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Biometrics Evaluation under Spoofing Attacks
Ivana Chingovska, André Anjos, Sébastien Marcel

Abstract—While more accurate and reliable than ever, the
trustworthiness of biometric verification systems is compromised
by the emergence of spoofing attacks. Responding to this threat,
numerous research publications address isolated spoofing detec-
tion, resulting in efficient counter-measures for many biomet-
ric modes. However, an important, but often overlooked issue
regards their engagement into a verification task and how to
measure their impact on the verification systems themselves.
A novel evaluation framework for verification systems under
spoofing attacks, called Expected Performance and Spoofability
(EPS) framework, is the major contribution of this paper. Its
purpose is to serve for an objective comparison of different ver-
ification systems with regards to their verification performance
and vulnerability to spoofing, taking into account the system’s
application-dependent susceptibility to spoofing attacks and cost
of the errors. The convenience of the proposed open-source
framework is demonstrated for the face mode, by comparing
the security guarantee of four baseline face verification systems
before and after they are secured with anti-spoofing algorithms.

Index Terms—Attack, Counter-Measures, Counter-Spoofing,
Disguise, Dishonest Acts, Biometric Verification, Forgery, Live-
ness Detection, Replay, Spoofing, Evaluation, Face recognition

I. INTRODUCTION

Automatically recognizing people by their biometric char-

acteristics is a well-established research area. Although some

biometric modes already have a wide usage in security sys-

tems, novel traits keep on being discovered [1], [2], [3]. The

typical way to recognize people by their traits is to create a

biometric reference (often referred to as template or model)

which allows comparison (matching) to biometric samples [4].

For example, in a face recognition system, models can be

created from existing user face photos and matched against

new photos or video sequences acquired by a camera. Varying

acquisition conditions, noise and poor lighting are some of

the problems that the biometric community is facing, but has

successfully solved in many cases. A relatively new security

threat that these systems have to handle comes from spoofing

attacks.

Unlike a zero-effort impostor who may positively claim

a different identity despite presenting his own biometric

traits [5], in the case of spoofing, the attacker (active im-

postor), tries to fake somebody else’s identity by presenting

fake samples of that person’s traits to the acquisition device.

The type of sample used in the attack heavily depends on the

acquisition system being attacked. In a fingerprint spoofing

attempt, attackers may show molds containing a copy of

somebody’s prints prepared with silicon [6]. For the voice

mode, on the other side, it suffices to present a signal which
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contains the speaker’s vocal characteristics [7]. Interestingly

enough, the signal does not even need to be understandable

by a human, as long as it exhibits the deterministic vocal

features of the attacked identity. Unfortunately, information

globalization acts in favor for malicious users, making access

to biometric data easily accessible: users’ photos and possibly

videos may be available through various sites on the Internet.

Users’ voice can be easily recorded and examined at distance.

Fingerprint molds can be easily manufactured from latent

marks left on cups and door knobs.

After recognizing the problem of spoofing, different

counter-measures have been proposed for many biometric

modes. One possible approach, relying on the assumption that

spoofing two or more modes is more difficult than spoofing a

single one, [8], [9], is combining several of them. Another

set of options use additional hardware that will verify the

presence of a live person in front of the recognition system,

referring to the process as liveness detection. Examples are

temperature sensing or pulsation detection in the case of

fingerprint recognition systems [10]. Other systems ask users

to correctly respond to a challenge, like repeating a particular

phrase in speaker recognition or changing the facial expres-

sion in face recognition. The current trend though suggests

completely automatic and autonomous software-based anti-

spoofing solutions which rely solely on additional processing

of the information captured by the system’s biometric sensor

and which are likely more convenient for deployment and user

experience [11].

Up to this point, biometrics researchers have tackled the

problems of biometric recognition and anti-spoofing indepen-

dently. Researchers in biometric verification develop binary

classification systems capable of distinguishing two categories

of samples: genuine users as a positive class and zero-

effort impostors as a negative one. On the other hand, the

anti-spoofing community has been focused on the binary

classification problem of discriminating real accesses as a

positive with respect to spoofing attempts as a negative class.

The relation of the anti-spoofing to the biometric systems

has been mostly disregarded. Evaluation of the two types of

systems is also performed independently, usually following

the evaluation conventions for binary classification systems.

Note that, besides verification, biometric recognition systems

can work in an identification mode, which is more suitable

for negative recognition applications [5]. This paper, however,

focuses on biometric verification and biometric identification

is out of its scope.

A spoofing counter-measure, by definition, needs to protect

a biometric verification system and its role comes into play

when coupled with the latter. From an application point of

view, we are interested not in a system which detects spoofing

attacks, but which recognizes identities and accepts them only
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if they are not spoofing attacks. Thus, to build a highly

secure environment, we need a system which, one way or

the other, performs person verification in a highly reliable and

trustworthy way.

These observations emphasize the drawbacks of the inde-

pendent treatment of verification and anti-spoofing systems

for real-world applications. Attempt to ally the two systems

together in order to create a spoof-resistant verification system

have been already presented in several publications [12], [13],

[14]. In such a setup, unless the spoofing counter-measure has

perfect discrimination capabilities, a drop in the verification

performance can be expected.

The biometric verification system, regardless of whether and

how it incorporates mechanism for rejecting spoofing attacks,

now has to handle them as an additional input class. We at-

tribute the necessity of this step to the fact that the final system

design considerations, like the expected frequency of attacks,

can not be known prior to deployment time. Having three

classes at input instead of two requires a complete redefinition

of the problem of biometric verification. Furthermore, if we

want to have a precise analysis of the system performance,

we need to have a suitable metrics for measuring its spoof-

ability. Up to this point, different systems have performed

the evaluation in a different way and, despite the many

attempts, there is no golden standard for evaluating biometric

verification systems under spoofing attacks.

The main goal of this paper is to emphasize this issue and

the necessity to solve it in order to provide real-world appli-

cations, as well as to establish an evaluation framework based

on the newly proposed Expected Performance and Spoofability

(EPS) framework, that considers all the parameters imposed

by the new problem domain. To do this, we firstly review

the standards for evaluation of biometric systems in their

common setup. Then, we inspect the efforts to adapt them

to the new problem definition reporting on their drawbacks

for deployment in real world conditions.

To demonstrate the capacity of the proposed evaluation

framework, we evaluate and compare several state-of-the-art

verification systems under spoofing attacks. The verification

systems work with the face mode. The analysis of the spoofing

vulnerability of these systems, as well as the study of the

change in their performance after adding a spoofing counter-

measure are additional contributions. The source code for

calculating the measurements and plotting the curves is freely

available as well.

In the text that follows, Section II provides a survey on the

standard evaluation metrics for binary classification problems,

as a basis for the widely accepted methodology for evalua-

tion of biometric verification and anti-spoofing systems. The

restatement of the problem of biometric verification system

under spoofing attacks, together with the commonly used

evaluation methodologies are given in Section III. Section IV

describes the proposed evaluation framework. Its practical

usage is illustrated in Section V via a comparative analysis of

several baseline as well as trustworthy systems in the domain

of face verification. Section VI gives our final remarks.

II. SUMMARY OF EVALUATION METRICS IN BIOMETRICS

As both biometric verification and anti-spoofing systems by

themselves are of binary nature, the overview of the state-of-

the-art will firstly cover the standard metrics for evaluation of

binary classification systems in Section II-A. The adaptations

of the general metrics to the specific tasks of biometric veri-

fication and anti-spoofing are given in Sections II-B and II-C,

respectively.

A. Evaluation of binary classification systems

Binary classification systems receive two types of input

belonging to two classes, usually referred to as positive and

negative class. They are trained to assign scores to the input

samples. Then, a threshold is calculated to separate the scores

of the positive and the negative class and the samples with

scores above the threshold are classified as positives, while

the ones with scores below the threshold as negatives.

Metrics for evaluation of binary classification systems are

associated to the types of errors they commit and how to

measure them, as well as to the threshold calculation and

evaluation criterion [15]. Binary classification systems are

subject to two types of errors: False Positive (FP) and False

Negative (FN). Typically, the error rates that are reported are

False Positive Rate (FPR), which corresponds to the ratio

between FP and the total number of negative samples and

False Negative Rate (FNR), which corresponds to the ratio

between FN and the total number of positive samples.

An objective and unbiased performance evaluation of the

binary classification systems requires a database with a specific

design and strictly defined protocols. It is recommended that

the samples in the database are divided into three subsets:

training Dtrain, development (validation) Ddev and test (eval-

uation) set Dtest [16]. Even greater objectivity will be achieved

if the identities in separate subsets do not overlap [17]. The

training set serves to train the system, while its fine tuning is

done using the development set. Since in a real world scenario

the final system will be used for data which have not been

seen before, the performance measure is normally reported on

the test set [16], [18]. An exception from this recommended

design may happen if the number of samples in the database

is not big enough. In such a case, the samples can be divided

only in training and test set, and tuning of the parameters is

done with a cross-validation procedure [16].

The decision threshold τ is computed to serve as a boundary

between the output scores of the positive and the negative

class. By changing this threshold one can balance between

FPR and FNR: increasing FPR reduces FNR and vice-versa.

However, it is often desired that an optimal threshold τ∗

is chosen according to some criterion. One well established

criterion is Equal Error Rate (EER) [15], which selects the

threshold τ∗EER to ensure that the difference between FPR and

FNR is as small as possible (Eq. 1). The optimal threshold,

also referred to as operating point, is a tuning parameter, and

it is usually determined using the development set [16], [18].

τ∗EER = arg min
τ

|FPR(τ,Ddev)− FNR(τ,Ddev)| (1)
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Once the threshold τ∗ is determined, the accuracy of the

system can be summarized reporting different metrics. For ex-

ample, the Detection Cost Function (DCF), given in Eq. 2, has

been proposed in [19] and is used in the NIST evaluations [20].

The DCF accounts for the cost of the error rates (cFPR and

cFNR), as well as for the probability of occurrence of positive

and negative samples (ppos and pneg).

DCF(τ∗,Dtest) = cFPR · pneg · FPR(τ
∗,Dtest)

+ cFNR · ppos · FNR(τ∗,Dtest)
(2)

By giving equal priors to the occurrence of positive and

negative samples and normalizing the cost values, Weighted

Error Rate (WER) is proposed in [18]. In its computation

(Eq.3), β ∈ [0, 1] is the parameter balancing between the cost

of FPR and FNR. For the special case of β = 0.5, the Half

Total Error Rate (HTER) is reached.

WERβ(τ
∗,Dtest) = β · FPR(τ∗,Dtest)

+ (1− β) · FNR(τ∗,Dtest)
(3)

Important tools in evaluation of classification systems are

the different graphical representations of the classification

results. For example, to present the trade-off between FPR

and FNR depending on the threshold, the performance of the

binary classification systems is often visualized using Receiver

Operating Characteristic (ROC) curve. Parameterizing over

different values for the decision threshold, the ROC curve

usually plots FPR versus 1-FNR. Sometimes, when one num-

ber is needed to represent the performance of the system in

comparison with other systems, the Area Under ROC curve

(AUC) may be reported. The higher the AUC the better the

system.

A normal deviate transformation of the ROC curve yields

the Detection-Error Tradeoff (DET) curve [21]. Its usage is

convenient for comparing systems whose scores follow a

Gaussian distribution, since such a transformation guarantees

that the curve will become a line. It plots FPR versus FNR.

Fig. 1a illustrates the DET curve for a hypothetical binary

classification system1.

Although ROC and DET curves may give an idea about

the expected performance of a single system under different

thresholds, using them to compare two or more systems can

lead to biased conclusions [22]. Usually, when comparing two

systems using ROC or DET curves, we select a certain value

on the abscissa (most often FPR) as a first step, and then

we read the values on the ordinate for the two systems (for

example FNR) as a second step. In this way, during the first

step, we implicitly choose a threshold a posteriori, i.e. on the

same data used to read and compare the error rates in the

second step. This threshold may not be the optimal one for

any of the two systems. However, for an objective comparison,

the error rates for the two systems have to be reported at their

optimal thresholds, which have to be chosen a priori, on a

separate data. Unfortunately, by plotting only the error rates on

1Plots for a hypothetical biometric systems in the figures in this paper are
based on a synthetically generated score data. They serve solely to illustrate
the concept presented in this paper.
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Fig. 1: Evaluation plots for hypothetical biometric

verification system

a test set at thresholds not related to the development set, the

ROC and DET curves do not give any hint about the optimal

thresholds of the two systems. Hence, the conclusions about

which one out of two systems is better may be misleading if

drawn solely from the ROC or DET curves.

To solve this issue, the so-called Expected Performance

Curve (EPC) is proposed in [22]. It fills in for two main

disadvantages of the ROC and DET curves: firstly, it plots

the error rate on the test set depending on a threshold selected

a priori on the development set; and secondly, it accounts

for varying relative cost β ∈ [0; 1] of FPR and FNR when

calculating the threshold. In the EPC framework, an optimal

threshold τ∗β depending on β is computed based on a certain

criteria on the development set. For example, the threshold

can be chosen to minimize WERβ for different values of β,

which is the variable parameter plotted on the abscissa. The

performance for the calculated values of τ∗β is then computed

on the test set. WERβ or any other measure of importance

can be plotted on the ordinate axis. The parameter β can be

interpreted as the cost of the error rates, but also as the prior

of having a positive or a negative sample as an input. One may

observe the error rates and compare systems only in the range

of values of β which are of interest for a particular application.

The EPC curve is illustrated in Fig. 1b for a hypothetical

binary classification system.

The performance of a binary system can be summarized in

one value by computing the area under the EPC, defined as

the expected average of two antagonistic error rates that are

being plotted [22].

B. Evaluation of biometric verification systems

The biometrics community has established a common ter-

minology for the samples of the positive and the negative class

from the perspective of a biometric verification system [5]:

• Genuine users for samples of the positive class,

• (Zero-effort) impostors for samples of the negative class.

Hence, in the domain of biometric verification systems, the

number of errors known as FP and FN refer to the number of

zero-effort impostors incorrectly classified as genuine users

and the number of genuine users incorrectly classified as

zero-effort impostors, respectively. Since the positives and the

negatives are associated with the action of acceptance and
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rejection by the verification system, a common practice is

to replace FPR and FNR with False Acceptance Rate (FAR)

and False Rejection Rate (FRR), respectively [4]. Furthermore,

due to the process of matching between the samples and the

models, FPR and FNR are often reported as False Match

Rate (FMR) and False Non-Match Rate (FNMR) [5]2. More

thorough list of synonyms typically used is given in Table II

in Appendix A.

An important aspect of a biometric verification database

is that part of the samples in the training, development

and test set needs to be designated for creating the models

for the identities. These samples are usually referred to as

enrollment [5] (reference [23]) data.

C. Evaluation of anti-spoofing systems

In the anti-spoofing community, the terminology to name the

samples of the positive and the negative class is as follows:

• Real accesses [24] or live samples [11], [25] for samples

of the positive class,

• Spoofing or presentation attacks [26] for samples of the

negative class.

Anti-spoofing systems work on the principle of acceptance

and rejection as well. Hence, in this scope, FAR and FRR are

the most commonly used terms for FPR and FNR too. FAR

stands for the ratio of incorrectly accepted spoofing attacks

and FRR for the ratio of incorrectly rejected real accesses.

These error rates are often substituted with different synonyms

by different authors. The most common of them are listed in

Table I in Appendix A.

When it comes to databases for evaluation of anti-spoofing

systems, their primary task is to provide two types of samples:

real accesses and spoofing attacks of a number of identities.

Additionally, the spoofing database needs to satisfy the re-

quirements of binary classification problems, as the isolated

spoofing detection is.

III. EVALUATION OF BIOMETRIC VERIFICATION SYSTEMS

UNDER SPOOFING ATTACKS

While the problem of biometric verification is undoubtedly

in the class of binary classification problems, a shift in the

concept is required when spoofing attacks are present as a

third possible input type. The newly posed system needs a

new problem definition, which will be stated in Section III-A.

It will help to better understand the metrics which have been

used for evaluation of such systems, which, together with their

drawbacks, are discussed in Section III-B. We propose a novel

evaluation methodology which is better suited to the problem

in Section IV.

A. Problem statement and database design

When treating biometric verification as a binary classifica-

tion system, the designers are interested in determining the

capacity of a given system to discriminate between different

2In general, the error rates FMR and FNMR are not exactly synonymous
with FAR and FRR [5]. However, they are equivalent in the context presented
in this paper. Please see Appendix A for further details.

Biometric 
verification 

system

Accept

Reject

Genuine user

Impostor

Spoofing attack

Fig. 2: Biometric verification system under spoofing attack

identities. As explained in Section II-B the systems are as-

sumed to receive two classes of input samples. Depending on

the internal algorithm, these systems may or may not have the

competence to discover if the input sample comes from a live

person present in front of the system, or a spoofing attack.

An accurate representation of the operation of a verifica-

tion system acknowledging the spoofing attack samples as

a possible input type, is given in Fig. 2. It needs to accept

only the samples from the class of genuine users, while both

zero-effort impostors and spoofing attacks need to be rejected.

Consequently, the system is not necessarily required to be able

to discriminate between three classes and the problem does not

need to be treated as ternary. The system can still operate as a

binary classification system, as long as it is able to determine

the classes that it needs to reject. Therefore, it is convenient

to denote the two classes that need to be rejected as negative.

Despite the comfort of keeping the binary nature of the

verification system, it is still of importance to evaluate how

vulnerable the system is to spoofing attacks. The evaluation

metrics presented in Section II are sufficient to describe only

the verification performance of a system. But now, besides

FAR and FRR, suitable metric is needed to report on the

system spoofability. Additional problem is the way to deter-

mine an operation point for such a system. These issues are

discussed in Sections III-B and IV.

Before proceeding with the evaluation metrics themselves,

a short notice on the design of a database for evaluation of

verification systems under spoofing attacks is due. Namely, it

has to satisfy the requirements of both a biometric verification

(Section II-B) and spoofing II-C database. Typically, the

spoofing databases follow the design given in II-C, which

poses a major limitation: lack of data to enroll identities in

a verification system. Indeed, separate enrollment data within

the spoofing database are needed to build models for the

identities. In this way, a training and spoofability assessment

of a verification system using the spoofing database is enabled.

To formalize the process of training and evaluating a veri-

fication system using a spoofing database, let’s represent the

identity i in the database with the tuple (xr
i ,x

s
i ,x

e
i ), containing

real access x
r
i , spoofing attack x

s
i and enrollment xe

i samples.

Then, the spoofing database, providing data for N identities,

can be denoted as D = {(xr
i ,x

s
i ,x

e
i ) : i = 1..N}. The

process of training a verification system using the spoofing

database means creating a set of models M = {Mi :
i = 1..N}, where Mi = f(xe

i ) and f(·) is a function
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that maps samples to a model. Then, the verification system

computes the scores for the classes of real accesses, zero-

effort impostors and spoofing attacks. The set of scores for the

genuine users may be created by comparing the real access

samples of one identity to the model of the same identity:

Sgenuine = {g(xr
i ,Mi) : i = 1..N}, where g(·, ·) is a

matching function. A logical way to assemble the set of zero-

effort impostor scores is by comparing the real access samples

of one identity to the models of the other identities in an

exhaustive manner (full cross-comparison [5]), which results

in Simpostor = {g(xr
i ,Mj) : i, j = 1..N, i 6= j}. Finally, to

assemble the set of spoofing attack scores for the verification

system, one needs to compare the spoofing attack samples

from one identity to the model of the same identity, which

yields Sspoof = {g(xs
i ,Mi) : i = 1..N}.

B. Evaluation methodologies

While the performance metrics for verification systems is

well established and widely used, the evaluation for verifi-

cation systems under spoofing attacks is not unified and is

ambiguous in different publications. A detailed overview of

all the error rates utilized by various authors is given in Table

II in Appendix A.

The adopted terminology in the remainder of this text is as

follows:

• FRR - ratio of incorrectly rejected genuine users,

• FAR - ratio of incorrectly accepted zero-effort impostors,

• SFAR - ratio of incorrectly accepted spoofing at-

tacks [27].

Fig. 3a shows a plot of the distributions of the scores of

the three input classes obtained by a hypothetical verification

system. The problem that arises due to the existence of

three score distributions is how to determine the decision

threshold to discriminate between the samples to accept and

reject. A widely accepted strategy to simplify the problem

is to decompose it into two sub-problems which resemble the

original binary classification problem in biometric verification.

The sub-problems correspond to two scenarios the system can

operate in:

• Licit scenario (also called normal operation mode [28]):

considers genuine users as positive and only zero-effort

impostors as negative class,

• Spoof scenario: considers genuine users as positive and

only spoofing attacks as negative class.

Researchers generally follow two main evaluation method-

ologies to obtain the decision threshold and to report the error

rates it produces, and they are discussed below.

a) Methodology 1: In the first evaluation methodology,

two decision threshold calculations are performed separately

for the two scenarios [6], [28], [27], [7]. Analysis of the

system in the licit scenario gives values for FRR and FAR,

while analysis in the spoof scenario gives values for FRR and

SFAR. Since the analysis produces different threshold in the

two scenarios, the two values of FRR are not the same. A

major weak point of this type of evaluation is that it outputs

two decision thresholds for a single verification system, while

naturally a single system can have only one operating point
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Fig. 3: Graphical tools for evaluation of hypothetical

biometric verification system under spoofing attacks

corresponding to one decision threshold. Furthermore, the

spoof scenario assumes that all the possible misuses of the

system come from spoofing attacks, which in general is not

realistic. The threshold calculated in this scenario is not a good

discriminating point for a verification system, but rather for

an anti-spoofing system and the error rates reported on this

way are not a reliable estimate of the system performance

under spoofing attacks. The decision threshold and the reported

error rates in the spoof scenario are irrelevant in a real-world

scenario. Therefore, this type of evaluation is not compliant

to a real-world requirements for operation of a verification

system.

b) Methodology 2: The second evaluation methodology

is adapted for more realistic performance evaluation. The

threshold is calculated using various criteria, for example EER,

but almost always using the licit scenario, as it is regarded

as a normal operation mode for a verification system. Taking

advantage of the fact that the licit and spoof scenario share

the same positive class, many publications choose a threshold

to achieve a particular desired value of FRR [29], [30], [31],

[32], [33], [34], [12]. Then, using the obtained threshold, FAR

for the licit and SFAR in the spoof scenario are reported and

compared.

On the hypothetical verification system whose score distri-

bution is plotted in Fig. 3a, the threshold is chosen using the

EER criteria for the licit scenario. The plotted threshold gives

an intuition about how well the system discriminates between

genuine users and zero-effort impostors, but also between

genuine users and spoofing attacks. Fig. 3b draws two DET

curves corresponding to the two scenarios. The vertical line

shows the FRR for the chosen threshold. The points where it

cuts the DET curves for the two scenarios are the reported

error rates.

As an alternative figure delivering similar information as

DET for the second evaluation methodology, [32] suggests to

plot FAR vs. SFAR. Thresholds are fixed in order to obtain

all the possible values of FAR for the licit scenario and SFAR

is computed in the spoof scenario and plotted on the ordinate

axis. By plotting the curves for different verification systems,

the plot enables to compare which one of them is less prone

to spoofing given a particular verification performance.

The issue that the second methodology overlooks is that a

system whose decision threshold is optimized for one negative
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class (usually, the zero-effort impostors), can not be evaluated

in a fair manner for another negative class (spoofing attacks).

Expectedly, such a threshold will be biased towards the single

negative class used for its determination, causing unnecessary

larger error rates for the other negative class. If the system

is expected to be exposed to two classes of negatives in the

test or deployment stage, it would be fair that both of them

play a role in the decision of the threshold in the development

stage. A novel evaluation methodology to tackle this issue is

the subject of Section IV.

IV. EXPECTED PERFORMANCE AND SPOOFABILITY

EVALUATION FRAMEWORK

Determining the decision threshold for biometric verifica-

tion systems under spoofing attacks seems to be one of the

major issues in the evaluation process. Neither the first, nor

the second of the evaluation methodologies explained in Sec-

tion III-B offer a method that determines an unbiased threshold

applicable in a realistic verification scenario. A fair evaluation

of a system which needs to reject samples of two different

classes is possible only if both of them are considered in the

development stage. By neglecting the class of spoofing attacks

when deciding on the threshold of the verification system,

one deliberately exhibits blindness to the danger of spoofing

attacks, thus potentially creating a system more vulnerable to

spoofing. Moreover, in some cases a necessity may arise to

add a cost to the error rates associated with the positive and

the negative class, and this cost has to be considered in the

process of computing a decision threshold as well.

The most straight-forward way to involve both negative

classes (zero-effort impostors and spoofing attacks) in the

threshold decision process, is simply to merge them together

into a single negative super-class. However, the number of

zero-effort impostors and spoofing attacks is highly dependent

on the database and follows the database protocol. Hence, the

ratio of the two classes into the super-class is different for

different databases and can not be controlled. Furthermore,

the super-class tends to be biased towards the component with

more samples. For example, in a typical biometric verification

database with N identities and M samples per identity, the

number of zero-effort impostors will be N × (N − 1) × M .

On the other hand, if there is a single spoofing attack for any

genuine sample in the database, the number of spoofing attacks

will be N ×M . The above observations lead to the question

of what the correct ratio of zero-effort impostors and spoofing

attacks into the super-class of negatives is.

As a matter of fact, there may not be a single answer to that.

Any ratio of the two negative classes may be valid depending

on the deployment conditions. For example, in highly super-

vised conditions, like airport control gates, spoofing attacks are

more difficult to perform, and hence unlikely. On the other

hand, unsupervised verification systems of portable devices

are much more exposed to spoofing attacks. Thus, tuning the

operating point of any system depends on its expected usage

scenario.

The message that the metrics DCF, WERβ and EPC convey

sounds with the above reasoning for a biometric verification

system. EPC obtains a decision threshold based on a parameter

β which balances between FAR and FRR and reports the

expected performance for a wide range of values for that

parameter. The parameter β can be interpreted as the relative

cost or importance of FAR and FRR, or the prior of the

negative or the positive class. Using EPC, it is possible to

compare algorithms depending on the importance of FAR and

FRR in a certain usage scenario.

For evaluating biometric verification systems under spoofing

attacks, we develop a method inspired by EPC. Being aware

that the prior of zero-effort impostors and spoofing attacks

can not be known in advance while developing an algorithm,

we design an evaluation framework which measures the ex-

pected performance of the system for a range of values of a

parameter which balances between FAR and SFAR. Moreover,

analogously to EPC, we introduce another parameter which

considers the cost of the error rates associated with the positive

and the negative classes. As it measures both the verification

performance and the vulnerability to spoofing of a system and

unifies them into a single value, the adapted evaluation scheme

is called Expected Performance and Spoofability (EPS) frame-

work.

The goal of the EPS framework is to analyze and plot

error rates regarding the performance and spoofability of a

verification system on a test set, with respect to a decision

threshold taken on a separate development set. We define two

parameters: ω ∈ [0, 1], which denotes the relative cost of

spoofing attacks with respect to zero-effort impostors; and β ∈
[0, 1], which denotes the relative cost of the negative classes

(zero-effort impostors and spoofing attacks) with respect to

the positive class. Using these, we introduce a measurement

called FARω , which is a weighted error rate for the two

negative classes (zero-effort impostors and spoofing attacks).

It is calculated as in Eq. 4.

FARω = ω · SFAR+ (1− ω) · FAR (4)

The optimal classification threshold τ∗ω,β depends on both

parameters. It is chosen to minimize the weighted difference

between FARω and FRR on the development set, as in Eq. 5.

τ∗ω,β = arg min
τ

|β ·FARω(τ,Ddev)− (1−β) ·FRR(τ,Ddev)|

(5)

Once an optimal threshold τ∗ω,β is calculated for certain

values of ω and β, different error rates can be computed on the

test set. Probably the most important is WERω,β , which can be

accounted as a measurement summarizing both the verification

performance and the spoofability of the system and which is

calculated as in Eq. 6.

WERω,β(τ
∗

ω,β ,Dtest) = β · FARω(τ
∗

ω,β ,Dtest)

+ (1− β) · FRR(τ∗ω,β ,Dtest)
(6)

A special case of WERω,β , obtained by assigning equal cost

β = 0.5 to FARw and FRR can be defined as HTERω and

computed as in Eq. 7. In such a case, the criteria for optimal

decision threshold is analogous to the EER criteria given in

Section II-A.
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HTERω(τ
∗

ω,Dtest) =
FARω(τ

∗

ω,Dtest) + FRR(τ∗ω,Dtest)

2
(7)

The parameter ω could be interpreted as relative cost of the

error rate related to spoofing attacks. Alternatively, it could be

connected to the expected relative number of spoofing attacks

among all the negative samples presented to the system. In

other words, it could be understood as the prior probability of

the system being under a spoofing attack when it is misused.

If it is expected that there is no danger of spoofing attacks

for some particular setup, it can be set to 0. In this case,

WERω,β corresponds to WERβ in the traditional evaluation

scheme for biometric verification systems. When it is expected

that some portion of the illegitimate accesses to the system will

be spoofing attacks, ω will reflect their prior and ensure they

are not neglected in the process of determining the decision

threshold.

As in the computation of WERβ in Section II-A, the

parameter β could be interpreted as the relative cost of the

error rate related to the negative class consisting of both zero-

effort impostors and spoofing attacks. This parameter can

be controlled according to the needs or to the deployment

scenario of the system. For example, if we want to reduce

the wrong acceptance of samples to the minimum, while

allowing increased number of rejected genuine users, we need

to penalize FARω by setting β as close as possible to 1.

The EPS framework computes error rates for a range of

decision thresholds obtained by varying the parameters ω and

β. The visualization of the error rates parameterized over

two parameters will result in a 3D surface, which may not

be convenient for evaluation and analysis, especially when

one needs to compare two or more systems. Instead, we

suggest plotting the Expected Performance and Spoofability

Curve (EPSC), showing WERω,β with respect to one of the

parameters, while the other parameter is fixed to a predefined

value. For example, we can fix the parameter β = β0 and draw

a 2D curve which plots WERω,β on the ordinate with respect

to the varying parameter ω on the abscissa. Having in mind

that the relative cost given to FARω and FRR depends mostly

on the security preferences for the system, it is not difficult

to imagine that particular values for β can be selected by an

expert. Similarly, if the cost of SFAR and FAR or the prior of

spoofing attacks with regards to the zero-effort impostors can

be precisely estimated for a particular application, one can set

ω = ω0 and draw a 2D curve plotting WERω,β on the ordinate,

with respect to the varying parameter β on the abscissa.

The algorithm on Fig. 4 gives the step-by-step procedure

to compute and plot WERω,β with regards to ω and β for a

given verification system. By fixing one of the parameters ω

or β, one can plot EPSC for WERω,β with regards to the other

parameter.

Besides WERω,β , EPSC can present other error rates which

are of interest. For example, plotting SFAR can show how the

system’s robustness to spoofing changes with regards to ω

or β. Alternatively, to report on all the incorrectly accepted

samples, FARω can be plotted using EPSC.

Fig. 5 and Fig. 6 give an illustration of the EPSC plotting the

for β ∈ [0, 1] do

for ω ∈ [0, 1] do

define FARω = ω · SFAR+ (1− ω) · FAR
τ∗ω,β = arg min

τ
|β · FARω(τ,Ddev)

−(1− β) · FRR(τ,Ddev)|
compute WERω,β(τ

∗

ω,β ,Dtest);
plot WERω,β(τ

∗

ω,β ,Dtest) w.r.t. ω, β

end for

end for

Fig. 4: Pseudo code for computing WERω,β
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Fig. 5: EPSC of a hypothetical biometric verification system

under spoofing attacks, parameterized over ω

error rates WERω,β and SFAR as function of the parameters

ω and β, respectively. The plots are generated for the hypo-

thetical verification system whose score distribution is given

in Fig. 3a.

Fig. 5a and Fig. 5b show WERω,β and SFAR with respect to

ω for three predefined values of β. The blue curve on Fig. 5a,

corresponding to β = 0.5, is equivalent to HTERω . The left-

most points of the curves correspond to ω = 0, meaning that

the decision threshold is obtained disregarding the spoofing

attacks as possible input. Hence, the threshold at this point

corresponds to the threshold plotted in Fig. 3a, calculated

for the system when operating in the licit scenario. For the

particular hypothetical system and all the three considered
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Fig. 6: EPSC of a hypothetical biometric verification system

under spoofing attacks, parameterized over β
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values of β, this point corresponds to low WERω,β , which

indicates a system with good verification capabilities, but very

high SFAR due to the high overlap of the scores of spoofing

attacks and genuine users.

As we increase ω, we give weight to the spoofing attacks

so that they have a role in the threshold decision process. In

the particular example, this results in a shift of the decision

threshold to the right of the score distribution plot in Fig. 3a.

This decreases the number of spoofing attacks that pass the

system, which explains why SFAR decreases with increasing

ω. However, the additional caution for the danger of spoofing

attacks unavoidably comes with the price of more rejected

genuine users and thus higher WERω,β . A system with high

robustness to spoofing attacks will show as mild increase

of WERω,β as possible, with as steep decrease of SFAR as

possible.

Fig. 6a and Fig. 6b show EPSC parameterized over the

varying parameter β, for three predefined values of ω. For the

extreme cases where β = 0 and β = 1, WERω,β is 0 because

the threshold is determined to minimize the error rate solely

associated with the positive or the negative class, respectively.

In the case of β = 0, this results in a successful passing

through of all the spoofing attacks.

Considering the spoofing attacks when calculating the de-

cision threshold means taking additional precautions against

them. As a result of this, the threshold obtained using EPS

framework is better adapted to the input that is expected,

contributing to systems with better performance and lower

spoofing vulnerability, than systems whose decision threshold

has been determined in different way. This is illustrated for a

hypothetical biometric verification system in Appendix C.

The EPSC inherits the advantage of unbiased system com-

parison from the EPC, because it reports the error rates a

priori. Since the threshold is always determined using the

development set, and the error rates are reported using the test

set, one can estimate the expected error rates and spoofability

of the system in an unbiased way, on data which has not been

seen before. The expected error rates can be reported for a

particular value or range of values of the parameters ω and

β which are of interest in a particular application. Moreover,

EPSC allows for easy and unbiased comparison of verification

systems with regards to their performance and robustness to

spoofing, simply by comparing the EPSC for the two systems

on the same plot. Even more, one can compare verification

systems range-wise: which one performs better for a range of

values of ω or β. Practical examples of such analysis are given

in Section V.

Finally, if a single number is needed to describe the

performance of a system, we define the Area Under EPSC

(AUE) metric, which can be computed for a fixed β or ω.

For example, for a fixed β, it represents the average expected

WERω,β for all values of ω and is computed using Eq. 8. The

formula to compute AUE for fixed ω and varying β follows

accordingly. Between two systems, better is the one which

achieves smaller AUE.

AUE =

∫

ω∈[0,1]

WERω,β(τ
∗

ω,β ,Dtest)dω (8)

The AUE can be computed in between certain bounds a, b ∈
[0, 1]; a < b, enabling to compare two systems depending on

the required range of the varying parameter.

V. EXPERIMENTAL RESULTS

Extensive experiments in the domain of face verification and

anti-spoofing were conducted in order to evaluate several state-

of-the-art systems using the EPS evaluation framework. In par-

ticular, we analyzed four baseline face verification systems and

their vulnerability to spoofing attacks. Then, we tried to reduce

their vulnerability by incorporating three different spoofing

counter-measures. While this process naturally increases the

robustness to spoofing of the verification systems, it may also

significantly affect its verification performance [14]. The EPS

framework proves to be very suitable to analyze the trade-

off between these two parameters. Note that EPS framework

allows evaluation analysis of any biometric system which can

perform verification task, regardless whether and how it has

an incorporated mechanism to handle spoofing attacks.

In the following analysis, we begin by introducing a general

terminology for categorization of spoofing attacks based on

their success in deceiving a verification system in Section V-A.

Then, in Section V-B we describe the face spoofing database

as well as the face verification and anti-spoofing systems used

in the experiments. Empirical results using EPS framework

are reported in Sections V-C, V-D, V-E and V-F. Through

the analysis, we demonstrate how to interpret EPSC and we

illustrate its advantages over other evaluation methodologies.

The reported results are easily reproducible, as the ex-

periments are implemented using the free signal-processing

and machine-learning toolbox Bob [35]3. The source code to

compute and plot the EPSC is freely available as Bob’s satellite

package4.

As the comparison for 3D plots showing the error rates

depending on β and ω is difficult, in our further analysis we

fix β = 0.5 and adhere to comparing systems using HTERω .

This is not an unreasonable choice: the evaluation of many

biometric verification systems is traditionally done only by

using EER nad HTER.

A. Categories of spoofing attacks

As shown in Section III-B, a score distribution plot as

in Fig. 3a may be a good indicator of the discriminability

the system demonstrates. Not only it suggests how well the

system performs in verification of identities, but it also gives

an intuition how vulnerable the system is to spoofing attacks.

Depending on the position of the spoofing attack scores on

the abscissa, the spoofing attacks can be clustered in 4 distinct

categories with regards to a particular verification system.

3http://www.idiap.ch/software/bob
4http://pypi.python.org/pypi/antispoofing.evaluation
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• Insufficient attacks: attack scores are distributed inside

the histogram area spawned by zero-effort impostors or

to the left of it,

• Sub-optimal attacks: attack scores are situated between

impostors and genuine users,

• Optimal attacks: attack scores are contained within the

range of the scores of genuine users,

• Super-Optimal attacks: attack scores are mostly situated

to the right of the scores of genuine users.

Using the previously defined terminology, to make a system

more robust to spoofing means bringing the spoofing attacks

from optimal and super-optimal to sub-optimal, or, if possible,

insufficient level. A straight-forward way to achieve this is by

fusing several modes to be verified, like in [32], [34]. Another

approach is to blend together the outputs of two separate

systems: a verification and an anti-spoofing one. Significant

publications covering this problem include [12], [13], [14].

A visualization of the score distributions for the four cat-

egories of spoofing attacks is given in Appendix D. Further-

more, we give case studies for EPSC for the four categories

of spoofing attacks. They should give an understanding about

the differences in the EPSC appearance for a system highly

vulnerable and a system highly robust to spoofing.

B. Database and systems

All of the experiments were conducted using the Replay-

Attack database [36]5, which is specifically designed for

face spoofing. Unlike the other face spoofing databases

(NUAA [37] and CASIA-FASD [38]), Replay-Attack satisfies

the requirement for training a verification system by providing

separate enrollment samples. It contains video sequences of

real accesses and attacks to 50 identities. The types of attacks

present in this database are printed and digital photographs,

as well as videos displayed on a screen.

The experimental setup includes four baseline face verifi-

cation systems which have proven to be state-of-the-art on

several face verification databases. The first one is a Gaussian

Mixture Model (GMM) based system which extracts Discrete

Cosine Transform (DCT) features from the input images [39].

The second one, called Local Gabor Binary Pattern Histogram

Sequences (LGBPHS) [40], calculates Local Binary Patterns

(LBP) histograms over the input images convoluted with

Gabor wavelets, and computes the similarity scores using χ2

measure. The third considered system is based on [41] and

compares Gabor jets extracted from different positions and put

into a single rectangular grid graph (GJet) [42]. Finally, DCT

features are used once again in the fourth system, to create

Universal Background Model and to estimate a linear subspace

of the within-class variability [43]. We will refer to this system

as Inter-Session Variability modeling (ISV). The verification

scores of these systems on the Replay-Attack database are

obtained using the open-source face verification framework

from [44]6.

Concerning the face anti-spoofing systems, they can be

categorized in three groups with respect to the cues they

5http://www.idiap.ch/dataset/replayattack
6http://pypi.python.org/pypi/facereclib

use to detect the spoofing attack [45]. The first group of

systems tries to detect signs of vitality on the scene, like eye-

blinking or mouth movements. The second group evaluates the

differences in motion patterns, while the third one compares

the texture properties for real accesses and attacks. In this

work we used three different face anti-spoofing systems whose

implementation is published as open-source. The first one uses

(LBP) [36]7, while the second one an LBP variant capturing

dynamic texture properties in three orthogonal planes (LBP-

TOP) [46]8. The third system estimates the correlation in the

movements of the face with regards to the background and

detects higher correlation in the case of spoofing attacks [47]9.

These systems show different capacity in detecting the spoof-

ing attacks in Replay-Attack, which consequently affects the

performance of the verification system they are fused with.

With a goal to achieve greater robustness to spoofing of the

verification systems, we fuse their output with the output of

the anti-spoofing systems at score level. In particular, three of

the fusion strategies presented in [14]10 are examined: SUM

of scores, Logistic Regression (LR) and Polynomial Logistic

Regression (PLR).

In the following experiments, we firstly examine the per-

formance of the verification systems at disposal (GMM,

LGBPHS, GJet and ISV) and their vulnerability to spoofing

attacks in Section V-C. In our second experiment in Sec-

tion V-D, we compare the fusion methods when employed to

fuse the baseline systems with the simplest LBP based anti-

spoofing system. In Section V-E, we fix the fusion rule and

we perform the comparison with respect to the anti-spoofing

systems. Finally, in Section V-F, we compare all the face

verification systems fused with the best performing fusion

method and anti-spoofing system.

The primary goal of the experiments is to demonstrate

the advantages of the EPS framework over other evaluation

methodologies and its usefulness in analyzing the performance

of biometric verification systems. As an additional result, they

provide insights about how fusion affects the systems verifica-

tion performance and robustness to spoofing and demonstrates

which of the fused systems performs the best.

C. Performance of baseline face verification systems

The goal of the first experiment is to assess the performance

of the four considered face verification systems in recognizing

the identities in Replay-Attack, as well as to estimate their

vulnerability to spoofing. In this experiment, they are operating

independently, without any protection with an anti-spoofing

system. In our analysis, we will compare the conclusions

obtained using the evaluation Methodology 2 described in

Section III-B, and the ones delivered by EPS framework and

EPSC. The score distribution of the four systems are given in

Fig. 7.

To assess the verification performance of a system using

Methodology 2, we consider only the licit scenario. The

7http://pypi.python.org/pypi/antispoofing.lbp
8http://pypi.python.org/pypi/antispoofing.lbptop
9http://pypi.python.org/pypi/antispoofing.motion
10http://pypi.python.org/pypi/antispoofing.fusion faceverif
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Fig. 7: Score distributions of baseline face verification systems. The full green line shows the SFAR as the threshold changes.
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Fig. 8: DET curves for licit and spoof scenario of baseline face verification systems.

vertical lines in Fig. 7 correspond to the thresholds determined

in the licit scenario. Using this scenario, we can plot a DET

curve, showing the trade-off between FAR and FRR when

no spoofing attacks are present. Then, we can consider the

spoofing scenario only, and plot an additional DET curve,

which shows the trade-off between SFAR and FRR and ignores

to the existence of zero-effort impostors. These plots for the

four baseline systems are given in Fig. 8.

A decision threshold for such a system is taken at EER on

the development set of the licit scenario. Using this threshold,

we can compute and report FRR, FAR and SFAR. These values

for the four baseline systems are given in Table I.

TABLE I: Verification error rates and spoofing vulnerability

of baseline face verification systems (in %)

system FAR FRR HTER SFAR

GMM 0.05 0.24 0.14 91.5
LGBPHS 1.47 2.13 1.8 88.5

GJet 0.28 0.24 0.26 95.0
ISV 0.00 0.17 0.08 92.6

The results show that all the four systems perform well

in the verification task. Fig. 7 justifies the results: the score

distributions for the genuine users and impostors are almost

perfectly separated. However, if we keep the decision threshold

selected at EER on the development set for the licit protocol,

the systems exhibit a great vulnerability to spoofing of around

90%. The results come with no surprise: as suggested by

Fig. 7, the attacks of Replay-Attack appear to be sub-optimal

to optimal. Using this evaluation methodology, ISV, with

0.08% of HTER seems to perform the best in the verification

task. At the same time, GJet, with 95% of SFAR, appears to

be the most vulnerable to spoofing among all the systems.

These values are obtained only for a threshold which does not

assume any spoofing attacks to be possible.

We now proceed with EPS evaluation of the systems.

The EPSC given in Fig. 9, report HTERω and SFAR for a

threshold which considers the relative probability of spoofing

attacks, encoded in the parameter ω. Analyzing the EPSC for

the four baseline systems, we come to different conclusions.

Comparing the HTERω values in Fig. 9a, we observe that ISV

is best performing in verification only as long as the spoofing

attacks appear with a very small probability. After a certain

value of ω, GJet shows the best verification performance. The

same applies to the vulnerability to spoofing (Fig. 9b): while

being the most vulnerable when ω ≈ 0, GJet displays the

smallest values of SFAR for larger values of ω.

Hence, we can discuss two advantages of EPSC over

Methodology 2. Firstly, it overcomes the exclusiveness in

analyzing only zero-effort impostors or spoofing attacks at

a time of Methodology 2. The HTERω summarizes all the

three error rates (FRR, FAR and SFAR) into a single value,

combining them based on the prior of each of the input classes.

Secondly, it rectifies the bias that Methodology 2 demonstrates

by neglecting the spoofing attacks that may appear. Although

this may increase the value of HTERω (EPSC is usually

ascending for HTERω), it is going to greatly improve the

systems vulnerability to spoofing (EPSC is descending for

SFAR), especially in condition where spoofing attacks are
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Fig. 9: EPSC to compare baseline face verification systems
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Fig. 10: EPSC to compare fusion methods: GJet baseline

fused with LBP-based anti-spoofing system

highly probable. Finally, by selecting an a priori threshold,

EPSC allows to objectively compare several systems on the

same figure.

D. Comparison of fusion methods

In our second experiment, we employ EPSC to compare

different methods for fusion of verification and anti-spoofing

systems and how they affect the performance of the baseline

face verification systems. The reported EPSC in Fig. 10

corresponds to the best performing system in the experiment in

Section V-C, GJet, when fused with the simplest anti-spoofing

system based on LBP. Detailed results covering all the other

baseline verification systems is given in Appendix E.

The EPSC helps us to choose which system to use de-

pending on the prior of spoofing attacks we expect at input.

As can be observed from Figure 10a, when the prior of

spoofing attacks is very small (ω ≈ 0), the baseline system not

fused with an anti-spoofing system performs the best. As the

prior for spoofing attacks is small, any of the fusion schemes

only undesirably increases HTERω . However, if the prior of

spoofing attacks is higher, then fusion is necessary to avoid

high vulnerability to spoofing. Expectedly, SFAR and HTERω

have a trade-off relationship, and the fusion algorithm that

reduces SFAR the most, deteriorates HTERω the most as well.

For example, SUM fusion notes the most significant drop of

SFAR, but also degrades the verification performance the most,
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Fig. 11: EPSC to compare anti-spoofing systems: GJet

baseline fused using PLR fusion

leading to highest HTERω .

With respect to the overall performance, LR and PLR

perform on similar scale. While SUM fusion helps the baseline

only for high values of ω, LR and PLR improve the baseline

already for low values of ω. If we need to choose a single al-

gorithm based on HTERω , then PLR will be the recommended

choice for applications where ω < 0.2, and LR otherwise.

E. Comparison of anti-spoofing systems

The goal of the third experiment is to employ EPSC to

compare the different anti-spoofing systems (LBP, LBP-TOP

and MOTION) when fused with baseline face verification

systems. Led by the observations of [48] and [49] that using

multiple complementary spoofing counter-measures is more

effective than a single one, we also attempted to fuse the

verification systems with ALL the available anti-spoofing

systems at once. We present the results on GJet using PLR

fusion, as one of the best performing fusion methods in the

experiment in Section V-D. The results for the rest of the

baseline systems are given in Appendix E.

Fig. 11 shows that, similarly as in the experiment presented

in Section V-D, fusion brings better overall system perfor-

mance than the isolated baseline, unless spoofing attacks are

highly improbable (ω ≈ 0). When considering only one anti-

spoofing system, the presented results are in favor of the LBP-

TOP for all the verification systems along the full range of ω.

Yet, fusing several anti-spoofing systems further improves the

system robustness to spoofing, as well as its HTERω .

F. Performance of fused systems

In our last experiment, we utilize EPSC to compare the

four face verification systems when fused with ALL counter-

measures using the PLR fusion scheme. The results are

presented in Fig. 12.

The comparison between the EPSC for the baseline (Fig. 9a)

and the fused systems (Fig. 12a), confirms that fusion is

highly beneficial to the systems’ robustness to spoofing. While

for some of the baseline systems HTERω increases rapidly

with ω and reaches up to 25%, for the fused systems it

increases very mildly and does not exceed 4.1%. The major

augmentation of robustness to spoofing for the systems after
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fusion can be observed by comparing Fig. 9b and Fig. 12b:

while unacceptable for the baseline systems for any value of

ω, SFAR does not exceed 6% for the fused systems even in the

case when spoofing attacks are not considered in the threshold

decision process i.e. ω = 0. The benefits of fusing can be also

illustrated by the score distribution plots, which are available

in Appendix E.

If we summarize both the verification performance and

spoofability of the systems into HTERω , Fig. 12a suggests

that ISV baseline fused with ALL the available anti-spoofing

systems performs the best. With AUE value of 0.0184 and

HTERω varying between 0.8% and 2.7%, ISV is superior over

the full range of ω.

VI. CONCLUSIONS

The spoofing attacks have proven to be a security threat

for the biometric verification systems in many modes and the

problem of anti-spoofing has been significantly treated in the

past few years. However, to apply anti-spoofing in a real-world

scenario, it is of importance to make a link between anti-

spoofing and biometric verification systems. The alliance of

the two will result in a verification system which will hopefully

demonstrate higher robustness to spoofing, but probably for the

price of modified verification accuracy.

In the traditional setup, the verification systems are evalu-

ated using the well-established metrics for binary classification

systems. Their vulnerability to spoofing is rarely reported.

When the spoofing attacks are acknowledged as a possible

danger, the verification system loses its binary nature and has

to cope with three input classes: genuine users, zero-effort

impostors and spoofing attacks. Inevitably, this introduces a

new definition for the verification systems and a necessity for

adjusted evaluation methodology.

The main concern of this paper is to find an appropriate way

to evaluate verification systems under spoofing attacks. Several

attempts already exist and are thoroughly covered in this

paper. Among their most crucial disadvantages is their biased

behavior of ignoring the spoofing attacks in the threshold

decision process. This leads to unnecessary high vulnerability

to spoofing.

This paper proposes a novel evaluation methodology, which

objectively assumes that both the zero-effort impostors and

spoofing attacks need to be considered in the threshold de-

cision process with a part that reflects the prior probability

among all the misuses of the system. Furthermore, the method-

ology accounts for the application-dependent cost of the error

rates associated with the positive and the negative classes. The

proposed framework, EPS, and the corresponding curve report

on the verification performance and the spoofability of the

verification systems using a single measure, called WERω,β .

It does so a priori, setting the threshold with no knowledge

on the test set in the development phase.

The power of the EPS framework and EPSC is demonstrated

by evaluating four state-of-the-art verification systems in the

face mode, before and after they are fused with an anti-

spoofing system. The EPSC allows for objective comparison of

the systems depending on the prior probability of the spoofing
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Fig. 12: EPSC to compare fused systems: PLR fusion with

ALL anti-spoofing systems

attacks or the cost of the error rates and helps decide which

combination of verification system, anti-spoofing system and

fusion method to use for a given application.

The evaluation concepts covered in this paper are general

and could be employed for other verification systems and

modes. For this purpose, the implementation of the pro-

posed evaluation framework is available as free software and

can be downloaded at http://pypi.python.org/pypi/antispoofing.

evaluation.
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Biometrics Evaluation under Spoofing Attacks
Ivana Chingovska, André Anjos, Sébastien Marcel

APPENDIX A

NOTES ON COMMON TERMINOLOGY FOR EVALUATION METRICS IN BIOMETRICS AND ANTI-SPOOFING

a) Error rates for evaluation of biometric systems: In the context of a binary classification system, we introduce False

Negative Rate (FNR) and False Positive Rate (FPR) as error rates associated with number of wrongly classified positive and

negative samples respectively. In the context of a biometric verification system, the typically used terms are False Match

Rate (FMR) and False Non-Match Rate (FNMR), as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR).

However, as suggested in [1], FRR and FAR are not synonymous with False Non-Match Rate (FNMR) and False Match Rate

(FMR). FNMR and FMR are used at a level of a single sample-to-model comparison, whereas FRR and FAR are used at

a transaction level, where a transaction includes all the allowed attempts of a user to be recognized by the system. Hence,

in general, FAR and FRR depend on FMR and FNMR, but also on error rates like Failure to Acquire (FTA), Binning Error

Rate (BER) and Penetration Rate (PR). Furthermore, FAR and FRR refer to the claim of the user, and this claim is different

for a biometric verification and biometric identification system. However, in the scope of our work, we are considering only

biometric verification systems and we do our evaluation in a pre-collected database, thus precluding error rates like FTA, BER

and PR. In such circumstances, which, as stated in [1], are typical for technology evaluation, FAR and FRR are equivalent to

FMR and FNMR. Therefore, in our manuscript, we adhere to the terms FAR and FRR. This terminology is also accepted, for

example, in [2].

b) Error rates for evaluation of anti-spoofing systems: Table I gives the most common terminology and synonyms for

error rates in evaluating anti-spoofing systems.

TABLE I: Typically used error rates for anti-spoofing systems and their synonyms.

Error rate Acronym Synonyms

False Positive Rate FPR False Acceptance Rate (FAR), False Spoof Acceptance Rate [3], False Living Rate (FLR) [4]
False Negative Rate FNR False Rejection Rate (FRR), False Alarm Rate [5], False Live Rejection Rate [3], False Fake Rate

(FFR) [4]
True Positive Rate TPR True Acceptance Rate
True Negative Rate TNR True Rejection Rate, detection rate [5], [6], [7], detection accuracy [8]
Half Total Error Rate HTER Average Classification Error (ACE) [4]

c) Error rates for evaluation of biometric verification systems under spoofing attacks: Table II gives the most common

error rates in evaluation of biometric verification systems under spoofing attacks. It contains error rates reported when the

system is evaluated only considering one negative class (either zero-effort impostors or spoofing attacks, resulting in licit or

spoof scenario, respectively), or both of them.

TABLE II: Typically used error rates for biometric verification systems under spoofing attacks and their synonyms.

Error rate Acronym Negative class Synonyms

False Negative Rate FNR
any False Rejection Rate (FRR), False Non-Match Rate [9], [3], Pmiss [10])
both Global False Rejection Rate (GFRR) [3]

True Positive Rate TPR any True Acceptance Rate, Genuine Acceptance Rate [11], [12]

False Positive Rate FPR
zero-effort impostors False Acceptance Rate (FAR), False Match Rate [9], [3], Pfa [10]
spoofing attacks False Acceptance Rate (FAR) [13], Spoof False Acceptance Rate [14], Liveness

False Acceptance Rate [15], Success Rate [16], Attack Success Rate [9]
both System False Acceptance Rate (SFAR) [15], Global False Acceptance Rate

(GFAR) [3]

For a more general framework, where the system is specialized to detect any kind of suspicious or subversive presentation

of samples, be it a spoofing attack, altered sample or artifact, [11] has assembled a different set of notations for error

measurements. Such a system reports False Suspicious Presentation Detection (FSPD) in the place of FNR and False Non-

Suspicious Presentation Detection (FNSPD) in the place of FPR.
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APPENDIX B

EPS FRAMEWORK: 3D PLOT OF ERROR RATES WITH RESPECT TO THE PARAMETERS

If we parameterize WERω,β by the two parameters, we are going to obtain a 3D surface, which, for a hypothetical biometric

verification system is shown in Fig. 1. Using this plot, we can clearly infer on the expected error rates depending on the

parameters’ values or range of values which are of interest. However, the visualization of two or more 3D plots on the same

figure is difficult and not convenient for comparative analysis of systems.
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Fig. 1: 3D plot of WER ω,β and SFAR computed using EPS framework for a hypothetical biometric verification system
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APPENDIX C

COMPARISON OF EPSC WITH METHODOLOGY 2

To support the assertion that consideration of the spoofing attacks is necessary when determining the decision threshold, we

compare EPSC with Methodology 2 described in Section III-B. For a hypothetical verification system, Fig. 2 plots the error

rates HTERω and SFAR as they are defined in Section IV. For EPSC, the decision threshold is determined using the criteria

given in Eq.5 of the manuscript. For Methodology 2, it does not depend on the parameter ω and is determined using the licit

scenario only. In both cases we fix the parameter β = 0.5.

Fig. 2: Comparison of error rates for EPSC and Methodology 2 (hypothetical biometric verification system)
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Both EPSC and Methodology 2 give the same results when ω = 0 i.e. when the verification system is not under spoofing

attacks. However, as soon as the spoofing attacks get even a small weight ω > 0, the vulnerability of the system under

Methodology 2 remains very high, while EPSC quickly adapts the threshold and achieves much better robustness to spoofing

(Fig. 2b). This is also reflected to the HTERω: EPSC notes more mild increase of HTERω as the weight of the spoofing attacks

increases (Fig. 2a).
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APPENDIX D

CATEGORIES OF SPOOFING ATTACKS: EPSC CASE STUDY

When reporting on the performance and spoofability of a verification system, it is usually done with respect to a certain

dataset. To be accounted for robust to spoofing with respect to a dataset, the system needs to gives score distributions as

illustrated in Fig. 3a. This means that, with respect to this system, the attacks are in the insufficient category. To be accounted

as vulnerable to spoofing, the system needs to give score distributions as in Fig. 3c of Fig. 3d. In such a case, the attacks are

in the optimal or super-optimal category with respect to that system.

The success of the attacks in spoofing the system primarily depends on two factors: their quality and the system design.

Spoofing attacks of low quality, which do not look realistic and which contain a lot of noise and artifacts may be insufficient

and fail to pass the verification system. Sub-optimal attacks are probably the most common: they are realistic enough to be

verified as the claimed identity, but their score is low due to the presence of artifacts. Optimal and super-optimal attacks look

more realistically and contain less artifacts, and hence their production may require user cooperation, expensive materials and

high-level skills. Hence, they are usually difficult to create.
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Fig. 3: Score distributions of 4 categories of spoofing attacks (hypothetical biometric verification system)

Fig. 4 illustrates the appearance of EPSC for the four hypothetical verification systems in Fig. 3 giving the four different

categories of spoofing attacks. The parameter β = 0.5 is fixed, while the parameter ω varies.

The general trend for all the cases is increasing HTERω as ω increases, but at the same time decreasing SFAR. Certainly,

this is a result of the security cautions taken by EPS framework by accounting on the spoofing attacks when deciding on

the decision threshold. However, there are significant differences in the appearance of EPSC for the systems with different

categories of attacks. For a system which is already robust to spoofing, i.e. puts the attacks in the insufficient category, both

HTERω and SFAR are relatively constant (blue curves). For systems relatively robust to spoofing, i.e. putting the attacks in

the sub-optimal category, the increase of HTERω is mild, while the decrease of SFAR is sharp (green curves). On the other

hand, for systems vulnerable to spoofing, the increase of HTERω is sharp, while the decrease of SFAR is mild (yellow and

red curves).

By visually analyzing and comparing the incline of the EPSC curves for two systems, we can infer which one has higher

robustness to spoofing.
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Fig. 4: EPSC for different categories of spoofing attacks
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APPENDIX E

EXPERIMENTAL RESULTS
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Fig. 5: EPSC to compare fusion methods: the four baseline face verification systems fused with LBP-based anti-spoofing

system. The four columns correspond to the four baselines: GMM, LGBPHS, GJet and ISV, respectively. The top row gives

the EPSC for HTERω , while the bottom row the EPSC for SFAR.

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

5

10

15

20

25

30

H
T

E
R

ω
(%

)

(a) HTERω , GMM

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

5

10

15

20

25

30

H
T

E
R

ω
(%

)

(b) HTERω , LGBPHS

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

5

10

15

20

25

30

H
T

E
R

ω
(%

)

(c) HTERω , GJet

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

5

10

15

20

25

30

H
T

E
R

ω
(%

)

(d) HTERω , ISV

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

20

40

60

80

100

S
F
A

R
(%

)

(e) SFAR, GMM

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

20

40

60

80

100

S
F
A

R
(%

)

(f) SFAR, LGBPHS

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

20

40

60

80

100

S
F
A

R
(%

)

(g) SFAR, GJet

0.0 0.2 0.4 0.6 0.8 1.0
Weight ω

0

20

40

60

80

100

S
F
A

R
(%

)

(h) SFAR, ISV

Fig. 6: EPSC to compare anti-spoofing systems: the four baseline face verification systems fused using PLR fusion. The four

columns correspond to the four baselines: GMM, LGBPHS, GJet and ISV, respectively. The top row gives the EPSC for

HTERω , while the bottom row the EPSC for SFAR.
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Fig. 7: Score distributions of fused systems: PLR fusion with ALL anti-spoofing systems. The full green line shows the

SFAR as the threshold changes.
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