C E P T ';

O A T A  M U ;
SET m u ;
I F  .E F F E C T ,- 'IN T E R C E P T ';
M U -_EST_;K EEP MU CTXPARS;
C TXPARS-1;

PROC SORT DATA-WORKDS; BY CLON;
PROC SUMMARY NWAY;
CLASS CLON;
ID  CTXPARS;
OUTPUT OUT-VARLST;

DATA PREDICT;
MERGE BLUP VARLST;
IF  CTXPARS-1;
U l - _ E S T _ ;
DROP GENO;

DATA PREOICT;
MERGE PREDICT MU;BY CTXPARS;
g e n o - c l o n ;
P l - M U + u l ;  

p r o c  p r i n t  *
PROC RANK OATA-PREDICT OUT-RANKF; VAR P i ;  
RANKS MlRANK!

XMEND PREDICT;
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APPENDIX B 

SAS CODES FOR MIXED MODELS IN MULTI-ENVIRONMENT 

YIELD TRIALS.
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Note: A ll codes assume that a SAS data set named ‘Y LD ’ is available with variables Y,

GENO, ENV and REP related to the trait values yt|k and codings for genotypes.

environments and replicates, respectively. The file pdmixmac.sas contains a SAS macro

named PDMIXMAC612 which show mean separation results from a mixed model

fitting by using letter groups. It can be obtained from the SAS web page.

MODEL 111 : Mixed ANOVA
Fixed genotypes, random environmental and replication(environmcnt) effects. 
Assumptions for the GE terms: homogeneous variance and independence
PROC MIXED DATA-YLD C O V T E S T ;
CLASS ENV GENO REP;
MODEL Y-GENO;
RANDOM ENV R E P(EN V ) GENO*ENV;
LSMEANS g e n o / p d i f f ;
MAKE 'D IF F S 1 OUT-P NOPRINT;
MAKE 'LSMEANS' O U T -M  N O P R IN T ;

XINCLUDE 'A :P D M IX M A C .S A S' ;
X PO M IX612 ( P . M . A L P H A -.0 5 , SORT-YES) \

MODEL |2 | : Mixed Shukla
Fixed genotypes, random environmental and rcplication(cnvironmcnt) effects. 
Assumptions for the GE terms: Heterogeneous by genotypes variances and 
independence
PROC MIXED DATA-YLD COVTEST;
CLASS ENV GENO REP;
MODEL Y-GENO;
RANDOM IN T  REP/SUB3ECT-ENV;
RANDOM GENO/SUB3ECT-ENV T Y P E -U N ( l) ;
LSMEANS G E N O /P D IF F ;
MAKE 'D IF F S ' OUT-P NOPRINT;
MAKE 'LSM EANS' OUT-M NOPRINT;

XINCLUDE ' A : PDMIXMAC. SAS' ;
XP0M IX612 ( P , M , A L P H A - . OS, SORT-YES) I

MODEL |3 a |: Mixed A M M I(l)
Fixed genotypes, random environmental and replication(environment) effects. 
Assumptions for the GE terms: Heterogeneous by genotypes variances and 
covariances between GE terms of two genotypes in the same environment.
PROC MIXED DATA-YLD COVTEST;
CLASS ENV GENO REP;
MOOEL Y - G E N O ;
RANDOM IN T  R E P/S U B ]E C T-E N V ;
RANDOM GENO/SUB2 ECT-ENV T Y P E -F A O ( l) ;
LSMEANS G E N O /P O IFF ;
MAKE 'D IF F S *  OUT-P NOPRINT;
MAKE 'LSM EANS' OUT-M NOPRINT;
XINCLUDE 'A :P O M IX M A C .S A S ';
X P 0 M IX 6 1 2 (P .M .A L P H A -.0 5 ,SORT-YES) I
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MODEL (3b |: Mixed AMMI(2)
Fixed genotypes, random environmental and replication(environment) effects. 
Assumptions for the GE terms: Heterogeneous by genotypes variances and 
covariances between GE terms of two genotypes in the same environment.

PROC M IX E D  DATA-YLD COVTEST;
CLASS ENV GENO REP;
MOOEL Y-GENO;
RANDOM IN T  REP/SUB3ECT-ENV;
RANDOM GENO/SUBJECT-ENV T Y P E -F A 0 (2 );  
LSMEANS G E N O /P D IFF;
MAKE 'D IF F S '  OUT-P NOPRINT;
MAKE 'LSM EAN S' OUT-M NOPRINT; 
XINCLUDE ' A : POMIXMAC. SAS' ;
X P O M IX 612( P , M , A LP H A -. 0 5 , S O R T -Y E S )!

MODEL |4| : Mixed E&R
Fixed genotypes, random rcplication(environment) effects.
Assumptions for the GE terms: Heterogeneous by genotypes variances and 
covariances between GE terms of two genotypes in the same environment.

PROC M IX E D  DATA-YLD COVTEST;
CLASS ENV GENO REP;
MODEL Y-GENO;
RANDOM R E P /S U B 3ECT-ENV;
RANDOM GENO/SUB3ECT-ENV T Y P E - F A l ( l ) ;  
LSMEANS G E N O /P O IFF;
MAKE 'D IF F S '  OUT-P NOPRINT;
MAKE 'LSM EAN S' OUT-M NOPRINT; 
XINCLUDE ' A : POMIXMAC. SAS' ;
X P O M IX 6 1 2 (P . M , A LP H A -. 0 5 , S O R T -Y E S )!

MODEL [5| : Mixed HetR
Fixed genotypes, random environmental and rcplication(cnvironment) effects. 
Assumptions for the GE terms: homogeneous variance and independence 
Assumptions for the error tems: heterogeneous by environment variance.

PROC M IX E D  DATA-YLD COVTEST;
CLASS ENV GENO REP;
MOOEL Y-GENO;
RANDOM ENV REP(ENV) GENO*ENV; 
LSMEANS G E N O /P O IFF; 
REPEATED/GROUP-ENV;
MAKE 'D IF F S '  OUT-P NOPRINT;
MAKE 'LSM EANS' OUT-M NOPRINT; 
XINCLUDE ' A : POMIXMAC. SAS' ;
XPO M IX612  ( P . M , ALPHA- .0 5 .  SO R T-YES)  I
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APPENDIX C 

CROSSVALIDATION IN MULTI-ENVIRONMENT TRIALS INVOLVING  

RANDOMIZED COMPLETE BLOCK DESIGNS
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Note: The macro RCBD_CV input variables are the number o f runs for the validation

procedure (NCHECK) and the data set name (DATA) containing the variables Y,

GENO, ENV and REP related to the trait values yl)k and codings for genotypes.

environments and replicates, respectively.

The macro RCBD CV calls another macro (RUNMIX) which is attached to the end of

the RCBD_CV macro. The macro RUNMIX allows to run several models for multi­

environment trial at each run of the cross-validation procedure. RUNMIX needs the file

pdmixmac.sas. The file pdmixmac.sas contains a SAS macro named PDMIXMAC612

which show mean separation results from a mixed model fitting by using letter groups.

It can be obtained from the SAS web page.

XMACRO RCBD_CV (NCHECK"1 0 0 ,DATA-YLD) I

PROC SORT d a t a - 4 o a t a ; b y  ENV;
PROC MEANS MEAN NOPRINT;BY ENV;
V A R  Y ;
OUTPUT OUT-OUTENV MEAN-;

PROC SORT DATA-AOATA; BY REP;
PROC MEANS MEAN NOPRINT;BY REP;
V A R  Y *
OUTPUT OUT-OUTREP MEAN-;

DATA _N U LL_;
SET OUTENV END-EOF;
CALL SYMPUT ( 'E N V 'I |L E F T ( _ N _ ) ,E N V ) ;
I F  EOF THEN CALL S Y M P U T ('N E N V ',_ N _ );

DATA _N U LL_;
SET OUTREP END-EOF;
IF  EOF THEN CALL S Y M P U T ('N R E P ',_ N _ );

DATA CHECKDS;
XDO K - l  XTO ANCHECK;

XOO 1 - 1  XTO ANENV; 
c h e c k - A k ;
ENVa " ttE N V & l"  *
r e p _ o u t - c e i l ( r a n u n i( 1 0 0 ) * A n r e p ) ; 
o u t p u t :

XEND;
X E N D ;

/ •  CREATING BASE F IL E S  FOR APPENDING R E S U L T S */; 
DATA A .N I ;
LENGTH STRUCTR J 2 0 ;
LENGTH GENO $ 1 2 ;
LENGTH MSGROUP $ 2 0 ;
LENGTH ENV $ 2 0 ;
STR U C TR -' ' ; v a r ie t y - " ; e n v - " ; _ s e _ » . ;  
_ P R E D _ -. ; C HECK-. ;  Y - . ;  S P E -. ; MSGROUP-' * ;

XDO K - l  XTO ANCHECK;
DATA SAMPLE;
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SET CHECKDS;
IF  CHECK-4K;
PROC SORT DATA-SAMPLE; B Y  ENV; 
PROC SORT DATA-40ATA ;BY  ENV REP;

DATA WORKOS;
MERGE &OATA SAMPLE;BY ENV;
IF  REP NE REP.OUT;
XLET OSNAME-WORKDS;

DATA V A LID S ;
MERGE &OATA SAMPLE;BY ENV;
IF  REP-REP_OUT;

DATA E S T IM ;
LENGTH STRUCTR $20;
LENGTH GENO $12;
LENGTH ENV $1 2 ;
LENGTH MSGROUP $2 0 :
STR U C TR -' ' ; GENO- ; E N V -' ' ;  

_ S E _ - . ;_ P R E D _ -. ;  MSGROUP-* ' ;

/ *  F IT IN G  MODELS * / ;

•M IX E D  ANOVA;
%RUNMIX(METHOD-METHOO-REML.
Z-RANDOM ENV REP(ENV) GENO*ENV,
COMMENT-2W );

•M IX E D  s h u k l a ;
XRUNMIX(METHOD-METHOD-REML.
Z-RANDOM IN T  REP/SUB-ENV ;
RANDOM GENO/SUB-ENV T Y P E -U N (l)  .
COM M ENT-SV);

•M IX E D  e* r ;
XRUNMIX(METHOD-METHOD-REML,
Z-RANDOM REP/SUB-ENV ;
RANDOM GENO/SUB-ENV T Y P E - F A l ( l )  ,
COMMENT-FW, OUTLSM-ESTIM) ;

•M IX E O  A M M I(2 ) i  
XRUNMIX(METHOO-METHOO-REML,
Z -R A N D O M  IN T  REP/SUB-ENV ;
RANDOM GENO/SUB-ENV T Y P E -F A 0 (2 ) ,
COMMENT-ER);

•M IX E D  ANOVA WITH HETEROGENEOUS RESIDUAL VARIANCE; 
XRUNMIX(METHOO-METHOD-REML,
Z-RANDOM ENV REP(ENV) GENO*ENV;
REPEATEO/GROUP-ENV;
COMME N T-H  2 W );

•F IX E D  MOOEL;
XRUNMIX (METHOO-METHOO-REML,
Z-RANDOM REP,
COMMENT-2W F);

/•S T A R T  CALCULATION OF PREDICTION ERRORS*/;
PROC SORT DATA-VALIDS;BY ENV GENO;

PROC SORT DATA-ESTIM ; BY ENV V A R IE TY ;

D A T A  SPCIAK;
MERGE V ALID S ESTIM;BY ENV V A R IE T Y ;
C H E C K 4K  *
KEEP E N v'V A R IE TY  _PRED_ Y STRUCTR CHECK SPE MSGROUP _S E _; 
S P E - (Y -_ P R E D _ )* (Y -_ P R E D _ );

PROC SORT;BY CHECK ENV STRUCTR _PRED_;
PROC APPEND B A S E -A .N I DATA-SPCI&K FORCE;

XEND;
XMEND;
XRCBD.CV;
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/‘ MACRO RUNMIX */
XMACRO RUNMIX(METHOO-, Z ° , COMMENT-);

XLET _ P R IN T _ -O F F ;

X IF  (ACOMMENT NE 2WF) XTHEN XDO;
PROC MIXED DATA-AOSNAME AMETHOO;
ID  GENO ENV;
CLASS GENO ENV REP;
MOOEL Y -G E N O /P ;
4 Z ;
LSMEAN G E N O /P D IF F ;
MAKE 'P R E D IC T E D ' OUT-PRDACOMMENT NOPRINT;
PROC SORT DATA-PRD4C0MMENT; BY ENV GENO;
PROC MEANS DATA-PROACOMMENT NO P R IN T;B Y  ENV GENO;
V A R  _ P R E D  S E P R E D _ ;
OUTPUT O U T-ES TIM S  MEAN-;
DATA ESTIM S;
SET ESTIM S;
KEEP STRUCTR _PRED_ MSGROUP ENV GENO _SE_; 
_S E _-_S E P R E D _;
MSGROUP-' ‘ ;
STRUCTR-"ACOMMENT";
PROC APPEND BASE-ESTIM D ATA-ESTIM S FORCE;

XEND;

X IF  (ACOMMENT-2WF) XTHEN XOO;
PROC SORT OATA-AOSNAME;BY ENV;
PROC MIXED DATA-AOSNAME AMETHOO;BY ENV;
CLASS GENO REP ;
MOOEL Y-GENO;
AZ;
LSMEANS G E N O /P D IF F ;
MAKE 'D IF F S ' OUT-PACOMMENT NOPRINT;
MAKE 'LSMEANS' OUT-MACOMMENT NOPRINT;

PROC P R IN T OATA-MACOFMENT;
PROC P R IN T  DATA-PACOMMENT;

XINCLUDE ' A : PDMIXMAC. SAS' ;
XPOMIX612 ( PACOMMENT, MACOMMENT, A L P H A - . OS , SORT-YES)  ; 
D A T A  ESTIM S;
SET MSGRP;
STRUCTR-"ACOMMENT";
_ P R E D _ - _ L S M E A N _ ;
KEEP STRUCTR _PRED_ MSGROUP ENV VA RIETY _SE_; 
STRUCTR-''ACOMMENT";
PROC APPEND BASE-ESTIM DATA-ESTIM S FORCE;

XEND;

XLET _P R IN T _ -O N ;
XMEND RUNMIX;
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APPENDIX D 

BIPLOTS FOR MIXED AMMI MODELS
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Note: This program fit Mixed AMMI with one and two multiplicative terms and 

produce Biplots to visualize results. 

It assumes that there exists a file data set named YLD containing the variables related to 

the trait values yl)t and codings for genotypes, environments and replicates, respectively. 

Genotype and environment should assume numeric values.

GOPTIONS CBACK-W HITE; 
OPTIONS NOCENTER L S -7 5 ;  
LIBNAME A  ' A : ' ;

* * * * * * * * * * * * R E A D  I N

XLET ENV_N « 7 ;  
XLET GEN_N- 1 1 ;  
XLET REP_N- 3; 
XLET VAR « Y; 
XLET ENV ■ ENV! 
XLET GEN -  GEN; 
XLET REP -  REP;

* * *  iDATA* * * * * * * /
/ * * *  SET THE NUMBER OF ENVIRONMENTS
/ * * *  SET THE NUMBER OF GENOTYPES
/ * * *  SET THE NUMBER OF REPLICATES « * * /

/ • * *  SET THE NAME OF THE RESPONSE VARIABLE
/ * * *  SET THE NAME OF THE ENVIRONMENT VARIABLE
/ * * *  SET THE NAME OF THE GENOTYPE VARIABLE
/ * * *  SET THE NAME OF THE REPLICATION VARIABLE

*  *  *  /  
* * *  j  

* * * /

/ * * • * * • * * F IT T IN G  M IXED A M M I * * * * * * * * * * * * * * * * * * * * * /
XMACRO M IXED;
PROC MIXED D ATA -YLD ;
C L A S S  A E N V  A G E N  A R E P ;
MOOEL AVAR -  AGEN/P PM;
RANDOM IN T  AREP/SUBJECT-ENV;
RANDOM AGEN/SUBJECT-ENV TY P E «FA 0(1) S;
MAKE 'P R ED IC TED 1 O U T -A . PREDlFR NOPRINT;
MAKE 'PREDMEANS' O U T-A .P R E D lF  NOPRINT;
MAKE 1SOLUTIONR' O U T-A .G B Y E l;
MAKE 'COVPARMS' O UT-A .C O V1;
MAKE 'F IT T IN G ' O U T -A .F A 1;
ID  &GEN &ENV &REP;

DATA GBYE;
SET A .G B Y E l;
IF  _E F F E C T _-'G E N ' ;
GE1-_EST_;
KEEP G E l;
PROC SORT DA TA -YLD;
BY &ENV &GEN;
PROC MEANS DATA-YLD NOPRINT; 
BY &ENV AGEN;
v a r  A v a r ;
OUTPUT OUT-MEANS M E A N -Y I3 ; 
DATA VEC;
MERGE MEANS GBYE;
KEEP AENV AGEN G E l Y U ;

PROC MIXED D A TA-YLD ;
CLASS AENV AGEN AREP;
m o o e l  A v a r  -  a g e n / p  p m ;
RANDOM IN T  AREP/SUBJECT-ENV;
RANDOM AGEN/SUB1ECT-ENV T Y P E -F A 0 (2 ) S; 
MAKE 'P R ED IC TED ' OUT-A.PRED2FR NOPRINT; 
MAKE 'PREDMEANS' OUT-A.PRED2F NOPRINT; 
MAKE 'SO LU TIO N R' OUT-A .GBVE2;
MAKE 'COVPARMS' O U T-A .CO V2;
M AKE 'F I T T I N G *  O U T - A . FA2;
ID  AGEN AENV AREP;

D A TA  G B Y E ;
SET A.GBYE2;
IF  _E F F E C T _-'G E N ' ;
GE2»_EST_;
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KEEP GE2;
DATA A .VEC;
MERGE VEC GBYE;
KEEP AENV AGEN G E l GE2 Y I 3 ;

XMEND M IXED;
X M IX E D ;

DATA VECG1;
SET A .C O V llK E E P  GEN_1;
I F  SUBSTR(COVPARM, 6 , 1 )  « '  1 1 OR SUBSTR(COVPARM,7 . 1 ) - ’ 1 ' ;
GEN_1-EST;
KEEP GEN_1;

DATA VECG21;
SET A .COV2;
IF  SUBSTR (COVPARM, 6 ,  l ) - ' l '  OR SUBSTR (COVPARM, 7 , 1 ) - '  1 ’ ;
G E N .21-E S T ;
K E E P  GEN_21;

DATA VECG22;
S E T  A.COV2;
IF  SUBSTR(COVPARM,4 , 1 ) - ' 2 '  AND SUBSTR(COVPARM,6 , 1 ) « ' 1 '  THEN FLA G -1; 
IF  S U B S TR (C O V P A R M ,6 ,1)«12 ' OR SUBSTR(COVPARM,7 , 1 ) - ' 2 ' THEN FLAG-1 I 
IF  FLAG-1;
GEN_22-EST;
KEEP GEN_22;

DATA VECG;
MERGE VECGl VECG21 VECG22I 
GEN_1«- 1 *G E N _1;
G E N _21 --1 *G E N _21 ;
G E N _22 --1 *G E N _22 ;
GEN+1;
K E EP GEN.1 G E N .2 1  GEN_22 GEN;

PROC SO RT O A T A - A . V E C ;
BY ENV GEN;

PROC IM L;
USE VECG;
READ ALL IN TO  GLOAO; 
k2 -G L O A O [,2 :3 ] ;
C O E F F -I(4 E N V _ N )« K 2 ;
USE A .VEC;
READ ALL IN TO  GBYE;
G B Y E2-G B Y E[,S ] ;
ELO A D 2-G IN V(C O EFF)‘ GBYE2;
PRINT ELOAD2;
K l-G L O A D [, 1 ] ;
C O EFF-I (4 E N V _ N )« K l;
GBYEl-GBYE[ , 4 ] ;
E LO A D l-G IN V(C O EFF) ‘ G B Y E l;
PRINT ELOADl;
G S C O R E -K ll|K 2 !
ELOA02M-SHAPE(ELOA02, 7 ) ;

VECE-ELO AD lIIELO A D2M ;
CREATE GSCORE FROM GSCORE [COLNAME-{GEN_1 G E N .21 G E N .2 2 } ] ;
APPEND FROM GSCORE;
CREATE VECE FROM VECE [C O LN A M E-{W Il W I21 W I2 2 } ] ;
APPEND FROM VECE;

/ ‘ s t a n d a r d iz a t io n  o f  th e  g e n o ty p e  s c o r e s * /
PROC MEANS DATA-GSCORE MEAN STD NOPRINT;
VAR GEN.1 G E N .2 1  G E N .22 ;
OUTPUT OUT-SALG I 
PROC PRINT d a t a - s a l g ;

DATA NEWVEC;
SET GSCORE;
G E N L _ Z -(G E N _ l+ 0 .3 € 1 9 ) /1 .1 3 7 1 ;  / ‘ USE MEAN AND STANOARD D EVIATIO N OF G E N .1 * /
G E N 21*_Z-(G E N _21+0. 2 7 7 S ) /1 .1 3 4 6 ;  / ‘ USE MEAN ANO STANDARD D EVIATIO N OF G E N .1 * /
G E N 2 2 _ Z -(G E N _ 2 2 -0 .4 4 2 8 ) /1 .1 2 7 5 ;  / ‘ USE MEAN AND STANOARD D EVIATIO N OF G E N .1 * /

PROC SORT D ATA -YLD ;
B Y  A E N V ;

PROC MEANS DATA-YLD NOPRINT;
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v a r  Av a r ; 
b y  Ae n v ;
OUTPUT OUT-ENVA MEAN-YDOT;

PROC SORT D ATA -YLD ;
BY AGEN;

PROC MEANS OATA-YLD NOPRINT;
VAR AVAR;
BY AGEN*
OUTPUT OUT-GENA MEAN-YDOT;

DATA ENVA;
MERGE ENVA VECE;

DATA GENA;
MERGE GENA NEWVEC; KEEP AGEN YDOT GEN21_Z G EN22.Z G E N l_Z ;

IF  YDOT’ . THEN DELETE;
PROC PR IN T DATA-GENA;

1: Two f i s r t  m ultip licative  terms * * • * * « * * * • • * • « * • • * • /

DATA ENVANNO(KEEP»XSYS YSYS X Y COLOR FUNCTION POSITION S IZ E  TEXT STY LE ); 
LENGTH TEXT S 8 ;
SET ENVA;
TEXT-AENV;
STYLE -  'S W IS S B ';
X S Y S - '2 ' ;  Y S Y S -' 2 ' ;  COLOR-’ B L U E '; P O S IT IO N -’ S ' ;  FU N C TIO N -’ LABEL' ;
S IZ E - 1 .5 ;
X-WI21;
Y-WI22;

DATA GENANNO(XEEP-XSYS YSYS X Y COLOR FUNCTION POSITION S IZ E  TEXT STY LE ); 
LENGTH TEXT $ 8 ;
SET GENA;
TEXT-ACEN;
STYLE -  ' ZA P FB ' j
X S Y S - '2 ' ; Y S Y S -‘ 2 ’ : C O LO R -'R E D ': P O S IT IO N -’ 5 ' ;  FU N C TIO N -' LA B E L' ;
S IZ E -1 ;
x - g e n 2 1 _ z ;
y - g e n 2 2 _ Z ;

OATA VECANNl;
SET ENVANNO GENANNO;

DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA-VECTORS;
SYMBOL1 V-NONE I-NONE COLOR-WHITE;
PLOT G E N 22_Z*G E N 21_Z -1  W I2 2 * W I2 1 - 1/A NN O -VECA NNl OVERLAY V R E F -0  HREF-0; 
T IT L E l 'M IX E D  AMMI( 2 ) .  F IR S T AND SECOND M U LTIP LIC A TIVE  TERM;
T IT L E 2  'GENOTYPE NUMBER IN  RED -  ENVIRONMENT NUMBER IN  BLUE;

r u n ;

/ • - • • • • • • - • • • • - • • • B - jp lo t  2. First m u lt ip licative  term vs yield mean • • * * * • • * * *

DATA ENVANNO(KEEP-XSYS YSYS X Y COLOR FUNCTION POSITION S IZ E  TEXT STY LE ); 
LENGTH TEXT S 8 ;
SET ENVA;
T E X T - A E N V ;
STYLE -  ' SW ISSB ’ ;
x s y s - ' 2 ‘ ; y s y s - ’ 2 ' ;  c o l o r - ' b l u e ' ;  p o s i t i o n - ' 5 ' ;  f u n c t io n - ' l a b e l ' ;
S IZ E -1 .S ;
X - Y D O T ;
Y -W I2 1 ;

OATA GENANNO(KEEP-XSYS YSYS X Y COLOR FUNCTION POSITION S IZ E  TEXT STY LE ); 
LENGTH TEXT t  8 ;
SET GENA;
TEXT-4G EN;
STYLE -  'Z A P F B ':
x s y s - ' 2 ‘ ; y s y s - ‘ 2 ' ;  c o l o r - ' r e d ' :  p o s i t i o n - ' 5 ' ;  f u n c t io n - ' l a b e l ' ;  
s i z e - 1 ;
X - Y D O T ;
y - g e n 2 1 _ z ;

D A T A  VECANN2;
S E T  E N V A N N O  G E N A N N O ;
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OATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA-VECTORS;
SYMBOL1 V-NONE I-N O N E COLOR-W HITE;
PLOT G EN 21_Z»YO O T-l W l21»YD O T-l/A N N O -VEC A NN 2 o v e r l a y  v r e f - 0 ;  
T I T L E l  'M IXED  A M M I(2 ) F IR S T  M U L TIP L IC A T IV E  TERM V S . Y IE LD  MEAN';

M U L T IP L IC A T IV E  TERM VS Y IE LD  MEAN • • * * * • • * • « * • * * • * * * * /  
DATA ENVANNO(KEEP-XSYS YSYS X Y COLOR FUNCTION P O S IT IO N  S IZ E  TEXT S TY LE );

LENGTH TEXT S 8;
SET ENVA;
T E X T - A E N V ;
STYLE -  'S W IS S B ';
x s y s - ' 2 ' ;  y s y s « ' 2 ’ ; c o l o r - ' b l u e ' ;  p o s i t i o n - ' S ' ; f u n c t io n - ' l a b e l ' ;
S I Z E - 1 . 3;
X -Y D O T;
Y -W I2 2 ;

DATA GENANNO (KEEP-XSYS YSYS X Y COLOR FUNCTION P O S ITIO N  S IZ E  TEXT S TY LE );
LENGTH TEXT S 8 ;
SET GENA;
TEXT-AG EN;
STYLE -  'Z A P F B ';
X S Y S -’ 2 ' ;  YSYS- 2 ’ ; C O L O R -'R E D ': P O S IT IO N - '5 ' :  FU N C T IO N -' LABEL ’ :
S IZ E - 1 ;
X -Y D O T:
y «g e n 2 2 _ z ;

DATA VECANN3:
SET ENVANNO GENANNO;

DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA-VECTORS;
SYMBOLl V-NONE I-NO NE COLOR-WHITE;
PLOT G E N 22_Z*Y D O T -l W l22*Y D O T-l/A N N O -VE C A N N 3 OVERLAY V R E F -0;
T I T L E l  'M IX E D  A M M I(2 ) SECOND M U LTIP LIC A TIV E  TERM V S . Y IE LD  MEAN';

RUN;

/ • • • • • F I R S T  M U LTIP LIC A TIVE  TERM VS Y IELD  MEAN FOR AN A M M I( l )  » * * • • * • • • • • • * • • • • * » /

DATA ENVANNO(KEEP-XSYS YSYS X Y COLOR FUNCTION P O S IT IO N  S IZ E  TEXT S TY LE );
LENGTH TEXT S 8 ;
SET ENVA;
TE X T-A E N V ;
STYLE -  'S W IS S B ';
X S Y S -' 2 '  ; Y S Y S -'2 '  ; C O LO R-' BLUE' ;  P O S IT IO N - '5 ' ;  FU N C T IO N -' LABEL ' ;
S IZ E - 1 .S ;
X -Y D O T;
Y -W I1 ;

DATA GENANNO (KEEP-XSYS YSYS X Y COLOR FUNCTION P O S IT IO N  S IZ E  TEXT S TY LE ); 
LENGTH TEXT S 8 ;
SET GENA;
TEXT-AG EN;
STYLE -  'Z A P F B ':
X S Y S -' 2 ' ;  Y S Y S -* 2 ' ; CO LO R-' RED' ;  P O S IT IO N -'5  * ;  FU N C T IO N -' LABEL' ; 
S IZ E - 1 ;
X-YDOT;
Y -G E N l_ Z ;

OATA VECANN2;
SET ENVANNO GENANNO;

DATA VECTORS;
SET ENVA GENA;

PROC GPLOT DATA-VECTORS;
SYMBOLl V-NONE I-N O N E  COLOR-W HITE;
PLOT G E N l_ Z *Y D O T -l W Il*Y O O T -l/A N N O -V E C A N N 2 OVERLAY V R E F -0 ;
T I T L E l  'M IX E D  A M M I( l)  F IR S T  M U L TIP L IC A T IV E  TERM V S . Y IE L D  MEAN';

RUN;
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