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Abstract

Over the past two decades, biometric recognition has exploded into a plethora of different applications around the
globe. This proliferation can be attributed to the high levels of authentication accuracy and user convenience that biometric
recognition systems afford end-users. However, in-spite of the success of biometric recognition systems, there are a number
of outstanding problems and concerns pertaining to the various sub-modules of biometric recognition systems that create
an element of mistrust in their use - both by the scientific community and also the public at large. Some of these problems
include: i) questions related to system recognition performance, ii) security (spoof attacks, adversarial attacks, template
reconstruction attacks and demographic information leakage), iii) uncertainty over the bias and fairness of the systems to all
users, iv) explainability of the seemingly black-box decisions made by most recognition systems, and v) concerns over data
centralization and user privacy. In this paper, we provide an overview of each of the aforementioned open-ended challenges.
We survey work that has been conducted to address each of these concerns and highlight the issues requiring further
attention. Finally, we provide insights into how the biometric community can address core biometric recognition systems
design issues to better instill trust, fairness, and security for all.
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(a) Surveillance [1] (b) e-Commerce [2] (c) Airport Security [3] (d) Match-on-Card [4] (e) Biometric ATM [5]

(f) Smartphone Access [6] (g) Border Control [7] (h) Social Welfare Benefits [8] (i) Time and Attendance [9] (j) Vehicular Biometrics [10]

Fig. 1: Examples where biometrics are introduced for trust. For instance, Amazon employs Amazon One, a biometric recognition system for
e-commerce, that lets shoppers pay for their groceries by authenticating them via their palmprints [11]. US-VISIT authenticates international
travelers to the United States via their fingerprints [12]. “Touchless” authentication via face recognition is being increasingly employed for entry,
exit, and flight boarding [3] for airport security.

1 INTRODUCTION

THE Digital Age we live in has accelerated a prolifer-
ation of sensitive and personal data needing absolute

protection. For instance, most of us now carry access to
our bank account, email, business dealings, private message
history, personal videos and photos, and much more all
within a few taps on the smartphones in our pockets. It
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goes without saying that such data needs to be secured at
all times. At the same time, users want the convenience of
being able to access such data in a seamless and safe manner.
It is therefore not surprising that virtually all smartphones
now come equipped with a biometric authentication system
(either face or fingerprint) for highly accurate and convenient
unlocking of our phones. In addition, every day, a vari-
ety of organizations pose identity-related questions such
as, Should John be granted a visa?, Does Alice already have a
driver’s license?, and Is Cathy the owner of the bank account?
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Consequently, the use of biometric recognition systems has
now pervaded into the lives of billions of human-beings
all around the globe through a variety of applications (Fig-
ure 1).

Biometric recognition, or simply biometrics, refers to au-
tomatic person recognition based on an individual’s physical
or behavioral traits [13]. The term, Biometrics, is derived
from the Greek words bios (life) and metron (measure).
Hence, biometrics in the context of person recognition refers
to recognition based on measurements of the body (e.g., face,
fingerprint and iris). The origin of modern day biometric
recognition has its roots in the “Habitual Criminals Act”
passed by the British Parliament in 1869 [14]. In particular,
the Home Office Committee expressed the need for a reli-
able person recognition scheme for tracing repeat offend-
ers [15],

“What is wanted is a means of classifying the records of
habitual criminal, such that as soon as the particulars
of the personality of any prisoner (whether description,
measurements, marks, or photographs) are received, it
may be possible to ascertain readily, and with certainty,
whether his case is in the register, and if so, who he
is.” [15]

In essence, biometrics relies on who you are or how you act
as opposed to what you know (such as a password) or what
you have (such as an ID card).

Prior to automated biometric recognition systems, reli-
able identification of fellow beings had been a long-standing
problem in human society. In early civilizations, people
lived in small, connected communities. However, as hu-
manity became more mobile and populations increased, we
needed to start relying on credentials for person recognition.
Dating back all the way to ancient Rome, passwords had
long been viewed as the ideal method of securing informa-
tion and gaining access to exclusivity [16]. While passwords
may have served their purpose in ancient Rome, in this
day and age, passwords, while still in common use, are rife
with problems. For example, passwords are prone to social
engineering hacks, where someone can access a user’s pass-
word by gaining their trust [17]. Alternatively, a malicious
individual can observe and log a victim’s typed password
characters on a keyboard [18]. Finally, plain-text passwords
may be hacked or leaked from an insecure database [19].
Other knowledge-based authentication schemes such as
PINs are also prone to such attacks [20]. To combat the
limitations imposed by passwords, an alternative authenti-
cation scheme involves physical tokens, such as certificates,
ID cards, passports and driver’s licenses. Unfortunately,
these tokens are also vulnerable to social engineering attacks
and theft. Furthermore, in developing countries around the
world, many economically disadvantaged individuals lack
any type of identification documentation making it difficult
for them to access government benefits, healthcare, and
financial services. If an individual does possess an official ID
document, it may be fraudulent or shared with others [21–
23]. Finally, even if identification documentation can be
adequately distributed to everyone in a society, it cannot
be trusted. For example, Dhiren Barot, an Al-Qaeda fanatic,
was issued with nine fake British passports [24].

Not surprisingly, the problems associated with password
or token based authentication and identification has led to

TABLE 1: State-of-the-art identification (search) accuracy for
Fingerprint, Face, and Iris.

Trait Evaluation Gallery Size Iden. Error1

Fingerprint NIST FpVTE 2012 5M2 0.001

Face Ongoing NIST FRVT 12M 0.058

Iris NIST IREX 10 500K 0.006
1 FNIR @ FPIR = 0.001.
2 10-print fusion performance.

society exploring a more accurate and reliable method of
user authentication and identification management systems
which society as a whole can trust. The word “trust” is
defined in the Oxford dictionary as [25]:

TRUST: “Firm belief in the reliability, truth, ability,
or strength of someone or something.”

Thus for biometric recognition to be used in lieu of conven-
tional passwords or as an identity management system, they
must be shown to be highly accurate (establishing the relia-
bility and truth portion of the definition) and also robust, or
reliable. In other words, biometric recognition systems must
be demonstrated to be trustworthy. Subsequently and finally,
a firm belief in this trustworthiness must be established with
system users to gain their trust.

To date, significant progress has been made in solidi-
fying the accuracy component of a trustworthy biometric
recognition system. In particular, while automated biometric
recognition systems have now been around for quite some
time1, recent advances in hardware (e.g., an NVIDIA 3090
GeForce RTX performs at 35.58 TFLOPS2) and computer
vision algorithms (specifically deep learning [28–30]) have
led to biometric recognition systems which now surpass hu-
man recognition performance [31]. More specifically, NIST
evaluations for fingerprint [32], face [33], and iris [34] search
algorithms boast accuracies of FNIR = 0.001, 0.058, and
0.0059 @ FPIR = 0.001, respectively (Table 1).

Although the accuracy and convenience of biometric
recognition systems has fueled their replacement of tradi-
tional password or token based methods (and more im-
portantly, their widespread use in identity management
systems), scientists must begin shifting their attention away
from a purely recognition accuracy and convenience driven
mindset to concerns voiced by policy makers and the gen-
eral public about the reliability of biometric recognition sys-
tems (first component of the definition of trust). Biometric
systems are here to stay and their proliferation in our society
will continue to grow. It is also given that biometric systems
will make incorrect decisions, albeit small, and, like any
security system, will be subjected to attacks by hackers.
Therefore, the following concerns must be adequately ad-
dressed:

1) Performance: Although biometric recognition sys-
tem accuracy has matured, are there inputs and
ambient noise that will still break the system? How

1Trauring’s landmark paper on automated fingerprint recogni-
tion [26] appeared in 1963, while the first Automated Fingerprint
Identification Systems (AFIS) became available only in mid 1980s [27].

2https://www.nvidia.com/en-ph/geforce/graphics-cards/30-
series/rtx-3090/

https://www.nvidia.com/en-ph/geforce/graphics-cards/30-series/rtx-3090/
https://www.nvidia.com/en-ph/geforce/graphics-cards/30-series/rtx-3090/
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Fig. 2: A typical biometric recognition pipeline (highlighted in green) consists of: (i) biometric sensor that generates a digital representation of a
biometric trait, (ii) feature extractor that generates a compact and salient feature set, and (iii) matcher that outputs the final decision. We show the
five major points that reduces trust in biometrics (highlighted in red): (i) robustness to adverse noises, (ii) biasness, (iii) security from biometric
attacks, (iv) explainability, and (v) privacy.

will the recognition system perform over time? How
will the system scale to millions or even billions of
users?

2) Bias and Fairness: Does the biometric recognition
system work as well across all demographic groups?
Does the system mis-classify members of one demo-
graphic group more than another (e.g., age, gender,
race, ethnicity and country of origin)? Why? What
are the sources of bias in a biometric recognition
system?

3) Security: Have biometric recognition systems
solved the spoofing (presentation attack) vulnerabil-
ity? Are biometric recognition systems robust to ad-
versarial perturbations? Can users’ templates stored
in the system database be stolen or altered and
used to reconstruct a biometric image or glean de-
mographic information? How can we thwart these
attack vectors?

4) Explainability and Interpretability: Why is the
biometric recognition system making the decision it
is making? What parts of the input image are being
used to make a final decision? What features of the
input image are most important in the decision?
Will these features enable the model to operate ac-
curately and consistently over time and in different
operating conditions?

5) Privacy: Even if we have a highly accurate and
secure biometric system, how can we protect pri-
vacy of end users (and those who are in the train-
ing database)? Can we train on decentralized data,
e.g., federated learning? Can we perform training
or make inference directly on encrypted data? Can
the model parameters also be encrypted?

In other words, the trustworthiness of biometric recognition
systems must be verified [25].

VERIFY: “The process of establishing the truth, accu-
racy, or validity of something.”

While some work has begun to verify behaviors of bio-
metric recognition systems via studying the aforementioned
questions with scientific rigour, we argue that more work

remains to be done. To that end, in this paper, we point
out each of the major points of attack, question, or concern
(Figure 2) on the biometric recognition pipeline. Next, we
systematically survey the literature to locate pertinent re-
search aimed at addressing the aforementioned questions.
We discuss remaining limitations left by the existing liter-
ature. Finally, we summarize recommended steps that can
be taken and research that can be pursued (and also how it
can be conducted rigorously, fairly, etc.) to build biometric
recognition systems which are more trustworthy.

We note that this paper is unique in that it aggre-
gates and examines the main components of a trustworthy
biometric recognition system into one manuscript. Indeed
many surveys [13, 35–43] have been written in great detail
on each one of these topics individually, however we posit
that there is benefit in extracting the key points from each
of these areas and summarizing them in one place such
that researchers can very quickly and easily assess the
current state of trustworthy biometric recognition systems.
Furthermore, many of the existing survey papers on these
individual topics have become outdated. In short, this paper
provides the latest and most comprehensive overview of the
state of trustworthy biometric recognition systems.

2 RECOGNITION PERFORMANCE ROBUSTNESS
AND SCALABILITY

An initial prerequisite to placing trust in any recognition
system is that the system is accurate. In biometric recogni-
tion systems, we expect that accuracy to be robust to various
intrinsic and extrinsic noise in the input biometric signal
(Figure 2), and we also expect (in some cases) the system to
be scalable to millions or even billions of users. In terms of
accuracy, much research has been conducted since Mitchell
Trauring’s first paper on automated fingerprint recognition
in the journal Nature in 1963 [26]. Indeed, modern day bio-
metric recognition systems now boast accuracies in excess
of human level performance (Figure 3). However, in spite
of this tremendous progress, there are still a number of
situations where the biometric recognition system is not yet
robust. To examine what these problems are, we first briefly
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Fig. 3: Over the years, recognition rates of (a) fingerprints on the FVC Ongoing dataset [44], (b) face on LFW dataset [45], and (c) iris on ND-IRIS-
0405 [46] have significantly improved. As a consequence, fingerprints, face, and iris recognition are widely adopted as shown in (d) compared to
other biometric traits [47].

lay out the inner workings of a biometric recognition system
pipeline (Figure 2).

A typical biometric recognition system has two stages of
operation, namely, the enrollment stage (instance of the trait
is captured and linked to user’s credentials) and the recog-
nition stage (a probe or query trait is compared with the
enrolled trait(s)). In addition, biometric recognition systems
are typically operated under one of two modes: (i) authen-
tication (1:1 verification) and (ii) search (1:N identification).
In both stages of enrollment and recognition and in both
modes of authentication and search, the biometric recogni-
tion system utilizes a series of sub-modules in a systematic
pipeline (Figure 2). First, a biometric sensor (e.g., fingerprint
reader, RGB camera, or IR sensor) acquires the biometric
trait (e.g., fingerprint, face, or irises) of a user in digital form.
Next, the digitized trait is passed to a feature extractor to gen-
erate a compact and salient representation (or feature set)
differentiating one user from another. This representation
should have high inter-class separability, i.e., different users
should have very different representations. In addition, the
representation should have very low intra-class variability,
i.e., two representations from the same user should be
very similar. The representation could be based on hand-
crafted features (e.g., fingerprint minutiae or iris hamming
codes), learned features (e.g., deep face representations), or
a combination of handcrafted features with learned features
(e.g., through feature fusion or by guiding deep learning
methods via domain knowledge). Finally, when a user needs
to be authenticated or identified, a representation extracted
from the query sample can be compared to enrolled rep-
resentation(s) with a matching algorithm. Breakdowns in
the biometric recognition system can occur at any one of
the aforementioned modules and as such, robustness and
scalability must be imparted to each of them.

There are many different biometric traits, that can be
utilized in conjunction with the aforementioned pipeline,
however, in this paper we focus our attention on the three
most popular and widely accepted traits, namely face, fin-
gerprint and iris (Figure 3d).

2.1 Noisy Inputs

Despite impressive recognition performance, accuracies of
prevailing biometric systems are sensitive to the image ac-

quisition conditions. For example, in unconstrained scenar-
ios, biometric image acquisition may not be well-controlled
and subjects may be non-cooperative (or even unaware).
Image Quality: The quality of a biometric image severely
affects biometric recognition performance. For example,
Figure 5a shows the increase in error rates when lower
quality webcam and profile face photos are matched to the
mugshot gallery [33]. In practice, unconstrained face images
are of poor image quality (such as those captured from
surveillance cameras). In the case of fingerprints, images fed
to fingerprint comparison algorithms may contain distortion
and motion blur due to variations in pressure applied on the
sensor platen, and may have poor contrast due to dry/wet
fingers. Studies show that such degraded fingerprint im-
ages hamper recognition performance [48, 49]. Finally, iris
images which are occluded by eyelashes and eyelids can
cause failures in the iris recognition system [50]. Automated
person recognition performance on poor quality images is
far from desirable and remains an ongoing challenge for the
biometric community.
PIE Variations: It is now well established that accuracies
of face recognition systems are adversely affected by factors
including pose, illumination, expression, collectively known
as PIE [51]. Fingerprints also suffer from such adverse
inputs including non-linear distortion due to finger pressure
and orientation and noisy backgrounds or debris [49, 52, 53]
(e.g., COTS latent fingerprint rank-1 search accuracy against
a 100K gallery from an operational database is ≈ 70%,
while rolled fingerprint rank-1 search accuracy against a
gallery of 1 million fingerprints from the same database is
≈ 99% [54, 55]). Likewise iris recognition can be influenced
by heavy specular reflections on the eyes [50]. While on-
going efforts in mitigating such adverse noise in biometric
systems [52, 53, 56] is commendable, further research needs
to be conducted for trustworthy and robust biometric sys-
tems.
Aging Effects: A considerable amount of research has been
conducted to study the permanence of various biometric
traits, i.e., the trend in recognition rates as a person ages.
Longitudinal studies have shown that the time gap between
enrollment and gallery images have no significant impact
on recognition accuracies of iris [58, 60] and fingerprint [59]
matchers. However, a human face undergoes various tem-
poral changes, including skin texture, weight, facial hair,
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19 and 25 years of age (0.41) 28 and 39 years of age (0.46)
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Fig. 4: (Top row) Examples of low-scoring genuine face image pairs of
two subjects from the PCSO longitudinal mugshot dataset [57]. Ages at
image acquisitions are given along with similarity scores from COTS for
each pair. COTS is a top-performing AFR vendor in the Ongoing NIST
FRVT [33]. (Middle row) Fingerprint impressions from one subject in
a longitudinal fingerprint dataset [55]. (Bottom row) A subject’s left
iris images collected approximately six months apart [58]. False rejects
increase as a person’s face ages, whereas, recognition performance of
fingerprints and iris has been shown to be stable across large time
lapses [58–60].

etc. [61, 62]. Several studies have analyzed the extent to
which facial aging affects the performance of face match-
ers and two major conclusions can be drawn: (i) Perfor-
mance decreases with an increase in time lapse between
enrollment and query image acquisitions [33, 57, 63, 64],
and (ii) performance degrades more rapidly in the case
of younger individuals than older individuals [51, 65].
Figure 5b illustrates that state-of-the-art face matchers fail
considerably when it comes to matching an enrolled child
in the gallery with the corresponding probe over large time
lapses (even the best face matchers begin to deteriorate after
a time lapse of 10-12 years between the enrollment and
probe image (Figures 4 and 5b)). Unlike other factors, face
aging is intrinsic and cannot be controlled by the subject
or the acquisition environment. Therefore, it is essential to
enhance the longitudinal performance of biometric systems
(specifically, face matchers) in order to instill trust when
deployed in real-world applications such as tracing missing
children [66].

2.2 Training Data

Large-scale datasets have massively contributed to the im-
proved robustness and accuracy of biometric recognition
systems over the years. With the advent of deep neural
networks for person recognition [55, 67, 68], availability of
large-scale labeled dataset is paramount. For example, face
recognition systems are primarily trained on 8M face im-
ages [67, 68] from MS-Celeb-1M [69] dataset, while a deep-
learning-based fingerprint matcher is trained on 445K rolled
fingerprints from 38, 291 unique fingers [55]. Although
increasing the number of training images further could
potentially improve the overall recognition performance,
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Fig. 5: (a) Identification error rates of five SOTA AFR vendors when
mugshots (high-quality), webcam (medium-quality), and profile (low-
quality) faces are compared against a 1.6M mugshot dataset [51]. (b)
Identification error rates of six SOTA AFR systems on a 3M mugshot
dataset under aging [51].

it is becoming exceedingly difficult to acquire large-scale
face datasets with identity labels due to privacy concerns.
Furthermore, large-scale datasets can introduce other chal-
lenges such as underrepresented subjects (many subjects
have few images per subject) [70].

Instead, an alternative approach is to collect a large set
of unlabeled images to enhance the traditional supervised
training setting. This can be achieved in a semi-supervised
learning approach via label propagation [71]. A different
line of work explores utilizing a Graph Convolutional
Network to cluster unlabeled biometric images; pseudo-
labels can then be used for semi-supervised learning [72–
75]. Besides increasing the quantity of training data, a
heterogeneous unlabeled dataset can also be introduced
to augment the diversity of the prevailing labeled dataset,
which has been shown to improve model generalizability to
challenging and unconstrained images [76].

2.3 Scalability
Given the success of India’s Aadhaar national ID system,
it would seem that biometric recognition systems have
achieved a remarkable level of scalability [77]. The Aadhaar
system boasts over 1.3 billion enrollees based upon de-
duplication utilizing all ten fingerprints, face, and both
iris images [77]. However, although Aadhaar has been ex-
tremely successful in its mission to provide unique and ver-
ifiable digital identity to all, open ended questions remain
in the scientific literature on the scalability of biometric
recognition systems. In particular, very few evaluations
exist in the literature to show how biometric recognition
systems operate at a scale the size of Aadhaar (an average
of 35M biometric authentications per day3), the FBI’s NGI
program [78] (an average of 860K monthly searches4), and
DHS surveillance system [79] (more than 350K biometric
transactions per day5). Disney Parks also employ fingerprint
authentication at their entrances which encounters an aver-
age of 427K visitors per day6. If the system is not scalable
and false rejects and false matches are introduced, it will
cause chaos and ill-will.

3https://uidai.gov.in/aadhaar dashboard/auth trend.php
4https://www.fbi.gov/file-repository/ngi-monthly-fact-

sheet/view
5https://www.dhs.gov/biometrics
6https://disneynews.us/disney-parks-attendance

https://uidai.gov.in/aadhaar_dashboard/auth_trend.php
https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view
https://www.fbi.gov/file-repository/ngi-monthly-fact-sheet/view
https://www.dhs.gov/biometrics
https://disneynews.us/disney-parks-attendance


JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 6

Theoretically, iris recognition should be incredi-
bly scalable [80]. A few studies have evaluated the
search/clustering performance of face recognition against
a gallery of 80 million and 123 million, respectively [81, 82].
The large scale galleries were obtained by scraping photos
from the web. In a similar fashion, a study was conducted
in [83] to ascertain the performance of fingerprint search
algorithms against a gallery of 100 million prints. Since there
is no publicly available large-scale database for evaluating
fingerprint search, the authors in [83] first synthesize a
database of 100 million fingerprints which are then used
in the search evaluation. A limitation of the approach in [83]
is that a domain gap exists between synthetic fingerprints
and real fingerprints such that synthetic distractors could
artificially inflate the true search performance at scale. This
limitation could also exist in the large scale face search
studies [81, 82] where even galleries of web scraped real data
could have a domain gap with the probes from surveillance
video frames. Given these challenges, and the additional
increasing privacy concerns over biometric data, a very im-
portant ongoing area of research in biometrics is that of large
scale synthesis. In particular, if methods can be developed to
synthesize biometric images which bridge the domain gap
between real and synthetic samples, better estimates on the
scalability (both accuracy and speed) of biometric recogni-
tion systems can be established and consequently, biometric
recognition systems can be made more trustworthy7.

3 SECURITY

Aside from the performance robustness and scalability of
state-of-the-art (SOTA) biometric recognition systems dis-
cussed in the previous section, perhaps the next most
important aspect of biometric recognition systems needed
to solidify trustworthiness is that of their security or their
often perceived lack thereof. When talking about biometric
system security, we are specifically referring to those areas
of the biometric recognition system which are vulnera-
ble to manipulation and exploitation by various malicious
hackers. These “hacks” can be carried out at each of the
individual stages of the biometric recognition system as
shown in Figure 2. To focus our attention on the most
serious threats, we dive down into a few of the major
points of security concern within SOTA biometric recog-
nition systems. In particular, security threats exist at (i)
the sensor level in the form of presentation attacks, (ii) the
feature extraction module via adversarial attacks, and (iii)
the database and matching modules with template theft
and subsequent template reconstruction attacks. Each of these
areas of security concern have been investigated by the
biometrics research community. However, points of concern
remain unaddressed, particularly with respect to their gen-
eralizability to detect new attack types and new sensors not
known during their training. In this section, we define each
of these attacks, discuss the state-of-the-art in mitigating
against these attacks, highlight what remains unsolved, and

7Of course using mega-scale galleries of real data would be best for
building trustworthiness, however, in practice, obtaining such datasets
from legacy sources is becoming extremely difficult due to privacy
concerns and/or the time and cost of collecting such an evaluation
dataset.

Print Replay 3D Silicone Mask Funny Eyes Cosmetic Makeup

2D Printed Paper 3D Targets Dragon Skin Gelatin Transparency

Printed Paper Plastic Eyeballs Cosmetic Contact Lenses

Fig. 6: Examples of face (top row), fingerprint (middle row), and iris
(bottom row) presentation attacks. Face spoofs are sourced from SiW-
M dataset [90], fingerprint spoofs from [91], and iris spoofs from [92].

conclude with what can be done to further enhance the
security of biometric recognition systems to instill trust in
their continued widespread use.

3.1 Presentation Attacks
In IEC 30107-1:2016(E), presentation attacks (PAs) are for-
mally defined as:

“Presentation to the biometric data capture subsystem
with the goal of interfering with the operation of the
biometric system.”

PAs can be deployed either as an obfuscation attack (an
attempt to hide one’s own identity) or as an impersonation
attack (an attempt to mimic someone else). For example, fin-
gerprints could be cut or burned in an attempt to obfuscate
one’s identity and thus evade identification [84]. Alterna-
tively, spoofs comprised of common household materials
such as playdoh, wood glue, or gelatin can be used by a
hacker to create an impersonation of a victim’s fingerprint.
More sophisticated attacks include use of high-resolution
3D [85–87] or 2D printing [88], or cadaver fingers [89]. In
the domain of face, glasses or a mask could be used for
obfuscation, while a replay on a mobile phone could be used
for impersonation. Some of the well-known spoof attacks
for face, fingerprint, and iris are shown in Figure 6. In all of
these examples, the attack against the biometric recognition
system is carried out at the sensor level (Figure 2).

PAs have gained notoriety due to several real world
examples where they have been shown to fool biometric
recognition systems. For example, the German Chaos Com-
puter Club demonstrated with ease the breaking of Apple‘s
TouchID already in 20138. Fast forward to today, fingerprint
recognition systems are still being thwarted by spoof attacks
with some success9. Across biometric traits, Apple‘s highly
touted FaceID was compromised by a 3D mask shortly

8https://www.ccc.de/en/updates/2013/ccc-breaks-apple-
touchid

9https://blog.talosintelligence.com/2020/04/fingerprint-
research.html

https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://www.ccc.de/en/updates/2013/ccc-breaks-apple-touchid
https://blog.talosintelligence.com/2020/04/fingerprint-research.html
https://blog.talosintelligence.com/2020/04/fingerprint-research.html
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TABLE 2: SOTA PAD Performance for Face, Fingerprint, and
Iris on known (seen during training) PA types

Trait Competition Accuracy

Fingerprint LiveDet 2019 96.17%1

Face 2020 Celeb-A
Spoof Challenge 100%2

Iris 2020 LivDet-Iris Challenge 97.82%1

1 Average accuracy reported in [95] and [96].
2 TDR @ FDR = 10−6 reported in [97].

after its deployment by the Vietnamese cybersecurity firm
Bkav10. All of these successful attacks come twenty years
after early successful spoof attacks were shown in [93, 94].

The continued success in spoofing modern day bio-
metric recognition systems is not a consequence of a lack
of research into developing presentation attack detection
(PAD) systems. Indeed the past couple of decades have
seen a plethora of research into developing PAD systems
which can automatically detect and flag a spoof attack prior
to performing authentication or identification [35, 36, 98–
100]. Typically these approaches are divided into hardware
or software based approaches detecting face, fingerprint,
and iris spoofs. Hardware approaches deploy additional
sensors (e.g. depth, IR cameras, multispectral illumination,
etc.) to capture features which differentiate bonafide ac-
quisitions from PAs [101–112]. In contrast, software based
solutions extract anatomical, physiological, textural, chal-
lenge response, or deep network based features to classify
an input sample as live (bonafide) or presentation attack
(spoof) [35, 36, 96, 98–100, 113–122]. The culmination of
these approaches can be seen in the high performances
of the various algorithms submitted as part of the IARPA
ODIN program11 and also the public fingerprint and face
liveness competitions (Table 2) [95, 97]. However, after years
of rigorous research into various PAD approaches, the con-
tinued success of spoof attacks against deployed biometric
recognition systems leads to the inevitable question, “What
can be done to more reliably secure the biometric sensing module
from spoof attacks?”. From our review of the literature, we
posit that there are a few different sub-problems of biomet-
ric PAD that remain unaddressed. Solving these problems
will close the spoofing loopholes remaining and will go a
long way towards building trust in biometric recognition
systems.

Perhaps the most significant outstanding problem with
deployed PAD systems is their lack of generalization to
spoofs fabricated from materials different than the spoofs
that were used to train the PAD system. This problem is
typically referred to as “unseen” or “cross” material gener-
alization. In the domain of fingerprint recognition, multiple
studies specifically showed that when a material is left
out of training a state-of-the-art spoof detector and then
subsequently used for evaluation, the detection accuracy
drops below 10% [91, 123]. Similar deterioration of unseen
material detection accuracy have been observed in the face

10https://www.theverge.com/2017/11/13/16642690/bkav-
iphone-x-faceid-mask

11https://www.iarpa.gov/index.php/research-programs/odin

Real AdvFaces FGSM PGD Semantic GFLM DeepFool

0.21 0.27 0.28 0.32 0.34 0.35ArcFace:

Fig. 7: (Top Row) Adversarial faces synthesized via 6 adversarial
attacks [147]. (Bottom Row) Corresponding adversarial perturbations
(gray indicates no change from the input). Notice the diversity in the
perturbations. ArcFace match scores between adversarial image and
the unaltered gallery image are given below each image. A score above
0.36 indicates that two faces are of the same subject. Zoom in for details.

domain [124]. In operational settings, the likelihood of a
hacker using a spoof made from a novel material can be high
and thus, without addressing this problem, spoof detectors
remain limited in their applicability. Unfortunately, many
papers continue to work on addressing “known-material”
spoof detection which already obtains nearly perfect accu-
racy (Table 2) while ignoring this more challenging problem.
There are a number of more recent and promising works
that focus specifically on addressing the “unseen material”
and “unseen sensor” challenge, however, the accuracy re-
mains insufficient for field deployment [90, 91, 115, 123, 125–
137]. Thus, we urge a stronger research push in this direc-
tion in an effort to build trustworthy biometric recognition
systems.

In addition to the major vulnerability of “unseen mate-
rials”, other practical limitations of PAD systems must also
be addressed. For example, many PAD systems evaluated
in the literature train on one partition of a dataset captured
by a particular sensor or camera, and then test on a separate
partition of the same dataset (again captured by the same
sensor model or camera under the same capture conditions).
However, there can be a number of differences in the data
distribution observed in the actual deployment scenario
such as: sensor model, illumination, subject demographics,
and environmental conditions. As such, models reporting
near perfect accuracy on intra-dataset; intra-sensor perform
quite poorly when deployed into a inter-dataset and inter-
sensor scenario. We encourage PAD researchers to examine
more difficult evaluation scenarios (cross dataset, cross sen-
sor [132, 138–145]) which may be more indicative of how the
PAD system will perform in the wild.

Finally, from a practical perspective, many of the PAD
solutions place little emphasis on the efficiency of the PAD
solution. However, many of the biometric recognition sys-
tems we use today are deployed on resource constrained
devices (such as our smartphones) and as such, many of
the deep learning PAD systems are impractical for real
world applications. Research needs to be done to prune
the parameters of the deep learning based approaches and
perhaps combine deep learning approaches with simpler,
faster, and lighter weight handcrafted approaches [91, 146].

3.2 Adversarial Attacks

With unrestricted access to the rapid proliferation of face
images on social media platforms, such as FaceBook,

https://www.theverge.com/2017/11/13/16642690/bkav-iphone-x-faceid-mask
https://www.theverge.com/2017/11/13/16642690/bkav-iphone-x-faceid-mask
https://www.iarpa.gov/index.php/research-programs/odin
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SnapChat, Instagram, etc., a community of attackers ded-
icate their time and efforts to digitally manipulate face
images in order to evade automated face recognition (AFR)
systems [147]. AFR systems have been shown to be vul-
nerable to “adversarial faces”12 resulting from perturbing
an input probe [149–152]. Even when the perturbations are
imperceptible to the naked eye, adversarial faces can de-
grade the performance of numerous state-of-the-art (SOTA)
AFR systems [149, 150] (see Figure 7). For example, face
recognition performance of SOTA AFR system, ArcFace [68],
drops from a TAR of 99.82% to 00.17% at 0.1% FAR on
LFW dataset [45] when the adversarial face generator, Ad-
vFaces [149], is encountered. Note that adversarial images
are an attack on the feature extraction module of biometric
recognition system (Figure 2).

In contrast to face presentation attacks where the attacker
needs to actively participate by wearing a mask or replaying
a face photograph/video of the victim, adversarial faces do
not require active participation during verification. Given
the unattended nature and “touchless” acquisition of AFR
systems, an individual may maliciously enroll an adver-
sarial image in the gallery such that at border crossing,
his legitimate face image will be matched to a known and
benign individual (known as an impersonation attack). An
individual may also synthesize adversarial faces in order to
safeguard personal privacy (e.g., obfuscate automated face
recognition in video conference calls [153]). Also different
from face presentation attacks, the adversarial perturbations
are extremely subtle and directly inhibit face representations
thereby making detection an extremely challenging task.

Given the growing dissemination of “fake news” and
“deep fakes”, the research community and social media
platforms alike are pushing towards defenses against dig-
ital perturbation attacks. In order to safeguard AFR sys-
tems against these attacks, numerous defense strategies
have been proposed in literature. A common defense strat-
egy, namely adversarial training, is to re-train the classifier
we wish to defend with perturbation attacks [148, 154–
157]. However, adversarial training has been shown to
degrade classification accuracy on real (non-adversarial)
images [158, 159]. In the case of face recognition, adversarial
training drops the accuracy on real images in the LFW
dataset [45] from 99.13% to 98.27% [147]. Therefore, a large
number of defense mechanisms have been deployed as a
pre-processing step where a binary classifier is trained to
distinguish between real and perturbed faces [147, 160–
172, 172, 173, 173, 174, 174–178]. Another pre-processing
strategy, namely purification, involves automatically remov-
ing perturbations in the input image prior to passing it to
an AFR system [147, 179–184].

Similar to PAD mechanisms, an adversarial defense sys-
tem also suffers from poor generalizability to perturbation
types that are not encountered during its training (“unseen
perturbation types”) [147]. In addition, employing sepa-
rate pre-processing steps to detect perturbation attacks that
inhibit the face feature extraction module is cumbersome
and adds computational burden. Further research needs to

12Adversarial perturbations refer to altering an input image instance
with small, human imperceptible changes in a manner that can evade
CNN models [148].

Input Probe Reconstructed ReconstructedInput Probe

Fig. 8: Two examples each of template reconstruction attacks for
face [185] (top row), fingerprint [186] (middle row) and iris [187]. In
all cases, the reconstruction attacks successfully match to the respective
input probes.

be conducted to improve the intrinsic robustness of AFR
systems to such adversarial perturbations which eliminates
the need for separate detectors or purifiers.

Finally, we note that to date, adversarial attacks on
the feature extraction module (Figure 2) have been mostly
associated with face recognition systems, since most AFRs
utilize deep networks for feature extraction. In contrast,
most fingerprint and iris recognition systems rely primarily
on handcrafted minutiae points or iris hamming codes and
are thus assumed to be safe from adversarial attacks. How-
ever, this assumption should be treated with caution as deep
networks are now being explored for fingerprint and iris
recognition systems as well for a number of tasks including:
fixed-length representation extraction [55, 188, 189], minu-
tiae extraction [190], minutiae descriptor extraction [54],
spoof detection [114], etc. Presumably, any one of these deep
network based fingerprint or iris algorithms could also be
vulnerable to adversarial attacks. In fact, some work has
been done to show that fingerprint PAD systems can be
evaded by adversarial attacks [191]. This is concerning since
another study showed that these adversarial attacks could
be converted back into a physical attack and then deployed
as a successful attack on the PAD system [192]. In addition,
several successful adversarial attacks have been crafted to
evade iris matchers as well [193–196].

3.3 Template Attacks

Finally, in addition to the security threats that exist at the
sensor level in the form of spoof attacks and at the feature
extraction module in the form of adversarial attacks, a very
serious vulnerability of biometric recognition systems is
that of limited template security. In particular, numerous
studies have shown that templates extracted by biomet-
ric recognition systems (deep face representations [185],
minutiae-based fingerprint representations [186, 197], and
iriscode features [187, 198, 199]) can be inverted back into
the image space with high fidelity (Figure 8). Other stud-
ies have shown that “soft” demographic attributes (such
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as age and gender) are encoded into the biometric tem-
plates [200, 201]. This is of serious concern given a num-
ber of reported breaches of databases containing biometric
templates13 14 15 16. Note that a template can be stolen
immediately following feature extraction, as it resides in the
enrollment database, or even during the matching routine if
the template needs to be decrypted to perform the matching.
Thus, the biometric recognition system needs to ensure that
the templates remain encrypted and secured from hackers
at all times.

A plethora of research has been conducted to secure bio-
metric templates [37]. Some of these approaches are based
upon cryptography [202] and others are pattern recognition
based. For example fuzzy vault cryptosystems have been
proposed for fingerprint [203] and iris [204] recognition.
Common pattern recognition based approaches include
non-invertible transformation functions [205] and cance-
lable biometrics [206]. Another approach that has been tried
is to bind a secret key with a biometric template [207, 208].
Finally, techniques based on deep networks [209] and rep-
resentation geometry [210] have been proposed. All of these
approaches are limited in that they trade off the recognition
accuracy of a biometric system for the enhanced security.

A more recent development in biometric template
protection is that of homomorphic encryption (HE) sys-
tems [211–215]. Homomorphic encryption enables doing ba-
sic arithmetic operations directly in the encrypted domain.
Because of this, the primary benefit of using HE is that it
can protect the template as it resides in the database, and
also while it is being compared (assuming the matching
function can be reduced to arithmetic operations of addition
and multiplication, e.g. the cosine similarity between two
face representations). The limitation of HE systems is that it
is computationally expensive, especially Fully HE systems
which allow for both addition and multiplication operations
directly in the encrypted domain. Work has been done to
alleviate the computational burden of FHE for biometric
matching [216–218], however, research remains to further
speed up this encrypted matching process (e.g., the work
in [218] showed encrypted fingerprint search against 100
million gallery in 500 seconds, a 275× speedup over SOTA;
the same search in the unencrypted domain would take 10
seconds [55]).

Generally speaking, all of the methods that attempt to
better protect the biometric template, seek a compromise
along multiple axes of speed, memory, accuracy, and secu-
rity. Research must continue to minimize the trade-offs and
sacrifices that occur in any one of these dimensions. Ideally,
a trustworthy biometrics recognition system would secure
the template, at all times, while sacrificing very little along
any of these axes.

3.4 Unifying Security Efforts
As an addendum on the security efforts across sensing,
feature extraction, and matching modules, we note that
prevailing research efforts focus on mitigating one of the

13https://bit.ly/2HD83Pq
14https://wapo.st/39PQuaT
15https://wapo.st/2V3kHPS
16https://bit.ly/2OQhlM3

Fig. 9: Visualization of filter response “heat maps” of 7 different filters
from an interpretable face recognition system [220] on face images from
different subjects (Top 2 rows) and the same subject (Bottom 2 rows).
The positive and negative responses are shown as two colors within
each image. Note the high consistency of response locations across
subjects and across poses [220].

three attack categories at a time: (i) presentation attacks,
(ii) adversarial attacks, and (iii) template attacks. Since the
exact type of biometric attack may not be known a priori,
researchers are encouraged to design generalizable detectors
that can defend biometric systems against any of the three
attack categories [219] (e.g., in an enrollment scenario, a
single detector could quickly check for live vs. spoof, ad-
versarial perturbations, and reconstruction attacks). Such
systems will alleviate the computational burden of securing
the entire biometric recognition pipeline.

4 EXPLAINABILITY AND INTERPRETABILITY

In addition to being accurate and secure, a trustworthy
biometric recognition system should also have a certain
degree of interpretability such that system designers and
agency deploying the system can understand why a de-
cision is made and adjust the system’s decision if needed
(i.e., by inserting a human in the loop). Interpretability
is also important in courts of law, where fingerprint and
face evidence could be used to convict a person [221, 222].
For example, if we are using a face recognition system’s
prediction to identify someone as a criminal, we would like
to understand why the system thinks the probe and gallery
faces appear similar to prevent potential false convictions
or false acquittals17. However, most deep neural network
based models, utilized for face recognition, serve as black
boxes that give final decisions on probe samples directly via
millions of learned parameters.

To better impart credibility and interpretability to these
black box systems, many methods have been proposed in
the broader computer vision and machine learning commu-
nity. One popular direction of research is visualizing the
features that are learned in the model [223–227]. Others
focus on the attribution of the decision, either by finding
the features [228–230] or the local regions in images [231–
235] that lead to the final decision. Although the feature

17Interpretability can also greatly aid the judge and the jury in
cases where both the prosecution and the defense present conflicting
recognition results based on their own proprietary black-boxes.

https://bit.ly/2HD83Pq
https://wapo.st/39PQuaT
https://wapo.st/2V3kHPS
https://bit.ly/2OQhlM3
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Input Probe Texture Response Minutiae Response

Fig. 10: Visualization of filter responses from texture and minutiae
branches on two fingerprint images via DeepPrint, a CNN-based fin-
gerprint matcher [55]. This shows us that the network learns to extract
features related to areas of the fingerprint we know are discriminative
(minutiae and singularity points).

visualization methods could be directly applied to the fea-
ture extraction module of biometric systems, the attribution
methods may be better geared towards classification models
used in biometrics (i.e., PAD algorithms) since the goal is to
interpret a final classification decision.

Within the biometric modality of face specifically, a few
studies have attempted to understand how features are
learned and used to compare faces. For example, Yin et
al. [220] propose to constrain the learning stage such that
features are directly related to different areas of the face.
Once the models are trained, saliency maps can be used to
visualize which part of the face a filter is looking at (see
Figure 9). Experimental results also show that in addition
to imparting spatial interpretability, regularizing the spatial
diversity of the features enables the model to become more
robust to occlusion. A drawback of Yin’s method is that a
model needs to be re-trained to obtain such interpretability
(i.e., interpretability can not be extracted from prevailing
commodity AFR systems). In response, Stylianou et al. [236]
propose a model-agnostic method that visualizes the salient
areas that contribute to the similarity between a pair of faces.
It is observed that models are indeed focusing on the entire
face, but they were not able to provide more fine-grained
details, such as which part of the face is contributing to the
similarity/dissimilarity between a pair of faces. Therefore,
we believe this problem of similarity attribution remains a
meaningful yet unsolved problem for future research.

In another line of research, the studies in [200] and [201]
provide interpretability to AFRs by studying how facial
attributes are encoded in the deep neural network. In par-
ticular, the authors in [200] chose four common attributes,
namely identity, age, gender and face angle (yaw), and
estimated their correlation with face representations. They
found that compared to low-level features, high-level deep
face representations tend to be more correlated with identity
and age while less correlated with gender and face angle.
In a similar line of research, the authors in [201] examined
the effect of 47 high-level attributes on face recognition per-
formance. They observed that many nuisance factors such

(a) Face Spoof Regions

(b) Fingerprint Spoof Regions (c) Iris Spoof Regions

Fig. 11: Visualizing (a) face spoof [125], (b) fingerprint spoof [144], and
(c) iris spoofs [237] regions. Blue regions in (a, c) indicate bona fide
regions while red regions denote spoofs. Red regions in (b) indicate
likely fingerprint spoof or fingerprint alteration.

as accessories, hair-styles and colors, face shapes, or facial
anomalies influenced the face recognition performance.

A more recent direction in interpreting and improving
AFRs is through uncertainty estimation. For example, Shi et
al. proposed in [238] to represent each input face as a dis-
tributional representation in the feature space (rather than
a single point or feature vector), where the variance of the
distributions represent the uncertainty of the corresponding
features. Besides improving the face recognition perfor-
mance, they showed that the feature uncertainty could also
be used to visualize the perception of the model about the
input.

While all of the aforementioned methods have certainly
helped impart more interpretability to AFRs, there is still
much we do not yet know and understand about what
information about the input image is being encoded into
deep face representations. Having a better understanding of
what these encodings are comprised of could help address
biasness and other failures in the AFR system. Interpretabil-
ity also needs to be extended to other modules of the
face recognition pipeline (such as spoof detection) where
nuisance factors could potentially cause a spoof face to be
misclassified as a live face. Therefore, we posit that more
work in this area remains to be done in an effort to build
trustworthy biometric recognition systems.

We note that much of the interpretability concerns men-
tioned thus far have been centered around face recognition
systems. This is because nearly all face recognition systems
employ the use of “black-box” deep networks for encoding
and matching. However, as per our earlier discussion on ad-
versarial attacks, deep networks are now being increasingly
used for fingerprint and iris recognition systems as well.
Thus several studies have begun to more carefully discuss
interpretability of deep networks deployed for various tasks
within the fingerprint and iris recognition pipeline. For
example, the authors in [55], utilize the feature attribution
method from [223] to visualize the features being learned by
a deep network for fixed-length fingerprint representation
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Fig. 12: Face image and corresponding thumb-print of a 1-week old
infant [52]. The thumb-print was captured and matched using a custom
1,900 ppi reader and accompanying high-resolution matcher, since the
standard 500 ppi COTS readers and matchers do not have sufficient
resolution to capture and match an infant’s fingerprints.

extraction (Figure 10). They conclude that the network is
able to automatically learn areas in the fingerprint image
that are already deemed highly discriminative (singularity
points, and minutiae points). A similar observation was
made in [239]. Akin to AFR systems, as fingerprint matchers
begin to rely more on deep networks, further research needs
to be conducted to ensure the interpretability of their deci-
sions. Aside from interpreting deep learning based methods
in the domain of fingerprint, some other studies have tested
minutiae-based fingerprint matchers to determine which
source of noise contributes the most to the final fingerprint
recognition decision [48, 49].

Finally, interpretability is not limited to the feature ex-
traction and matching modules of the biometric recognition
pipeline. For instance, researchers working on face, finger-
print, and iris spoof detection modules have also begun
examining more closely the types of features that a deep
network uses to differentiate a live biometric sample from
a spoof [91, 125, 237, 240–242]. This is especially important
in order to prevent wrongfully denying access to genuine
subjects. For example, in the event that a person is flagged
for attempting to spoof a biometric system, the PAD system
should visualize which regions of the biometric sample
consists of a spoof to further aid a human operator doing a
manual inspection; a global “spoofness score” alone may not
be sufficient for a human operator to interpret the network’s
decision (see Figure 11).

5 DEMOGRAPHIC BIAS AND FAIRNESS

Another issue of trust with biometric recognition systems
that has more recently been brought to light in mainstream
media is that of biased performance against certain demo-
graphic groups [51, 63, 244, 245], referred to as demographic
bias in biometrics. When a biometric system is defined to be
demographically biased, it algorithmically provides higher
recognition performance for users within a subset of de-
mographics and lower performance in other demographic
groups (see Figure 14). In fact, all 106 face recognition
algorithms (from academia and industry alike) that were
submitted to the NIST FRVT [51] exhibit different levels of
biased performances based on gender, race, and age groups
of a mugshot dataset. Similar bias issues in AFRs were

(a) Robert Williams (b) Investigative Lead Report

Fig. 13: Face recognition system wrongfully identified (a) Robert
Williams when the CCTV frame in (b) is searched against a 49M gallery.
On arrest, Williams responds, “This is not me. You think all Black men
look alike?” [243]. Relying on automated person recognition alone may
lead to a lack of trust in the eyes of policymakers and citizens alike.
Therefore, it is imperative to have “humans-in-the-loop” where human
examiners can verify the decisions made by biometric systems. In
addition, biometric systems should also have a “reject” option instead
of match/non-match binary decisions.

reported by earlier studies on demographic attribute estima-
tion [246]. It should be acknowledged that the demographic
bias shown by the best performing commodity AFR systems
in the NIST FRVT on mugshot faces is less than 1.0% across
the four groups: Black Male, Black Female, White Male and
While Female [51]. Furthermore, every top-tier AFR system
studied in NIST FRVT Ongoing is most accurate on Black
Males [33]. It should also be noted that the extent of bias
across different demographic cohorts cannot be precisely
known until proper ground truth adjudication can be done
on large scale datasets such as that used in the NIST FRVT
(where the level of performance on different demographic
groups flipped before and after manual ground truth adju-
dication) [51].

Since facial regions contain rich information of demo-
graphic attributes, most studies on bias are focused on face-
based biometrics [51, 63, 64, 244, 247]. However, several
studies have also investigated the bias factor of age or aging
in other biometric modalities (fingerprint [52, 59, 248, 249],
or iris [250]). A consistent finding of bias in face recognition
across studies in [57, 63, 64] is that the recognition perfor-
mance is worse for female cohorts (possibly due to the use
of cosmetics). The studies of [251, 252] showed a significant
attribute estimation accuracy impact based on age, gender
and race. In the domain of fingerprint, [59] indicated a non-
trivial impact of age on genuine match scores.
Biometrics for Lifetime: Multiple studies have shown the
extreme difficulty in performing biometric recognition on
the most vulnerable amongst us, namely infants and young
children (Figure 12) [52, 248, 249].

Most of the aforementioned studies address algorith-
mic demographic bias, however, we also highlight the role
that biometric sensors can play in biasness. For instance,
matching fingerprints from different sensors is a challeng-
ing problem [253]. In the case of iris recognition, brown-
eyed individuals are more susceptible to sensor issues and
therefore, near infra-red sensors are adopted instead of
RGB cameras. Finally, a study on AFRs showed that “the
magnitude of measured demographic effects depends on
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Race
/Ethnicity

Sample Images
Verification 

Accuracy (%)

East 
Asian

South 
Asian

Black

Caucasian

93.72

94.67

93.98

96.18

Fig. 14: Face Verification performance by ArcFace [68] on each
race/ethnicity cohort in RFW dataset [259].

image acquisition” [254].
Deploying biased systems could come with significant

consequences, especially against those whom the system
does not perform as well on, e.g., being unjustly incarcerated
or denial of bail or parole [255–258] (see Figure 13). There-
fore, it is crucial to estimate and mitigate demographic bias
in biometric recognition systems. Such systems should show
no statistically significant difference on the performance
amongst different demographic groups of individuals. At
the same time, the overall accuracy of the system should
not be compromised, ideally.

To mitigate bias in biometric recognition systems, a
simple question must first be answered: What factors lead
to bias in biometric recognition systems? The answer to that
question is multi-faceted. First of all, many state-of-the-art
biometric recognition systems are based on deep networks,
which rely on large training datasets. These training datasets
of human subjects are often biased towards certain demo-
graphic cohorts. Secondly, the implementation of biometric
recognition systems can be statistically biased during the
learning process, for example, by parameter optimization
and regularization. For example, a representation extraction
network undergoing training is typically trying to satisfy
training samples on the average case while potentially plac-
ing less weight on under-represented samples leading to
biasness. Finally, the fourth factor is what is referred to as
intrinsic bias, a notion first introduced by [63], stating that
subjects in certain demographic groups are inherently more
difficult to be recognized.

Given the various sources of bias mentioned above, bias
mitigation requires special attention on both data sampling
and algorithm design. Early studies on dataset-induced bias
include data re-sampling methods (oversampling or under-
sampling images of certain demographics) [267–269]. Data
re-sampling is limited in that useful, diverse information
is discarded. Therefore, rather than re-weight the sample
distribution in the training set, later studies tackle bias by
re-weighting the loss values in objective functions [270, 271],
also called cost-sensitive learning, based on a sample’s demo-
graphic cohort.

The aforementioned works do not take into account
the correlation between demographics and identity. As
such, [247] proposes a framework to jointly learn unbi-
ased representations for both the identity and demographic

attributes by disentangling them. The impact of bias is
mitigated by removing sensitive information (demographics
or identity) from each component of the disentangled repre-
sentation. A limitation of [247], is that the overall recognition
performance declines. To be practical, algorithms mitigating
bias in face recognition should also maintain the overall
recognition accuracy. To address this challenge, Wang et
al. [272] propose an adaptive margin for faces in each
demographic group. Another approach proposed by [273]
adapts the network operations by employing dynamic con-
volutional kernels and attention maps based on the demo-
graphic group. Both [272] and [273] manage to improve
the performance on under-represented groups while better
maintaining the overall accuracy.

Despite recent progress in mitigating demographic bias,
this issue has not been completely rectified and still de-
mands further research, especially given the fact that a vari-
ety of factors could lead to bias other than the predefined
demographic groups that most studies assume. Existing
studies need to make sure that overall system accuracy is
not compromised via bias reduction. Furthermore, since
the majority of the existing studies are concentrated on
bias mitigation for face-based biometrics, there is an ur-
gent need for research on other biometric modalities (e.g.,
fingerprint [274]). Finally, biasness research should also be
conducted on algorithms other than the recognition system
(i.e., the PAD modules, where biasness could inconvenience
users of certain demographics unfairly). Biased biometric
recognition systems create an element of mistrust in the
general public and as such, removing this bias is a critical
step on the path towards trustworthy biometric recognition
systems.

6 PRIVACY

A final key area of biometric recognition systems that we
posit is necessary in order to build trust is that of user
privacy. Note, we explicitly differentiate between security
(such as the template security previously discussed) and
privacy. While security is aimed at addressing attacks on
the biometric recognition system with the goal of interfer-
ence, privacy does not necessarily entail an attack. Rather
it entails the respect and confidentiality of an individual’s
personal identifying information (PII) or data as well as
transparency surrounding its use and storage.

A number of high profile laws have been enacted
to better ensure privacy. In 2008, the Illinois legislature
unanimously passed the Biometric Information Privacy Act
(“BIPA”), based on efforts by the ACLU18. The Illinois law
enables individuals a better control of their own biometric
data and prohibits private companies from collecting it
unless they:

• Inform the person in writing of what data is being
collected or stored.

• Inform the person in writing of the specific purpose
and length of time for which the data will be col-
lected, stored and used.

• Obtain the person’s written consent.

18https://www.aclu-il.org/en/campaigns/biometric-information-
privacy-act-bipa

https://www.aclu-il.org/en/campaigns/biometric-information-privacy-act-bipa
https://www.aclu-il.org/en/campaigns/biometric-information-privacy-act-bipa
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Likewise, in 2016 the GDPR [275] (General Data Protection
Regulation) passed the European Parliament. The GDPR
defined personal data (to include biometric data) as: “... any
information that relates to an individual who can be directly or
indirectly identified ... including biometric data, ...”.. The GDPR
further laid out strict guidelines for processing data:

• Lawfulness, fairness and transparency — Processing
must be lawful, fair, and transparent to the data
subject.

• Purpose limitation — You must process data for the
legitimate purposes specified explicitly to the data
subject when you collected it.

• Data minimization — You should collect and process
only as much data as absolutely necessary for the
purposes specified.

• Accuracy — You must keep personal data accurate
and up to date.

• Storage limitation — You may only store personally
identifying data for as long as necessary for the
specified purpose.

• Integrity and confidentiality — Processing must be
done in such a way as to ensure appropriate security,
integrity, and confidentiality (e.g. by using encryp-
tion).

• Accountability — The data controller is responsible
for being able to demonstrate GDPR compliance with
all of these principles.

The legal response of BIPA and GDPR can be in part
traced to the rapid proliferation of biometric images (es-
pecially face) on social media websites such as Facebook,
Twitter and Instagram, and their use in training biometric
recognition systems without the informed consent of sub-
jects. For example, a face recognition startup, Clearview
AI, is currently facing litigation for allegedly amassing a
dataset of about 3 billion face images [276] from various
social media sites without subjects’ permission. This lack of
consent and transparency has led to some cities wanting to

curb facial recognition technology19 20. In addition, publicly
available biometric datasets that were collected without
consent are now being retracted [277–281]. To make matters
worse, there has been work to show that even generative
adversarial networks can leak private information about the
dataset on which they were trained [282].

In the computer vision community, research has been
conducted to alleviate these concerns. In particular, a num-
ber of studies have explored using homomorphic encryption
to perform inference or classification on encrypted data
with encrypted model parameters [260–265] (see Figure 15).
While these approaches are quite promising as they offer the
data/model parameters a high level of security and con-
sequently privacy, they require significant computational
burden which limits the size of models in practice. Basically,
as with our previous discussion on trade offs of speed,
memory, accuracy and security when using fully homomor-
phic encryption for protecting biometric templates, the same
issue applies towards its use in protecting data and model
parameters.

An alternative method that has been explored to impart
privacy is to train biometric systems in a decentralized
manner (i.e., federated learning). In particular, multiple par-
ticipating clients jointly learn a biometric recognition system
without ever sharing their training data with each other. For
example the study in [283] used federated learning for train-
ing a face PAD algorithm. Likewise, Aggarwal et al. [266]
propose to use federated learning to collaboratively learn
a global face recognition system, training from face images
on multiple clients (mobile devices) in a privacy preserving
manner. Only local updates from each mobile device are
shared to the server where they are aggregated and used
to optimize the global objective function, while the training
face images on each mobile device are kept private. Their
proposed framework is able to enhance the performance of
a pretrained face recognition system namely, CosFace [67],
from a TAR of 81.43% −→ 83.79% on IJB-A dataset [284]
at 0.1% FAR and accuracy from 99.15% −→ 99.28% on

19https://www.wcjb.com/2021/05/05/states-push-back-against-
use-of-facial-recognition-by-police/

20https://www.usatoday.com/story/tech/2019/12/17/face-
recognition-ban-some-cities-states-and-lawmakers-push-one/
2680483001/

https://www.wcjb.com/2021/05/05/states-push-back-against-use-of-facial-recognition-by-police/
https://www.wcjb.com/2021/05/05/states-push-back-against-use-of-facial-recognition-by-police/
https://www.usatoday.com/story/tech/2019/12/17/face-recognition-ban-some-cities-states-and-lawmakers-push-one/2680483001/
https://www.usatoday.com/story/tech/2019/12/17/face-recognition-ban-some-cities-states-and-lawmakers-push-one/2680483001/
https://www.usatoday.com/story/tech/2019/12/17/face-recognition-ban-some-cities-states-and-lawmakers-push-one/2680483001/
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LFW dataset [45] using the face images available on 1, 000
mobile devices in a federated setup. A limitation of this
approach is that the performance of the AFR when using
decentralized training is inferior to a centralized training
schema, i.e., recognition performance is traded off for pri-
vacy. Therefore, future work is required to reduce this trade
off.

We encourage further exploration of encrypted infer-
ence methods and also decentralized training methods to
continue to enhance the privacy of biometric recognition
systems. Given the legal ramifications and public awareness
surrounding this topic, further improvements in this area
of research are paramount towards achieving trustworthy
biometric recognition systems.

7 CONCLUSION

Accurate and reliable automatic person identification is
becoming a necessity in a host of applications including
national ID cards, border crossings, access control, pay-
ments, etc. Biometric recognition stands as perhaps the
most well equipped technology to meet this need. Indeed,
biometric recognition systems have now matured to the
point at which they can surpass human recognition per-
formance or accuracy under certain conditions. However,
many unsolved problems remain prior to acceptance of
biometric recognition systems as trustworthy. In this paper,
we have highlighted five major areas of research that must
be further worked on in order to establish trustworthiness
in biometrics: 1) Performance Robustness and Scalability, 2)
Security, 3) Explainability and Interpretability, 4) Biasness
and Fairness, and 5) Privacy. In each of these areas, we have
provided a problem definition, explained the importance
of the problem, cited existing work on each respective
topic, and concluded with suggestions for further research.
By better addressing each of these major areas, biometric
recognition systems can be made not only accurate, but
also trustworthy. This benefits the researchers behind the
recognition systems, the general public using the systems,
and the policy makers regulating the systems.

One practical potential avenue to encourage more trust-
worthy biometric recognition systems is a “Grand Chal-
lenge on Trustworthy Biometrics”. Perhaps such a challenge,
hosted by a government agency, say NIST, could evaluate
the biometric recognition systems on each of the 5 cate-
gories listed above. Systems that met certain quantitative
thresholds for the 5 categories above could be certified as
“trustworthy”. In this manner, end-users would know not
only how accurate the system is, but also how “trustworthy”
it is.
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