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Development of synthetic biomaterials imbued with inorganic and organic characteristics of natural bone that are
capable of promoting effective bone tissue regeneration is an ongoing goal of regenerative medicine. Calcium
phosphate (CaP) has been predominantly utilized to mimic the inorganic components of bone, such as calcium
hydroxyapatite, due to its intrinsic bioactivity and osteoconductivity. CaP-based materials can be further en-
gineered to promote osteoinductivity through the incorporation of osteogenic biomolecules. In this study, we
briefly describe the microstructure and the process of natural bone mineralization and introduce various methods
for coating CaP onto biomaterial surfaces. In particular, we summarize the advantages and current progress of
biomimetic surface-mineralizing processes using simulated body fluids for coating bone-like carbonated apatite
onto various material surfaces such as metals, ceramics, and polymers. The osteoinductive effects of integrating
biomolecules such as proteins, growth factors, and genes into the mineral coatings are also discussed.
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Introduction

Musculoskeletal disorders and diseases cost over
$180 billion annually in the United States.1 Demand

for bone grafts and the financial burden are expected to
rapidly increase due to increasing life expectancy.2,3 Auto-
graft bone is currently the clinical gold standard for treating
critical size bone defects. Bone autografts, however, have the
disadvantages of generating a second surgical site, donor-site
morbidity, and diminished patient quality of life due to surgical
burden.4–6 Allograft bone and xenograft bone are alternative
options to autograft bone, but these run the risk of transmission
of infection, immune rejection, toxicity associated with ster-
ilization, and being inefficient at osteoinduction.4,5,7–9 There-
fore, the field of tissue engineering and regenerative medicine
has been focused on alternative ways of regenerating healthy
tissue to replace diseased or damaged bone tissue.

Desirable characteristics of biomaterials for bone tissue
engineering are as follows: possessing a bioactive surface10–12;
having the capacity to promote new bone formation from the
surrounding established bone (osteoconductivity)13,14; and

having the ability to induce osteoblastic differentiation (os-
teoinductivity).13,14 To achieve these properties, researchers
have focused on developing scaffolds using a multitude of
materials, including natural products, synthetic polymers,
and metals that offer ideal properties for tissue engineering.
However, these products still fall short of the gold standard:
autografts. To improve the bone regeneration properties of
scaffolds, researchers have coated them with various forms
of apatite, which mimic the natural bone surface thus pro-
viding an ideal environment for osteogenesis and increase
the structural stability of the scaffold. A promising approach
to surface coating materials is using simulated body fluids
(SBFs). The high concentration of calcium and phosphate in
these fluids promotes the formation of calcium phosphate
(CaP) crystalline structures similar to the apatite found in
native bone. In this study, the use of SBFs as a biomimetic
technique will be discussed through investigation of SBF
analytical use, applicable substrates, and biomolecule in-
corporation.

Bone is a complex tissue that consists of an inorganic
phase intimately embedded into an organic extracellular

1Department of Orthodontics, College of Dentistry and Dental Clinics, University of Iowa, Iowa City, Iowa.
2Department of Pharmaceutical Sciences and Experimental Therapeutics, College of Pharmacy, University of Iowa, Iowa City, Iowa.

*This article is part of a special focus issue on Strategic Directions in Immunoresponsive Biomaterials in Tissue Engineering. An
additional article can be found in Tissue Engineering Part B, volume 23, number 5.

TISSUE ENGINEERING: Part A
Volume 23, Numbers 19 and 20, 2017
ª Mary Ann Liebert, Inc.
DOI: 10.1089/ten.tea.2016.0556

1169



matrix (ECM). The mass of dehydrated bone is *70%
inorganic and 30% organic.15 The inorganic phase of bone
contributes to the structural support of the skeletal system.
Bone mineral comprises mainly of carbonated hydroxy-
apatite (carbonated apatite)16 and differs from hydroxy-
apatite in that it is a nonstoichiometric apatite with a Ca/P
ratio that may range from 1.50 to 1.90 depending on age,
gender, bone site, and pathophysiological conditions. This
nonstoichiometric chemical composition of bone mineral is
mainly due to the presence of ionic substitutions, such as
CO3

2- and HPO4
2- that may be substituted for PO4

3-,
while Na+, Mg 2+, and K2+ may replace Ca2+ of hydroxy-
apatite.17,18 It is anticipated that the poorly crystalline (i.e.,
amorphous) property, in conjunction with nonstoichio-
metric chemistry, of carbonated apatite contributes to it
possessing a higher solubility than hydroxyapatite.19–21 The
organic ECM is predominantly composed of collagens, type I
collagen in particular. In addition, noncollagenous proteins
known as small integrin-binding ligand N-linked glyco-
proteins (SIBLING proteins) comprise 10–15% of total bone
protein content.22

Bone mineralization occurs during development, re-
modeling of existing bone, and fracture repair.15,23 To form
new bone, osteoblasts are recruited to the area through a
variety of factors such as transforming growth factor-b and
bone morphogenetic proteins (BMPs). Then, the osteoblasts
begin to deposit a new collagenous matrix for mineralization
to occur.24,25 The osteoblasts then accumulate Ca2+ and PO4

3-

within polarized matrix vesicles promoted by phosphatases,
calcium binding proteins, and potential mitochondria vesi-
cles.26 The matrix vesicles are then released from osteoblasts
and continue to concentrate Ca2+ and PO4

3-.27 Once precip-
itation occurs, the matrix vesicles release hydroxyapatite na-
nocrystals and amorphous calcium phosphate into the local
environment.15 The collagen framework, now coated with
highly acidic fibrils such as SIBLlNG proteins, provides an
anchoring point for the nanocrystals.16,24 The attached crys-
tals and charged regions of the collagen act as nucleation sites
for crystal growth by converting the high levels of Ca2+,
PO4

3-, and amorphous calcium phosphate into ordered car-
bonated apatite (Fig. 1).26,28 Over time, osteoblasts become
embedded within the bone mineral and collagen matrix, and
differentiate to osteocytes or undergo apoptosis.15

Approaches for Mineralizing Biomaterials

Biomaterials coated with CaP have been widely used for
bone regeneration due to their excellent intrinsic bioactivity
and osteoconductivity. CaP-based coatings can be further
engineered to incorporate biomolecules that promote os-
teoinductivity. CaP coatings were first investigated in the
early 1980s to treat the surface of titanium (Ti) metal im-
plants so as to enhance the bonding ability of the implant
to the bone. Since then, various methods have been devel-
oped to provide bioactivity to nonbioactive materials using
various coating techniques such as thermal spraying,29–33

sputter coating,34–36 sol–gel deposition,37–39 hot isostatic
pressing,40,41 and dip coating.42 Each of these methods has
advantages and disadvantages (Table 1).43

Thermal spraying is one of the most successful and widely
commercialized techniques used for CaP coating.29,30 The
technique involves feeding the coating material into a plasma
jet, where the sample is heated to >8,000�C and then pro-
pelled toward the desired surface (Fig. 2).44 The high pro-
cessing temperature may limit the selection of underlying
substrate materials, and be problematic when incorporation of
heat labile biological molecules is desired. It also requires a
relatively large thickness (30–200mm) to achieve uniform
coating31 and is therefore not ideal for small-sized materials or
intricate structures. In addition, this technique has the disad-
vantage of low adhesive strength and risk of delamination.

Radio frequency (RF) magnetron sputtering involves an
RF generator, a magnetron, and an ionizable gas.34 The
generator and magnetron efficiently convert the gas into the
plasma, which is directed to bombard the coating material.
The coating material is then ejected toward the desired
substrate (Fig. 3).44 This method provides a great deal of
control over the coating material by fabricating thin (<1mm),
uniform CaP coatings with high adhesive strength. However,
RF magnetron sputtering is a time-intensive and high-cost
method that only coats the visible surface of the substrate.34

Of all of the aforementioned methods, sol–gel deposition
is the only one that can achieve uniform coating throughout a
porous matrix.37 The sol–gel method involves forming a
solution (‘‘sol’’) containing the calcium and phosphate to be
coated, followed by dipping the substrate into the solution
and allowing it to dry to form a viscous gel-like layer.38 The
gel-like coating can be calcinated to form a hardened layer of
apatite on the substrate (Fig. 4). Since the sol is highly fluid,
the sol–gel deposition technique is able to coat the interior of

FIG. 1. Natural osteoblast-mediated bone mineralization.
(1 and 2) Osteoblast matrix vesicles accumulate calcium and
phosphate ions (transitioning from yellow to white) from the
cytosol and mitochondria, and are released toward the newly
formed collagen matrix (red lines). (3) The released vesicles
continue to concentrate calcium and phosphate ions until
precipitation occurs, drawing from the ion-rich environ-
ment. (4) The newly formed apatite crystals (white crosses)
are released into the environment, (5) providing nucleation
sites for continued apatite growth. Adapted from Mescher
2013, The McGraw-Hill Companies, Inc.28 Color images
available online at www.liebertpub.com/tea
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a porous substrate. However, high processing costs and ex-
pensive raw materials for this method are often prohibitive.31

Some techniques, such as thermal spraying, dynamic
mixing method, and isostatic pressing, require high proces-
sing temperatures and are therefore not amenable to poly-
mers with relatively low melting temperatures. Also, many
techniques, such as plasma spraying, sputter coating, pulsed
laser deposition, and dynamic mixing method, are limited to
one-sided (‘‘line of sight’’) coating, as their coating pro-

cesses are unidirectional. This is not desirable for coating
materials with three-dimensional (3D) complex structures.

Biomimetic Mineralization by SBFs

A promising alternative CaP coating method is mineral-
ization of material surfaces using a supersaturated solution
known as SBFs. SBFs comprised ions at similar concen-
trations to those found in blood plasma. This coating tech-
nique is performed under biological conditions in terms of
temperature, pressure, and pH, forming carbonated apatite
on a substrate, which is similar in chemical composition and
material properties (crystallinity and dissolution rate) to
bone mineral (Fig. 5). Mineral formation using this biomi-
metic process is governed by both the surface characteristics
of the materials and the immersion parameters, such as the
composition of the SBF, ionic strength, pH, temperature,
and immersion time.45–50 Since the CaP layers are coated
using aqueous SBF solutions, surfaces of highly complex
structure such as 3D interconnective porous scaffolds can be
uniformly coated, unlike other conventional ‘‘line-of-sight’’
CaP coating techniques described above. The coating con-
ditions of this technique, such as pH and temperature, are
similar to those of body fluid, which allows for a wide range
of candidate materials to be coated with CaP. Furthermore,
these biocompatible conditions enable the potential use of
biomolecules sensitive to pH and temperature, such as
proteins, growth factors, and genes.

Kokubo et al. introduced the concept of biomimetic
mineralization using SBFs in 1990.51 Glass-ceramic A-W
(apatite-wollastonite) was soaked in various aqueous solu-
tions possessing similar ionic concentrations and pH levels
to human blood plasma. After incubation for 7–30 days,
they reported that an apatite phase had formed on the glass-
ceramic surface. Since this initial report, the use of SBF to
form bone-like apatite has been extended to various types of
materials such as metals, ceramics, and biodegradable
polymers. Over the past three decades, SBF has been widely
used and developed for the following purposes: (1) bioac-
tivity assessment for biomaterials, (2) surface coating of

FIG. 2. Plasma spray coating.
A plasma jet is created when the
plasma gas passes through the
electric field generated by the an-
ode and cathode. Then, the coating
powder is injected into the plasma
jet, which rapidly propels the ma-
terial onto the substrate. Adapted
from Bosco et al. 2012, MDPI.44

Color images available online at
www.liebertpub.com/tea

FIG. 3. RF magnetron sputter coating. The magnetic field
forces the plasma close to the cathode, and the alternating
current of the RF generator prevents charge build up in
concentrated areas. The high-energy ions of the plasma
bombard the coating material (target) ejecting the material
toward the substrate producing a thin uniform coat. Adapted
from Bosco et al. 2012, MDPI.44 RF, radio frequency. Color
images available online at www.liebertpub.com/tea
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biomaterials to improve osteoconductivity, and (3) incor-
poration of biomolecules into mineral coatings.

Bioactivity assessment

From the 1970s, several materials have been reported as
bioactive through their ability to integrate with host bone
tissue via apatite formed on the interface between the ma-
terial and the bone subsequent to implantation in vivo. From
these observations, it has been suggested that the apatite-
forming ability in vivo can be pretested in vitro using so-
lutions that simulate body fluid. Numerous biomaterials
such as metals,52 natural polymers,53–55 synthetic poly-
mers,56,57 and organic/inorganic composite materials58,59

have been tested for their potential apatite-forming ability in
the presence of SBF solutions.10,11,52–61 Various methods
for testing the bioactivity in vitro using SBF solutions have
been standardized.62 A recently published review article
reported on how in vitro apatite-forming ability in the
presence of SBF could often successfully predict actual

bioactivity of biomaterials in vivo using animal models.60

SBFs also have been used to test other material properties
such as polymer biodegradation,63,64 and wear or corrosion
behavior of metals.65,66

Surface coating of biomaterials to promote
osteoconductivity

The apatite coating technique using immersion in SBFs
can be applied to various types of materials, including
metals,52 ceramics,51,67,68 polymers,45,69–72 and organic/
inorganic composite materials.73 To achieve successful
apatite coating, the surfaces of the materials need to be
modified to be functionally activated.

Metals. Ti metal and its alloys are among the most
commonly used metals for dental implants and bone sub-
stitutions. Various kinds of surface treatments have been
attempted to confer bioactivity or apatite-forming ability on
Ti metal and its alloys. Heat treatment with NaOH solution
can form a sodium hydrogen titanate (NaxH2-xTiyO2y+1;
0<x<2) layer with functional groups of Na+ and O2- on the
surface. The treated Ti metal formed bone-like apatite on its
surface after immersion in SBF, while the nontreated Ti
metal did not.74 Surface treatment methods have been
modified to enhance osteoconductivity of Ti metal, includ-
ing NaOH/CaCl2/heat treatments, H2SO4/HCl/heat treat-
ments, and NaOH/acid/heat treatments.

Metal implants coated with bone-like mineral apatite
using SBFs also resulted in enhanced osteoconductivity in vivo
compared with noncoated metal implants. Significantly greater
bonding strength of the interface between the implant and the
bone was obtained with bone-like mineral-coated Ti alloy
implants in goat femurs, compared to noncoated implant
groups.19,75 This enhanced bonding strength can be attributed
to the precoated bone-like mineral layer that promotes new
bone deposition onto the osteoconductive surfaces.

Ceramics. Ceramics are another class of biomaterials
that have been extensively studied because of their superior
bioactivity and potential application for dental or skeletal
tissue repair.51,68,76–79 Ceramics are well suited for SBF
treatment because, once immersed in SBF, ceramics can
release ions such as calcium and silica. These released ions
contribute to nucleation and subsequent surface minerali-
zation, thus forming bone-like mineral apatite. Many types
of ceramics, such as Bioglass 45S5, glass-ceramic A-W, and
glasses in the Na2O-CaO-B2O3-Al2O3-SiO2-P2O5 system,

FIG. 4. Sol–gel coating. The precursor solution undergoes polymerization resulting in a gel-like solution (Sol). Then, the
substrate is dipped into the Sol, removed, and allowed to dry to a thick film. Xerogel film is sintered using a drying oven.
This leads to polycondensation and enhances the mechanical properties of the final dense film. Color images available
online at www.liebertpub.com/tea

FIG. 5. SBF-mediated mineralization. (1) The high con-
centrations of calcium and phosphate ions contained in the
SBF begin to form prenucleation crystals. (2) The amor-
phous solids are attracted to the polar surface groups of the
substrate. (3 and 4) Apatite crystals are deposited. (5) The
formed apatite is a nucleation site allowing for continued
crystal growth. SBF, simulated body fluid. Color images
available online at www.liebertpub.com/tea
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were able to become bioactive by forming mineral layers on
their surfaces in the presence of SBF. These ceramics were
confirmed to bind to the living bone through newly formed
CaP layers at the interface between the implant and the bone
when they were implanted in vivo.10

Polymers. Although metals and ceramics serve as ade-
quate materials for bone and dental implants due to their
potential bioactivity, the nondegradability of these materials
limits their application for bone tissue engineering. Ad-
justable biodegradability of the scaffold is essential for bone
tissue engineering. The scaffold needs to persist for suffi-
cient time to allow new bone tissue formation to occur.
Then, as the scaffold degrades, it will be substituted with the
regenerated bone. Therefore, natural and synthetic biode-
gradable polymers have been widely used as scaffold ma-
terials for tissue engineering due to their advantages such as
controllable biodegradation and tunable scaffold properties.

Natural polymer-based scaffolds that are nontoxic and
bioactive can provide cells with a biocompatible microen-
vironment. Natural polymers used as scaffold materials can
be divided into proteins (collagen,76,80,81 silk,82 and gela-
tin80,83,84) or carbohydrates (cellulose85–87 and chi-
tin54,55,88,89). Multiple natural polymers have been
incubated in SBF to obtain biomimetic mineral properties
and then used in organic/inorganic scaffolds for the pur-
poses of promoting tissue regeneration.

Biomimetic surface mineralization by SBF immersion has
also utilized multiple types of synthetic polymers such as
poly(lactide-co-glycolide) (PLGA),45,47,49,69,72,90–98 poly-L-
lactide,98,99 poly(2-hydroxyethylmethacrylate), poly(e-
caprolactone),99,100 and polyhydroxyalkanoate.56 Compared
to natural polymers, synthetic polymers have found wide-
spread application as scaffold candidate materials, as their
mechanical and chemical properties can be specifically
controlled.71,101,102

Incorporation of Biomolecules
by Biomimetic Mineralization

Although biomimetic mineral coatings provide the un-
derlying scaffold with osteoconductivity, they do not directly
confer osteoinductivity. To overcome this limitation, current
research has been focused on integrating drugs or biological
molecules such as proteins and genes into the mineral
coatings (Fig. 6). In this study, some examples of drugs,
proteins, and genes incorporated into the CaP coatings will
be introduced, and their therapeutic benefits will be assessed.

Drugs

Currently, there are a multitude of drug molecules being
investigated for their potential incorporation into the CaP
coatings to reduce inflammation and enhance osteogenesis.
Incorporation of antibiotics into the CaP layer can prevent
postoperative infection at the surgical site promoting favor-
able osteointegration of dental/skeletal implants and bone
substituting materials.103 This is highly desirable, because of
the prevalence of peri-implantitis. Unfortunately, conven-
tional CaP coating techniques, such as plasma spraying, and
isostatic pressing involving nonphysiological processing
conditions, such as high temperature and high pressure, do
not allow incorporation of drugs into the CaP coatings.

Various antibiotics were successfully incorporated into
CaP coatings on Ti implants using SBFs.103 The Ti surface
was initially coated with a thin layer of amorphous car-
bonated apatite by immersing the metal in a supersaturated
SBF solution, and then antibiotics were coprecipitated.
Loading ability, release kinetics, and efficacy of the antibi-
otics were evaluated. Antibiotics containing carboxyl groups,
such as cephalothin, carbenicillin, and cefamandole, pos-
sessed higher binding affinities and slower releasing kinetics,
suggesting that the chemical structure of the antibiotics de-
termined their binding/chelating affinity to calcium-rich
mineral coatings.103

Bisphosphonates (BPs) are primary agents for treating
osteoporosis. However, current publications have demon-
strated that systemic delivery of BPs results in inefficient
dose delivery to the target site and causes toxic side effects,
such as gastric ulcers and BP-related osteonecrosis of the
jaw. All BPs have the same backbone (P-C-P),104 which
provides them with a high calcium-binding affinity and
enables the incorporation of BPs into CaP layers through
SBF-mediated coating. For example, alendronate sodium
(AS), an approved BP, was successfully incorporated into
calcium-deficient hydroxyapatite coatings on Ti alloys using
a biomimetic coating process.105 The release profile of AS
was controllable through modification of the SBF-mediated
incorporation. These results suggest that drug incorporation
in the mineral coating through SBF mediation can be opti-
mized to provide a localized, long-acting administration to
achieve a therapeutic dose.

Proteins and growth factors

Proteins can be adsorbed onto mineral surfaces forming
organic/inorganic hybrids. Once bone-like mineral coatings
are formed on substrate materials, proteins are then ad-
sorbed on the mineral surface via electrostatic interactions
between proteins and the mineral apatite. As this interaction
occurs after the surface is established, proteins do not

FIG. 6. Incorporation of biomolecules by biomimetic
mineralization. To further functionalize the coating created
by SBFs, proteins, drugs, or genes can be incorporated into
the apatite coatings. In this study, the ions present in SBF
are displayed alongside the different therapeutic molecules
that can be incorporated into the apatite coating of the
substrate. BMP, bone morphogenetic protein; FGF, fibro-
blast growth factor; IGF, insulin-like growth factor. Color
images available online at www.liebertpub.com/tea
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integrate into the mineral structure nor alter mineral for-
mation. Proteins can also be incorporated within the mineral
coating by coprecipitation in SBF solution. These different
methods (surface adsorption vs. coprecipitation within min-
eral structure) affect the release kinetics of the incorporated
proteins. The surface-adsorbed proteins demonstrate a burst
release profile, whereas the coprecipitated proteins show a
more controlled and sustained release profile, for the proteins
are physically incorporated with the mineral layers.106–110

As a proof of concept, osteogenic growth factors were
combined with mineral coatings to further the osteogenic cap-
abilities of the biomaterial. After CaP layers were formed using
conventional coating methods, BMP-2 was superficially de-
posited on the outer surface of these mineral coatings, through
either adsorption106 or chemical surface treatment.107 Both of
these superficially adsorbed growth factors were released with a
pattern of initial burst release (higher release rate), however, this
release profile is not the ideal delivery kinetics for biological
outcomes.

Sustained release of proteins or growth factors allows for
long-term delivery within the therapeutic range and can be
achieved by incorporating proteins or growth factors into the
mineral coating. This concept of controlling release profile
has been applied to the biomimetic mineralization process.
Coprecipitation incorporates biomolecules, such as proteins,
growth factors, enzymes, and drugs, into the bone-like
mineral coatings. BMP-2-incorporated mineral coatings
fabricated by a biomimetic coprecipitation technique in SBF
have been compared to mineral coatings with superficially
adsorbed BMP-2.108,109 A pharmacologically favorable low
dose of BMP-2 was gradually released from the groups
containing BMP-2 incorporated by coprecipitation, whereas
a burst release of BMP-2 was observed from the groups with
superficially adsorbed BMP-2. With the same amount of
BMP-2 loaded by the two different methods, a more sus-
tained osteogenic response was observed in the groups
where BMP-2 was incorporated by coprecipitation.110 In
another study, the delivery mode and efficacy of BMP-2
were tested using Ti-alloy (Ti6A14V) discs implanted sub-
cutaneously in the dorsal region of rats for up to 5 weeks.
Significantly improved bone volume and density of the re-
generated bone were observed in the groups that provided
sustained delivery of BMP-2.49,108,109 Furthermore, the re-
lease kinetics of insulin-like growth factor-1 (IGF-1) was
linear with a sustained profile, when IGF-1 was incorporated
within mineral coatings by coprecipitation.111

Gene therapy

Gene therapy has attracted scientific interest due to its ad-
vantages over protein-based growth factor delivery. Current
problems with protein-based delivery include the following:
(1) continuous administration of protein-based growth factors
is required for biological outcomes, (2) optimized spatiotem-
poral delivery is challenging and, if not achieved, cost and
efficacy are prohibitive, and (3) multiple doses are required
due to the short half-life of protein-based growth factors.112,113

Developing gene delivery carriers has been extensively
studied,92,96,113–123 and biomimetic mineralization using
SBF has been investigated as a means to synthesize a non-
viral gene delivery agent. The physiological conditions
(temperature, pH, ionic composition of SBF) used during

the biomimetic mineralization process allow incorporation
of genetic material with low risk of denaturing the DNA.
The negative charge on the DNA provides a nucleation site
for the high concentration of calcium ions to precipitate
forming CaP/DNA complexes in the SBF. Therefore, pre-
cipitation of DNA/calcium-containing composites has been
successfully formulated by using SBFs or modified SBFs for
nonviral gene delivery.115,121,124 Prefabricated coprecipi-
tates of model DNA (lambda DNA) encapsulated in CaP
(DNA/CaP) were adsorbed onto 2D PLGA plates and 3D
interconnective porous PLGA scaffolds. Although human
bone cell line (SaOS-2) was successfully transfected onto
2D plates and 3D scaffolds, more than 95% of the initially
adsorbed DNA/CaP was released within 2 days.124

Naked plasmid DNA (pDsRed pDNA) was superficially
adsorbed onto mineral-coated PLGA film.94 The release
kinetics of pDNA was modulated by both the intrinsic
properties of the minerals formed in different SBFs and the
extrinsic conditions such as pH and ionic composition of the
testing solutions. The same group also demonstrated pDNA
(pMetLuc and pEGFP-N1)-Lipofectamine complexes ad-
sorbed to mineral-coated tissue culture polystyrene for
testing optimized surface-mediated transfection by adjusting
the carbonate content in the SBF solutions.92

As with proteins, DNA can be associated with mineral
coatings of prospective implants either through superficial
binding of the DNA to the mineral surface by adsorption or
by incorporation within mineral structure by coprecipitation.
To compare surface adsorption and coprecipitation of plas-
mid DNA during biomimetic mineralization in terms of
transfection efficiencies, plasmid DNA encoding for the b-gal
gene was complexed with Lipofectamine, and integrated with
bone-like mineral coatings using the two different methods.
DNA-lipoplex stability was retained in both methods, but
coprecipitated DNA-lipoplexes induced higher transfection
efficiencies compared to adsorbed DNA-lipoplexes.96

Limitations of Biomimetic Mineralization Using SBFs

Although biomimetic mineralization can be widely ap-
plied to enhance the tissue regenerative capacity of im-
planted materials, there are still a number of drawbacks and
hurdles to overcome. The formation of a continuous layer of
mineral coating substrate materials is a process that takes
longer than other conventional CaP coating methods. A few
approaches have been proposed to accelerate the biomimetic
mineral coating process.125,126 For instance, substrate surfaces
can be functionalized before immersion in SBFs. The surfaces
of substrate materials, such as PLGA, can be functionalized
by treating them with NaOH solution resulting in the expo-
sure of more hydroxyl functional groups on the PLGA surface
and therefore increasing the capacity to bind Ca2+ ions in
SBFs.45,92,96 Another approach for accelerating the mineral-
ization process is to adjust concentrations of selected ions,
typically calcium and phosphorus, in SBF solutions.48,127

Manufacturing challenges arise when using biomimetic
mineral coating techniques to coat 3D interconnective po-
rous scaffolds due to the fact that biomimetic coating under
static conditions cannot uniformly coat the inner surfaces of
3D scaffolds. The nonuniform coating is particularly prob-
lematic when the scaffold is large and the pore size is small.
To overcome this issue, a dynamic perfusion technique can

SIMULATED BODY FLUIDS FOR BONE TISSUE ENGINEERING 1175



be applied to achieve uniform coating throughout the thick-
ness of the scaffolds.128

A disadvantage of using the coprecipitation technique is
the low efficiency of incorporation of biomolecules into
mineral coatings. Only a small proportion of biomolecules
in SBF can be entrapped within the mineral deposited onto
the underlying substrate material.

Conclusions and Future Directions

Over the last three decades, the process of regenerating
bone using SBF has made significant advances. However,
the lack of SBF use in clinical practice indicates the need for
further advances to overcome the translational challenges.
Valuable studies investigating the role CaP in bone tissue
engineering demonstrate the importance of this inorganic
phase with regard to bioactivity, osteoconduction, and os-
teoinduction. In this review, we provided evidence that
biomimetic mineralization is a promising approach to gen-
erating CaP coatings on supportive structures made from
ceramics, metals, or polymers. Coating these materials with
bone-like mineral layers not only increases load-bearing
mechanical strength but also provides bioactivity, osteo-
conductivity, and, once incorporated with relevant biomol-
ecules, osteoinductivity. In addition, it was highlighted that
coprecipitation of proteins/growth factors and DNA within
the mineral coatings can provide sustained delivery of these
biomolecules, thereby enhancing bone tissue regeneration.

Potential future directions for biomimetic mineralization
using SBF include surface mineralization of complex scaf-
folds fabricated by 3D bioprinting technology, improvement
of SBF coating rate through surface preparation, and opti-
mization of apatite coatings containing relevant therapeutic
agents for specific diseases.
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