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Abstract

The identity of musical instruments is reflected in the acoustic attributes of musical notes played with them. Recently,

it has been argued that these characteristics of musical identity (or timbre) can be best captured through an analysis

that encompasses both time and frequency domains; with a focus on the modulations or changes in the signal in the

spectrotemporal space. This representation mimics the spectrotemporal receptive field (STRF) analysis believed to

underlie processing in the central mammalian auditory system, particularly at the level of primary auditory cortex.

How well does this STRF representation capture timbral identity of musical instruments in continuous solo recordings

remains unclear. The current work investigates the applicability of the STRF feature space for instrument recognition

in solo musical phrases and explores best approaches to leveraging knowledge from isolated musical notes for

instrument recognition in solo recordings. The study presents an approach for parsing solo performances into their

individual note constituents and adapting back-end classifiers using support vector machines to achieve a generalization

of instrument recognition to off-the-shelf, commercially available solo music.

1 Introduction

Research into the nature of musical timbre often focuses

on the role of physical attributes of each musical instru-

ment and how it colors the sound produced to give it

its unique identity. The literature often enumerates spec-

tral and temporal identifiers of musical timbre. Spectral

information is historically the most studied dimension for

musical instrument identification. It spans the magnitude

spectrum envelope or relative amplitude of harmonic par-

tials [1–3], number of harmonics [4], spectral centroid

[5–7], spectral energy distribution [7, 8] and spectral

irregularity [9]. Temporal characteristics of musical notes

are equally important in shaping sound identity; includ-

ing onset information [10], temporal envelope profile

[11], energy buildup or attack over time [3, 12], vibrato

[13, 14] as well as spectral flux over time [9]. Indeed, most

studies have converged on the fact that a joined space of

spectral and temporal information is necessary to fully

describe the space ofmusical timbre and capture the phys-

ical attributes that are perceptually relevant for describing
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each musical instrument. Research based on perceptual

judgments of natural ormanipulated notes as well as space

modeling using multidimensional scaling (MDS) [15] sup-

port a contribution of both spectral and temporal cues

[3, 7, 16]. In a recent study, we have in fact corroborated

such observation and argued that the spectrotemporal

coding of sensory features in the mammalian auditory

system, particularly at the level of auditory cortex,

provides a neural basis for the representation of both

spectral and temporal acoustic attributes relevant for

timbre perception. A neuro-computational model based

on spectro-temporal receptive fields, mimicking cortical

tuning properties, is able to correctly identify each instru-

ment from a database of isolated notes of 13 instruments

over a wide range of pitches with an accuracy as high as

98.7 % [17].

That being said, the physical characteristics of a musical

instrument are greatly shaped by the context of a musi-

cal phrase. Just like phonemes in speech are shaped by

coarticulation, prosody and phonological structure of the

syllable, word or utterance in order to convey a linguis-

tic message; musical notes are also markedly affected by

the melodic language of a musical piece. The acoustic
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manifestation of musical notes is greatly shaped by the

melodic line, rhythmic structure, tempo as well as play-

ing style and musical genre. This effect is more prominent

in the temporal properties of notes, which affect the

presence, absence, and duration of the attack, sustained

portion of the note, dynamics within each note as well as

transition between notes [14, 18, 19]. Modulation of the

dynamic nature of notes is accompanied by changes to

the spectral profile of the note causing variability in the

expected shape and details of the spectrum relative to an

isolated note. The recording or playing environment will

also affect the acoustic characteristics of the waveform;

though that is not exclusive to a musical piece and can also

manifest itself with isolated notes.

This variability clearly complicates the problem of

automated musical instrument identification. Generally,

machine systems aim to extract informative features from

the acoustic signal to obtain a good description of themul-

tidimensional space of musical timbre. Attributes based

on spectral envelope, temporal envelope, Mel-Frequency

Cepstral Coefficients (MFCC), Linear Predictive Coding

(LPC), statistical moments along time and frequency are

commonly used for tasks of instrument identification,

categorization, and indexing [20–23]. These features are

typically combined into a vectorized representation of the

timbre space that is either analyzed as a function of time

or contains summary statistics for a short-time window

or a given musical note. The applicability of this vector-

ized representation for isolated notes and musical phrases

varies widely across studies [24–29], particularly because

the acoustic manifestation of each instrument from iso-

lated note to full melodies may or may not be well cap-

tured by the chosen spectrotemporal features extracted

from the signal itself.

The current work explores the relevance of the intri-

cate spectrotemporal receptive field (STRF) feature space

believed to capture neural underpinnings of musical tim-

bre representation [17] for instrument identification in

solo performances. The original model was developed and

tested using a rich database of isolated notes with an aver-

age of 1980 notes per instrument (RWC database [30]).

The advantage of exploring the physical space of musi-

cal notes using a database like RWC is that it provides a

rich, diverse, and comprehensive scan of musical instru-

ments playing their full range of pitches, with different

playing styles and various physical instruments under a

controlled recording environment one pitch at a time. One

can then capitalize on this wealth of organized musical

information to provide a complete mapping of the spec-

tral, temporal, and joint spectrotemporal characteristics

of each instrument. The timbre space learned from this

database needs to then be carefully tapped into in order to

explore the overlap between the space based on isolated

notes and a corresponding space capturing notes in the

context of a solo performance. Here, we explore the short-

term analysis of solo pieces and their correspondence to

the musical timbre space, as well as a careful sampling

of the musical phrase to best track the evolution of the

musical phrase across notes and benefit from the learned

knowledge based on isolated notes. We also investigate

adaptive clustering techniques to map from one space

to the other. In choosing solo musical performances, we

focus on musical content from real world solo recordings

obtained from commercial Compact Discs (CD) with no a

priori screening.

Section 2 provides details about materials and methods

used to setup our recognition system. These include

the datasets used (subsection 2.1), approaches to parsing

continuous solo recordings (subsection 2.2), method-

ology for analyzing acoustic signals using STRF fea-

tures (subsection 2.3) as well as the setup of training

and testing our classifier (2.4). The evaluation section 3

details the outcome of instrument-recognition experi-

ments using isolated notes, musical phrases in a mixed

training/testing setup using both STRF features and com-

parative approaches. A number of follow-up analyses

follow in subsection 3.4 to investigate tests using artifi-

cial datasets and various feature sets that shed light on

the nature of the discrepancy in musical timbre charac-

teristics between isolated notes and continuous phrases.

Subsection 3.5 directly estimates the degree of mismatch

between these two datasets using information theoretic

measures. Finally, subsection 3.6 proposes a potential

resolution to the issue of mismatch by using adaptive

classification techniques that circumvent the divergence

in statistical characteristics between the two datasets.

A discussion (section 4) summarizes the main findings

of the study and remarks on the empirical findings

regarding cross training from isolated to continuous

notes.

2 Materials andmethods

2.1 Datasets

Instrument recognition of solo recordings is tested in

two main databases: the RWC database [30] which con-

sists of isolated music notes with varying playing styles;

and a collection of solo performances from commer-

cial compact discs (CD), consisting of about 2 h of

data per instrument (see Appendix for details on pieces

included in the current study). The choice of CDs used

in this study is completely arbitrary, solely based on

availability, and is not pre-screened in any way. In the

current study, we focus our analysis on six instruments:

piano, violin, cello, saxophone, flute, and clarinet; for

which we could collect a reasonable amount of solo

performances. All sounds are downsampled to 16 kHz

and pre-emphasized with a FIR filter with coefficients

[ 1,−0.97].
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2.2 Parsing solo recordings

In dealing with continuous solo recordings, the musical

phrase needs to be properly segmented. Here, we

explore two possible techniques: (1) a uniform windowing

technique where each audio is segmented into non-

overlapping regions of duration τw; (2) a note extraction

procedure that identifies the possible transitions between

notes in the musical phrase. Both approaches are detailed

next.

2.2.1 Windowing segmentation

The windowing approach is the least computationally

costly technique to process a continuous recording. It

involves segmenting the signal into non-overlapping win-

dows of duration τw, which are subsequently analyzed

through the cortical model to yield a spectrotemporal rep-

resentation of the signal, averaged over its duration τw.

This method ignores the occurrences of notes or chords

and treats each segment equally. The window duration,

τw, is a parameter that controls the time span of the fea-

tures extracted from the signal, and can therefore play

a crucial role in matching the features from solo perfor-

mances relative to features extracted from isolated notes.

The final choice of window duration τw used in the cur-

rent work is found empirically by choosing the duration

that yields that best recognition performance across our

solo and RWC datasets (see section 3).

2.2.2 Harmonicity-based segmentation

The alternative way to a uniform sampling of the solo per-

formances is to extract the individual notes in the phrase

itself. Traditionally, the task of note extraction is often

morphed into a task of onset detection, where a note

is defined as the region between two onsets. Onsets are

caused by a break in the steady state nature of a note, and

onset detection involves evaluating a given audio signal

using an onset detection function and applying certain

selection criteria to decide the onset times. Phase devia-

tion features have been widely used to detect departure

from steady state behavior of a note, and hence, suc-

cessfully applied to onset detection [31, 32]. However,

onset-based techniques are quite sensitive to signal level

characteristics which are easily affected by changing con-

ditions like recording instruments and environments.

They also require tedious tuning of parameters and

thresholds for detecting transitions that vary greatly

across databases [31]. Applying this approach in the

current work is indeed challenging given the uncon-

trolled nature of the commercial CD recordings used here

requiring different tunings of thresholding criteria on a

per recording basis.

Instead, we opt for a harmonicity-based parsing

method. Each note is typically characterized by a region

of relatively steady pitch and significant harmonicity level.

Here, we use this steady-state information to identify

regions of stable pitch frequency and high harmonicity.

The analysis starts by a pitch estimation using a template

matching approach as proposed by Goldstein et al. [33].

The spectrum (or spectral slice of the spectrogram) at any

given time frame is compared to an array of pitch tem-

plates. These templates represent the auditory spectrum

of a generic note at a particular fundamental frequency.

Here, we generate pitch templates T(f ; fp) as a cosine

function modulated by a Gaussian envelope repeated at

the integer multiples of a fundamental frequency fp as

given by Eq. 1.

T(f ; fp) =
∑

n

2e
−

(

f−nfp
αθ(n)

)2

cos(2π
θ(n)

β
(f − nfp)) (1)

where θ(n) = 1 + 0.7 ∗ n is a shrinkage factor, α =

18.28 and β = 26 are constants. We use 128 pitch tem-

plates spanning 5.3 octaves; which gives a resolution of

one template every half semitone. The spectral slice of

the spectrogram at every given time y(t0, f ) is compared

against the template at each pitch frequency fp generating

a range of correlation values ρ(t0; fp). The template with

the maximummatch is chosen as the corresponding pitch

value for the spectrum at time t0 and the degree of match

captured by the harmonicity variable H(t) (see Eq. 2).

ρ(t; fp) = corr(y(t, f ),T(f ; fp))

P(t) = argmax
fp

ρ(t; fp) (2)

H(t) = max
fp

ρ(t; fp)

where y(t, f ) is the spectrogram derived in Eq. 5 and

corr is Pearson’s correlation coefficient. The harmonicity

H(t) indicates the degree of match to the template at the

selected pitch value P(t). Based on this metric, we define

a transition between notes as the region with change of

pitch over time, accompanied with a reduced harmonicity

value (due to possible overlap between notes at the bound-

ary or percussive components in the onsets of the notes

such as the hammer in the piano or bow in the violin). We

define note boundaries using both pitch and harmonicity

functions by setting selection criteria.

Note boundaries are selected based on the pitch func-

tion P(t) when the following condition is met:

|P(t) − mode{P(t − w),P(t − w + 1) . . .P(t)}| ≥ τ1

(3)

where τ1 = 0.2 and w = 30 ms. Note boundaries can

also be selected based on the harmonicity function H(t)
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(which is normalized to be 0 mean and unit variance)

when the following three criteria are satisfied:

H(t) ≤ H(k) , ∀k : t − w ≤ k ≤ t + w

H(t) ≤

∑n+w
k=n−mwH(k)

mw + w + 1
− τ2 (4)

H(t) ≤ gμ(t − 1)

where m = w = 30ms,τ2 = 0.3, mu = 0.1, and gμ(t) =

min(H(t),μgμ(t − 1) + (1 − μ)H(t)).

Finally, the actual segmentation boundaries are selected

as those times where the potential boundaries based on

both the pitch P(t) and harmonicity H(t) agree (with a

tolerance of 40 ms) (Fig. 1).

The note segmentation method described above is not

error proof. One of the main sources of erroneous pars-

ing of the solo recordings in the presence of simulta-

neous notes (i.e., chords). Chords cause the harmonicity

estimate to yield a large number of shorter segments

with relatively stable pitches. To deal with this potential

source of error, we confine our analysis to notes extracted

that are longer in duration than a minimum threshold

τn, defined empirically based on classification accuracy

(see section 3). We also contrast the harmonicity-based

segmentation described here to an onset-based method

commonly used in the literature. Here, we test the “Rec-

tified Complex Domain” (RCD) approach proposed by

Dixon [31]. This onset-detection method is implemented

as described in the publication with a 2048 hamming win-

dow and shift of 441 sample (corresponding to 46 ms at

a sampling rate of 44100 Hz). The Short Term Fourier

Transform uses a shift of 10 ms. The onsets from the RCD

function are calculated using the parameters suggested in

the paper (ω = 3,m = 3, δ = 0.5 and α = 0, see [31]).

It is important to note that the harmonicity-based

method described here is not a complete note segmen-

tation approach in its own right. The technique simply

relies on the steady-state behavior of pitch information

that is typical in each musical note, and detects changes

in this steady-state character in order to delimit poten-

tial transitions to a new note. It does not carefully track

onsets and offsets of each note nor is it able to prop-

erly parse irregular patterns such as instruments with long

attack times (e.g., flute). It is likely that harmonicity does

complement a number of signal-based techniques (using

envelope or phase information) to provide a more robust

acoustic-based partitioning of a solo musical phrase.

2.3 The STRF feature space

All signals are analyzed using a model developed to

explore the neural underpinnings of musical timbre [17].

The model performs a decomposition of the spectro-

temporal modulations of the acoustic signal. Modulations

reflect the “changes" or variations in the spectral profile

(e.g., peaks, troughs, center of gravity, smoothness of the

spectrum) as well as “changes” or variations in the tempo-

ral structure (e.g., rise and fall of the temporal envelope,

onsets, periodicity patterns). This level of detail results

in a intricate analysis of the signal characteristics in a

multi-resolution mapping, believed to mimic the filtering

properties reflected by neurons in primary auditory cor-

tex. Here, we review the key transformations in the model

and point readers to [17, 34] for further details. Figure 2

depicts a schematic of the key stages in the model.

The initial stage of the model maps the one-dimensional

acoustic waveform x(t) onto a two-dimensional time-

frequency representation y(t, f ). This transformation

starts by convolving x(t) with a bank of 128, highly

asymmetric, constant-Q filters h(t, f ) organized on a log-

arithmic axis spanning 5.3 octaves. This stage models

spectral filtering at the level of the cochlea and is fol-

lowed by additional spectral sharpening modeled as a

derivative along the frequency axis, and subsequently by

a half wave rectification. Finally, the loss of phase lock-

ing at the midbrain level is modeled as a low pass filter

L(t, τ) = e−( t
τ
)u(t), where u(t) is the step function and

τ = 4ms is a time constant. These transformations

yield a two-dimensional auditory spectrogram that is fur-

ther enhanced using a cubic root compression to boost

low amplitude events and transitions (Eq. 5). This spec-

trographic representation of sound tracks the spectral

Fig. 1 Note extraction scheme. An example of a spectrogram (a) of a piano audio segment containing four notes which is convolved with a pitch

template to yield the (b) pitch estimate and harmonicity along with the candidate onset points. Finally, the note boundaries (c) are depicted in red

where the candidates coincide
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Fig. 2 Schematic of the STRF-based instrument classification. Schematic of the processing stages involved in the STRF-based model of instrument

classification. A time-frequency spectrogram is derived for each acoustic signal, then further mapped onto a higher dimensional space using an

STRF-based model. The STRF space is then reduced in dimensionality and mapped via a kernel function to a new space to define boundaries between

different musical instruments

profile of the signal as well as the temporal “envelope

modulations” due to interactions between spectral com-

ponents that fall within the bandwidth of each filter. The

frequencies of these modulations are naturally limited

by the maximum bandwidth of the cochlear filters. The

resultant auditory spectrogram can be easily replaced by

other time-frequency representations (e.g., Short-Term

Fourier Transform, Slaney’s Gammatone toolbox spectro-

gram [35], etc). The biologically-inspired representation

chosen in the current study (Eq. 5) has been shown to

exhibit interesting properties such as self-normalization

and robustness [36].

y(t, f ) =
[

max(∂f x(t) ⊗t h(t, f ), 0) ⊗t L(t, τ)
]
1
3 (5)

The next stage further decomposes components of the

spectrogram through a bank of modulation-tuned filters

G, selective to specific ranges of modulation in time (rates

r in Hz) and in frequency (scales s in cycles/octave), called

STRFs (spectro-temporal receptive fields). The STRF fil-

ters are defined by:

G+(t, f ; r, s) = A∗(hr(t; r))A(hs(f ; s)) (6)

G−(t, f ; r, s) = A(hr(t; r))A(hs(f ; s))

where A(.) indicates an analytic function, (.)∗ is complex

conjugate, and +/− indicates upward or downward ori-

entation selectivity in time-frequency space (i.e., detecting

upward or downward frequencies sweeping over time).

The use of the analytic and complex conjugate pairing

ensures that the receptive field are complex functions that

share quadrant-separability properties observed in physi-

ological data. In other words, these wavelet functions are

not a simple separable product of a spectral and a tem-

poral function (see [34] for further discussion). The seed

functions hr(t) and hs(f ) are shaped as Gamma and Gabor

functions respectively, as given in Eq. 7.

hr(t) = t3e−4t cos(2π t) , hs(f ) = f 2e1−f 2 (7)

and their scaled versions are given by hr(t; r) = rhr(rt)

and hs(f ; s) = shs(sf ).

The final output of this STRF-based analysis is then

a four-dimensional complex-valued representation along

time t, frequency f, temporal modulations r and spectral

modulations s; given by:

Z(t, f ; r, s) = y(t, f ) ⊗t,f G(t, f ; r, s) (8)

In the current study, we use 11 temporal rates equally

spaced on a logarithmic axis from 4 to 125 Hz in both

upward and downward directions, and 11 spectral scales

equally spaced on a logarithmic axis from 0.25 to 8

cycles/octave. We also average the magnitude of the mod-

ulation representation Z along time over the duration

of the signal (i.e., entire musical note in case of RWC

databaset) or analysis window (see discussion of choice of

time window below), and further reduce the dimension-

ality of the 22x11x128 STRF tensor to a 420 dimensional

vector Xi using tensor singular value decomposition [37]

preserving 99.9 % of the variance along each dimension.

It is important to note that instead of analyzing the signal

over short-time windows and maintaining a time series

representation over all windows, the current approach

averages across the entire duration of the signal being ana-

lyzed and maintains only average statistics. While time

is not explicitly represented, it is implicitly captured via

the temporal modulation axis (r) which captures how

the signal changes over time, hence effectively encoding

information about the temporal envelope of each spectral

component in the acoustic waveform.

2.4 Recognition setup

Finally, the reduced-dimensionality feature vector Xi ∈

R
420 is combined with its instrument label Yi ∈ (+1,−1)

to form a training datasetD420 = {(Xi,Yi)}
N
i=1 for a classi-

fier that distinguishes pairs of instruments labeled as {+1}

or {−1}, where N is the total number of available data

vectors. Here, we use a standard support vector machine

classifier with radial basis functions [38]. Effectively, the

classifier learns a mapping, or decision function:



Patil and Elhilali EURASIP Journal on Audio, Speech, andMusic Processing  (2015) 2015:27 Page 6 of 13

J (X) : R
420 → {+1,−1}

J (Xi) = wTφ(Xi) (9)

Here, φ(.) is the radial basis kernel chosen for this study,

and w is a linear decision boundary derived by optimizing

the following function:

min
w

1
2 ||w||2 + C

∑N
i=1 ξi (10)

such that ξi ≥ 0, Yiw
Tφ(Xi) ≥ 1 − ξi, ∀(Xi,Yi) ∈ D420

C is a scalar cost factor and
∑N

i=1 ξi measures the

total classification error. Essentially, the classifier identi-

fies boundaries between classes of instruments. We train

pairwise classifiers for every pair of instruments, and use

the winner as the selected class across all pairwise com-

parisons. In the current work, the training and testing data

are extracted from one of three possible sets: (1) matched

setting: both training and testing data are from the same

database (either RWC or solo recordings parsed in a spe-

cific manner); (2) cross-domain setting relative to RWC:

the training data for the classifier is defined from RWC

notes while the testing data is extracted from a parsing

of the solo recordings; (3) cross-domain setting relative

to solo: the training data is compiled from a parsing of

the solo recordings while the testing is performed on

the RWC notes. In the matched setting, we use different

data subsets for training and testing. In all cases, we per-

form a grid search to tune the optimal choice of classifier

and kernel parameters, and use a ten-fold cross-validation

to evaluate the performance of the system. Accuracy is

defined as the sum of correctly classified examples from

all instruments divided by total number of examples from

all instruments. Examples refer to solo notes, windows or

isolated notes, depending on the specific experiment. All

instruments were given equal weight in this computation.

3 Evaluation

3.1 Uniformwindowing of solo recordings

In order to determine the optimal choice of uniform

window length τw for parsing the solo recordings, we per-

formed three sets of recognition experiments based on a

matched setting (train on solo, test on solo) and cross-

domain setting (train on solo, test on RWC or train on

RWC, test on solo). The RWC notes are analyzed one

note at a time (averaged over the entire duration of the

note), while the solo recordings are parsed into segments

of length τw then analyzed through the receptive field

model. Figure 3 shows the tradeoff between short and

long-term spans of the analysis window τw, as a function

of accuracy of our recognition model. The best perfor-

mance is achieved in a matched context where training

and testing is done on a uniform set of segmented solo

windows. In this case, the classifier quickly saturates as

τw grows from as low as 250 msec to few seconds and

Fig. 3 Recognition accuracy using uniform windowing of solo

performances. Accuracy for uniform windowing experiments in

matched and cross-domain train/test settings of continuous solo

phrases as a function of window size τw

seems to depend very little of the value of τw. In contrast,

training and testing with a mismatched dataset is greatly

affected by the window duration. Training on RWC notes

and testing on solo segments quickly improves for short

segments and hovers between 70–80 % accuracy with a

monotonic increase. In the opposite setting, training on

solo segments with very short windows (e.g., 250 msec) or

too long windows seems to greatly affect the performance.

Shorter segments likely capture too much variability in

the instrument’s time profile hence producing inconsis-

tencies in the features learnt from each class, for instance

confounding the transient and steady-state nature of the

signal. Longer windows excessively average the temporal

profile of each instrument making it harder to distin-

guish from instruments with comparable spectral profiles.

A balance between short-term and long-term averaging

appears to peak around 2 s. In the current study, we

choose τw = 2 s as our optimal choice for all future

experiments. Clearly, this choice can be optimized for dif-

ferent applications, and is likely affected by the diversity

in the solo database used. It may also be slightly biased by

the comparison with the RWC database, whose notes are

on average 2.7 s in duration, though they varied between

0.1–18 s.

3.2 Harmonicity parsing of solo recordings

In order to test the use of harmonicity-based parsing of

solo recordings, we ran a recognition experiment in a

cross-domain setting (train on RWC, test on solo). We

empirically test for the optimal choice of minimum note

duration as derived by the harmonicity parsing. Only

notes extracted with duration at least τn are analyzed.

Figure 4 shows the classifier-accuracy improvement as a

function of minimum note duration. This accuracy peaks
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Fig. 4 Harmonicity-based note extraction accuracy. The plot depicts

the accuracy of the classifier on isolated notes extracted using a

harmonicity-method, as a function of minimum note duration τn . This

method is contrasted with an onset-based method (the rectified

complexdomain, by Dixon [31]) for note extraction frommusical phrases

around 750msec before it starts dropping again. The opti-

mal choice of 750 msec is not necessarily reflective of a

fundamental tempo or window size in the data. Rather,

it is constrained by the total amount of data we have

available for our solo recordings database. Constraining

the note to be of a certain duration limits the num-

ber of notes we have available in the database. Based

on the performance of the note extraction shown in

Fig. 4, we choose 750 ms as the value of τn for all future

experiments. Overall, the harmonicity-parsing algorithm

suggests that our selection of solo CDs include an aver-

age of 7569 notes per instrument with mean duration

of 0.44 s and median of 0.26 s per note (ranging from

0.1 to 4.85 s).

We also contrast the harmonicity-based method with

other note extraction techniques from the literature

based on onset-detection. Figure 4 overlays the perfor-

mance of the same support vector classifier optimized

for notes extracted based on onset-detection following

the Rectified Complex Domain approach proposed by

Dixon [31]. As is evident from the classification results,

the pitch-harmonicity measure allows for more accurate

identification of musical instruments for all values of τn,

irrespective of pruning based on acceptable note size.

3.3 Instrument recognition results

To fully explore the relevance of the modulation feature

space in capturing informative characteristics of musical

timbre, we use the model with the chosen solo parsing

parameters (for uniform windowing and harmonicity-

parsing) to test classification accuracy in a matched and

cross-domain setting. Table 1 shows a ten-fold cross-

validation contrasting three classifiers, each trained on

Table 1 Results of cross-testing instrument recognition using

STRF feature space

Train\test RWC Notes Windows

RWC 98.5 ± 0.2 % 78 ± 2.1 % 71 ± 1 %

Notes 44.7 ± 0.9 % 97.7 ± 0.6 % 93.4 ± 0.5 %

Windows 58.5 ± 1.5 % 97.3 ± 0.5 % 96.9 ± 0.4 %

one of the three sets (RWC, harmonicity-parsing notes

and uniform windows). All three sets yield a high per-

formance above 97 % in a matched training-testing. The

performance drops when a mismatched set is used for

training and testing.

Taking a close look at the results from Table 1, we note

that the mixed training/testing on solo recordings using

uniformwindows or segmented notes reveal a high degree

of agreement across both methods. The higher accuracy

for the harmonicity-parsing technique as compared to the

uniform windowing technique when tested against a clas-

sifier trained on RWC notes indicates that note extraction

based on harmonicity was better at reducing the differ-

ence between the datasets. This result is not surprising

since the RWC dataset also has isolated notes. Finally, the

low classification accuracy for the classifiers trained on

the feature sets derived from solo music database when

tested on RWC database indicates that RWC database

is a more generalized database with much more vari-

ance in the data as compared to the solo music database

collected for the current study. This outcome could poten-

tially be improved with inclusion of a larger dataset of solo

recordings.

In order to provide a comparative reference of the per-

formance of the STRF feature space relative to other

existing approaches, we rerun the same set mixed train-

ing/testing classifications using audio features from the

MPEG-7 audio framework which include zero-crossing,

spectral slope, spectral roll-off as well as spectral enve-

lope features resulting in 260-dimensional feature map-

ping. No temporal moments are included in the analysis.

These features are extracted for each analysis segment

(entire note duration in case of RWC notes, fixed win-

dow size in case of uniform sampling of solos, parsed

notes in case of harmonicity parsing of solos) then aver-

aged over the entire duration of the segment in a similar

fashion as the time-averaged STRF features. SuchMPEG7

features were recently used as front-end for a number

of automatic classification tasks for audio and musical

instruments combined with various classifiers, including

non-negative matrix factorization [39, 40]. Here, we test

these MPEG7- based features with our support vector

machine classifier using a similar mixed training/testing

setup as used for the STRF features. Table 2 shows a drop

in performance across all testing conditions when using
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Table 2 Results of cross-testing instrument recognition using

MPEG7-based spectral features

Train\test RWC Notes Windows

RWC 62.2 ± 1.0 % 51.0 ± 1.4 % 43.1 ± 1.0 %

Notes 41.3 ± 1.3 % 79.3 ± 1.4 % 70.3 ± 0.7 %

Windows 38.6 ± 1.8 % 81.4 ± 1.3 % 78.4 ± 0.9 %

these MPEG7-based features. While this drop in perfor-

mance is not a definitive statement of the superiority of

the STRF approach, it reflects that these two methods

capture different levels of granularity in the signal, which

provide different sets of informative features to a back-end

classifier.

In a separate experiment, we investigate how the

classification system with solo recordings behaves with

“unseen” data. We extract note segments from all but one

CD (selected at random for each instrument) using the

harmonicity-based parsing approach. This data is then

divided into a 90 % training set and 10% testing set (homo-

geneous test). The same classifier trained on 90 % of the

data is tested again with data from the left out CD (het-

erogeneous test). Table 3 summarizes the classification

results using both STRF and MPEG7 features. Using both

feature sets, the performance does drop, though in a more

dramatic fashion in the case of MPEG7 features. Note that

the CD selection was not pre-screened in any way, and

the selection included a wide range of recording settings

and playing styles that are difficult to capture when train-

ing on a small number of CDs (as little as 1 CD in case

of piano for example). Nevertheless, the accuracy remains

at a high level that could certainly be strengthened with

enough diversity in the training set.

Finally, we perform an additional experiment to explore

the contribution of different acoustic features. Our earlier

study [17] explored the contribution of both spectral

and temporal dimensions; and has indeed confirmed

that the use of joint spectro-temporal modulation fea-

tures is key to fully accounting for the multidimensional

nature of musical timbre in isolated notes, in agreement

with earlier findings in the literature [20]. To comple-

ment these previous observations, we compute the per-

formance of our classifier on RWC notes as well as

isolated solo notes using the harmonicity-based parsing

approach with varying combinations of acoustic features

Table 3 Classification results using homogeneous training/

testing or heterogeneous (leave one CD out) conditions

Features Homogeneous test Heterogeneous test

STRF features 97.7 ± 0.6 % 88.1 ± 0.5 %

MPEG7 features 80.0 ± 2.4 % 66.1 ± 0.6 %

(frequency, scale, and rate). Table 4 shows the classifier

accuracy for different feature combinations. The results

confirm a number of observations: (1) frequency is an

important dimension in defining instrumental timbre;

(2) augmenting the frequency axis with rate or scale

dimensions provides improvement to the classifier accu-

racy; (3) including all three dimensions of rate, scale,

and frequency further improves the accuracy results on

solo notes.

3.4 Follow-up analyses

We run follow-up tests to better understand the corre-

spondence between isolated notes and notes in contin-

uous solo performances. These follow-up analyses use

artificial datasets recreated from the datasets used in the

main study. First, we create a new dataset by concate-

nating notes along time from RWC database in order to

simulate the succession of notes in a solo musical phrase.

To determine the number of notes to be concatenated,

we compute a histogram of the number of notes that are

extracted from 2-s segments. The histogram yields the

values [58, 32, 8.5, 1, and 0.5 %] where the first num-

ber indicates the ratio of single notes, the second indicates

the number of times two notes were extracted and so on.

An artificial dataset with 2000 samples per instrument

class is then created by concatenating the required num-

ber of notes, randomly selected, to match this histogram.

We then train a classifier on this artificial set and test on

uniform windows from solo music dataset. This experi-

ment yields an accuracy of 71.76 %. The lack of significant

improvement, when compared to the model trained on

RWC notes (71.42 %), suggests that artificial concatena-

tion of isolated notes does not recreate the transition

characteristics between notes in a musical performance,

and hence provides no further improvement in matching

uniform solo segments with isolated notes from RWC.

Second, we consider the type of mismatch that occurs

due to the presence of chords in the solos. Specifically,

we are interested in probing whether our parsing of notes

from solo music mistakenly misses instances with musi-

cal chords that are labeled as clear notes. We artificially

simulate chords in the training set, by overlapping two

randomly selected notes in time to generate additional

data for training. We use 1000 original notes from the

RWC dataset and 1000 artificial chords per instrument to

yield a new enriched training RWC dataset. The testing

is performed on original windows from the solo dataset.

A new model is then trained with this expanded RWC

dataset and tested against uniform windowed segments

resulting in a performance of 70.81 % accuracy. This

chord-enriched training dataset does not significantly

change the performance of the classifier with original

RWC training/solo notes testing. Our results indicate no

improvement in classifier performance. This suggests that
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Table 4 Classification results with matched training/testing using different acoustic features

Rates (22dim) Scales (11dim) Freq (128dim) RateScale (242dim) ScaleFreq (420dim) RateFreq (420dim) RateScaleFreq (420dim)

RWC 73.3 ± 1.2 % 57.5 ± 0.9 % 93.5 ± 0.7 % 93.8 ± 0.8 % 97.7 ± 0.4 % 97.5 ± 0.5 % 98.5 ± 0.2 %

Notes 69.6 ± 1.9 % 67.0 ± 1.9 % 93.0 ± 0.9 % 90.0 ± 0.6 % 96.0 ± 0.8 % 96.1 ± 1.1 % 97.7± 0.5 %

the existence of few chords in the parsing of solo phrases

is likely a negligible factor in explaining the mismatch

between the two datasets. Indeed, the solo CDs used in

our current analysis contain very few instances of chords.

An informal listening test indicates that less than 5 % of

the notes are chords. A more careful analysis using anno-

tated musical performances will be needed to formally

assess the effect of chords on instrument recognition in

isolated vs. solo phrases. In the datasets used in the cur-

rent study, chords appear to be an insignificant factor in

explaining the mismatch between isolated and continuous

notes.

Finally, to further investigate the mismatch between

isolated notes and musical phrases in the temporal

domain, we leave out temporal information in the STRF

feature space by averaging the temporal modulation

axis r) and only maintaining the scale-frequency dimen-

sions z(f ; r, s). These spectral-only features are then used

to test a recognition system trained on notes extracted

from solo recordings (using the harmonicity approach)

and tested on isolated notes. This experiment yields an

accuracy of 43.3 % (compared to 44.7 % when trained

with full STRF features—see Table 2). Discarding tempo-

ral information does not seem to have a notable impact on

the classification accuracy. This minimal change in accu-

racy score suggests that the mismatch (or lack thereof) of

temporal characteristics between solos and isolated notes

does not explain the accuracy of 44.7 % when testing on

isolated notes. This low accuracy may be due to other

factors (e.g., inaccuracy in parsing notes from solo sig-

nals, differences in transient or steady-state behavior of

notes in a phrase which alters their spectral character-

istics, or complete mismatch in temporal characteristics

which causes no difference whether a temporal axis is

included in the feature set or not). We confirm this obser-

vation by analyzing the homogeneity of different instru-

ment classes using different acoustic attributes. To do

so, we use the F-ratio (an extension of Fisher’s discrim-

inant [41]) to assess discriminability across instrument

classes [42]. Fisher’s discriminant classically operates on a

two-class problem and measures the difference between

the means or centroids of two classes relative to their

variances. The F-ratio extends this definition to a multi-

class problem. It is defined as the variance of means

(between class) / mean of variances (within class). We

combine a dataset using (randomly chosen equal por-

tions of) solo windows and isolated notes and compute

the F-ratio using rate-scale-frequency vs. scale-frequency

features. The results highlight that combining the two

datasets increases instrument mislabeling, hence signifi-

cantly reducing class discriminability which is indicative

of higher heterogeneity across the two datasets (Fig. 5).

Moreover, in agreement with the classification outcome,

the mean log F-ratio (we take the log value to highlight

lower F-ratios) using rate-scale-frequency is −1.8 ± 0.7

while that using scale-frequency is −1.7 ± 0.7. Clearly,

dropping the rate information does not significantly affect

the separability across instruments when comparing a

combined dataset of solo and isolated notes. In con-

trast, the same feature set (rate-scale-freq) appears to

be more discriminative (higher average F-ratio) for more

homogeneous datasets using solo or isolated notes by

Fig. 5 Fisher discriminant on combined solo and isolated notes for different feature sets. Average log F-ratio is depicted for each feature set; using

rate-scale-frequency, scale-frequency, rate-frequency, and scale-rate. The analysis is performed on combined solo and isolated notes and tests the

separability of this combined set to identify each instrument class. The bar plot shows the mean log F-ratio, error bars indicate standard deviation
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themselves (Fig. 5). Overall, an analysis of discriminability

of rate, scale, and frequency features over individual

datasets (solo, RWC) shows a higher separability of instru-

ment classes within each dataset. In order to shed light

on the heterogeneity of the feature space across solo and

isolated notes, one has to take into account the sources of

variability in the combined dataset, as analyzed next.

3.5 Discrepancy between datasets

In an attempt to directly estimate the differences

between the isolated notes and solo recordings datasets,

we compute the balanced Kullback-Leibler (KL) diver-

gence [43] on distribution of features z(f ; r, s) for each

instrument extracted from the two databases. The

KL metric is a comparison of two probability distri-

butions of a given instrument from both databases;

defined as:

KL(p1, p2) =
∑

x

p1(x) log
p1(x)

p2(x)
+ p2(x) log

p2(x)

p1(x)
(11)

This comparison gives us a better insight into the

the main areas of mismatch between isolated notes in

RWC dataset and notes extracted from the continuous

recordings. We analyze this distance metric for each

point along the three-dimensional space of rate-scale-

frequency. Figure 6 shows the KL divergence averaged

along each of the three dimensions for piano notes

(Fig. 6a) and flute notes (Fig. 6b). For completeness, we

compute KL divergence within pairs of signals from each

database (RWC or solo performances) as well as compar-

ing the two databases. As expected, the within database

KL values are much lower and consistent across datasets

suggesting a higher degree of consistency within the data

from each set. In contrast, the RWC and solo notes

show high degrees of disagreement at specific parts of

the space depending on the instrument. For instance, the

piano RWC and solo notes show greater discrepancy at

lower frequency (< 1KHz). Examining the average spec-

trum from each database (inset in rightmost panel in

Fig. 6a) confirms a different spectrum roll-off between

the two datasets; which could be explained by a num-

ber of “music”-related factors such as resonance emphasis

or “non-music”-related factors such as recording environ-

ment and channel distortions. Note that both datasets

were pre-emphasized using a highpass filter with param-

eters [ 1,−0.97]). In contrast, the flute reveals a higher

mismatch in the mid-high frequency range as shown

in Fig. 6b, rightmost panel. Table 5 summarizes the

regions of high divergence between the two datasets for

all the instruments. This result highlights that discrepan-

cies between the two datasets are not due to a systematic

mismatch; but is rather instrument dependent. Teasing

apart the causes of mismatch is not a straightforward

endeavor. It could be due tomany factors, including differ-

ences in recording instruments, room acoustics, channel

noise, signal postprocessing and filtering emphasis, etc.

A number of musical reasons could also contribute to

this mismatch; notably due to the expressivity or transi-

tions between notes in real recordings in contrast with

Fig. 6 Average KL Divergence for piano and flute notes. a The average KL divergence between RWC notes and solo notes for piano is computed

along the temporal modulation or rate dimension (left), spectral modulation or scales (middle), and frequency (right). Inset in right panel is average

spectrum of RWC notes and solo notes. b Similar distance metrics for flute notes
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Table 5 Regions of high mismatch between the RWC and solo

datasets

Rates (Hz) Scales (c/o) Frequency (kHz)

Piano 8–45 1.4–5.7 0.23–0.74

Violin > 32 > 2 0.29–3.8

Cello > 32 > 2 0.68-2.15

Saxophone 8–32 > 2 < 0.72

Clarinet > 8 1–5.7 < 0.54

Flute > 16 < 1 0.5–4.6

isolated notes. Next, we explore amethod to overcome the

difference in distributions across instruments.

3.6 Adaptive cross-domain classifier

It is clear from the control and statistical analysis that the

average profile distributions of segments from the solo

and RWC databases play an important role in justifying

the classification mismatch between the two datasets. In

order to circumvent this divergence in signal properties,

we investigate the use of an adaptation technique to adjust

the support vector machine boundaries between instru-

ments based on a first database to the new statistical

profiles of a second different database using an adaptive

SVM technique. When using RWC as our baseline train-

ing set, the current classifier learns a decision function

J RWC(X) based on the profile of data X from the RWC

notes (Eq. 9). In order to conform better to the statis-

tical structure of the solo dataset, we use an improved

cross-domain classifier, called an adaptive support vector

machine. Essentially, a new decision function is learned,

defined as: J solo(x) = J RWC(x) + 
J (x) where the new

decision function follows a similar minimization proce-

dure as a typical support vector machine classifier (Eq. 10)

but with an added constrain to minimize the update term


J (x). This ensures that the decision boundary is kept

as a close as possible to the original RWC-trained classi-

fier. Details of the adaptation follow the exact procedure

outlined in [44], using software provided by the authors of

this work. By leveraging the knowledge from the available

RWC database, this method makes small adjustment to

the decision weight in feature space to accommodate the

different distribution in the solo music. This procedure

requires using small training data from the solo dataset.

Without any adaptation, the support vector machine clas-

sifier trained on RWC and tested on solo recordings

parsed using the harmonicity method yields an accuracy

of 78 % (Table 2). We use 200 randomly selected notes

from the solo music dataset per instrument as the adap-

tation set to adjust the decision boundary and retest the

classifier with a separate set of solo segments (i.e., about

3–5 min of solo data). The performance of the model

after adaptation is found to be 86.6 % indicating that we

can successfully adapt a model trained on one dataset

to another condition under limited data constraints. For

this adaptation, we set the value of the cost parameter

(C) to be 1 which was found to maximized the average

performance across both solo music dataset and RWC

notes.

4 Discussion and conclusions

The current work pursues the goal of musical instrument

identification in continuous recordings. This problem

combines the issue of both musical timbre recognition

as well as dealing with the potential mismatch between

readily available single music note data and continuous

recordings. As is common in most systems of automated

sound recognition, these issues translate to: (1) choos-

ing appropriate signal characteristics and sound features

that are most informative about the instrument class; (2)

determining the relevant temporal context (e.g., choice

of windowed analysis of the signal); and (3) adopting the

proper statistical representation for correctly classifying

the data.

In agreement with a number of findings in the liter-

ature using a variety of computational, psychophysical,

and physiological explorations, it is clear that features that

best capture the full complexity of musical timbre have

to span the intricate space of time-frequency in a joint,

synergistic way [3, 7, 20, 45–51]. The features explored in

the current study attempt to provide a complete account

of this complex spectrotemporal space, putting emphasis

on the modulation patterns in the signal. This repre-

sentation, inspired from neurophysiological recordings of

single neurons in the primary auditory cortex, highlights

not only the spectrogram-like features in the signal, but

also how time and frequency trajectories change jointly

along the temporal and spectral axes. This representa-

tion provides an indirect generalization of many features

commonly used in the literature of timbre characteriza-

tion [52], including envelope features, spectral shape and

centroid, and temporal trajectories. One of the advantages

of this representation as compared to more conventional

features such as cepstral or predictive coefficients is its

distributed nature along different time and spectral reso-

lutions, capturing everything from broadband to narrow

spectra, fast dynamics to slow temporal changes. Impor-

tantly, the space of spectral and temporal modulations is

jointly represented which is a key attribute of any rep-

resentation of musical timbre. While the approach using

neurophysiological receptive fields does not come with-

out its challenges (e.g., high-dimensional feature space,

overly redundant representation), it is still able to perform

remarkably in classifying musical instruments in a large

database or selection of solo CDs, with accuracies 97 %

and above.
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While the applicability of such STRF features for contin-

uous solo performances is remarkably accurate, the cross-

domain transition from single notes to musical phrases

(even for solos) is not a trivial one. As our analysis shows,

the classic windowing approach to parse musical phrases

is suboptimal [23, 26, 28, 53]. It coarsely bins the time

signal into segments of equal length; but with no con-

sideration to the underlying structure. A more effective

way is to provide a better match to the composition of

the musical phrase; by attempting a pitch-based parsing

of individual notes. Ultimately, the recognition of musi-

cal instruments in continuous recordings is a delicate

balance of acoustic, musical, and environmental factors.

On the one hand, the physical attributes of each musical

instrument color its sound with unique spectro-temporal

features. These are best extracted by a rich enough fea-

ture set. On the other hand, the constrains of the musical

genre, the melodic rhythm as well as the non-musical

constrains (e.g., recording environment, choice of physi-

cal instrument, playing style, signal preprocessing) greatly

shape the characteristics of the signal and ultimately the

true match of the instrument’s identity. An analysis of

KL-divergence between the RWC single notes database

and the off-the–shelf solo CDs used in the current study

highlights that differences are not feature specific (time vs.

frequency) or instrument specific (Table 5). In addition,

our follow-up analyses show that discrepancies in train-

ing/testing across datasets cannot be simply explained by

issues with the parsing method such as note sequence

structure or presence of chords. In order to best miti-

gate the divergence in statistical characteristics between

the two datasets, the current work proposes the use of

adaptive classification methods that maintain the struc-

ture of a model trained on isolated notes but regulate

their decision boundary to capture diverging proper-

ties from continuous musical phrases. The use of this

adaptive approach provides an improvement in recogni-

tion accuracy of about 6 % with very minimal training

data using less than 5 min of additional data from the

solo dataset.

Overall, while a true instrument identification system

would have to carefully account for cross-referencing a

variety of datasets [54], the current study sheds some

light on the applicability of a rich STRF feature space and

adaptive machine learning techniques. The exploration

of different levels of abstraction could be greatly infor-

mative in addressing the mapping from single notes to

continuous recordings. Considering the temporal place-

ment of notes in the context of the entire musical

phrase as well as para-timbral information could greatly

inform the identification of the musical instrument;

though it would take the system from a purely acoustic-

driven analysis to a more data mining and information

retrieval approach.

Appendix

Table 6 List of sources in the solo music database

Album title Year recorded Instrument

Music for solo piano (1960–2001) 2007 Piano

Music for solo piano 2005 Piano

Six sonatas and partitas for violin solo 2006–7 Violin

Sequenza 1994 Violin

Bach cello suites 1982 Cello

Sonatas nos. 1 and 2 for 2009 Cello

unaccompanied cello

Solo cello : 20th century works for 1999 Cello

solo cello

Yamaon 1997 Saxophone

Exhibition of saxophone 2002 Saxophone

Absolute solo! 1996 Saxophone

Music for solo clarinet and orchestra 2001 Clarinet

Three pieces for clarinet solo 1986 Clarinet

Clarinet XX Vol1 2002 Clarinet

Michael Nyman Yamamoto Perpetuo for 2008 Flute

solo flute

Cornucopia 2003 Flute

The hallelujah tree 2005 Flute

And blue sparks burn 2006 Flute

Summer Shimmers 2008 Flute

Gardens of Anna Maria Luisa de Medici 2005 Flute
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