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Biomimetic Sound-Source Localization
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Abstract—Sound-source localization systems typically com-
prise free-field microphone arrays. In nature, directional acoustic
sensing evolved to rely on diffraction about the head with only two
ears. For localization, the brain uses the resultant frequency-de-
pendent acoustic phase and intensity differences between the two
ears. We conceive a biomimetic artificial head with microphones
placed on its surface. The interaural functions can be computed
analytically by modeling the head as a sphere. We define a suitable

metric between interaural functions, whose global minimum
provides the true source direction. The natural configuration in
which the two sensors are placed antipodally on the sphere has
intrinsic rotational symmetry: it allows localization only up to
a circle around the interaural axis. We describe two methods
for breaking the detrimental symmetry in order to achieve full
spherical localization capability. First, we consider rotation of the
apparatus relative to the source and the information it adds to
the localization metric. We derive analytically the gradient of the
pressure field under rotation and compute the induced acoustic
flow on the interaural localization functions. Second, we explore
placing the sensors in configurations differing from antipodal. We
show the efficacy of these methods through simulations.

I. INTRODUCTION

D
IRECTIONAL sensing of sound enables the localization

of its source in space. More broadly, it can aid in the sep-

aration of signals from multiple sources and in their identifi-

cation. Designed systems typically comprise free-field sensor

arrays for extraction of directional information. Most use dif-

ferences in time of arrival between combinations of pairs of mi-

crophones. Applications include the localization and tracking of

speakers in conference rooms and improved hearing aids having

directional sensitivity; see [3] for a comprehensive overview.

Several groups installed free-field microphone rigs on mobile

robots to endow them with localizing capability [4], [10]. These

also use differences in time of arrival betweenmicrophone pairs.

In nature, directional acoustic sensing evolved to rely on

diffraction about the head with only two sensors—the ears.

The impinging sound waves are modified by the head in a

frequency- and direction-dependent way. Additional complex

filtering is performed by the external ears (pinnae). The inner

ear decomposes the sound pressure signal into frequency bands.
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Fig. 1. Coordinates and symmetry of the spherical head. The microphones
(gray) are located at the two poles on the horizontal plane The polar angle � is
measured along meridians (black) connecting the poles; the azimuthal angle �
is measured along latitude circles (gray) which are lines of constant �.

The brain then uses interaural differences in phase (IPD) and

intensity level (ILD) in the various frequency bands to infer the

location of a source [1], [6].

Inspired by human sound localization, we are interested in de-

signing an algorithm for artificial systems operating with sim-

ilar principles. We conceive a sphere or artificial head apparatus

with microphones placed on its surface. At present we deal only

with omnidirectional sensors, i.e., we exclude pinna-like effects

or directional microphones.

The sound pressure at the ear can be computed analytically by

modeling the head as a sphere [2]. Solving the problem of scat-

tering off of a sphere is relatively simple thanks to the following

fact. Thewave equation is separated into time- and space-depen-

dent components. Solutions to the spatial part further separate

in spherical coordinates to the spherical harmonics. Yet the ge-

ometry of the scatterer also favors expansion of the sound field

in these same functions and allows the imposition of boundary

conditions in a natural way.

The configuration in which the two sensors are situated

antipodally on the sphere has intrinsic cylindrical symmetry:

it allows localization only up to a circle around the interaural

axis. Indeed, such confusion is known in human performance

of sound localization [1], [9]. This phenomenon does not

vanish with small perturbations in the shape of the head or

small deviations in sensor positions.

In Section III, we introduce the coordinate system employed

in analyzing the problem and we describe its symmetry

properties. We consider the ILD–IPD plane as a basic feature

space in which localization is performed. Every sound source

generates a particular signature in this plane depending on its

location. In Section IV, we elaborate on this signature and we
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Fig. 2. Signatures of two sources at different directions.

introduce a suitable metric between interaural functions. Its

global minimum should give the true source direction. Due

to the inherent symmetry, however, a whole symmetric set

of minima exist, which prevent unique localization. We then

describe two methods for breaking the detrimental symmetry

in order to achieve full spherical localization capability. In

Section V, we derive an analytical expression for the change

in the measured sound field due to rotation of the apparatus

relative to the source. This derivative induces a “flow” of the

interaural functions and the signature of a source. By adding

this information to the metric, we obtain a unique global

minimum. This approach is motivated by psychophysical

experiments which show that head rotation can improve human

localization performance compared to static conditions [8],

[11]. In Section VI, we explore an alternative method where we

place the sensors in configurations that differ from antipodal.

In order to establish notation, we start by briefly reviewing the

known solution of acoustic scattering off of a sphere under

static conditions [7].

II. STATIC SPHERICAL SCATTERING

The acoustic field can be described by small fluctuations in

air pressure and local velocity , where is time

and is a point in space. Thanks to the fact that the acoustic wave

is irrotational, a velocity potential can be defined, such that

. is a scalar function that serves as a dynamic vari-

able from which all relevant fluctuating quantities are derived,

including pressure: , where is the mass density of

air. The velocity potential is governed by the wave equation

(1)

where is the Laplacian.

A solution to the wave equation is assumed to separate in time

and space, i.e., , giving time harmonic behavior

while the spatial variables satisfy the Helmholtz

equation

(2)

A general solution of (2) is expressed through separation of vari-

ables in spherical coordinates, such that each variable is gov-

erned by an ODE: .

The azimuthal function is harmonic

and periodic on , so are integers. The polar variable

satisfies the associated Legendre equation whose solutions

are the associated Legendre functions , where

, is an integer, and . The associated

functions reduce to the regular Legendre functions for :

.

The azimuthal functions are orthogonal, and the asso-

ciated Legendre functions are orthogonal for different ’s with
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Fig. 3. The combined metric of the interaural functions exhibits the detrimental cylindrical symmetry: two global minima exist for any source direction in the
horizontal plane.

the same value of . The normalized product functions of these

two families constitute the spherical harmonics

(3)

The real functions may be used instead of the

complex exponentials. Zonal harmonics are a subset of spher-

ical harmonics which do not depend on azimuth ( ). They

have nodal latitudinal circles that divide the sphere into zones

(see Fig. 1). The spherical harmonics completely specify the an-

gular dependence of solutions to the Helmholtz equation.

A change of variable in the radial function to gives

the Bessel equation. Its solutions are Bessel functions of order

(for integer ). With suitable prefactors, the spherical

Hänkel functions of the first kind are then defined as combina-

tions of spherical Bessel functions of first ( ) and second ( )

kinds

(4)

The impinging wave and scattered wave are expanded

in spherical harmonics and the position of the source and mea-

surement points. Thanks to the orthonormality of spherical har-

monics, the boundary conditions can be imposed independently

for each component [2]. For an acoustically hard sphere, the

normal velocity of the total wave vanishes on its surface (Neu-

mann conditions)

(5)

where is the radius of the sphere. Taking the sum of im-

pinging and scattered waves as an expansion series, the total

velocity potential is obtained for a general measurement point

in space. When the measurement is performed on

the surface of the sphere , the spatial part of the potential

is

(6)

The field does not depend on the separate absolute angular po-

sitions of the source and sensor but on the angle between them.

Then, if the source lies at position , the potential

reduces to

(7)

which we refer to henceforth.

III. COORDINATES AND SYMMETRY OF THE PROBLEM

We refer to the coordinate system that is determined naturally

by the geometry of the apparatus.We designate a “north” pole as
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Fig. 4. The combined metric of the interaural functions exhibits the detrimental cylindrical symmetry. The skew diagonals are zeros of the metric in addition to
the diagonal.

the position of the sensor. When two sensors are placed in the

antipodal configuration, we assign the left sensor as the north

pole; see Fig. 1. The polar angle is measured along merid-

ians between the north and south poles and is constant along

circles of latitude relative to the two poles. The azimuthal angle

marks the position on latitude circles; in other words, it marks

the meridian between the poles relative to the horizontal. For the

present problem, we set the latitude of the equator to , so

antipodal sensors are located at .

Symmetry properties of the problem govern its solution and

characteristics. The scattering configuration has cylindrical

symmetry, because the total pressure (7) depends only on the

polar angle. The same pressure will be measured on the circles

of latitude. In other words, rotations about the interaural axis

(gray), i.e., by the azimuthal angle , leave the measured

pressure invariant. The sound source, the sensor, and the center

of the sphere all lie on a plane at all times, even though this

plane may rotate as the source rotates relative to the sphere. The

collection of these symmetry rotations constitutes the Lie group

SO(2). This symmetry still holds and the geometry remains the

same when a second sensor is added antipodally to the first.

Due to the topology of the sphere, the cylindrical symmetry

gives rise to additional discrete ambiguity within the sensor-

source plane. For any given polar angle , the circle of

azimuthal symmetry intersects the plane at a mirror point

with ( ). In psychophysics, this is referred

to as front–back symmetry.

IV. LOCALIZATION SIGNATURES ANDMETRIC

The measured sound pressure (7) is a complex response to

the excitation by a source

(8)

where is the part of the phase containing spatial information.

With pressure measured at the right (R) and left (L) sensors, we

define the ILD and ILP as

(9)

The solution of the wave equation involved separation into fre-

quency components. Consequently, both ILD( ) and IPD( )

are functions of frequency . We consider the ILD–IPD plane

as a basic feature space in which localization is performed.

For every source direction and frequency there is a point in

the ILD–IPD plane. Since ILD and IPD depend smoothly

on frequency, every broad-band sound source generates a

whole curve in this plane which is its specific signature,

depending on the source location in space. Fig. 2 shows the

signatures of two broad-band sources located at different

directions. For each source, frequency is sampled at equal

intervals in the range in which diffraction is relevant. It roughly

corresponds to the human audible range for a sphere of human

head size. In Fig. 2 the plane should be viewed as the unwrap-

ping of a cylinder since the IPD values of 360 and 0 are to

be identified. Thus, there are exactly two continuous curves
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Fig. 5. Vector field of pressure in the plane of phase versus log-intensity for a distant source at a 90 angle of incidence from the sensor.

Fig. 6. Derivative of sound field under rotation separates identical signatures of sources at different yet symmetric directions.

in the figure corresponding to 30 and 60 source locations,

with a branch hitting the IPD line joining an appropriate

branch hitting the IPD .

We want to quantify how close are the localization functions

(ILD, IPD) or signature curves of different directions. The goal

is to identify the direction of a source by the following proce-
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Fig. 7. Unique localization with derivative information. The total metric has a single global minimum for each source direction.

dure: compare the measured ILD and IPD to their values for all

possible directions, and pick the direction for which the calcu-

lated functions are the closest to those measured. Given a source

direction , we define the distance-measuring functions based

on the norm squared

(10)

and similarly for ILD. We normalize each metric with respect

to its maximal value on the torus domain

(11)

We then combine the normalized metrics for ILD and IPD to

yield

(12)

which takes into account all static binaural information.

The structural symmetry of the problem is carried over to the

combined metric. It prevents unique localization, as can be seen

in Figs. 3 and 4. In Fig. 3, the metric for sources at direction

45 has typical double minima. Only in the special case where

a source lies exactly at on the interaural axis, i.e., at 90 or

270 , does a single minimum exist. The general picture is seen

in Fig. 4 which shows the distance metric between all combina-

tions of source and test directions. Double global minima cor-

responding to the front–back symmetric points appear as zeros

of the metric on the skew diagonal.

V. ACOUSTIC FLOW UNDER ROTATION

As described in Section III, azimuthal rotations leave the con-

figuration of source and sensor invariant while polar rotations

modify the field. Rotations in the polar angle are a represen-

tation of the rotation group SO(2) over zonal spherical har-

monics. Infinitesimal rotations are a representation of the corre-

sponding one-dimensional (1-D) Lie algebra which acts

by differentiation of functions with respect to (w.r.t.) the polar

angle. For the measured sound pressure (8), the derivative is

. With normalization by the response

itself, properties of the complex give

(13)

The real part is the normalized infinitesimal change in amplitude

and the imaginary part is the derivative of the phase.

Pressure is expressed as an expansion in the regular Legendre

functions which are the zonal spherical harmonics, with the co-

efficients being functions of distance

(14)
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Fig. 8. Unique localization with derivative information. The zeros of the total metric are on the diagonal.

The derivative is therefore also an expansion in zonal harmonics

(15)

Since the coefficients in the expansion are radial functions, all

we need are the derivatives of the Legendre functions with re-

spect to the polar angle . A recurrence relation gives

(16)

For computational purposes, it is more convenient to retain

the original coefficients in the expansion, instead of

reordering according to the Legendre functions

(17)

Equations (13) and (17) now enable us to compute the derivative

of measured acoustic pressure for a time-harmonic point source.

An example of the infinitesimal change in pressure is shown in

Fig. 5. The static response relative to the free-field sound pres-

sure is plotted in the plane of phase versus log-intensity for a

distant source at 90 angle from a sensor. The points are sam-

ples of log-frequency at 0.01 intervals. At each frequency point

, the derivative of the response can be considered a vector

in the plane. At the low frequencies, very little change is in-

duced by rotation, because the sphere causes little interference

in the propagation of the sound wave. It increases dramatically

both for phase and intensity with increasing frequency. At the

high-frequency end, the picture becomes more complicated due

to intricate diffraction patterns.

Having computed the derivative of sound pressure for each

sensor, the derivatives of the interaural functions are given by

(18)

Just as for a single sensor, the derivatives of the interaural func-

tions give a vector attached to the signature curve at each fre-

quency .

Whereas the interaural functions have cylindrical symmetry

in each lateral hemisphere, the derivative functions have a

right–left symmetry about the mid-sagittal plane (i.e., the plane

perpendicular to the interaural axis intersecting its mid-point).

Fig. 6 shows how these vectors separate overlapping signatures

of sources in two different locations. Sources at directions 45

and 135 have the same signature due to the azimuthal SO(2)

symmetry. However, the vector fields induced by rotation are

the mirror of each other, thus removing the symmetry.

If the rotation is not purely polar, then only the polar compo-

nent induces flow of the signature. The derivatives of pressure

are multiplied by cosine the angle between the plane of rota-

tion and the plane determined by the source and sensors. When,

for example, rotation is in the horizontal plane, i.e., around the

vertical axis, and the source has azimuthal angle —which is
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Fig. 9. Near-optimal sensor placement at 50 with 100 angle between the pair. The metric has a single global minimum for each source direction.

identical to elevation in this case—then the derivative is mul-

tiplied by . Hence, for horizontal rotations, the resultant

derivatives are modulated by the elevation angle of the source.

In Fig. 6, the two vectors which emanate from each frequency

point belong to the two mirror directions having pure

polar rotation. For any other azimuthal angle, the induced vector

will have length multiplied by .

In order to take advantage of this symmetry breaking, we de-

fine metrics for the dynamic cues as

(19)

and similarly for ILD. Finally, the total metric comprises four

terms

(20)

The inclusion of the derivative functions in the metric provides

a unique global minimium for a given source direction. Figs. 7

and 8 show the removal of the front–back symmetry. In Fig. 7,

the metric for sources at directions 45 and 135 are distinct and

have unique minima. The composite metric between all com-

binations of source and test directions is given in Fig. 8. The

unique minimum appears as zero on the diagonal. This proce-

dure can be generalized for all azimuthal angles .

VI. OPTIMAL SENSOR PLACEMENT FOR LOCALIZATION

We explore another method for achieving unique localiza-

tion. Instead of breaking the symmetry inherent in the antipodal

configuration, we ask whether different sensor placement can

provide good overall localization performance over all source

directions . This could be determined either by least worst

case (min–max) or on average over all angles. Preliminary sim-

ulations reveal an important structural feature that seems domi-

nant. Although the antipodal placement may have the advantage

of best total acoustic signal reception intensity, it is detrimental

to localization. By shifting the sensor position from the 90

position, the distance functions change in a regular manner in

the shift parameter . Moving the sensors to a

more forward position gradually removes the unwanted sym-

metry until it vanishes at – . Around 50 , other “topo-

logical” structures appear, in particular, a flat basin emerges in

around the diagonal at 110 . Figs. 9 and 10 show the

localization metric for near-optimal sensor placement at 50

with the corresponding angle between the sensors being 100 .

A unique global minimum exists for every source direction, al-

though the depth of the troughs in the metric around the minima

is shallower than that of the composite metric with flow (com-

pare to Fig. 7). Vestiges of the fictitious minima appear as a

shifted shallow skew diagonal in Fig. 10. This approach seems

promising but additional work is needed to elaborate on the

results.
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Fig. 10. Near-optimal sensor placement at 50 : the zeros of the metric are on the diagonal. Vestiges of the fictitious symmetric minima appear as a shifted shallow
skew diagonal.

VII. CONCLUDING REMARKS

We have analyzed sound-source localization with a

biomimetic apparatus comprising a pair of sensors on the

surface of a spherical artificial head. In contrast to free-field ar-

rays, diffraction about the head provides additional directional

information. With a pair of sensors—whether free-field or in an

antipodal arrangement on the sphere—localization is possible

only up to a circle of directions due to the inherent symmetry

of the problem. If enough microphones are included in an

array, unique localization is possible by using intermicrophone

information of several pair combinations. We showed here

that unique loclization can be achieved with only two sensors

by combining implicit information from diffraction with the

derivative of the sound field under rotation. An alternative

method would be to place the sensors in an asymmetric con-

figuration such that the angle subtended between the two is

around 100 .

Compared with one sensor, IPD and ILD provide substan-

tial information which is not available monaurally. Binaural

functions have another important advantage: the comparison

between two sensors obviates the need to know or assume

much about the character of the source signal. Mathematically

this can be expressed as the difference in log-intensity or

phases. As can be seen from (13), the normalized flow has

the same beneficial feature. It is reminiscent of the similarity

between recovery of visual depth in stereovision and scene

reconstruction from a sequence of monocular moving images

[5].
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