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As an emerging fringe science, bionics integrates the understanding of nature,

imitation of nature, and surpassing nature in one aspect, and it organically

combines the synergistic complementarity of function and structure–function

integrated materials which is of great scientific interest. By imitating the

microstructure of a natural biological surface, the bionic superhydrophobic

surface prepared by human beings has the properties of self-cleaning, anti-

icing, water collection, anti-corrosion and oil–water separation, and the

preparation research methods are increasing. The preparation methods of

superhydrophobic surface include vapor deposition, etching modification,

sol–gel, template, electrostatic spinning, and electrostatic spraying, which

can be applied to fields such as medical care, military industry, ship industry,

and textile. The etching modification method can directly modify the substrate,

so there is no need to worry about the adhesion between the coating and the

substrate. The most obvious advantage of this method is that the obtained

superhydrophobic surface is integratedwith the substrate and has good stability

and corrosion resistance. In this article, the different preparation methods of

bionic superhydrophobic materials were summarized, especially the etching

modificationmethods, we discussed the detailed classification, advantages, and

disadvantages of these methods, and the future development direction of the

field was prospected.
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1 Introduction

Nature is always the source of our inspiration. By observing the structural

diversity, functional specificity, and environmental responsiveness of natural

organisms, human beings have discovered many different biological structures

and functions, thus creating more and more new materials and structures through

technological innovation and cross-fertilization across disciplines. Bionic materials
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are materials prepared by simulating the unique structure or

characteristics of organisms (Suresh Kumar et al., 2020; Koch

et al., 2008). Biomimetic superhydrophobic surfaces, which

are prepared by using the superhydrophobic phenomena

related to biological structures in nature (Table 1), such as

lotus leaves (Sun and Guo, 2019; Lv et al., 2020), butterfly

wings (Zheng et al., 2007; Shao et al., 2019) and rice leaves

(Wu et al., 2011; Lee et al., 2013; Rius-Ayra et al., 2018), have

attracted wide attention and research because of outstanding

self-cleaning (Barthlott and Neinhuis, 1997; Fürstner et al.,

2005; Ming et al., 2005), anti-icing (Liu et al., 2020; Sun et al.,

2020), anti-corrosion (Liu et al., 2014; Wei et al., 2021a; Zhang

et al., 2022), and oil–water separation (Wang et al., 2015a;

Saleh et al., 2020; Rasouli et al., 2021; Yao et al., 2021)

properties. In recent years, with the deepening of the

research in the micro-field, micro-nano materials have

developed rapidly, and they have been developed into

intelligent responsiveness (Li et al., 2017a; Chang et al.,

2018; Li et al., 2021a), environmental remediation (Kumari

et al., 2019; Sajjadi et al., 2021), biodegradability (Li et al.,

2021b; Li et al., 2022a; Li et al., 2022b), nano-probe imaging

(Li et al., 2016; Li et al., 2017b; Li et al., 2019a; Li et al., 2022c),

and other characteristics, which are widely used in many fields

(Waked, 2011; Khandelwal et al., 2016; Scalisi, 2017; Li et al.,

2019b; Siddiqui et al., 2019), especially medicine (Li et al.,

2021c; Lu et al., 2021). Biomimetic superhydrophobic surface

combines the cutting-edge technologies of bionics and micro-

nano fields, and has great development prospects.

The study of superhydrophobic principle can be traced

back to 1805, when T. Young (Young, 1805) established

Young’s equation of ideal smooth solid surface state,

which set a theoretical precedent for studying the

wettability of materials. Later, Wensel and Cassie

summarized Wensel model (Wenzel, 1936) and

Cassie–Baxter model (Cassie and Baxter, 1944) by studying

the relationship between surface roughness and wettability.

Recent further research shows that superhydrophobic

surfaces can be divided into five types (Wang and Jiang,

2007). This classification includes steady-state and

transition state, which can explain the phenomena that

were difficult to explain by previous theories (Yilgor et al.,

2012; Liu et al., 2017a; Chen et al., 2021).

Contact angle and rolling angle are important parameters

to characterize the wettability of droplets on solid surfaces,

and are also the initial evaluation indexes of biomimetic

superhydrophobic surfaces (Aussillous and Quéré, 2001;

Richard et al., 2002; Michael and Bhushan, 2007;

Nosonovsky and Bhushan, 2008). With the development of

research, researchers have made biomimetic

superhydrophobic surfaces with multiple functions. Since

then, the application fields of biomimetic superhydrophobic

surfaces have been expanded by leaps and bounds, included

TABLE 1 The surface structure of typical organisms.

Biological surface Properties References

Lotus leaf Superhydrophobic, self-cleaning Barthlott and Neinhuis, (1997)

Rose petal Superhydrophobic, high surface
adhesion

(Feng et al., 2008; Zheng et al., 2019)

Rice leaf Superhydrophobic, directional
transport

(Feng et al., 2002; Wu et al., 2011)

Nepenthes Directional transport, water harvesting (Bohn and Federle, 2004; Wong et al., 2011; Chen et al., 2016)

Purple setcreasea Double-sided superhydrophobic Guo and Liu, (2007)

Watermelon leaf Single-order scale hydrophobic
structure

Guo and Liu, (2007)

Peanut leaf Superhydrophobic, high surface
adhesion

(Yang et al., 2014; Gou and Guo, 2018; Qu et al., 2020)

Bamboo leaf Anti-icing, high surface adhesion (Yuan et al., 2014; Wan et al., 2021; Wan et al., 2022)

Gecko foot High surface adhesion, self-cleaning (Autumn et al., 2002; Wang et al., 2012; Watson et al., 2015; Basak, 2020)

Cicada wing Self-cleaning, anti-reflective (Watson andWatson, 2004; Stoddart et al., 2006; Zhang et al., 2006; Xie et al., 2017; Román-Kustas et al.,
2020)

Shark skin Self-cleaning, underwater drag
reduction

(Ball, 1999; Bechert et al., 2000; Bixler and Bhushan, 2013)

Penguin feather Anti-icing, liquid guidance (Wang et al., 2016a; Alizadeh-Birjandi et al., 2020)

Butterfly wings Self-cleaning, liquid-directed (Qian et al., 1900; Fang et al., 2008)

Spider silk Collecting water Zheng et al. (2010)

Earthworm Drag reduction, lubrication Zhao et al. (2018)

Mosquito compound
eyes

Superhydrophobic, anti-fog Gao et al. (2007)
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adhesive-responsive superhydrophobic surfaces for sensors

(Gao et al., 2019; Liu et al., 2019), industrial anticorrosive

superhydrophobic surfaces which can effectively slow down

the damage of metal oxide layers and resist strong acid/alkali

corrosion (Li et al., 2019c; Ran et al., 2019; Ijaola et al., 2020),

superhydrophilic/superhydrophobic surfaces which can

realize industrial wastewater treatment and offshore oil

spill treatment by using oil–water separation characteristics

(Feng et al., 2004; Jayaramulu et al., 2016; Yang et al., 2018;

Song et al., 2022), and superhydrophobic coatings with anti-

icing and light transmission properties for outdoor glass and

photovoltaic converters (Li et al., 2009; Liu et al., 2015a; Cui

and Pakkanen, 2020; Zhu et al., 2021). In addition, diversified

bionic superhydrophobic surfaces were widely used in modern

military (Dong et al., 2013; Wang et al., 2015b; Jiaqiang et al.,

2018), microfluidic control (Stratakis et al., 2011; Kong, 2021),

fabric and textile industry (Hoefnagels et al., 2007; Xing et al.,

2022) and other extended fields.

In this mini review, we reviewed the superhydrophobic

surfaces and principles in nature. Section 2 introduced

several different preparation methods, with emphasis on

the preparation of biomimetic superhydrophobic surfaces

by etching modification. Particularly, we discussed the

unique advantages and disadvantages of etching

modification. Finally, the conclusion of this review and the

prospect of the research field in the future were described

(Section 3).

2 Biomimetic superhydrophobic
surface preparation methods

With the deepening of research, the preparation methods of

bionic superhydrophobic surfaces were gradually diversified.

Figure 1 shows the common preparation methods of

superhydrophobic surfaces. Generally speaking, the core idea

of preparing biomimetic superhydrophobic surface is to imitate

the microstructure of biological surface and modify it with low

surface energy substances. According to the order of

construction, it can be classified into two categories. The first

category is to construct micro-nano rough structures on smooth

surfaces, and then decorate them with low surface energy

materials. The second category is to directly sketch micro-

nano rough structures on low surface energy materials.

In Table 2, we also show the characteristics of typical

preparation methods of bionic superhydrophobic materials to

understand their advantages and disadvantages. From the table,

we can systematically understand the characteristics of various

methods, including preparation principle, production cost,

production speed, equipment requirement, environmental

friendliness, and mechanical durability. It should be

emphasized that the characteristics here are for most

experiments that use this method to construct bionic

superhydrophobic surfaces.

Among these methods, the etching modification method will

be described in detail later. In addition, it is not difficult to find

FIGURE 1
Etching modification (A), electrospinning and electrospraying (B), vapor phase deposition (C), sol–gel (D), template (E) and layer-by-layer self-
assembly (F) methods developed to fabricate superhydrophobic surfaces.
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that the above-mentioned methods all have a common feature,

namely, self-cleaning. At present, self-cleaning has basically

become a common property of superhydrophobic surfaces

(Parkin and Palgrave, 2005; Sethi and Manik, 2018). The most

direct way to achieve self-cleaning effect is to use extremely low

rolling angle. The accumulated dirt particles can be effectively

cleaned by fast-sliding water droplets (Liu et al., 2015b; Sharma

et al., 2021). Photocatalytic reaction can effectively decompose

TABLE 2 Comparison of preparation methods of superhydrophobic surface.

Preparation
method

Principle Cost Efficiency Equipment
requirement

Environmental
friendliness

Durability References

Chemical etching Etchant etching Inexpensive Efficient Low-demand Harmful Nondurable (Liao et al., 2014; Qu et al.,
2018; Peng et al., 2019;
Attar et al., 2020)

Laser etching High-energy laser
beam

Expensive Inefficient High-demand Harmless Durable (Liu et al., 2017b; Pan
et al., 2019; Yang et al.,
2019; Zheng et al., 2020; Li
et al., 2021d)

Chemical vapor
deposition

Chemical vapor
reaction

Inexpensive Fair Low-demand Harmful Durable (Jiang et al., 2016; Sun
et al., 2017; Aljumaily
et al., 2018; Guo et al.,
2019)

Physical vapor
deposition

Vaporization
followed by
deposition

Inexpensive Efficient High-demand Harmless Fair (Du et al., 2020; Bo€ke
et al., 2016; Tavana et al.,
2006)

Electrospinning and
electrospraying
method

Droplet spraying and
stretching in electric
field

Inexpensive Efficient Low-demand Harmless Nondurable (Ke et al., 2014; Du et al.,
2021; Deo et al., 2022)

Sol-gel method Hydrolytic
condensation of
compounds under
liquid phase

Inexpensive Inefficient Low-demand Harmful Nondurable (Tadanaga et al., 2000;
Manoharan et al., 2021)

Template method Post-compression
modifications

Fair Inefficient Low-demand Harmless Durable (Lee et al., 2010; Xu et al.,
2011; Zhang et al., 2020a)

Layer-by-layer self-
assembly method

Inter-particle
electrostatic
interaction

Inexpensive Inefficient Low-demand Harmless Nondurable (Yang et al., 2013; Brown
and Bhushan, 2015)

FIGURE 2
Schematic diagram of chemical etching and grafting.
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pollutants and achieve the purpose of more efficient self-cleaning

(Afzal et al., 2014; Wang et al., 2021a). Compared with simply

using droplets to roll away dirt, this more active self-cleaning

method is more suitable for places with more pollutants such as

oil pollution and organic matter (Mor et al., 2004; Rus et al., 2013;

Moghaddasi and Mohammadizadeh, 2022).

In modern research, before the formulation and product

development of self-cleaning superhydrophobic materials,

molecular dynamics is more and more used for simulation to

predict the target performance, which can take into account the

self-cleaning performance and the durability brought by the

adhesion between film and substrate (Sethi et al., 2022).

Through molecular dynamics simulation optimization and

experimental verification, Sethi’s research team

comprehensively predicted and explained the surface behavior,

substrate adhesion, and overall performance of the blend, which

was beneficial to determine the volume, surface, and interface

characteristics of the best formula before the preparation of

bionic superhydrophobic surface coating, reducing the

workload in actual preparation, improving work efficiency and

product performance (Sethi et al., 2019; Sethi et al., 2020a; Sethi

et al., 2020b).

2.1 Etching modification methods

Etching is a simple and effective method to achieve bionic

superhydrophobic effect. This method is through selective

etching to realize the processing of micro-nano double-

ordered structure on the substrate surface (Ellinas et al., 2021).

Wet etching and dry etching are twomain ways of etching. In

wet etching, the etching substrate is soaked or coated with

chemical reagents (such as acid, alkali, etc.), and the etching

solution reacts with the material to remove specific surface

materials (Huang et al., 2011; Yeganeh and Mohammadi,

2018; Jayarama et al., 2021). Dry etching is a process that uses

laser or plasma to react with the substrate surface to form volatile

substances, or directly bombards the substrate surface to corrode

it (Lee, 1979; Elhadj et al., 20122012; Wang et al., 2021b; Fan

et al., 2021). The following section will introduce wet chemical

etching and dry laser etching, as well as their application scope,

advantages and disadvantages.

2.1.1 Chemical etching method
Generally, metals and alloys are the most suitable substrates

for chemical etching, especially magnesium alloys or aluminum

alloys (Panda, 2021; Peng et al., 2021). By controlling the

concentration of etching solution and etching time, the

structural characteristics of superhydrophobic surface, such as

roughness, can be effectively changed (Wei et al., 2021b; Guo

et al., 2021; Krishnan et al., 2021; Zheng et al., 2021) (Figure 2).

Strong acids, such as HCl and H2SO4 are common and

effective etching solutions. Kumar et al. (Kumar and Gogoi,

2018) used HNO3-HCl mixture to etch aluminum plate, and

then treated it with high-density hexadecyl trimethoxysilane

(HDTMS) toluene solution to construct a superhydrophobic

surface with the static contact angle of 162.0 ± 4.2° and the

rolling angle of 4 ± 0.5°. Besides good superhydrophobic self-

cleaning performance, the surface also showed good thermal

stability, chemical stability, and mechanical stability. Nguyen

et al. (Nguyen et al., 2021) etched with HCl solution and

deposited with FOTS (fluorooctatrichlorosilane) to prepare

superhydrophobic aluminum plates with low ice adhesion

strength and long freezing time. In addition, a model for

calculating the freezing time was put forward, and the

comparison between the experimental and theoretical

calculation showed excellent consistency, which provided

guidance for understanding the icing phenomenon and

designing the ice-repellent surface. Campbell et al. (Gray-

Munro and Campbell, 2017) combined the chemical etching

of H2SO4-H2O2 with the deposition of silicone coating to

construct a lotus leaf-like structure on the surface of

magnesium alloy, which had excellent stability in aqueous

solution. By this way, the surface degradation rate of

biodegradable superhydrophobic magnesium alloy with

biocompatibility was controlled, which was significant in

medical application. Saleh et al. (Saleh and Baig, 2019)

functionalized stainless steel with octadecyl trichlorosilane

(ODTCS) after structural treatment with H2SO4, and obtained

superhydrophobic and superhydrophilic properties. Experiments

showed that the separation efficiency of various nonpolar organic

components from water was over 99%, which was expected to be

used to separate oil from water. In addition, HF in inorganic acid

is also a good etching solution (Qu et al., 2007; Zhang et al., 2015;

Du et al., 2018; Kim et al., 2018; Xu et al., 2019; Zhang et al.,

2020b; Shaikh et al., 2021).

Compared with inorganic acids, organic acids are less used

for etching, because most inorganic acids are relatively more

stable and lower in cost. Ou et al. (Ou et al., 2019) sprayed cold

galvanized coating on iron substrate, then etched with acetic acid,

and finally modified with stearic acid. The superhydrophobic

sample surface with an apparent contact angle of 168.4 ± 1.5° and

a rolling angle of 3.5 ± 1.2° was obtained. This sample combined

the respective characteristics of zinc coating and

superhydrophobic surface in terms of metal corrosion

resistance, which had rapid manufacturing process, good

mechanical durability, and easy repair. Wu et al. (Wu et al.,

2012) compared the etching effects of aluminum alloy samples in

three different acid solutions (acetic acid, hydrochloric acid, and

oxalic acid), and found that the mixed solution of oxalic acid and

hydrochloric acid was the better etching combination. Similarly,

they found that better surface roughness can be obtained by

adjusting the concentration of Cl− ion and oxalate ion in acid

solution. This provided a new strategy for controllable

preparation of superhydrophobic films on aluminum alloys,

which could be used in practical industrial applications. Chen
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et al. (Chen et al., 2010) proposed a superhydrophobic surface

preparation method without hydrophobic treatment, which was

directly obtained by soaking aluminum in the mixed solution of

HCl and acetic acid. In addition, they also studied the effect of

acetic acid content on the surface structure.

Besides acidic solutions, other kinds of solutions have been

widely used. NaOH is the most commonly used alkaline etchant,

which is usually used to etch aluminum alloy (Saleema et al.,

2010; Huang et al., 2015; Lomga et al., 2017; Nguyen-Tri et al.,

2019a; Tudu et al., 2019; Yang et al., 2022). In Peng’s work (Peng

and Deng, 2015), NH3 was selected as the etchant of aluminum,

and the superamphiphobic sample obtained by hot ammonia

solution etching and fluorosilane modification had excellent

chemical stability. This simple, economical, environment-

friendly, and efficient method could be used in the fields of

oil-proof and water-proof. Wan et al. (Wan et al., 2018)

combined ammonia etching and hydrothermal treatment to

construct superhydrophobic surface on copper substrate

modified by 1H,1H,2H,2H-perfluorodecyl triethoxysilane

(PFDTES), which showed good waterproof, anti-corrosion and

anti-adhesion properties in simulated seawater and humid air.

Parin et al. (Parin et al., 2018) used three different salt solution

etchants, namely AlCl3, FeCl3 and CuCl2, to obtain

superhydrophobic aluminum surfaces by chemical etching and

fluorosilane deposition, respectively, which confirmed that

different etchants would produce different surface micro-

nanostructures. Rodič et al. (Rodič et al., 2020) etched

aluminum in FeCl3 solution, and then grafted at ambient

temperature directly in an ethanol solution of 1H,1H,2H,2H-

perfluorodecyltriethoxysilane. The prepared superhydrophobic

surface has the characteristics of self-cleaning and anti-icing.

Moreover, the promotion of dropwise condensation significantly

improved the heat transfer coefficient, so that the sample could

be widely used in heat transfer industry. Wang et al. (Wang et al.,

2016b) chemically etched magnesium in CuCl2 solution, and

then modified it with oleic acid to prepare superhydrophobic

surface with contact angle of 155°. Song et al. (Song et al., 2012)

developed a rapid preparation method of superhydrophobic

materials, in which aluminum was immersed in CuCl2
solution and then modified with ethanol solution of

fluoroalkyl silane, and the whole process only took a few

seconds. This convenient and efficient method may have the

potential of large-scale preparation.

Chemical etching can be divided into two-step method

(Milosev et al., 2017; Milošev et al., 2019; Rodič et al., 2022)

and one-step method (Chen et al., 2010) in addition to the

classification of etching solution. This is classified according to

the operation steps. The two-stepmethod is chemical etching and

then coating, while the one-step method is chemical etching and

coating in the same step (Varshney et al., 2016).

Chemical etching is a simple, quick and low-cost method,

which can be used in a large scale. However, the etching solution

used in the operation process is toxic to human health and the

environment. In addition, the specific shape and thickness of the

micro-nano double-ordered structure are difficult to control, and

the mechanical durability of the surface is not high. Under the

condition of over-etching, the microsurface roughness of the

substrate decreases, and even the basic mechanical properties of

the substrate are destroyed, which is also an important problem.

Therefore, the preparation of green etchant, the optimization of

etching process, the precise control of substrate surface

morphology and thickness, and the reduction of

environmental pollution risk are the key development paths

that chemical etching needs to explore in the future.

2.1.2 Laser-etching method
As shown in Figure 3, laser etching can be divided into heat

treatment and cold treatment according to its reaction principle

(He et al., 2019; Ehrhardt et al., 2021). Irradiating the substrate

surface with high-energy laser beam, the generated high

temperature melts and vaporizes the material in a short time.

After cooling, the superhydrophobic surface is constructed,

which is called laser heat treatment. Cold treatment is a

method of breaking chemical bonds in materials through

photochemical reaction and constructing superhydrophobic

surfaces after cooling. This technology has been widely used

in various materials, including metal, glass, and polymer

(Fadeeva et al., 2011; Lu et al., 2017; Dinh et al., 2018; Kostal

et al., 2018; Li et al., 2019d; Ma et al., 2019; Stratakis et al., 2020).

Boinovich et al. (Boinovich et al., 2017) used Al–Mg alloy as

the substrate, and proved that laser treatment can endow the

surface with multi-peak roughness and change the composition

FIGURE 3
Schematic diagram of (A) laser heat treatment and (B) cold
treatment.
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of the surface layer. This research had overcome the obstacles of

metal materials in industrial application, such as easy corrosion,

poor cold resistance or weak thermal shock stress resistance. Li

et al. (Li et al., 2018) prepared periodic microscale papillary pit

microstructure on magnesium alloy surface by laser ablation.

After chemical etching with AgNO3 and surface modification

with stearic acid, the prepared surface has superhydrophobic

property, and the maximum contact angle reaches 158.2°. By

adjusting the microstructure, such as the center distance of pits,

the surface can change from low adhesion to high adhesion. In

addition, due to the high degree of independent selection and

accuracy of laser etching, the surface structure that meets the

requirements of experimenters can be perfectly reproduced.

Using this characteristic of laser etching, superhydrophobic

surfaces with excellent anisotropy can be easily prepared

(Yong et al., 2014; Fang et al., 2018; Lasagni et al., 2018; Cai

et al., 2019; Tuo et al., 2019; Bai et al., 2020; Rong et al., 2021;

Yang et al., 2021). In another study, femtosecond laser and

picosecond laser were used to construct nanostructures of

aluminum, copper, and galvanized steel, respectively, and then

aging in vacuum was used to replace low surface energy

modification. This method of combining ultrafast laser surface

nanostructures with vacuum aging was suitable for a wide range

of self-cleaning applications (Khan et al., 2021). In addition to the

metal matrix, Chen et al. (Chen et al., 2018) showed a method of

manufacturing bionic reed leaves by laser treating the surface of

structured polydimethylsiloxane (PDMS). Du et al. (Du et al.,

2022) proposed a one-step laser-etching method for

manufacturing superhydrophobic silicone rubber with bionic

layered micro/nano structure, whose contact angle and sliding

angle can be adjusted according to the number of laser-etching

cycles, which is beneficial to different application requirements.

It was a potential candidate to protect flexible electronics

equipment in rainy days and acid/alkali environments.

Inspired by the hexagonal microstructure array of mosquito’s

compound eye, He et al. (He et al., 2021) made multifunctional

superhydrophobic self-cleaning glass with anti-fog and anti-icing

by laser texturing. Jing et al. (Jing et al., 2022) used picosecond

laser to etch glass substrate and chemically modified it by

silanization to prepare superhydrophobic surface with high

adhesion. They also pointed out that laser-induced micro/

nano structure depends on laser energy to a great extent and

significantly affects adhesion, while scanning times have a slight

effect on surface morphology and adhesion.

Laser-etching method has high precision and controllability.

By controlling the laser type, irradiation time and light intensity,

the surface microstructure with controllable direction can be

obtained on different substrates (Figure 4), which is suitable for

most materials. In addition, no harmful substances are produced

during the experiment, which is undoubtedly environment-

friendly. In recent years, with the rapid development of 3D

laser printing technology and femtosecond laser technology,

researchers have been able to complete custom etching of

various complex microstructures. However, because the laser

synthesis equipment is very complex, expensive, energy-

intensive, and the action area of a single laser beam is

relatively small, it is not suitable for industrial large-scale

preparation of superhydrophobic materials, and it is currently

in the laboratory stage.

2.1.3 Mixed-etching method
The etching methods mentioned in the above two chapters

usually use different substrates (Table 3), but they can actually

be used in combination. For example, Xia et al. (Xia et al.,

2022) compared three methods: chemical etching, laser

etching, and chemical-laser mixed etching, and pointed out

that specific chemical-laser mixed etching parameters can

effectively prepare uniform hierarchical structure on

aluminum alloy surface, achieving excellent hydrophobicity,

and low ice adhesion. When this method was applied to the

wing manufacturing, the obtained wing may prevent the

aircraft from freezing and protect the aerospace safety.

Dong et al. (Dong et al., 2011) also prepared a hydrophobic

copper surface with tunable regular microstructure and

FIGURE 4
Directional comparison between (A) chemical etching and (B) laser etching.
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random nanostructure whose water contact angle is about

153°. The regular microstructure was obtained by nanosecond

pulse laser etching, while the random nanostructure was

determined by chemical etching. The regular

microstructure was obtained by nanosecond pulse laser

etching, while the random nanostructure was determined

by chemical etching. Liu et al. (Liu et al., 2013) dipped the

aluminum alloy in HNO3 and Cu(NO3)2 after laser

processing, and finally modified it with DTS

(CH3(CH2)11Si(OCH3)3) to prepare the bionic

superhydrophobic surface with high adhesion. It is easy to

find that these two methods can also be used together with

other etching methods to achieve better bionic

superhydrophobic effect (Li et al., 2014; Gu et al., 2017;

Tian et al., 2017; Feng et al., 2022a; Feng et al., 2022b).

Rodič et al. (Rodič and Milošev, 2019) made highly

hydrophobic aluminum surface in NaOH solution

containing various alkoxysilanes by one-step ultrasonic

process, which had corrosion resistance, self-cleaning, and

anti-icing characteristics. These mixed preparation processes

provided a new way for the preparation of various materials.

3 Summary

This article summarized the basic principle and model of

superhydrophobic, epitomized the structure and wetting

characteristics of biological superhydrophobic surfaces in

nature, reviewed various preparation methods of bionic

superhydrophobic materials, emphasized the etching method,

and discussed the research status and challenges of

superhydrophobic applications. As described in detail above,

the chemical etching method is simple, fast, low-cost and has

the potential for large-scale application. Its disadvantage is that it

is harmful to the environment and human body, and excessive

etching will cause the mechanical properties of samples to be

destroyed. Laser etching has controllable and customizable

surface morphology, but it is expensive and inefficient. The

mixed use of the two methods has indeed achieved the effect

of complementing each other’s strengths to a certain extent, but it

is undeniable that the equipment price and pollution have not

been improved.

4 Outlook

Science and technology originates from nature and is

superior to nature. The research of bionic superhydrophobic

surface started from the early imitation of natural animal and

plant surface structures, and now it has expanded to the creative

behavior of designing structures and modifying materials

independently, especially the birth of laser etching, which

greatly improved the structural accuracy. The related

properties of superhydrophobic surfaces have also developed

from simple hydrophobicity to many directions, including

anti-icing, water collection, directional transportation and

wetting behavior transformation, which has brought about

significant changes in the fields of industrial life and national

defense science and technology development. The single bionic

superhydrophobic surface can no longer meet the actual needs,

and the research of multifunctional bionic superhydrophobic

surface has become a hot topic discussed by scholars. However,

with the continuous expansion and deepening of the research in

the field of etching, the existing problems in the process of

preparing bionic superhydrophobic surfaces by etching are

also exposed. For example, the environmental friendliness and

mechanical properties of chemical etching need to be improved,

and laser etching needs to consider how to improve efficiency,

reduce equipment costs and achieve mass production. In view of

the research hotspots and existing problems, we put forward the

following prospects:

(1) Superhydrophobic surface should be further developed

toward multifunction. Based on the superhydrophobic

function, the surface has many functions, such as

antibacterial (Zhan et al., 2022), anti-ultraviolet, anti-

radiation, underwater drag reduction, and performance

change. It improves the applicability of superhydrophobic

materials in many fields and environments, and has far-

reaching significance for industrial application. Additionally,

if the micro-nano structure is directly built on stealth coating

materials (wave absorbing materials, light transmitting

materials, light guiding materials, etc.), it will have the

characteristics of anti-reflection, anti-radiation, and drag

reduction, further increasing its concealment and

maneuverability. The stealth surface made by this method

TABLE 3 Simple summary of common etching methods of different substrates.

Substrate Common methods References

Aluminum (Al) Chemical Etching (Cl− Ion) (Ran et al., 2019; Zhang et al., 2019; Ellinas et al., 2021)

Magnesium (Mg) Chemical Etching (SO4
− Ion) (Ran et al., 2019; Ellinas et al., 2021; Peng et al., 2021)

Stainless Steel Chemical Etching (Cl− Ion) (Nanda et al., 2019; Saleh and Baig, 2019; Ellinas et al., 2021)

Glass Laser Etching (Plasma) (Li et al., 2018; Wu et al., 2021; Gao et al., 2022)

Polymer Laser Etching (Plasma) (Dimitrakellis and Gogolides, 2018; Lee et al., 2018; Nguyen-Tri et al., 2019b; Nageswaran et al., 2019)
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is likely to make a major breakthrough in modern national

defense and military fields.

(2) To improve the chemical and mechanical stability, the

appearance of self-healing superhydrophobic coating

provides a new development direction for related research

(Sam et al., 2019; Chang et al., 2020). The mechanism of

intrinsic self-healing superhydrophobic coating is to

introduce dynamic chemical bonds into the internal

structure of the material. When the material is damaged,

the damaged chemical bonds will be restored to the initial

state due to dynamic equilibrium, so that the structure and

state of the material can be restored. The external self-

repairing super-hydrophobic coating can be stimulated by

changing the conditions, such as light and temperature, so

that the repairing agent inside the material can be released

and migrated to the damaged part, and thus the damaged

surface can be healed. However, considering the complex

environment in practical engineering application, besides

self-healing, the wear resistance, acid and alkali resistance

and long-term weather resistance of superhydrophobic

coating itself need to be further improved.

(3) For the materials with weak hydrophobicity and easy to be

polluted by oily substances, it is necessary to further study

the super-double hydrophobic materials that are both

hydrophobic and oleophobic, and make them into

responsive materials, that is, to switch or switch the

surface free energy by external stimulation. In addition,

perfluoro silanes, which has both hydrophobic and

oleophobic properties, is a target worthy of consideration.

(4) Aiming at the problems of strong pollution and high-energy

consumption, the development of new biomaterials and new

energy sources provides some guiding ideas for the

preparation of green, environmentally friendly, low-cost,

and reliable superhydrophobic surfaces.

(5) The effects of surface geometry size, wettability, and surface

composition on superhydrophobic properties, especially the

quantitative research directly related to hysteresis angle, need

to be deepened, which is not only to be studied by etching

method, but also to be explored by all methods.

(6) It is still necessary to study the preparation of

superhydrophobic materials at low cost to enhance the

practicability and expand the application fields.

To sum up, the future development direction of preparing

bionic superhydrophobic surface by etching method is to

combine the advantages of the two methods and develop a set

of durable, energy-saving, low-cost, and mass-production

preparation methods that meet the multifunctional application

requirements of superhydrophobic surface. Only by realizing the

industrial production of superhydrophobic surfaces can we really

get out of the laboratory and into life.
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