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The relationship governing the optimum ratio between the diameters of the parent and daughter

branches in vascular systems was first discovered by Murray using the principle of minimum

work. This relationship is now known as Murray’s law and states that the cube of the diameter of

the parent vessel must equal the sum of the cubes of the daughter vessels. For symmetric

bifurcations, an important consequence of this geometric rule is that the tangential shear stress at

the wall remains constant throughout the vascular network. In the present paper, we extend this

important hydrodynamic concept to arbitrary cross-sections and provide a framework for

constructing a simple but elegant biomimetic design rule for hierarchical microfluidic networks.

The paper focuses specifically on constant-depth rectangular and trapezoidal channels often

employed in lab-on-a-chip systems. To validate our biomimetic design rule and demonstrate the

application of Murray’s law to microfluidic manifolds, a comprehensive series of computational

fluid dynamics simulations have been performed. The numerical predictions are shown to be in

very good agreement with the theoretical analysis, confirming that the generalised version of

Murray’s law can be successfully applied to the design of constant-depth microfluidic devices.

1 Introduction

Nature has perfected many techniques and solutions that

surpass man-made designs. However, recent technological

advances have brought a greater understanding of funda-

mental properties and processes and it has become possible to

attempt to ‘mimic’ or synthesize what nature does naturally.

This field, now known as biomimetics, covers many new

and emerging topics and offers significant potential in the

further development of MEMS,1 microfluidic devices,2,3 and

lab-on-a-chip systems.4 Biomimetic designs can encompass

surface treatments that mimic physiological processes or

use biological principles to enhance performance through

geometric optimisation.

One example that could play a significant role in improved

flow control through microfluidic devices is mimicking the

structure of vascular trees. Biological systems of blood vessels

are usually arranged in hierarchical structures and a distinctive

feature of this arrangement is their multi-stage division or

bifurcation. At each generation, the characteristic dimension

of the vascular segments will generally become smaller, both in

length and diameter. Similar configurations occur in micro-

fluidic manifolds with the inlet channel branching into smaller

channels5 as illustrated schematically in Fig. 1.

In contrast to biological vascular networks, which are

composed of circular pipes, microfluidic manifolds are

fabricated from a range of processes that include photolitho-

graphy, wet or dry etching, and surface micromachining. The

various approaches can result in channels with very character-

istic geometric shapes e.g. wet etching a ,100> silicon wafer

with KOH gives a trapezoidal section with an angle of 54.74u.
A common feature in fabricating these channels is that the

depth remains constant throughout the device.

A method of fabricating multi-depth microfluidic manifolds

has recently been described by Lim et al.6 who used a maskless

direct-write method with a Nd:Yag laser to create the multi-

level channels. One of their designs was based upon

biomimetic principles but it was restricted to channels with a

square cross-section. Their study compared the performance of

a conventional constant-depth (non-biomimetic) manifold

with that of a multi-depth artificial vasculature and they

clearly demonstrated the potential benefits of employing a

biomimetic design. Although Lim et al.’s novel fabrication

approach allows multi-depth channels to be manufactured, to

date, no theory has been available to support the design of
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Fig. 1 Schematic diagram of a bifurcating vascular network.
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constant-depth micro-channels that obey biomimetic princi-

ples. If lab-on-a-chip systems are to benefit from a biomimetic

approach, the design rules need to comply with more

conventional fabrication practices (e.g. standard photolitho-

graphy, LIGA) and not introduce additional complexity

through numerous alignment steps and multiple exposure

stages associated with multi-level microstructures.

In this paper, a tree-like model of micro-channels is

proposed that mimics the geometrical properties of vascular

systems. The paper provides a theoretical basis for under-

standing flow behaviour in fluidic networks that obey vascular

principles and demonstrates how flow properties can be

controlled within symmetric tree-like structures composed of

either square, rectangular or trapezoidal micro-channels. To

support the theoretical analysis, a detailed numerical model-

ling study is presented that demonstrates how the theory can

be used to understand, predict and control the flow through

branching micro-channel networks.

2 Theoretical background

Branching structures found in mammalian circulatory and

respiratory systems have, through natural selection, evolved

over many millennia to their current state of minimising the

amount of biological work required to operate and maintain

the system. A relationship between the diameter of the parent

branching vessel and the optimum diameters of the daughter

vessels was first derived by Murray7 using the principle of

minimum work. This relationship is now known as Murray’s

law and states that the cube of the diameter of a parent vessel

(d0) equals the sum of the cubes of the diameters of the

daughter vessels i.e. d 3
0 = d 3

1 + d 3
2. Regrettably, the work of

Murray was overlooked for almost 50 years8 but vascular trees

and scaling laws are now receiving much attention, particularly

in the biological world.9–15 However, with the exception of the

brief study by Lim et al.,6 there appears to be little application

of Murray’s law to the design of man-made structures and, in

particular, to the geometric design of microfluidic channels

and manifolds.

For a symmetric bifurcation where d1 = d2, it follows that

d 3
0 = 2d 3

1 (1)

Using eqn (1), it is possible to obtain relationships between

vessel diameters, average velocity, wall shear stress, flow

resistance, and pressure for each consecutive generation. It has

also been shown16 that Murray’s law can be generalised if the

change in diameter of each consecutive generation can be

represented by a branching parameter, X:

X~
d3

0

2d3
1

(2)

For X = 1, the parent/daughter branches obey Murray’s

original hypothesis. However, X does not have to be unity,

although the resulting system will no longer obey the minimum

work principle. As will be described later, the generalised case

of X ? 1 can be used to design microfluidic manifolds with

specific properties. If the value of the parameter X is held

constant throughout the branching hierarchy, the segment

diameter of the nth generation is given by

dn~
d0

2Xð Þn=3

(3)

For a symmetric system, the volumetric flow rate halves at

each bifurcation i.e. Qn = 22n Q0, and therefore, using eqn (3),

the mean flow velocity, Vn, in each generation can be shown to

be

Vn~
Qn

An

~V0
X 2

2

� �n=3

(4)

where An is the cross-sectional area of the nth generation. The

tangential shear stress acting on the wall of a circular pipe in a

fully-developed laminar flow can be written as17

t~
8mV

d
(5)

where m is the viscosity. Substituting eqn (3) and (4) into (5)

gives an important relationship

tn = t0Xn (6)

where t0 is the tangential wall shear stress in the entrance

channel (n = 0). By changing the value of the branching

parameter, X, it is possible to introduce an element of control

into the flow behaviour.

2.1 Application of Murray’s law to rectangular and square

cross-sections

Murray’s law was originally derived for biological systems

where the ‘channels’ all have a circular cross-section. However,

it is possible to extend this law to other geometries since there

will be a direct analogy with the hydraulic diameter of the

respective cross-sections. For a circular pipe, the stress

distribution around the circumference will be uniform. In

contrast, the wall shear stress in a non-circular channel will

vary around the wetted perimeter. This difference can be taken

into account by considering the average shear stress around the

perimeter of the channel. The mean tangential wall shear

stress, t̄, can be related to the Fanning friction factor,18 f, as

follows

t̄~
1

2
r V2f ~

1

2
r V2 Po=Re~m V Po= 2Dhð Þ  (7)

where Po = f Re is the Poiseuille number, Dh = 4 6 area/

perimeter is the hydraulic diameter, and Re is the Reynolds

number based on the mean velocity and hydraulic diameter.

Murray’s original hypothesis leads directly to eqn (6) and,

by analogy, we therefore propose the following biomimetic

principle for the design of non-circular cross-sections:

t̄n = t̄0Xn (8)

The principle of using a specific shear stress distribution

throughout the network provides a design rule that offers the

potential to control the flow within a network of branching

channels. It is also possible to use other flow properties (e.g.
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mean velocity, Reynolds number) as the basis for the design

methodology. However, only the shear stress analogy pro-

posed in eqn (8) is based on a true biomimetic principle. Using

eqn (8), it follows that

VnPon/Dhn = V0Po0Xn/Dh0 (9)

The relationship given by eqn (9) must hold regardless of the

shape of the channel but requires a knowledge of the hydraulic

diameter and the Poiseuille number.

Fig. 2 shows the geometric properties of the two channels

under investigation. For the rectangular channel, we define the

aspect ratio of the nth generation as an = d/wn. At each

bifurcation, the volumetric flow rate will halve and the

relationship between the mean velocities is

Vn/V0 = 22nA0/An (10)

For constant-depth rectangular channels, the area and

hydraulic diameter ratios can be written as

An/A0 = a0/an and Dhn/Dh0 = (1 + a0)/(1 + an) (11)

The Poiseuille number for fully-developed laminar flow

through a rectangular channel can be obtained from the

polynomial expression derived by Shah and London:18

Po(a�n) = 24[1 2 a1a�n + a2(a�n)2 2 a3 (a�n)3 +

a4(a�n)4 2 a5 (a�n)5]
(12)

where the required coefficients are a1 = 1.3553, a2 = 1.9467,

a3 = 1.7012, a4 = 0.9564 and a5 = 0.2537, respectively.

However, for this particular problem an analytical solution

exists and is given by

Po a�n
� �

~
24

1{
192

p5

1

a�n

X?
i~1,3,5:::

1

i5
tanh

ipa�n
2

� �" #
1z

1

a�n

� �2
(13)

Equations (12) and (13) require that a�n ¡ 1 which implies

that wn ¢ d. To obtain the Poiseuille number when the width is

less than the depth (an > 1), it is necessary to set a�n = wn/d but it

is important to note that an remains as previously defined, i.e.

an = d/wn. Substituting eqn (10) and (11) into (9) shows that the

biomimetic design can be obtained by solving the following

relationship:

an(1 + an) Po(a�n) = (2X)n a0 (1 + a0) Po(a�0) (14)

Any appropriate method for finding the root, an = d/wn, can

be used but as the function is well behaved, a simple bisection

method, based on the approach described by Press et al.,19 was

employed in the present study. It should be noted that the

solution specified by eqn (14) can be ‘inverted’ i.e. if the design

engineer knows the dimensions of the smallest channel

(corresponding to an) then the dimensions of the inlet channel

and all other channels can be found.

For a manifold consisting of square channels, where the

depth will change at each bifurcation, the area ratio and the

hydraulic diameter ratio reduce to

An/A0 = d 2
n/d 2

0 and Dhn/Dh0 = dn/d0 (15)

The analysis of square channels is further simplified because

the Poiseuille number will be identical at each successive

generation and eqn (9) reduces to eqn (3) which can be solved

analytically.

2.2 Application of Murray’s law to trapezoidal silicon

micro-channels

To simplify the analysis of ,100> silicon trapezoidal sections,

we define the aspect ratio as c = d/a (see Fig. 2) and note that

the cross-sectional area and hydraulic diameter can be written

as
ffiffiffi
2
p

{c
� �

d2
� ffiffiffi

2
p

c and 2d
ffiffiffi
2
p

{c
� �� ffiffiffi

2
p

zc
ffiffiffi
3
p

{1
� �� �

, respec-

tively. After some mathematical manipulation, it can be shown

that we need to solve:ffiffiffi
2
p

cnz
ffiffiffi
3
p

{1
� �

c2
nffiffiffi

2
p

{cn

� �2
Po cnð Þ

~ 2Xð Þn
ffiffiffi
2
p

c0z
ffiffiffi
3
p

{1
� �

c2
0ffiffiffi

2
p

{c0

� �2
Po c0ð Þ

(16)

For many practical channel shapes, including trapezoidal

channels, the Poiseuille number cannot be obtained analyti-

cally. However, Morini20 has shown that the Poiseuille number

for KOH-etched silicon channels can be obtained from a 5th

order polynomial as follows

Po(cn) = 24 [1 2 b1cn + b2c2
n 2 b3c3

n + b4c4
n 2 b5c5

n] (17)

where the coefficients have the values of b1 = 1.7611, b2 =

2.6780, b3 = 4.9342, b4 = 10.0883 and b5 = 7.4496, respectively.

The maximum value of the aspect ratio, c, is limited to 1
� ffiffiffi

2
p

(corresponding to b = 0 in Fig. 2) and, in practice, it is easier to

solve eqn (16) using a change of variable with b = d/b and setting

c~b
�

1z
ffiffiffi
2
p

b
� �

. In this case, the parameter range for the aspect

ratio is 0 ¡ b ¡ ‘. For a manifold consisting of KOH-etched

triangular channels or grooves (i.e. b = 0), where the width and

Fig. 2 Schematic representation of rectangular and trapezoidal ,100> silicon micro-channel geometries.

(13)
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depth will change at each bifurcation, the area ratio and the

hydraulic diameter ratio again reduce to eqn (15). As in the case of

the square channel, the Poiseuille number is constant at each

bifurcation level and eqn (9) again reduces to eqn (3) allowing the

problem to be solved analytically for either the width or the depth.

2.3 Total flow resistance and pressure distribution

An important issue in the design of any microfluidic manifold

is the estimation of the total flow resistance and the pressure

distribution within the network. The hydraulic resistance of a

channel is defined as DP/Q , and can be obtained by equating

the pressure drop, DP, and shear forces acting on the fluid. It

can be shown that the hydraulic resistance, R, of a single

segment can be written as

R~
m Po 2L

A D2
h

(18)

where L is the length of the channel. In biological systems, the

length of an individual segment is often proportional to its

diameter.21 To extend Murray’s law to non-circular micro-

channels, we have generalised this biological principle and

have assumed that the length of each segment is proportional

to its hydraulic diameter, Dh. The resistance of a single segment

in the nth generation can therefore be written as

Rn!
Pon

An Dhn

(19)

Using eqn (9), (10) and (19) allows the hydraulic resistance

of the individual segments to be related to the branching

parameter, X:

Rn

R0
~ 2Xð Þn (20)

The total resistance of the manifold, RT, can then be

obtained using the analogy between pipe friction and electrical

resistance. Using the fact that the individual segments within a

given generation are in parallel gives:

RT~R0z
R1

2
z

R2

4
z

R3

8
z:::z

Rn

2n z:::z
RN

2N
(21)

and the total resistance of a manifold with N bifurcation levels

will therefore be

RT~R0

XN

i~0

X i~R0
X Nz1{1

X{1
(22)

The analogy between pipe friction and electrical resistance

also allows the pressure distribution to be determined

throughout the network. If the pressure at the inlet of the

manifold is pin and the pressure at the outlet is pout, then it can

be shown that the relative pressure at the entrance to the nth

generation can be written as

pn{pout

pin{pout
~

PN
i~n

X i

PN
i~0

X i

~
X Nz1{X n

X Nz1{1

� �
(23)

The relationships given in eqn (22) and (23) hold regardless

of the cross-sectional geometry, although it should be realised

that each segment must adhere to the biomimetic principle that

its length is proportional to its hydraulic diameter. However, it

is not an essential requirement for the channel length to be

proportional to the hydraulic diameter to exploit biomimetic

design principles but the flow resistance and pressure

distribution will no longer obey eqn (22) and (23).

3 Numerical simulation of micro-channels designed
using Murray’s law

To validate the theory outlined in Section 2 and demonstrate

how Murray’s law can be applied to the design of microfluidic

manifolds, a comprehensive series of computational fluid

dynamics (CFD) simulations have been performed. The

simulations considered branching networks composed of

square, rectangular, and trapezoidal cross-sections. The

channel dimensions within each of the hierarchical networks

are presented in Tables 1 and 2 while Fig. 3 illustrates a typical

layout of the microfluidic manifold.

Following the study by Lim et al.,6 all networks have been

restricted to four generations (n = 0, 1, 2, 3). In the case of the

square geometry, the dimension of the inlet channel (n = 0) was

specified to be 250 mm, as used by Lim et al. Subsequent

generations of the square sections were designed in accordance

with eqn (3), using values of X of 0.75, 1.0 and 1.25. Moreover,

the design also obeys the biomimetic principle that the length

of each segment is proportional to its hydraulic diameter. In

addition, the square manifold designed by Lim et al. has been

modelled using their reported channel dimensions of 250, 200,

160 and 125 mm. This particular system represents an

approximation of Murray’s law using nominal channel

dimensions rounded to the nearest 10 microns. However, the

Table 1 Channel dimensions of square-sectioned microfluidic mani-
folds employed in the numerical study. Following Lim et al.,6 the inlet
channel (n = 0) is taken to be 250 mm square. With the exception of the
X # 1 case, the channel dimensions are obtained directly from eqn (3)

Bifurcation level, n

Channel dimensions, dn/mm

X = 0.75 X = 1.0 X = 1.25 X # 1a

0 250.0 250.0 250.0 250.0
1 218.4 198.4 184.2 200.0
2 190.8 157.5 135.7 160.0
3 166.7 125.0 100.0 125.0
a Artificial vascular system fabricated by Lim et al.,6 approximating
X = 1.0.

Table 2 Channel dimensions of constant-depth rectangular- and
trapezoidal-sectioned microfluidic manifolds employed in the numer-
ical study. Following Lim et al.,6 the channels are taken to be 125 mm
deep. The channel dimensions are obtained numerically by solving
either eqn (14) for an or eqn (16) for cn

Bifurcation
level, n

Channel dimensions

Rectangular wn/mm
Trapezoidal
an/mm

X = 0.75 X = 1.0 X = 1.25 X = 1.0 X = 1.0

0 250.0 250.0 250.0 625.0 1000.0
1 177.7 143.3 123.0 312.9 536.7
2 132.0 91.8 71.4 171.5 323.9
3 101.7 62.5 44.2 106.3 230.1

(19)
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segment lengths used by Lim et al. do not strictly adhere to

the biomimetic principle of each segment length being

proportional to its hydraulic diameter.

For the rectangular and trapezoidal cross-sections, the

channel dimensions were obtained by solving either eqn (14)

or (16), respectively. In all cases, the channel depth was 125 mm

and the length of each segment followed the biomimetic

principle of L 3 Dh. For the rectangular channel, the initial

aspect ratio was taken to be 2 : 1 (a0 = 0.5) or 5 : 1 (a0 = 0.2),

while the initial aspect ratio of the trapezoidal section was

selected to be 8 : 1 (c0 = 0.125). In addition, the non-Murray

law rectangular manifold fabricated by Lim et al.,6 with

channel widths of 250, 200, 160 and 125 mm, has also been

modelled.

The numerical simulations were carried out using the

commercial computational fluid dynamics software package,

CFD-ACE+ (ESI CFD, Huntsville, USA).22 The software

uses a finite-volume algorithm to solve the non-linear Navier–

Stokes equations governing the conservation of mass and

momentum within the fluid. The meshes representing the

vascular geometries contained approximately 1.0–2.4 million

grid nodes depending upon the geometric cross-section and

the value of X. The choice of grid resolution was based

upon experience gained from previous validation studies on

an extensive range of two- and three-dimensional laminar

flows. Particular attention was paid to ensure that the

simulations were fully converged (12 orders of magnitude

reduction in the residuals). To reduce the computational cost

of the simulations, a symmetry boundary condition was

employed along the centreline of the inlet channel, as

illustrated in Fig. 3b.

3.1 Numerical results

Definitive flow rates are not available from Lim et al.’s

experimental study and therefore the present simulations have

assumed a typical mean velocity of 0.01 ms21 in all the inlet

channels. The fluid within the manifold is assumed to be pure

water with a dynamic viscosity of 0.001 kg m21 s21. For the

trapezoidal geometry, the Reynolds number in the inlet

channel, Re0 = (rV0Dh0)/m, is 2.14 whereas for the square

channel the Reynolds number will be 2.5.

Fig. 4 shows a comparison of the theoretical and predicted

normalised wall shear stress distributions, t̄n/t̄0, where t̄0 is

the mean shear stress in the inlet channel. For Murray’s law

(X = 1), the predicted shear stress distribution within the

branching network remains identical in each successive

generation. In contrast, changing the value of X allows the

stress distribution in the manifold to be controlled. For

example, using a value of X = 0.75 results in a shear stress

distribution that continuously decreases as the flow progresses

to the finer branches of the vascular network. Conversely, for

X = 1.25, the shear stress will increase as the fluid travels

Fig. 3 Constant-depth rectangular manifold studied by Lim et al.6 The system is composed of rectangular channels of widths 250, 200, 160 and

125 mm with a constant channel depth of 125 mm. (a) Image showing the artificial vascular system fabricated by Lim et al.6 (reproduced by

permission of the Royal Society of Chemistry). (b) Diagram showing the layout of the computational domain and the topological block structure

used to perform the CFD simulations. The dashed line illustrates the plane of symmetry used to reduce the computational cost of the simulations.

Fig. 4 Normalised shear stress distribution as a function of bifurca-

tion level, n, in a series of microfluidic manifolds that obey the

generalised form of Murray’s law. Comparison of theoretical results

from eqn (8) and CFD predictions (symbols).
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through the hierarchical structure. Fig. 4 shows that the

agreement between theory and simulation is excellent. There

are also potential benefits to be gained by being able to predict

and control the shear stress at each generation. For example,

in cell response studies, a low shear stress environment will

minimise damage to shear-sensitive cells23 and will increase the

probability of cells binding to surfaces.24 Conversely, it may be

desirable to increase the shear stress at each generation. For

example, the transport of heavily-laden particulate flows may

benefit from a controlled increase in shear stress to minimise

blockage problems in the smaller channels.

A knowledge of the flow resistance and pressure distribution

is also a key element in the design process. Fig. 5a shows how

varying the branching parameter affects the flow resistance.

When Murray’s law is obeyed (X = 1), eqn (22) reduces to

RT = (N + 1)R0 and the resistance of successive generations

is identical. The total resistance to the flow therefore increases

linearly with the number of generations. This is clearly

demonstrated in Fig. 5a. For X > 1, the resistance of the

structure increases with bifurcation level. Conversely, for X , 1,

the resistance of subsequent generations decreases and the

total resistance will tend to a constant value of RT = R0/(1 2 X)

as N A ‘. Again, the agreement between theory and

simulation is very good.

Fig. 5b illustrates how the pressure distribution within the

manifold is affected by the branching parameter. For X , 1,

the most significant pressure loss occurs in the inlet channel

(n = 0) with the pressure drop gradually diminishing at each

successive generation, leading to a concave pressure distribu-

tion. Conversely, for X > 1, the pressure drop becomes more

important towards the outlet of the artificial vascular system,

leading to a convex pressure profile. When X = 1 (Murray’s

law), the pressure loss along each successive generation

remains constant, leading to a linear pressure distribution

within the microfluidic manifold. For all channel geometries,

the CFD results agree very well with eqn (23).

The normalised shear stress, resistance and pressure

distributions presented in Fig. 4 and 5 demonstrate that the

flow characteristics are unaffected by the shape of the

channels. The biomimetic principle proposed in eqn (8), based

on Murray’s law, leads directly to eqn (9) which is independent

of the cross-sectional geometry. The design rule proposed in

this paper is therefore applicable to all channels; the only

practical limitation is the requirement to know the hydraulic

diameter and the Poiseuille number of the desired channel.

Lim et al.6 performed a flow visualisation study using

fluorescent microbeads. They presented their data in the form

of histograms showing the mean flow velocity as a function of

bifurcation level in both square (multi-depth) and rectangular

(uniform depth) microfluidic manifolds. Fig. 6 compares the

theoretical predictions, CFD simulations, and experimental

data. The large error bars associated with the experimental

data indicate the difficulty in obtaining accurate measurements

of the flow velocity. As previously stated, the design

considered by Lim et al. does not strictly adhere to the

biomimetic principle of L 3 Dh. Although this will not affect

the mean velocity in each generation, it will influence the

pressure distribution and flow resistance.

The theoretical description in Section 2 has assumed that the

flow is laminar and fully-developed. However, the theory does

not take account of the pressure losses associated with the

T-junctions and 90u bends found in the example used. For low

Reynolds number flows, these losses are negligible, as

illustrated in Fig. 5a and b. Nevertheless, it is important to

understand the limitations of the current theoretical descrip-

tion. Fig. 7 shows how the scaled flow resistance of a square

Fig. 5 Normalised flow resistance, RT/R0, and pressure distribution as a function of bifurcation level, n, in a series of microfluidic manifolds that

obey the generalised form of Murray’s law. Comparison of theoretical results (lines) and CFD predictions (symbols). The theoretical results for the

flow resistance are computed using eqn (22) while the theoretical results for the normalised pressure distribution are obtained from eqn (23).
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manifold changes with inlet Reynolds number. For Re0 ¡ 25,

the error in the predicted flow resistance is less than 2%. For

Re0 = 50, the theory underpredicts the CFD results by

approximately 6% and this error grows to around 30% at

Re0 = 250. The pressure losses can be attributed to the

formation of secondary eddies at each bend (see electronic

supplementary information{). This effect will be felt most

strongly within the initial stages of the manifold where the

local Reynolds number is highest. Moreover, the secondary

eddies create a localised flow constriction that increase

frictional losses on the opposite wall. The Reynolds number

limit could be increased by designing manifold layouts that

incorporate features to reduce the observed frictional losses,

such as Y-junctions or radial bends.

4 Concluding remarks and discussion

A generalised form of Murray’s law has been developed that

can be applied to the design of microfluidic channels and

manifolds found in lab-on-a-chip systems. Murray’s law was

originally developed for cardiovascular systems composed of

multi-diameter circular pipes and the present theory has used

this biological principle to design constant-depth artificial

vascular systems composed of rectangular or trapezoidal cross-

sections. Biomimetic principles can now be applied to

microfluidic devices fabricated using conventional batch

processing techniques. This novel design approach removes

the need to fabricate complex, multi-depth microstructures

which would otherwise require difficult multi-exposure and

alignment steps.

An assessment of the generalised form of Murray’s law was

carried out by performing a series of CFD simulations on

branching fluidic manifolds composed of either square,

rectangular or trapezoidal cross-sections. For the structures

considered in the present study, the numerical simulations are

Fig. 6 Normalised mean flow velocity, V/V0, as a function of bifurcation level, n, in the microfluidic manifolds studied by Lim et al.6 Comparison

of theoretical results (lines), CFD predictions (#) and Lim et al.’s experimental data ($). (a) Microfluidic manifold composed of multi-depth

square channels of dimensions 250, 200, 160 and 125 mm that closely approximate Murray’s law (X = 1). Theoretical results obtained from eqn (4).

(b) Microfluidic manifold composed of rectangular channels (widths equal to 250, 200, 160 and 125 mm; uniform depth of 125 mm). Theoretical

results computed using eqn (10).

Fig. 7 Normalised flow resistance, 1/(N + 1) 6 RT/R0, as a function

of inlet Reynolds number, Re0, in a square microfluidic manifold

obeying Murray’s law (X = 1). Comparison between theory (line) and

CFD predictions ($). For Re0 ¡ 25, the error in the theoretical flow

resistance is less than 2% of that computed by CFD. However, this

error grows with Reynolds number and at Re0 = 250, the theory

underpredicts the flow resistance by approximately 30%.
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in very good agreement with the theoretical predictions of

tangential shear stress, flow resistance, and pressure drop up to

a Reynolds number of 30. Above this Reynolds number, the

frictional losses associated with the sharp 90u bends will

become increasingly significant.

Murray’s law was originally derived from biological

considerations and its applicability to microfluidic structures

is only just being recognised. The present generalised theory

has shown that by carefully selecting the branching parameter

governing each bifurcation, it is possible to introduce a

prescribed element of control into the flow behaviour. For

example, hydrodynamic forces may damage shear-sensitive

cells and the ability to predict and control a low-shear

environment within the network could benefit cell response

studies involving free-flowing or anchored cells. It is antici-

pated that the present design methodology could provide

genuine benefits in the further development of lab-on-a-chip

systems.
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