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Abstract

Humans exhibit a remarkable ability to reliably classify sound sources in the environment even in presence of high

levels of noise. In contrast, most engineering systems suffer a drastic drop in performance when speech signals are

corrupted with channel or background distortions. Our brains are equipped with elaborate machinery for speech

analysis and feature extraction, which hold great lessons for improving the performance of automatic speech

processing systems under adverse conditions. The work presented here explores a biologically-motivated

multi-resolution speaker information representation obtained by performing an intricate yet computationally-efficient

analysis of the information-rich spectro-temporal attributes of the speech signal. We evaluate the proposed features

in a speaker verification task performed on NIST SRE 2010 data. The biomimetic approach yields significant robustness

in presence of non-stationary noise and reverberation, offering a new framework for deriving reliable features for

speaker recognition and speech processing.

Introduction
In addition to the intended message, human voice car-

ries the unique imprint of a speaker. Just like finger-

prints and faces, voice prints are biometric markers with

tremendous potential for forensic, military, and commer-

cial applications [1]. However, despite enormous advances

in computing technology over the last few decades, auto-

matic speaker verification (ASV) systems still rely heavily

on training data collected in controlled environments,

and most systems face a rapid degradation in perfor-

mance when operating under previously unseen condi-

tions (e.g. channel mismatch, environmental noise, or

reverberation). In contrast, human perception of speech

and ability to identify sound sources (including voices) is

quite remarkable even at relatively high distortion levels

[2]. Consequently, the pursuit of human-like recognition

capabilities has spurred great interest in understanding

how humans perceive and process speech signals.

One of the intriguing processes taking place in the cen-

tral auditory system involves ensembles of neurons with

variable tuning to spectral profiles of acoustic signals. In
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addition to the frequency (tonotopic) organization emerg-

ing as early as the cochlea, neurons in the central auditory

system (specifically in the midbrain and more promi-

nently in the auditory cortex) exhibit tuning to a variety

of filter bandwidths and shapes [3]. This elegant neural

architecture provides a detailed multi-resolution analysis

of the spectral sound profile, which is presumably rele-

vant to speech and speaker recognition. Only few studies

so far have attempted to use this cortical representation

in speech processing, yielding some improvements for

automatic speech recognition at the expense of substan-

tial computational complexity [4,5]. To the best of our

knowledge, no similar work was done in ASV.

In the present report, we explore the use of a multi-

resolution analysis for robust speaker verification. Our

representation is simple, effective, and computationally-

efficient. The proposed scheme is carefully optimized to

be particularly sensitive to the information-rich spectro-

temporal attributes of the signal whilemaintaining robust-

ness to unseen noise distortions. The choice of model

parameters builds on our current knowledge of psy-

chophysical principles of speech perception in noise [6,7]

complemented with a statistical analysis of the dependen-

cies between spectral details of the message and speaker

information.We evaluate the proposed features in an ASV

system and compare it against one of the best performing
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systems in NIST 2010 SRE evaluation [8] under detrimen-

tal conditions such as white noise, non-stationary additive

noise, and reverberation.

The following section describes details of the proposed

multi-resolution spectro-temporal model. It is followed

by an analysis that motivates the choice of model param-

eters to maximize speaker information retention. Next,

we describe the experimental setup and results. We fin-

ish with a discussion of these results and comment

on potential extensions towards achieving further noise

robustness.

The biomimetic multi-resolution analysis
An overview of the processing chain described in this

section is presented in Figure 1.

Peripheral analysis

The speech signal is processed through a pre-emphasis

stage (implemented as a first-order high pass filter with

pre-emphasis coefficient 0.97), and a time-frequency audi-

tory spectrogram is generated using a biomimetic sound

processing model described in details in [9] and briefly

summarized here (Equation 1). First, the signal s(t) under-

goes a cochlear frequency analysis modeled by a bank

of 128 constant-Q (Q = 4) highly asymmetric band-

pass filters h(t; f ) equally spaced over the span of 51/3

octaves on a logarithmic frequency axis. The filterbank

output is a spatiotemporal pattern of cochlea basilarmem-

brane displacements ycoch(t, f ) over 128 channels. Next,

a lateral inhibitory network detects discontinuities in the

responses across the tonotopic (frequency) axis, resulting

in further filterbank frequency selectivity enhancement.

This step is modeled as a first-order differentiation oper-

ation across the channel array followed by a half-wave

rectifier and a short-term integrator. The temporal inte-

gration window is given by μ(t; τ) = e−t/τu(t) with time

constant τ = 10ms mimicking the further loss of phase-

locking observed in the midbrain. This time constant

controls the frame rate of the spectral vectors. Finally,

a nonlinear cubic root compression of the spectrum is

performed, resulting in an auditory spectrogram y(t, f ):

ycoch(t, f ) = s(t) ⊗t h(t; f ),

ylin(t, f ) = max(∂tycoch(t, f ), 0),

y(t, f ) =
[

ylin(t, f ) ⊗t μ(t; τ)
]1/3

,

(1)

where ⊗t represents convolution with respect to time.

The choice of the auditory spectrogram is motivated by its

neurophysiological foundation as well as its proven self-

normalization and robustness properties (see [10] for full

details).

Spectral cortical analysis

The auditory spectrogram is processed further in order to

capture the spectral details present in each spectral slice.

The processing is based on neurophysiological findings

that neurons in the central auditory pathway are tuned

not only to frequencies but also to spectral shapes, in par-

ticular to peaks of various widths on the log-frequency

axis [3,11,12]. The spectral width is characterized by a

parameter called scale and is measured in cycles per

octave, or CPO. Physiological data indicates that auditory

cortex neurons are highly scale-selective, thus expanding

the cochlear one-dimensional tonotopic axis onto a two-

dimensional sheet that explicitly encodes tonotopy as well

as spectral shape details (see Figures 1 and 2).

The cortical analysis is implemented using a bank of

modulation filters operating in the Fourier domain. The

algorithm processes each data frame individually. The

Fourier transform of each spectral slice y(t0, f ) is multi-

plied by a modulation filter HS(�;�c) that is tuned to

spectral features of scale �c. The filtering operates on the

magnitude of the signal. After filtering, the inverse Fourier

transform is performed and the real part is taken as the

new filtered slice. This process is then repeated with a

Figure 1 An outline of the cortical features extraction algorithm. A schematic diagram of the algorithm that transforms a speech waveform

into a sequence of cortical feature vectors.



Nemala et al. EURASIP Journal on Audio, Speech, andMusic Processing 2012, 2012:22 Page 3 of 10

http://asmp.eurasipjournals.com/content/2012/1/22

Figure 2 Details of the speech spectral analysis. (a) The speech spectrogram is analyzed separately at each time instant. Each spectrogram slice

is filtered through a bandpass filter HS(�;�c) parameterized by �c . The ∗ operator signifies the filtering operation. Four such filtering operations

yield four views of the same spectral slice; each view highlights different details about the spectrum, notably formant peaks and harmonic structure.

(b) Cortical features for clean and noisy versions of one phoneme \ow\. The plots show magnitude as a function of frequency and scale. For

visualization, the discrete image points have been interpolated in MATLAB using a bicubic interpolation routine. Notice the consistency of formant

peaks around 1 and 4 KHz and of harmonic energies at 2 CPO and 4 CPO despite the additive noise distortion. (c) Cortical features for different types

of additive noise. Note that the patterns exhibited are quite different. Subtle peaks due to harmonicity and formant structure of human speech can

be seen in the left panel (babble noise).

number of different�c, yielding a number of filtered spec-

trograms y(t, f ;�c), each with features of scale �c empha-

sized (see Figure 1). This set of spectrograms constitutes

the spectral cortical representation of the sound.

The filter HS(�;�c) is defined as

HS(�;�c) = (�/�c)
2e[1−(�/�c)

2], 0 ≤ � ≤ �max, (2)

where �max is the highest spectral modulation frequency

(set at 12 CPO given our spectrogram resolution of 24

channels per octave).

Choice of spectral parameters

The set of scales �c is chosen by dividing the spectral

modulation axis into equal energy regions using a train-

ing corpus (TIMIT database [13]) as described below.

Define the average spectral modulation profile Y (�) =

〈〈|Y (�; t0)|〉T 〉� as the ensemble mean of the magnitude

Fourier transform of the spectral slice y(t0, f ) averaged

over all times T and over entire speech corpus � . The

resulting ensemble profile (shown in Figure 3a) is then

divided intoM equal energy regions Ŵk :

Ŵk =

∫ �k+1

�k

Y (�)d�, Ŵk = Ŵk+1, k = 1, . . . ,M − 1,

(3)

where �k and �k+1 denote the lower and upper cut-

offs for kth band, �1 = 0, and �M = 4.a This sam-

pling scheme ensures that the high energy regions are

sampled more densely, which has the dual advantage of
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Figure 3 Speech signal spectral analysis. (a) Average spectral modulation profile Y(�) = 〈〈|Y(�; t0)|〉T 〉� ; (b) Top panel: MI between feature

representation and speech message as a function of scale. Bottom panel: MI between feature representation and speaker identity as a function of

scale.

sampling the given modulation space with a relatively

small set of scales and emphasizing high-energy signal

components, which are presumably noise-robust. Set-

ting M = 5 results in cutoffs at {0.18, 0.59, 1.34, 2.36, 4},

which are approximated to the nearest log-scale as �c =

{0.25, 0.5, 1.0, 2.0, 4.0}. Finally, in order to put less empha-

sis on message-dominant regions of the spectrum, we

drop the 0.25 CPO filter, which carries mostly articu-

latory and formant-specific information relevant to the

speech message (analysis presented in the next section).

The remaining set of �c = {0.5, 1.0, 2.0, 4.0} is found to

be a good tradeoff between computational complexity and

system performance.

Temporal filtration

In this stage, the spectral cortical features are processed

through a bandpass temporal modulation filter to remove

information that is believed to be mostly irrelevant. It

was shown in [14] that the neurons in the auditory cor-

tex are mostly sensitive to the modulation rates between

0.5 and 12Hz and that the same modulation range repre-

sents the information crucial for speech comprehension

[7]. Accordingly, the filtering is performed by multiply-

ing the Fourier transform of the time sequence of each

spectral feature by a bandpass filter HT (w;wl,wh):

HT (w;wl,wh] ) = (αw)2 e[1−(αw)2],

α =

⎧

⎨

⎩

1/wl, 0 ≤ w < wl,

1/w, wl ≤ w ≤ wh,

1/wh, wh < w ≤ wmax,

(4)

where wl = 0.5Hz, wh = 12.0Hz, wmax = 1/(2tf ), and

tf = 10ms (the frame length). After filtering in Fourier

domain, the inverse Fourier transform is performed and

the real part of the output forms the temporally filtered

spectral cortical representation of the sound yw(t, f ;�c).

This operation is performed on an utterance by utterance

basis.

Cortical features

To reduce computational complexity and to allow use

of state-of-the-art speaker verification machinery (which

generally expects a relatively low-dimensional input), the

spectral cortical representation is downsampled in fre-

quency by a factor of 4 (Figure 1). The resulting feature

representation has a dimensionality of 128 (32 auditory

frequency channels multiplied by four scales used for

analysis). The features are then normalized to zero mean

and unit variance for each utterance, yielding the reduced

set of spectrograms ŷw(t, f ;�c). Principal component

analysis is used to further reduce the feature dimensional-

ity to 19. This number is chosen for consistency with the

dimensionality of the standard Mel-Frequency Cepstral

Coefficients (MFCC) feature set used for speaker recog-

nition. The reduced features, along with their first- and

second-order derivatives, form the final 57-dimensional

cortical feature vector used for the speaker verification

task.

Speech information versus speaker information
The speech signal carries both speech message and

speaker identity information in distinct yet overlapping

components. Separation of these elements is a non-trivial

task in general. In the multi-resolution framework pre-

sented above, the broadest filters (0.25 and 0.5 CPO)

capture primarily the overall spectral profile and for-

mant peaks, while the others (1, 2, and 4 CPO) reflect

narrower spectral details such as harmonics and subhar-

monic structure. In order to select a set of scales (�c)

that are most relevant for the speaker recognition task,

we analyze the mutual information (MI) between the fea-

ture vector (X), the speech message (Y1), and the speaker
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identity (Y2). The MI is a measure of the statistical depen-

dence between random variables [15] and is defined for

two discrete random variables X and Y as

I(X;Yi) =
∑

x∈X,y∈Yi

p(x, y) log2
p(x, y)

p(x)p(y)
. (5)

To estimate the MI, the continuous feature vector is

quantized by dividing its support into cells of equal vol-

ume. To characterize the speech message, phoneme labels

from the TIMIT corpus are first divided into four broad

phoneme classes. The variable Y1 thus takes four dis-

crete values representing the phoneme categories: vowels,

stops, fricatives, and nasals. The average MI (taken as

the mean MI across all the frequency bands for a given

scale) between the feature vector and the speech message

is shown in Figure 3b (top) as a function of scale. For the

speaker identity MI test, the TIMIT “sa1” speech utter-

ance (She had your dark suit in greasy wash water all year)

spoken by 100 different subjects is used; thus, Y2 takes

100 discrete values representing the speaker. The average

MI between the feature vector and the speaker identity is

shown in Figure 3b (bottom), again as a function of scale.b

Notice that while the lower scale (0.25 CPO) clearly

provides significantly more information about the under-

lying linguistic message, the MI peak in Figure 3c (bot-

tom) is centered at 1 CPO, highlighting the significance

of pitch and harmonically-related frequency channels in

representing speaker-specific information. In order to

put less emphasis on message-carrying features of the

speech signal, we drop the 0.25 CPO filter at the feature

encoding stage for our ASV system and choose �c =

{0.5, 1.0, 2.0, 4.0} CPO.c

Experiments and results
Recognition setup

Text independent speaker verification experiments are

conducted on the NIST 2010 speaker recognition eval-

uation (SRE) data set [8]. The extended core task of the

evaluation involves 6.9million trials broken down into

nine common conditions reflecting a variety of channel

mismatch scenarios [8] (see Table 1).

The front end of the implemented ASV system uses

either the 57-dimensional MFCC feature vector or the 57-

dimensional cortical feature vector. The MFCC feature

vector is computed by invoking RASTAMAT “melfcc”

function with ‘numcep’ parameter set to 20, dropping

the first (energy) component of the output, and append-

ing first- and second-order derivatives of the resultant

feature vector. The cortical feature vector is obtained as

described in the previous sections. For fair comparison

between MFCC and cortical features, MFCC was supple-

mented with mean subtraction, variance normalization,

and RASTA filtering [16] applied at the utterance level.

Table 1 List of conditions for NIST 2010 extended core task

Condition Description

1 Microphone training, same microphone testing

2 Microphone training, different microphone testing

3 Microphone training, telephone testing

4 Microphone training, telephone conversation

recorded with roommicrophone testing

5 NVE telephone training, NVE telephone testing

6 NVE telephone training, HVE telephone testing

7 Microphone training, HVE telephone testing

8 NVE telephone training, LVE telephone testing

9 Microphone training, LVE telephone testing

NVE, LVE, and HVE stand for normal, low, and high vocal effort, respectively.

Such processing parallels the temporal filtering and nor-

malization performed on cortical features. A combination

of ASR output provided by NIST and an in-house energy-

based VAD system is used to drop all non-speech frames

from input data.

The back-end is a robust state-of-the-art UBM-GMM

system [17,18]. In a UBM-GMM system, each speaker’s

distribution of feature vectors is modeled as a mixture

of Gaussians, forming a Gaussian mixture speaker model

(GMSM). In addition, a universal background model

(UBM) defines a “generic” speaker. The UBM typically

has hundreds of thousands of parameters and is trained

on a very large amount of data (hundreds of hours of

speech), which should include speech produced by a large

number of individual speakers (in our case, the 2048-

center diagonal-covariance UBM is trained on NIST SRE

2004, 2005, 2006, and 2008; Fisher; Switchboard-2; and

Switchboard-Cellular databases). As the amount of speech

available per individual speaker is typically much less than

required to train the speaker model from scratch, the

GMSM is produced by adapting UBM means so that the

resulting model best describes the available speaker data.

Finally, given the UBM, the candidate GMSM, and the

audio file, the system extracts the feature vectors from the

audio file and computes the log-likelihoods of these fea-

ture vectors belonging to the GMSM and to the UBM.

The difference between these log-likelihoods constitutes

the output score for this particular trial.

Our ASV system additionally employs the technique

known as joint factor analysis [19,20]. JFA use enables

channel variability compensation by offsetting the chan-

nel effects and more robust speaker model estimation

by using more informative prior on speaker model dis-

tribution. To use JFA in the described framework, an

alternative representation of the speaker model—a sin-

gle vector Z (“supervector”)—is formed by concatenaging

all GMSM means. JFA is trained in advance on a large
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annotated collection of audio files to learn the channel

subspace (the basis over which Z preferentially varies

when the same speaker’s voice is presented over different

channels) and the speaker subspace (the basis over which

Z preferentially varies when different speakers are pre-

sented over the same channel). In our system, the dimen-

sionalities of speaker subspace and of channel subspace

are 300 and 150, respectively. Then, when processing

the previously unseen data, components of inter-speaker

differences attributable to speaker/to channel are empha-

sized/canceled, respectively. This is done by projecting

corresponding supervectors into speaker/channel sub-

spaces, using speaker subspace projection of Z to modify

GMSM, using channel subspace projection of Z to mod-

ify UBM, and performing scoring with these modified

GMSM and UBM. Also, as the log-likelihood calcula-

tion is expensive, in our system an approximation to it is

computed based on an inner product [20] is used.

Finally, the obtained scores are subject to ZT-

normalization [21], and the decision threshold minimiz-

ing equal error rate (EER) is chosen (separately for each

condition).

Noise conditions

Every trial in NIST SRE 2010 consists of computing the

matching score between a speakermodel and an audio file.

To evaluate the noise robustness of the proposed corti-

cal features, several distorted versions of these audio files

are created by adding different types of noise reflecting a

variety of real world scenarios:

• White noise at signal-to-noise ratio (SNR) levels from

24 to 0 dB in 6 dB steps;
• Babble noise (from Aurora database [22]), same SNR

levels;
• Subway noise (from Aurora database [22]), same SNR

levels;
• Simulated reverberation with RT60 from 200 to

1,200ms in steps of 200ms.

It is important to mention that all training (UBM, JFA,

and speaker model training) is done exclusively on clean

data, and only the test audio files are corrupted. Note

also that the train-test mismatch created by addition

of noise/reverberation is superimposed on the train-test

mismatch inherent to the SRE 2010 data.

Results

Figure 4 shows the speaker verification performance in

terms of EER for the cortical features and for the MFCC

features as a function of noise type/strength and trial

condition. The results clearly demonstrate that the pro-

posed cortical features provide substantially lower EER

than the MFCC as noise level increases, indicating their

robustness. The average performance for each noise type

and trial condition is shown in Table 2. On average

(across all conditions and all noise types), the cortical-

features-based system yields 15.9% relative EER improve-

ment over the robust state-of-the-art MFCC system. It

is worth noting that the proposed approach is outper-

formed by the MFCC-based approach in only 4 out of the

36 cases. Because the proposed metric incorporates both

a biomimetic auditory spectrogram previously shown to

exhibit some noise-robustness characteristics [10] as well

as multiresolution decomposition, we investigated fur-

ther the contribution of both components in the reported

improvements. We tested the system using the auditory

spectrogram alone or an adaptation of the auditory spec-

trogram described here, coupled with a cepstral transfor-

mation. Neither system performed as well as the proposed

multiresolution decomposition, hence strengthening the

claim that our proposed multiresolution analysis is indeed

responsible for the performance improvements shown in

Table 2.

In some ASV applications, metrics other than EER

may be more relevant. For example, in certain biomet-

ric speaker verification systems the key requirement is

a low false alarm rate. We present our results here in

terms of two additional metricsmore suitable in such case,

namely Miss-10 and quadratic DCF (decision cost func-

tion) metrics. These two metrics were used in the NIST

2011 IARPA BEST program SRE [23]. TheMiss-10 metric

is defined as the false alarm rate PFA obtained when the

decision threshold is set such that the miss rate PMiss =

10%, and the quadratic DCF is defined as

DCF = CMiss×PMiss
2×Ptarget+CFA×PFA×(1−Ptarget)

(6)

with the parameter values CMiss = 100, CFA = 10, and

Ptarget = 0.01.

The average verification performance for each noise

type using the Miss-10 and quadratic DCF metrics is

shown in Tables 3 and 4, respectively. As seen from the

data, in the low false alarm region the proposed corti-

cal features outperform the robust state-of-the-art MFCC

system with even larger margin: 28.8% relative using the

Miss-10 metric and 22.6% relative using the quadratic

DCF metric.

Discussion and conclusions
In this report, we explore the applicability of a multi-

resolution analysis of speech signals to ASV. This frame-

work maps the speech signal onto a rich feature space,

highlighting and separating information about the glot-

tal excitation signal, glottal shape, vocal tract geometry,

and articulatory configuration (as each of these elements
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Figure 4 Evaluation results. Performance of the proposed cortical features (red filled squares) and enhanced MFCC features (black open circles)

on NIST SRE 2010 “extended core” database as a function of noise level, noise type, and condition. In each subplot, the noise level is shown on X axis

and the EER (in percents) is on Y axis. Columns and rows of subplots belong to the same noise type and to the same condition, respectively. Note

the Y-axis ranges are not the same in the subplots.
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Table 2 Average ASV performance (EER, %) as a function of noise type and condition

Cond.
Babble (0–24 dB) White (0–24 dB) Subway (0–24 dB) Reverb (200–1,200ms)

MFCC Cortical MFCC Cortical MFCC Cortical MFCC Cortical

1 6.43 5.24 12.3 7.93 8.5 6.97 9.39 6.87

2 11.47 9.09 18.06 12.71 14.1 11.55 13.88 9.58

3 7.33 6.31 10.86 8.87 8.89 7.84 16.70 14.96

4 7.86 6.78 14.88 10.87 10.36 8.79 12.66 9.78

5 6.39 5.98 8.52 7.55 7.70 6.89 14.05 10.59

6 10.45 9.95 11.04 10.48 11.12 10.39 20.00 16.14

7 9.62 10.64 13.30 12.67 10.67 12.09 19.21 16.65

8 5.19 5.46 7.19 6.48 6.00 6.04 12.78 9.48

9 6.84 6.00 13.58 11.46 8.94 8.59 9.43 6.84

is an underlying factor for features of different width

located in different areas on the log-frequency axis; see

e.g. [24]). The cortical representation can be viewed as

a “local” variant (w.r.t. log-frequency axis) of the analysis

provided by MFCC analysis. This analogy stems from the

fact that MFCC roughly correspond to spectral features

of different widths integrated over the whole frequency

range. In this work, both the “global-integration” MFCC

approach and the “local” cortical approach are tested in

a state-of-the-art ASV system on the NIST SRE 2010

dataset. While both perform comparably in clean condi-

tion, the cortical features are substantially more robust on

noisy data, including non-stationary distortions as well as

reverberation.

One of the intuitions behind the robustness observed

in the proposed features is the fact that speech and noise

generally exhibit different spectral shapes while occupy-

ing an overlapping spectral range. The expansion of the

spectral axis with the multi-resolution analysis allows the

extrication of some speech components from the masking

noise, suppressing the noise components and providing

for increased robustness. Furthermore, by highlighting

the range between 0.5 and 4 CPO, the model stresses the

most speaker-informative regions in the speech spectrum,

which in turn map onto a modulation space to which

humans are highly sensitive [7]. Such range is also com-

mensurate with neurophysiological tuning observed in

mammalian auditory cortex with most neurons concen-

trated around a spectral tuning of the order of few CPOs

[3,14]. A similar emphasis is put on the temporal dynam-

ics of the signal by underscoring the region between 0.5

and 12Hz, which defines natural boundaries for speech

perception in noise by human listeners [7,25-28] and

mostly coincides with temporal tuning of mammalian cor-

tical neurons [14]. Higher temporal modulation frequen-

cies represent mostly the syllabic and segmental rate of

speech [2].

Unlike comparable multi-resolution schemes recently

developed [4,5], the proposed approach does not involve

dimension-expanded representations (close to 30,000

dimensions, which inherently require computationally-

expensive schemes and therefore have limited applica-

bility). Instead, our model is constrained to lie in a

perceptually-relevant spectral modulation space and fur-

ther uses a careful sampling scheme to encode the infor-

mation with only four spectral analysis filters. This has

Table 3 Average ASV performance (Miss-10metric, %) as a function of noise type and condition

Cond.
Babble (0–24 dB) White (0–24 dB) Subway (0–24 dB) Reverb (200–1,200ms)

MFCC Cortical MFCC Cortical MFCC Cortical MFCC Cortical

1 5.3 3.2 17.2 7.9 9.4 6.0 9.1 4.6

2 16.6 10.8 31.3 18.1 22.9 16.4 19.8 9.5

3 6.2 4.4 14.0 9.0 9.2 6.9 26.5 21.9

4 8.1 5.7 22.9 13.7 13.0 9.9 16.9 9.9

5 4.9 3.7 9.4 6.7 7.0 5.3 20.3 11.8

6 11.6 10.2 13.6 11.4 13.2 11.2 35.6 25.1

7 11.8 12.5 18.6 16.6 13.0 16.5 34.2 26.6

8 3.2 2.9 7.7 5.0 4.7 3.9 17.0 9.4

9 6.5 5.5 21.4 15.4 11.0 9.9 9.0 4.6
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Table 4 Average ASV performance (quadratic DCFmetric) as a function of noise type and condition

Cond.
Babble (0–24 dB) White (0–24 dB) Subway (0–24 dB) Reverb (200–1,200ms)

MFCC Cortical MFCC Cortical MFCC Cortical MFCC Cortical

1 0.129 0.098 0.371 0.211 0.208 0.147 0.219 0.150

2 0.247 0.183 0.506 0.342 0.356 0.266 0.353 0.221

3 0.149 0.116 0.282 0.196 0.199 0.155 0.481 0.403

4 0.176 0.136 0.446 0.287 0.276 0.199 0.317 0.237

5 0.139 0.114 0.186 0.150 0.171 0.136 0.379 0.262

6 0.236 0.230 0.255 0.240 0.245 0.241 0.557 0.457

7 0.231 0.240 0.452 0.362 0.302 0.300 0.543 0.486

8 0.105 0.088 0.154 0.119 0.122 0.105 0.331 0.212

9 0.134 0.105 0.405 0.288 0.218 0.175 0.220 0.145

the dual advantage of producing a feature space that is

both low-dimensional and highly robust. The careful opti-

mization of model parameters is necessary to strike a

balance between simple and efficient computation and

noise robustness.

Importantly, in our approach no model components

have been customized in any way to deal with a specific

noise condition, making it suitable for a wide range of

acoustic environments. In addition, the model has been

minimally customized for the speaker recognition task

and can in fact provide a general framework for a vari-

ety of speech processing tasks. Our preliminary results

do indeed show great robustness of a similar scheme for

automatic speech recognition. It is therefore essential to

emphasize that the performance obtained with the corti-

cal features is solely a property of the features themselves

and is achieved without any noise compensation tech-

niques. Our ongoing efforts are aimed at achieving further

improvements by applying the described multi-resolution

cortical analysis on enhanced spectral profiles obtained

using speech enhancement techniques, which involve

estimation of noise characteristics in various forms [29].

Endnotes
aWe constraint the range of spectral modulations to 4

CPO, which covers more than 90% of the entire spectral

modulation energy in speech and is most important for

speech comprehension [7].
bThe difference in MI levels between the speech message

and speaker identity may be attributed to the observation

that the speech signal encodes more information about

the underlying linguistic message than about the speaker.
cIn addition to the MI analysis, we performed an empir-

ical test regarding use of 0.25 CPO filter. An experiment

was run on clean data with �c = {0.25, 0.5, 1.0, 2.0} CPO

and yielded a 3.4% EER—a decrease of performance com-

pared with 2.7% EER for the system that used �c =

{0.5, 1.0, 2.0, 4.0} CPO.
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