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ABSTRACT
We present algorithms to reliably generate biometric identifiers from
a user’s biometric image which in turn is used for identity veri-
fication possibly in conjunction with cryptographic keys. The bio-
metric identifier generation algorithms employ image hashing func-
tions using singular value decomposition and support vector classi-
fication techniques. Our algorithms capture generic biometric fea-
tures that ensure unique and repeatable biometric identifiers. We
provide an empirical evaluation of our techniques using 2569 im-
ages of 488 different individuals for three types of biometric im-
ages; namely fingerprint, iris and face. Based on the biometric type
and the classification models, as a result of the empirical evaluation
we can generate biometric identifiers ranging from 64 bits up to
214 bits. We provide an example use of the biometric identifiers in
privacy preserving multi-factor identity verification based on zero
knowledge proofs. Therefore several identity verification factors,
including various traditional identity attributes, can be used in con-
junction with one or more biometrics of the individual to provide
strong identity verification. We also ensure security and privacy
of the biometric data. More specifically, we analyze several attack
scenarios. We assure privacy of the biometric using the one-way
hashing property, in that no information about the original biomet-
ric image is revealed from the biometric identifier.

1. INTRODUCTION
To support online activities, such as commerce, healthcare, enter-
tainment and scientific collaboration, it is crucial to be able to ver-
ify and protect the digital identity of the individuals involved. Mis-
use of identity information can result in identity theft, that is, the
act of impersonating another’s identity by presenting stolen identi-
fiers or proofs of identities. Identity theft has been receiving in-
creasing attention because of its high financial and social costs.
An approach that can help in protecting from identity theft is the
privacy-preserving multi-factor verification of identity1. Such a
1Effective solutions to protect from identity theft require a com-
bination of technical and non-technical measures. Our approach
represents one such measure which if used alone, however, may
not be sufficient to address all possible threats to the security and
privacy of identity information.

verification requires an individual to prove his/her identity by prov-
ing the knowledge of several identity attributes (also called identi-
fiers). When talking about identifiers, we distinguish between weak
and strong identifiers. A strong identifier uniquely identifies an in-
dividual in a population, whereas a weak identifier can be applied to
many individuals in a population. The number and types of strong
identifiers used in verification should not be fixed a-priori and each
party interested in verifying the identity of an individual should be
able to require any combination of such identifiers [3]. Biometric
data represent an important class of identity attributes. To fully re-
alize their potential, identity verification protocols should be able to
support the use of biometric data in combination with other digital
identifiers, such as a social security number (SSN) or a credit card
number (CCN). The privacy of the biometric data and other sen-
sitive identifiers should, however, be protected to mitigate attacks
such as identity theft. By privacy of the biometric data we mean
that minimal information about the biometric is revealed during the
biometric verification process, and that this information cannot be
reused in contexts outside a given biometric verification.

The use of biometric data in the context of identity attribute verifi-
cation poses several non trivial challenges because of the inherent
features of the biometric data. In general, two subsequent read-
ings of a given biometrics do not result in exactly the same biomet-
ric template2. Therefore the matching against the stored template
is probabilistic. Storing biometric templates in repositories along
with other personally identifiable information introduces security
and privacy risks [16]. Those databases can be vulnerable to at-
tacks by insiders or external adversaries and may be searched or
used for purposes other than the intended one. If the stored bio-
metric templates of an individual are compromised, there could be
severe consequences for the individual because of the lack of revo-
cation mechanisms for biometric templates. To overcome the short-
comings of server-based storage and matching, several efforts have
been devoted to the development of techniques based on client side
matching [26, 27]. Such an approach is convenient as it is relatively
simple and cheap to build biometric verification systems supporting
biometric storage at the client end able to support local matching.
Nevertheless, systems of this type are not secure if the client de-
vice is compromised; therefore additional security mechanisms are
needed.

Client side verification systems has lead to research on key genera-
tion mechanisms that use biometrics [50, 48, 15, 26, 27, 58, 38]. A
biometric key (BK for brevity) is never stored at any location and
the key generation mechanisms should not allow the re-generation

2The digital representation of a biometric is referred to as biometric
template.



of the BK without the individuals’ real biometrics. Note that un-
der those approaches the biometric template is stored; therefore the
verification does not involve biometric matching and instead uses
the BK. Current techniques, however, are not sufficient because of
several unresolved challenges concerning BK generation [35]. In
particular, most BK generation approaches [24] do not differentiate
between the cryptographic keys, used in the BK generation process,
and the specific information retrieved from the actual biometrics.
For example in [24] the BK is a repeatable string derived from a
user biometrics. The final BK is essentially a pre-defined crypto-
graphic key which can only be derived from information stored by
the user and the users biometric information. As such the BK is
never stored and cannot be derived without the users biometric in-
formation. Other approaches map biometric data into a unique and
repeatable binary string [50, 48, 15, 26, 27, 58, 38]. Subsequently,
the binary string would be mapped to an encryption key known as
the BK by referring to a look-up table. In this work we focus on
the repeatable binary string, referred to as the biometric identifier
(BID), that is derived from the biometrics.

The goal of this paper is to identify the biometric information nec-
essary and sufficient to generate a BID, which can in turn be used to
generate a BK or simply as conventional strong identifiers such as
SSN or CCN. To be used as strong identifiers, BIDs need to satisfy
two key properties, namely uniqueness and repeatability. Unique-
ness of BID ensures that two different individuals do not gener-
ate the same BID. If each individual is considered as a class in a
given classifier model [22], then for uniqueness property to hold,
the BIDs should have large inter-class variation. Repeatability of
BID refers to the ability by an individual to re-generate his own
BID (small intra-class variation). Another main challenge is to en-
sure the security and privacy of the biometric data. In particular,
it should not be possible to re-create the BID without the original
biometrics and the final BID should not leak information about the
original biometrics. There are additional challenges with respect to
the protection of the BID from brute force attacks conducted by ex-
ploiting meta-data stored at the client. As such several well-known
solutions to the problem of BK generation have shown to be vul-
nerable to this threat [35].

We develop an approach that does not need to use specific features
of the biometrics. We in fact use generic properties of biometric
images that are shown to be suitable for multimodal biometric sys-
tems [45]. Multimodal biometric systems utilize more than one
physiological or behavioral characteristic for enrollment and ver-
ification. This is an original contribution of our work as most of
today’s approaches are designed for a specific biometrics and can-
not be trivially generalized to other biometrics. Additionally in the
current approach, we depend on cryptographic keys in combination
with the biometric data to preserve the privacy of the biometric dur-
ing biometric verification.

Our Approach. The method for generating BIDs from biometric
measurements is characterized by two phases [38]. During the first
phase the biometric features are analyzed and used to compute a
bit string representing these features. Such bit string should have
uniqueness and repeatability properties. The bit string is then used
in the second phase to generate a unique BID with the help of some
meta-data. If two instances of the bit strings are sufficiently similar,
then the BID generated is the same.

In our approach, in Phase 1, a biometric hash vector is generated.

Figure 1: Two main phases of the biometric key generation.

Such biometric hash vector is a bit string which represents the bio-
metrics and is obtained from the biometrics through an image hash-
ing algorithm based on Singular Value Decomposition (SVD) (see
Figure 1). In Phase 2, a classifier model based on Support Vec-
tor Machines (SVM) is used to classify and rank the resulting bio-
metric hash vector. More specifically, the resulting biometric hash
vector is classified to obtain a combination of classes which repre-
sent the user’s unique and repeatable BID. The meta-data needed
to execute Phase 1 and 2 consists of the classifier model and the
pseudorandom secrets involved in the hashing algorithm.

The final BID generated at the end of Phase 2 is used for multi-
factor identity verification. Identity verification based on the use of
BIDs can be executed according to different strategies. For exam-
ple the BID can be used as a password or as an attribute embed-
ded in a digital certificate. In our approach we focus on the use
of BIDs in the context of a privacy-preserving multi-factor cryp-
tographic protocols for identity verification [3]. More specifically
such protocol is based on the notion of proof of identity which con-
sists of a cryptographic token bound to an individual, versus the
actual value of the individuals’ identity attribute. A proof is created
so that only the individual to whom the proof is bound can properly
use it. Proofs of identity attributes are built using zero knowledge
proof of knowledge (ZKPK for brevity) techniques [6, 18]. Ef-
ficient mechanisms have been developed to prove the knowledge
of multiple strong identifiers stored as cryptographic commitments
using aggregated ZKPK protocols [3].

In our approach the BID is used for identity verification based on
ZKPK. The BID is used together with a random secret r to generate
a Pedersen commitment [9]. This commitment is used to construct
a ZKPK proof. This proof is sufficient for verification purposes as
it corresponds to the biometrics enrolled in the system. The com-
mitment is enrolled with a party and can be used by any verifying
party. The use of ZKPK proof enables us to support two-factor (i.e.
the BID and the secret random r) verification. At the time of ver-
ification the individual needs both to provide r and to reconstruct
the BID, to prove knowledge of the value committed at enrollment.
To revoke a BID, the commitment corresponding to enrolled bio-
metrics is added to a revocation list which is similar to certificate
revocation lists [25] in a public key infrastructure. In our approach,
we consider the case where a revocation list consists of the biomet-
ric commitments which have been revoked. After a commitment
has been published in the revocation list, the individual cannot do
a proof of knowledge with that BID because it relies on a revoked
commitment.

Contributions. The key contributions of the paper are as follows.
First we present algorithms for reliable and secure generation of
BIDs from different types of biometrics. We focus on techniques
that are suitable for fingerprints, irises and faces. Second, we pro-
pose an approach for encoding BIDs into cryptographic biomet-
ric commitments that are used in ZKPK at the time of verifica-



tion. It follows from the zero-knowledge proof protocols that the
cryptographic proofs do not leak information except for the fact
that the verifier learns that the prover verifies the proof. As such
the verifying party obtains no information about the characteris-
tics of the real biometrics from the cryptographic proof. Therefore,
multi-factor verification techniques can use one or more biometrics
interoperably with one or more non-biometric features to achieve
strong identity verification. Our protocols ensure that the privacy
of the biometrics is preserved as the final BID does not reveal any
information about the original biometric image. We also present a
detailed security analysis of the resulting biometric verification sys-
tem. We provide an empirical analysis of the biometric key gener-
ation for different types of biometrics in order to provide evidence
of the correctness of the proposed algorithms. Finally, we briefly
discuss several use scenarios for our techniques to identify relevant
infrastructural and organizational requirements for the use of our
technique.

The rest of the paper is organized as follows. In Section 2 we in-
troduce the main algorithms for the BID generation. In Section 3
we present the experimental results. In Section 4 we develop a
comprehensive analysis of the proposed solution. In Section 5 we
discuss related work. Finally in Section 6 we make some conclud-
ing remarks and additional considerations concerning the use of our
approach.

2. BIOMETRIC KEY GENERATION ALGO-
RITHMS

In this section we first introduce some preliminary concepts related
to the techniques underlying our proposed solution. Then, we dis-
cuss the two core algorithms for the BID generation, that is, the
SVD based image hashing algorithm and the SVM classification
algorithm.

2.1 Preliminary Concepts

Singular Value Decomposition (SVD). SVD is a well known tech-
nique for factorizing a m × n matrix into a diagonal form. As
proven by Golub and Loan [23], if A is a real m-by-n matrix, two
orthogonal matrices exist:

U = [u1, . . . , um] ∈ Rm×m V = [v1, . . . , vn] ∈ Rn×n

such that

UAV T = diag(σ1, . . . , σp) ∈ Rm×n p = min{m, n}
where V T is the transpose of matrix V and σ1 ≥ σ2 ≥ . . . ≥
σp ≥ 0. σi’s, i = [1 . . . p], are the singular values of A, and
the vectors uj , j = [1 . . . m], and vk, k = [1 . . . n], are the jth
left singular vector and the kth right singular vector respectively.
σi(A) denotes the ith largest singular value of A.

The singular values of a matrix A are unique. The singular values
σi’s reflect the variations along the corresponding i singular vec-
tors. It can be shown that computation of the right singular vectors
and the singular values can be obtained by computing the eigenvec-
tors and eigenvalues of the symmetric matrix M = AT A where
AT is the transpose matrix of A.

Support Vector Machines (SVM). SVM [22] is a classifier based
on statistical learning technique developed by Vapnik et al. [13]. It
aims at finding optimal hyperplanes to determine the boundaries
with the maximal margin separation between every two classes

Figure 2: Key steps of the biometric image hashing algorithm.

Figure 3: Fingerprint region of interest.

while training the classifier model. Then additional data, which
is not used during the training, is used as test data and can be clas-
sified using the separate hyperplanes.

Let {xi, yi}, i = [1, . . . , L], be a training data vector, where xi

is the data item and yi, yi ∈ {−1, +1} is a class label. Given an
input vector x, SVM constructs a classifier of the form

f(x) = Sign(ΣL
i=1αiyiK(xi, x) + b)

where: αi, i = [1, . . . , L], is a non-negative Lagrange multiplier;
each multiplier corresponds to an example from the training data;
b is a bias constant; and K(·, ·) is a kernel function satisfying the
conditions of Mercer’s theorem [53]. Some frequently used ker-
nel functions are the polynomial kernel K(xi, xj) = (xi · xj +
1)d and the Gaussian Radial Basis Function (RBF) K(xi, xj) =

e−|xi−xj |2/2γ2
. Note that there are several approaches adopting

SVM for classification problems with three or more classes as well.

SVM applies to classification of vectors, or uni-attribute time se-
ries. To classify multi-attribute data, which are matrices rather
than vectors, the multi-attribute data must be transformed into uni-
attribute data or vectors. We use the combination of the SVD tech-
nique with SVM which has been explored by previous work [31,
37, 55]. SVD is used to reduce multi-attribute biometric data to
feature vectors.

2.2 SVD Image Hashing
In this section we describe the hashing mechanism used in Phase
1 of BID generation. The techniques presented build on the basic
image hashing process described in [30]. The main steps of the
algorithm (summarized in Figure 2) are as follows.

Pre-processing. As a first step the biometric image may be pre-



processed so as to obtain a clear well focused biometric image I .
Pre-processing provides an effective region in a selected biometric
image for subsequent feature extraction. We support three types of
biometric data: face, iris and fingerprint.

For the specific case of fingerprint image, as a part of pre-processing,
the region of interest (ROI) is identified (See step 2 of Algorithm 1).
The unique characteristics of the fingerprint are known to be around
the core point or delta point [54]. The outside portion of a fin-
gerprint is generally prone to small translations and is typically
cropped out. Also, a larger area of the central portion of finger-
tip skin is in contact with the scanner surface as compared to the
peripheries, giving a better image. The center is also better for live-
ness analysis. Since data such as the rate of perspiration can be
measured, the center region is also more robust to pressure disper-
sion as compared to the other regions. Importantly, as the exper-
imental results show, it preserves enough information to identify
individuals. The procedure to determine the ROI corresponds to
steps 6-15 of Algorithm 1 (see Figure 3). This ROI is then used
as an image input for the rest of the algorithm (step 15 of Algo-
rithm 1).

Feature Extraction. Once the image I of size n × n is finalized,
the features are extracted based on a random region selection. The
selection is executed by choosing p semi-global regions based on
a pseudorandom (PR) generator that uses a secret key r. The ob-
tained matrices corresponding to the selected sub-images (denoted
by ρi) are then transformed under matrix invariant functions such
as SVD.

The random partitioning of the image introduces unpredictability in
the hash values and hence increases the security of the overall sys-
tem. As long as these sub-images are sufficiently unpredictable, the
resulting intermediate hashes are also different with high probabil-
ity [36]. The squares ρi’s determined in steps 18–23 and used in the
partitioning (see Figure 2) are deliberately chosen to be overlapping
to further reduce the vulnerability of the algorithm to malicious
tampering. Note that an increased number of squares increases
the pseudorandomness in the resulting hash value, and therefore
helps in increasing security as explained in Section 4, assuming a
secure pseudorandom number generator. As a further advantage,
the random partitioning decreases the probability of collision and
increases the robustness against noise that may be present in the
biometric image. As reported in line 22 of Algorithm 1, the Ai’s,
1 ≤ i ≤ p, are matrices corresponding to the selected sub-image
blocks. Here each element of the matrix Ai corresponds to the
256 grey level value of the pixel of the selected sub-image. The
encoding of the actual matrix used in the transformation is done
based on the fact that every element in the matrix has a grey value
g, 0 ≤ g ≤ 255, a position v and a direction d. A single pixel
may not have a direction, but for a group of pixels, the grey value
may change hence defining a concrete direction. Grouping pixels
is important as isolated components may not be robust.

Transformation. Each sub-image Ai, 1 ≤ i ≤ p, is used to per-
form the SVD transformation. As a result for each Ai a unitary
reduction to the diagonal form is performed to obtain UiSiVi, 1 ≤
i ≤ p, such that Ai = UiSiV

T
i . As such the SVD selects the opti-

mal basis vectors in the L2 norm3 sense such that, for any m ×m

3L2 norm, defined for a vector −→x = {x1, . . . , xn} is denoted by
|−→x | = √∑n

k=1 |x2
k|.

real matrix Ai, we have

(σk,−→uk,−→vk) = arg mina,−→x ,−→y |A− Σk−1
l=1 σl

−→ul
−→vl

T − a−→x−→y T |2F
where: 1 ≤ k ≤ m; a ∈ R;−→x ,−→y ∈ Rm; σ1 ≥ σ2 . . . ≥ σm

are singular values, {−→ui} and {−→vi}, 1 ≤ i ≤ p, are the corre-
sponding singular vectors; and (·)T is the transpose operator [30].
By using the SVD we preserve both the magnitude of the impor-
tant features in singular values and also their location geometry in
the singular vectors. The combination of the left most and right
most singular vectors which correspond to the largest singular val-
ues, in turn, captures the important geometric features in an image
in the L2 norm sense. Therefore as a next step for each Ai, −→ui ,
that is, the first left singular vector and −→vi , that is, the first right
singular vector are retrieved. Those vectors are then combined in
Γ = {−→u1, . . . ,

−→up,−→v1 , . . . ,−→vp}.

The next step is to form a pseudorandom (based on pseudorandom
numbers) smooth secondary image J from Γ. J is formed accord-
ing to an iterative process, at each step of which an element from Γ
is selected and added to J . As a first step an element is pseudoran-
domly selected from Γ and set at the first column of J . Then for the
ith column of J , an element from Γ is selected such that it is clos-
est to the (i − 1)th column of J in the L2 norm sense as denoted
in step 39 in Algorithm 1. An element can only be chosen once
from Γ, therefore an element chosen at the ith step cannot have
been chosen at any of the previous (i− 1)th steps. Hence after 2p
steps all the elements of Γ are pseudo-randomly reordered to form
the secondary image J of size m×2p. Note that the secondary im-
age is required to ensure the one-way property of the SVD image
hashing algorithm (See the analysis in Section 4).

Once J is formed, SVD is re-applied to it, to finally obtain the
image hash vector (steps 49 – 52 of Algorithm 1). The left and
right singular vectors are obtained by J = UJSJV T

J . Then the
singular vectors corresponding to the largest singular values, that is,
the first left (−→uJ ) and the first right (−→vJ ) are chosen. These vectors
are simply combined to obtain the final hash value

−→
H = {−→uJ ,−→vJ}.

2.3 SVM Classification
As discussed in the previous section, from one input biometric sam-
ple, a hash vector

−→
H = {−→uJ ,−→vJ} of length m + 2p is obtained.

Since the hash vectors obtained from different biometric samples of
the same user may be the same or may differ from sample to sam-
ple, we train a classifier to determine which hash values correspond
to a given user (or class), so that at the time of verification, the clas-
sifier can identify the correct class of the user. To achieve this goal
several biometric samples of different users are taken. Algorithm 1
is run on each sample to get the corresponding hash vector.

These samples are then divided into training and test data to per-
form the classification. We use K-fold cross-validation to divide
the training and testing data. All sample hash vectors are parti-
tioned into K subsamples. Of the K subsamples, a single subsam-
ple is retained as the validation data for testing the model, and the
remaining K - 1 subsamples are used as training data. The cross-
validation process is then repeated K times (the folds), with each of
the K subsamples used exactly once as the validation data. The K
results from the folds are then averaged to produce a single estima-
tion [2].

The obtained hash vectors do not greatly differ with respect to
the Euclidean distance, as inferred through experimental analysis;



Algorithm 1 Generic Biometric Image Hashing Algorithm
Require: Biometric image I
Ensure: The quality of the image is suitable based on biometric.
1: Input biometric image I
{Pre-process fingerprint images to calculate ROI}

2: if (type(I) == ’fingerprint’) then
3: point1 = Algorithm R92(I) {Compute core or delta point}
4: size = 4 {Set fingerprint ROI threshold size}
5: count = 0
6: for each line i in orthogonal directions (N,S, E, W) do
7: repeat
8: increment length of line;
9: if line encounters a ridge then

10: pointi = coordinate of intersection of line and ridge
11: count++
12: end if
13: until (count 6=size)
14: end for
15: I = crop(point2, point3, point4, point5)
16: end if
17: Let resultant image I ∈ Rn×n be of size n× n

{Random Selection}
18: Let p be the number of rectangles
19: Let ρi be the ith rectangle and m be the height/width of ρi.
20: for each i where 1 < i < p do
21: Randomly position rectangle ρi at (xi, yi) such that xi + m < n

and yi + m < n
22: Let Ai be the “sub-image” that is formed by taking the portion of

image that is in ρi : Ai ∈ Rm×m, 1 ≤ i ≤ p.
23: end for
24: {First SVD Transformation}
25: for each Ai where 1 ≤ i ≤ p do
26: Ai = UiSiV

T
i {Collect singular vectors corresponding to the

largest singular value}
27: −→ui = first left singular vector
28: −→vi = first right singular vector
29: end for
30: Γ = {−→u1, . . . ,−→up,−→v1, . . . ,−→vp}
31: Initialize secondary image J [m, 2p] {Constructing secondary image

from singular vectors}
32: for all c where 1 ≤ c ≤ 2p do
33: Initialize variable ec corresponding to element in Γ
34: if c = 1 then
35: ec = PR Select(Γ)
36: else
37: var loop = true
38: while var loop do
39: ec = min2p

k=1(
√∑c−1

l=1 (J(l)− Γ(k))2)

40: if not(ec already chosen for J) then
41: var loop=false
42: end if
43: end while
44: end if
45: for all r where 1 ≤ r ≤ m do
46: J [r][c] = ec[r]
47: end for
48: end for

{Second SVD Transform}
49: J = UJSJV T

J {Collect singular vectors corresponding to the largest
singular value}

50: −→uJ = first left singular vector
51: −→vJ = first right singular vector
52:

−→
H = {−→uJ ,−→vJ}

53: return Hash Value
−→
H

therefore we use SVM techniques to map the input hash vectors
onto a higher dimensional space where a maximal separating hy-
perplane can be constructed.

As explained in Section 2.1 the hyperplane constructed using SVM
is such that it has the maximum distance to the closest points of the
training set. These closest points in the training set are called sup-
port vectors. Here we use the Gaussian radial basis kernel function
(RBF for brevity) K(

−→
H i,

−→
H j) = e−|

−→
Hi−

−→
Hj |2/2γ2

where
−→
H i and−→

H j are two of the training samples and γ > 0.

During training, two specific parameters have to be assessed, namely
γ used in the RBF kernel function and the penalty parameter C used
in the evaluation of an optimal hyperplane balancing the tradeoff
between error and margin. To select the pair with the best CV ac-
curacy, all combinations of C and γ are tried using a grid search
method [8]. After training, the SVM model encodes all the classes
that this SVM classifier has been trained with.

Note that an increased number of classes increases the number of
choices for an attacker executing guessing attacks on the SVM
model, to guess the right BID. Additional classes can be added to
the original SVM classifier model by training additional samples
of the given biometrics. These samples have to be carefully added
as the added classes, which do not resemble the original biometric
classes, would most likely be easily ruled out by an attacker. We
therefore employ a strategy to make the additional classes similar
to the original set of classes. For each class in the SVM model
we define a protector class which is similar to the original class so
that the cluster formed by the protector class is close to the origi-
nal SVM class, and yet is different enough to be distinguished as
a different class. There could be different ways of obtaining the
protector classes. The first is to find biometric images of different
individuals which look perceptually similar. The second possibil-
ity is to add noise to the original biometric image. For example,
the face images could be modified to render naturally asymmetric
features to symmetric or changing other specific aspects as the size
of the face characteristic such as the eyes, nose and so on. If there
are n original classes, then we add a protector class for each, thus
resulting in 2n classes. We also add other spurious classes which
are not similar to the original biometric samples (as the protector
classes) but are of the same biometric type.

As a final step, a combination of the classes is chosen based on
SVM ranking which provides class prediction confidence of the
SVM classifier. More specifically if n is the total number of classes,
the final BID is the label of class with the highest confidence la-
bel and an unordered combination of the top t = n

2
class labels

which are listed with decreasing confidence levels. For an attacker
to guess the BID, given the SVM classes, the number of choices
is n +

(
n
t

)
resulting in the final number of bits as log2(n +

(
n
t

)
).

Considering the FAR for the primary class the final number of bits
would be MIN [log2(n),− log2(FAR)] + log2(

(
n
t

)
). We typi-

cally consider the total number of classes n > 69 which leads the
number of choices to be > 264, thus making it computationally
hard for the attacker to guess the right BID.

3. EXPERIMENTS
In this section we summarize the experimental results we conducted
to assess the accuracy and robustness of our approach. We carried
out extensive tests for different biometrics, to demonstrate that the
relevant criteria required for the security, repeatability and unique-



ness of the BID are met. All experiments have been conducted us-
ing Microsoft Windows XP Professional 2002 Service pack 1 oper-
ating system, with Intel(R) Pentium(R)4 3.20GHz and memory of
512MB.

3.1 Dataset and Experimental Setup
We tested our hashing algorithm (Algorithm 1, Section 2.2) on fin-
gerprint, iris and face data. Summary information about the data
used and the obtained results is reported in Table 2. For finger-
prints we used FVC [34] databases. The FVC dataset used con-
sists of overall 324 fingerprint images of 59 individuals collected
using thermal sweeping and optical sensors. We also used 50 im-
ages of 10 individuals generated using the synthetic fingerprint gen-
erator SFingeGe v3.0 [7]. Regarding the iris data, the UBIRIS
iris Database3 [44] was used which consists of 1695 images of
339 individuals’ eyes. Finally for the face data we used the Yale
Database of Faces [20] containing 100 images of 10 individuals
and the AT&T Database of Faces [1, 46] containing 400 images
of 40 individuals. We evaluated our results using the SVM clas-
sification algorithm, with K-fold cross validation (CV). Based on
the CV accuracy, the False Acceptance Rate (FAR) and False Re-
ject Rate (FRR) were calculated. The FRR is calculated as 1 −
CV Accuracy, whereas the FAR is calculated as the number of
false accepts divided by the number of tries.

The values used in the experiments for the key parameters of Al-
gorithm 1 are reported in Table 1, where n is the size of the image
in pixels, p is the number of sub-images, m is the size in pixels for
each of the sub-images, and J is the secondary image.

To assess the optimal values for p and m, we ran experiments
with various possible combinations of the values and used the one
which provided the maximum accuracy. For example for the finger-
print database FVC2004 DB3 B, the value of p was varied between
[10, . . . , 100] and the value of m between [10, . . . , 100] (See Fig-
ure 4); the highest accuracy was found for p = 50 and m = 30.

The code for implementing the various steps is written in MATLAB
and the rand() function of MATLAB is used as the pseudo ran-
dom function used in step 21 and 35 of Algorithm 1. The size of the
secondary image J is 30× 100 leading to the size of −→uJ = 30× 1

and −→vJ = 100 × 1, thus resulting in a hash vector
−→
H = {−→uJ ,−→vJ}

of 130 dimensions.

For the SVM classification we adopted the LIBSVM [8] package to
generate the hash vectors and build the final classifier model. This
uses the RBF as the kernel function. Based on experimental analy-
sis, C was set to the range {25, . . . , 215} and γ to {2−5, . . . , 23}.
All combinations C and γ were tried using grid search to select the
best CV accuracy based on the input data.

Image type n p m J size
−→
H size

Fingerprint/Iris/Face 128 50 30 30× 100 130

Table 1: Parameter values for experiments on Algorithm 1.

3.2 Experimental Results
We now discuss the results of the experimental evaluation of our
approach. First, regarding the time performance, on the average,
the hash vector from any given image is generated in 0.9597 sec-
onds. The generation of SVM model for about 220 persons’ hash
vectors takes 3 or 4 hours. At the testing stage, once the model is

Figure 4: Plot of different values of number of sub-images (p); the
image size of sub-images (m); and the corresponding CV accuracy.

Figure 5: J2 histogram of iris classification.

generated, it takes approximately 0.001 second to classify the test
images.

Regarding the experimental results, the obtained results largely con-
firm the correctness of our algorithm: in each of the test cases,
the accuracy was above 85% cross validation. False acceptance
rates were within the interval [1.99×10−04, 1.33×10−02], which
translates into the assurance that the chances of accepting an in-
correct biometric image are low. The worst observed FAR value is
1.33× 10−2, which interestingly is obtained for the images gener-
ated by the synthetic fingerprint generator, where the conditions for
biometric generation were generally better controlled (e.g., there
was no unexpected noise because of human interaction). Regard-
ing FRR, the worst observed FRR value was in conjunction with
the worst accuracy results since the FRR result is dependent on the
accuracy (see previous section). The worst rate amounts to 14%
(test case n. 3) and it is still acceptable, as it is in the same order
of similar biometric key generators [24]. Additional insights spe-
cific to the different types of tested biometrics are discussed in what
follows.

Fingerprint. Two types of Fingerprint Verification Competition
(FVC) databases [34] corresponding to two types of sensors were
used for the fingerprint biometric experiments. The sensors highly
influence the quality of fingerprint images. We define the quality
of the fingerprint image according to three criteria [28]: (i) high
contrast between ridges and valleys, (ii) the image area foreground,
and (iii) little scar or latency. As shown by the results, the CV cross
validation is above 85% for each data set considered, which con-



# Biometric
Type

Database Name Description # Im-
ages

#
Persons

CV Accu-
racy %

FRR % FAR %

1. Finger-print FVC2004, DB3 B 300× 480, Ther-
mal Sweeping
Sensor

54 9 92.59 7.41 9.26 ×10−03

2. Finger-print FVC2004, DB3 A 300× 480, Ther-
mal Sweeping
Sensor

150 30 97.33 2.67 9.21 ×10−04

3. Finger-print FVC2004, DB2 328× 364, Opti-
cal Sensor

120 20 85.83 14.17 7.46 ×10−03

4. Finger-print SFingGe v3.0, Syn-
thetic Generator

288× 384 50 10 88 12 1.33 ×10−02

5. Iris UBIRIS.v1 Sessao 1 800 × 600 − 24
bit color

1100 220 87.73 12.27 5.6 ×10−04

6. Iris UBIRIS.v1 Sessao 2 800 × 600 − 24
bit color

595 119 97.65 2.35 1.99 ×10−04

7. Face The Yale Face
Database B

640×480−8 bit
gray scale

100 10 99 1 1.11 ×10−03

8. Face AT & T Databases of
Faces

92 × 112 − 256
bit gray scale

400 40 98.25 1.75 4.49 ×10−04

Table 2: Summary of the experimental results of all biometric data types.

firms the validity of our approach. A first important consideration
suggested by the experimental results is that the algorithm performs
better in case of large data set (as in the test case n. 2 in Table 2),
most likely because of the more accurate training and testing during
the configuration phase which helped in finding the optimal config-
uration parameters. We also notice that on average our algorithm
performs better when using the thermal sensor than when using the
optical sensor because the thermal sensor captures better quality
fingerprint images. We can explain this result by elaborating more
on how the quality is affected, in that the quality of the fingerprint
image is affected by several human factors such as skin humidity
and pressure. If the skin humidity is lower, the image quality of
the optical sensor degrades. The skin humidity does not affect the
image quality of the thermal sensor because it is the sweeping type.
Moreover, regarding pressure, for optical sensor the foreground im-
age is smaller for low pressure, while the fingerprint is smeared for
high pressure. This is again not true for thermal sweeping sensor
where the image quality is not significantly affected.

Note that the last data set was composed of artificially generated
images. We experimented with synthetic fingerprint images as they
potentially supply non-biased images and can be created at a low
cost. It was difficult to control the randomness which lowered
the cross validation classification accuracy to 88%. We believe
the results could be improved using synthetic generator version
which generates several samples corresponding to a single indi-
vidual, maintaining the invariant features of an individual for all
samples.

Iris. We used the UBRIS.v1 Sessao 1 (Session 1) and UBRIS.v1
Sessao 2 (Session 2) [44, 43] iris databases. For the first image
capture session, noise factors, such as reflections, luminosity and
contrast, were minimized. In the second session the capture place
was changed to introduce a natural luminosity factor. Images col-
lected in the second session simulated the ones captured by a vi-
sion system without or with minimal active participation from the
subjects, adding possible noise to the resultant images. Note that
when capturing iris images, some pre-processing is performed. A
sequence of images is obtained rather than a single image. Not all
images in the input sequence are clear and sharp enough for recog-
nition. The images may be out of focus, or contain interlacing lines

caused by eye motion or have severe occlusions caused by eyelids
and eyelashes. Therefore, only high quality images from an input
sequence are included in the final database.

Face. We used two databases for these experiments. The first one
collected good quality images, in that photos were taken with sub-
jects in frontal pose. Thus the resulting cross validation accuracy
was 99%. The second set of tests was performed on images taken
at different times, varying the lighting, facial expressions (open /
closed eyes, smiling / not smiling) and facial details (glasses / no
glasses). All the images were taken against a dark homogeneous
background with the subjects in an upright, frontal position with
tolerance for some side movement. Despite this, the overall cross
validation accuracy of this database was 98.25% although the false
rejection rate increased by .75%.

4. ANALYSIS
We start with proving some key properties related to uniqueness
and repeatability and security properties of the BID generation al-
gorithms. Based on such results we analyze privacy aspects and
discuss how to prevent from possible attacks.

4.1 Uniqueness and Repeatability
A criterion frequently used for assessing uniqueness and repeatabil-
ity in classification is the J2 function [32]. The key idea of the J2

function is to compare the within-class distance of the various hash
vectors (or elements being classified) belonging to a given class,
with the between-class distance among the various classes. There
are two key steps to be taken while evaluating J2.

The first step is to evaluate the within-class scatter matrix Sw:
Sw = ΣM

i=1SiPi where M is the total number of classes; Si =
E[(x−µi)(x−µi)

T ] is the covariance matrix4 for a class denoted
by wi where E is the expected value function, x is any vector in
class wi and µi is the mean vector of class wi; and, Pi = ni/N
where ni is the number of samples in class wi and N is the total
number of samples in all the classes.

4Covariance is the measure of how much two random variables
vary together. A covariance matrix is a matrix of covariances be-
tween elements of a vector.



The second step is to evaluate the between-class scatter matrix
Sb:Sb = ΣM

i=1Pi(µi − µo)(µi − µo)
T where µo = ΣM

i=1Piµi

is the global mean vector of all the classes.

From the above a covariance matrix of feature vectors with respect
to the global mean is evaluated as Sm = Sw + Sb. Finally the J2

criterion is calculated as: J2 = |Sm|
|Sw| As it is evident from the equa-

tion, for good repeatability of correct classification (small within-
class distance), and uniqueness (large between-class distance) the
value of J2 should be large.

We carried out additional experiments on all the datasets to estimate
J2 and obtained average values of J2 for fingerprint as 1.2712 ×
1081, iris as 1.5242 × 10303 and face as 3.7389103. These values
of J2 and the corresponding classification accuracy (See Table 2)
provide empirical evidence that the algorithm satisfies the unique-
ness requirement on the biometric hashes generated based on the
biometric datasets provided.

For clarity, we provide an example of a J2 histogram for the Iris
Session 1 database in Figure 5 (data corresponding to test case n.
5 in Table 2). Note that the J2 metric requires the calculation of
within class and between class distances of all the possible pairs
of data elements. The y axis in the histogram presents the values
of log(J2) class distances between any two classes. For instance
for a value (120(x-axis),100(y-axis)) means that there are 100 class
distances which have the J2 value of 120. If there are all together
|C| number of total classes then the possible permutations of the
distances to be tested are |C|×|C−1|

2
.

4.2 Biometric Image Keyed Hashing
We analyze the one-way security property of the SVD based bio-
metric image hashing algorithm. More specifically, we show that
it is computationally hard, given the BID hash vector

−→
H to recon-

struct the original biometric image. We prove this result by the
following two theorems. First, we prove that it is hard to construct
the secondary image from the vector, which is required for recon-
structing the original biometrics. The result (Theorem 2) shows
that even if the second image is constructed or attacked, it is still
hard to obtain the original biometric image I . Our results are based
on the combination of mathematical properties of the SVD and the
employed hashing technique.

THEOREM 1. Let −→u J and −→v J be the vectors which form the
final hash value H(uJ , vJ), and let λi be non-zero eigen values of
the matrix JT J where J is the secondary image. If there is no λi

that is dominant, then it is computationally hard to construct the
secondary image from H(uJ , vJ).

Because in our theoretical results the assumption that there is no
dominant eigenvalue is crucial, we have carried out extensive an
experimental analysis on the biometric images to assess whether
such assumption holds. Our experimental results show that such
assumption holds because of the smoothness of the secondary im-
age. A proof sketch of the theorem is reported in Appendix A.

THEOREM 2. Given the secondary image it is computationally
hard to obtain the original image I .

Proof Sketch in Appendix A.

Type n spurious η # bits
Fingerprint 69 - 2.84× 1019 64
Fingerprint 139 69+1 2.36× 1040 134
Iris 220 - 4.52× 1064 214
Iris 119 - 2.43× 1034 114
Face 101 50+1 1.01× 1029 96

Table 3: Summary of number of SVM classes and entropy.

As a final remark we note that even if the attacker is able to retrieve
the biometric image, it cannot reconstruct the hash vector without
the knowledge of the secret random value needed during the selec-
tion of the p sub-images and to pseudorandomly combine them to
form the secondary image J .

4.3 SVM Classes and BID Space
From the empirical analysis during the classification experiments
provided in Section 3, we observe that if n is the number of classes,
and these classes are listed in decreasing order of their confidence
level, the highest confidence class is the same and the unordered
set of the following t classes where (n − 1) ≥ t ≥ n

2
is the same

for the multiple testing rounds in the K-fold validation. In general,
for most SVM classification experiments for all three biometrics,
the ordering of several of the t classes was swapped with the neigh-
boring classes. Therefore for the final label which denoted the final
BID value, we use the class with the highest confidence followed
by an unordered combination of the next t classes. For an attacker
to guess the right key based on the classifier model, the number of
choices would be η = n +

(
n
t

)
, under the assumption that each

class has the same likelihood. Based on the uniqueness analysis
from the J2 metric we observe that the samples considered have
large inter-class distances, thus avoiding centroid formations that
would narrow down the attacker’s number of choices. As part of
future work, we plan to further investigate inference-based attacks
on the SVM model, which could potentially help the attacker make
better guesses about the combination of classes used for generating
the BID.

As noted from the experiments n in our case ranges in the interval
[69, 220]. Based on the value of n, the resulting η ranges in the
interval [264, 2214]. η is proportional to the number of bits needed
to encode the BID. More precisely the number of bits, considering
the FAR for the primary class, is MIN [log2(n),− log2(FAR)]+
log2(

(
n
t

)
). This results in the number of bits ranging in the interval

[64, 214]. A summary of the experimental data corresponding to
the biometric type, n, η and final number of bits of the BID is
provided in Table 3.

4.4 Privacy and Security Analysis
We now analyze the relevant privacy and security properties of our
technique, based on the above results. In addition we briefly an-
alyze how our commitment technique is employed in the multi-
factor approach to identity verification.

4.4.1 Privacy Analysis
Privacy in our context includes the following properties: unlink-
ability of the BID to the source biometric image, anonymity and
confidentiality.

Unlinkability: Unlinkability refers to the impossibility of linking
the BIB with a source biometric image. This property holds in our



approach as a consequence of the irreversibility results of Theo-
rems 1 and 2. The one-way nature of the BID generation process
guarantees that there is no way to reconstruct the biometric image
from the BID.

Confidentiality: Confidentiality refers to keeping the biometrics
confidential throughout all the processing steps of the BID life-
cycle. We protect confidentiality of the image as follows. First,
once the biometric image is captured, the conversion phase only
requires the hashing secrets and the SVM classifier model (referred
to as the meta-data). Specifically, only the classifier model is per-
manently recorded by the system. During the verification phase,
only the hash values obtained after processing the biometric im-
ages are used. Clear text images and templates are not required, so
as to minimize information exposure. Therefore the only code that
needs to be trusted to assure confidentiality of the biometric image
is the code that given the initial image generates the hash value.
Such code must be trusted not to leak the image and to discard the
image once the hash value has been generated; the code is small
and thus can be easily verified. We remark that confidentiality is
preserved even in case an attacker gains partial information related
to the BID. Since the BID and the biometric image are unlinkable,
the confidentiality of the biometric image is preserved, as given the
BID, given the unlinkability of the BID with the biometric image.

Anonymity: Anonymity refers to the property that prevents an in-
dividual to be identifiable within a set of subjects [42]. Our ap-
proach also assures anonymity, provided that no other identifying
information is used in combination with the BID ZKPK proofs
needed for verification. The generated BID, in fact, does not re-
veal any unique physiological information about the user’s iden-
tity which is one of the key problems in typical matching based
biometric verification. Also it follows from the unlinkability and
confidentiality properties that the attacker cannot recreate the hash
values given the biometric image and also cannot link a BID to an
actual individual.

4.4.2 Security Analysis
Security in our system is given by the difficulty of perpetrating im-
personation attacks.

We make two key assumptions in order to achieve a high-assurance
BID generation. First, we assume that the sensor which captures
the biometric image is able to detect live images and does not leak
the image or information about the image. Second, we assume that
the pseudorandom hashing secret used in Phase 1 is not compro-
mised. If at least one of the two assumptions holds, then the BID
cannot be compromised, as elaborated further in the analysis below.

We now focus on an attacker trying to impersonate a given user
based on the BID and show how our approach withstands these
types of attacks. We analyze the attackers’ options by considering
each of the secrets involved in the system.

The various possible points of attack include (A) biometric image;
(B) hashing secrets; (C) classifier model used in Phase 2 (see Fig-
ure 2); (D) BID and possibly additional secrets and components
depending on other cryptographic components used. The secrets
of the system are the hashing secrets used in Phase 1 and the ran-
dom commitment secret which is used together with the BID to
create the cryptographic commitment. The classifier model is not
assumed to be secret. Precisely, the classifier model can be re-
vealed without jeopardizing the protocol security if the number of

classes n is greater than 69. This is because n > 69 (69 is the mini-
mum sample size used in our experiments) would make the number
of possibilities greater than 264 thus ensuring computational hard-
ness. As described in Section 4.3, increasing the value of n by
adding classes increases the keyspace; making it computationally
hard for an attacker to perform a brute force attack.

A B C D E Attack Prevention Summary
1 × BID cannot be created without hashing secrets.
2 × × BID cannot be created without classifier model.
3 × × The classifier model does not allow inference of

the hashing secret needed construct BID.
4 × × × × The BID is compromised, but the commitment

secret prevents from creating ZKPK.
5 × The BID is compromised, but the commitment

secret prevents from creating ZKPK. No other
secrets are leaked.

6 × × × All stored information is compromised but the
BID cannot be created without biometric image.

Table 4: Possible security attacks [key: (A) biometric image (B)
hashing secrets (C) classifier model (D) BID (E) commitment
secret; ×: the value is known to the attacker].

To succeed in an impersonation attack the attacker needs to know
all the secrets required to create the BK. In order to gather the other
secrets, the attacker would have to pass the verification methods
and compromise the system. Bypassing the cryptographic ZKPK
protocol is computationally hard [18, 5]. Additionally, the crypto-
graphic ZKPK protocol prevents replay attacks: the attacker cannot
use the proofs created during a given biometric verification process
in any another verification process. Table 4 provides a summary of
the various cases in which one or more secrets are compromised,
and reports possible security implications. Case 1, 2 and 3 address
the cases in which the biometric image is known to the attacker, but
not the meta-data, which includes the hashing secret and classifier
model, nor the random secret in the BID commitment, which are
stored by the user. Thus, in these cases the attacker is not able to
generate the BID. However, if the attacker knows the BID, then to
perform successful verification it also needs the commitment se-
crets. This scenario is summarized by case 4. As noted earlier the
knowledge of the BID does not reveal any information about the
biometric image or the secrets involved as shown in case 5.

Finally, an interesting case is when the stored information including
the meta-data and the commitment secret are compromised (case
6). In this case, the attacker’s best choice as a source of information
is the SVM model. However as we show in Section 4.3, for number
of classes n > 69, the number of choices > 264 which makes it
computationally hard for the attacker to guess the right BID.

5. RELATED WORK
Biometrics-based key generation has been extensively investigated
in the past years. As mentioned earlier, the biometrics-based key
generation is characterized by two stages. At the first stage certain
biometric features are used to compute a bit string representing that
biometrics. The bit string is then used in the second stage to gen-
erate a unique cryptographic key with the help of stored meta data.
If two instances of the bit strings are sufficiently similar then the
cryptographic key generated is the same. In most approaches, the
second stage is independent of the biometrics being used, whereas
the first is mostly biometric-specific.

The first approach to biometrics-based key generation is by Soutar



et al. [50, 49, 48]. They developed methods for generating a repeat-
able cryptographic key from fingerprints using optical computing
and image processing techniques. Following Soutar’s work several
strategies have been proposed for improving the second-stage of the
key generation. Davida et al. [15] described a second-stage strat-
egy using error correcting codes (ECC) and how it could be used
with first-stage approaches for generating a bitstring representing
iris scans[14]. The second-stage approach was significantly im-
proved by Juels et al. [26, 27]. The underlying intuition behind
the error correction and similar schemes can be understood based
on Shamir’s secret sharing scheme [47]. The hardness of Shamir’s
secret sharing scheme is based on the polynomial reconstruction
problem which is a special case of the Reed-Solomon list decoding
problem [4]. In fuzzy vault scheme proposed by Juels [27] based
also on ECC, the user adds spurious chaff points which make it in-
feasible for an attacker to reconstruct the polynomial representing
the BK.

Since the introduction of the fuzzy vault scheme, several researchers
have implemented it in practice [11, 57, 17, 10, 19, 51, 40]. In par-
ticular the most recent work is by Nandakumar et al. [40] where
the fuzzy vault implementation is based on the location of minutia
points in a fingerprint. They generated 128 bit keys and obtained
an accuracy rate of 91% for high quality images and 82.5% for
medium quality images. The FRR was approximately 7% which
shows an improvement over several other implementation of this
scheme (where the average FRR was from 20-30%). From the ex-
perimental point of view, we generate 134 bit keys with the accu-
racy of 94.96% for high quality images and 86.92% for medium
quality images. The FRR was on an average 9.06% which is com-
parable to the above scheme. From the algorithmic point of view,
we use a similar concept of chaff points while adding spurious
classes to make it hard for the attacker to guess the correct final
key. We do not use ECC to retrieve the final key, but plan to in-
vestigate how ECC can be used while finding a list of SVM classes
uniquely ordered by the confidence measures (See Section 4.3). A
major difference of our approach with respect to the stage-one ap-
proaches of the various implementations of the fuzzy-vault is that
their feature extraction is specific to the type of biometrics. Depen-
dence on specific features has led to brute force attacks on several
fuzzy vault implementations [35]. In our case, we instead use im-
age analysis which can be used for several generic 2D biometric
images such as fingerprint, iris and face.

Another scheme which makes use of the polynomial reconstruc-
tion problem in the second-stage is the scheme proposed by Mon-
rose et al. which was originally used for hardening passwords us-
ing keystroke data [39] and then extended for use in cryptographic
key generation from voice [38]. Let us consider the case when m
biometric features are recorded at stage-one. When the system is
initialized the main key κ and 2m shares of κ are generated us-
ing generalized secret sharing scheme. The shares are arranged
within an m × 2 table such that κ can be reconstructed from any
set of m shares consisting of one share from each row. The selec-
tion is based on the biometric features recorded. Monrose et al.
show that it is computationally infeasible for an attacker to guess
the right shares because of the random or spurious shares present
in the table. We also add spurious classes in the SVM classifica-
tion model to make it infeasible for the attacker to guess the BID.
Moreover, the features they capture in stage-one for key stroke [39]
are durations and latencies, whereas for the voice [38] are the cep-
tral coefficients. Their experimental evaluation shows an average
about 20-30% FRR. This biometric encoding of voices is not com-

parable with ours as we consider different biometrics which can be
represented in 2D images.

Several of the techniques have been recently extended in the con-
text of bio-hashing [33, 29, 12]. The approaches closest to ours are
the bio-hashing techniques by Goh and Ngo [21, 41] who propose
techniques to compute cryptographic keys from face bitmaps. Bio-
hashing is defined as a transformation from representations which
have a high number of dimensions and high uncertainty (example
face bitmaps) to representations which have a low number of di-
mensions and zero uncertainty (the derived keys). Like our work,
the goal of using the image hashing techniques is to extract bits
from face images so that all similarly looking images will produce
almost the same bit sequence. However, the work mainly focuses
on the first stage of biometrics-based key generation and proposes
the potential use of Shamirs secret sharing techniques [47] in the
second stage. With respect to the first stage, Goh and Ngo use prin-
cipal component (PCA) analysis for analyzing the images. This is
similar to our use of SVD, as both SVD and PCA are common tech-
niques for analysis of multivariate data. There is a direct relation
between PCA and SVD in the case in which principal components
are calculated from the covariance matrix. An important capabil-
ity distinguishing SVD and related methods from PCA methods is
the ability of SVD to detect weak signals or patterns in the data
which is important in our case as we propose to use our techniques
for generic 2D biometric images. The methodologies we employ
for stage-one also differs in that the biometric hash vector output
from stage-one cannot be simply distinguished using straight for-
ward implementation of hamming distance based analysis as pro-
posed in [21, 41]. We instead combine stage-one and stage-two
with the use of SVM classifiers in stage-two which provides a way
to analyze the properties such as inter and intra-class distance of the
biometric hash vectors. We provide a detailed analysis of our ap-
proach which has not been developed in earlier bio-hashing work.

There are other biometric cryptosystems in which biometric au-
thentication is completely decoupled from the key release mecha-
nism. The biometric template is stored on the device and when the
biometric match happens, the cryptographic key is released [52].
This approach however has several vulnerabilities and is not related
to our key generation approach.

6. CONCLUSION
In this paper we have presented a novel approach for generating
BIDs from 2D biometric images. These BIDs can be used to-
gether with other identity attributes in the context of multi-factor
identity verification techniques. In the proposed approach the se-
cure management of the BID’s random secret is an important issue.
To address such issue there are approaches that provide a secure
and usable way to manage and store those random secrets. One
such approach [56] uses cellular phones based on NFC (Near Field
Communication) technology and allows users to store secrets on
the phone as well as to split them among various phone compo-
nents (including an external card) and also on an additional exter-
nal device for increased security. From the user side, configuration
is very easy in that the user has a menu with three security levels
(low, medium, high) among which to choose. Each such level cor-
responds to a different splitting strategy. We refer the reader to [56]
for more details.

In addition to the technical solution provided in the paper, we have
also investigated organizational requirements based on the poten-



tial scenarios where our approach would be most likely used5. In
particular, the security of the initial enrollment is crucial for the
overall process. We have developed cases in which enrollment has
high assurance and it is performed at controlled and secure enroll-
ment points. By contrast, in a non-secure enrollment, additional
verification steps are needed to attest the biometric key generation
software and the storage medium used for storing the user secret
keys. We have thus explored the possible media used to store the
secrets and benchmarked them to identify the most suitable media.
Similar considerations apply to the verification locations, which
may be protected or unprotected. Such analysis has been instru-
mental for clarifying the relevant preconditions that need to be met
to successfully apply our approach, and to identify possible non-
technical limitations.

We plan to further investigate possible attacks on the classification
model to see if guessing attacks can reduce the entropy of the bio-
metric samples considered. The η provided in Section 4 assumes
that there are no guessing attacks as the J2 value is high. However,
there may be additional attacks such as those discovered by Mi-
hailescu in [35] relevant to Fuzzy Valut schemes where the entropy
of the scheme was significantly reduced as a result of the attacks.
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APPENDIX
Proof.[Theorem 1]

If only the final hash value is known to an adversary, then the first
step is to approximate the secondary image J (See Figure 2). We
prove the hardness by analyzing the following equation which pro-
vides a possible approximation of the secondary images –

J =

r∑
i=1

√
λiuiv

T
i =

√
λ1uJvT

J

+
√

λ2u2v
T
2 +

√
λ3u3v

T
3 + . . . +

√
λrurv

T
r︸ ︷︷ ︸

where r = 2p; p is the number of sub-images created; and λi,
1 ≤ i ≤ r are non-zero eigen values of the matrix JT J such that
λ1 > λ2 > . . . > λr . Note that JT is the transpose matrix of J
and a positive square root of λi is a singular value. The ui’s and
vi’s, i = [1, . . . , r], are eigenvectors of JJT and JT J respectively.
Since the final hash value, [uJ ,vJ ] are known to the adversary, the
values which need to be guessed are λ1 and {λ2u1v

T
1 +λ3u2v

T
2 +

. . . + λrurv
T
r }. To guess λi’s there are infinitely many solutions

as any nonnegative eigenvalues can lead to specific eigenvectors
that are unitary (i.e. satisfy the definition). Any eigenvalue matrix
resulting from this construction will give a solution to the equation
and therefore it is computationally hard for the adversary to identify
the original value.

If there is a case in which λ1 is dominant such that the rest of the
values λ2, . . . , λr are approximately equal to zero, then one could
try to guess λ1 and possibly approximate the secondary image by
J̇ =

√
λ1uJvT

J . It is not trivial to theoretically predict the possi-
ble distribution of the values of λi’s because they are dependent on

the type of image and the distribution of the pixel values of those
images. Therefore we conducted experimental evaluation on the
biometric images and found that the λi’s are distributed such that
there is no one dominant eigenvalue because the secondary image
J is a smooth image (i.e. the adjacent pixels of the image do not
differ beyond a certain threshold which is determined by the algo-
rithm parameters). We conclude that because of the hardness of
guessing the eigenvalues and the lack of dominant eigenvalues the
reconstruction of the secondary image J from the resultant hash
vector

−→
H is computationally hard for the biometric types consid-

ered. 2

Proof Sketch. [Theorem 2]

If J is known to the adversary, then the first step would be to form
each sub-image matrix Ai, where 1 ≤ i ≤ p. Note that a combi-
nation of all Ai eigenvectors were used to construct J . Each Ai is
of the form Ai = UiSiV

T
i . As in the proof of Theorem 1, an infi-

nite number of eigenvalues exist for constructing infinite Ai which
would satisfy the relation. Moreover, using the same reasoning
as before, there are no dominant eigenvalues as the p sub-images
each of size m ×m are overlapping. Because of the overlap most
significant eigenvalues do not differ beyond a certain threshold as
determined by the algorithm parameters p and m. In addition the
largest eigenvectors (i.e. the left most and the right most vectors
of the Ui and Vi matrices respectively) of each sub-image Ai are
pseudorandomly combined to form J resulting in the number of
choices the attacker would need to try as p!. This motivates the
need for large values of p (∼ 50). As a result guessing the order
of each sub-image Ai and hence creating the original image I is
computationally hard.


