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Abstract: An effective strategy was developed to fabricate novel lanthanide ions–pyromellitic acid–
methoxy poly(ethylene glycol) (Ln-PMA-MPEG) nano-assemblies. The amphiphilic partially esteri-
fied derivative (PMA-MPEG) of pyromellitic acid with methoxy poly(ethylene glycol) was designed
and synthesized via the coupling reaction. Ln-PMA-MPEG nano-assemblies were rapidly fabricated
using PMA-MPEG as a polymer ligand with Eu3+ ions or mixed Eu3+/Tb3+ ions through biomimetic
mineralization in neutral aqueous systems. The size of the as-prepared materials could be designed
in the range 80–200 nm with a uniform distribution. The materials were readily dispersed in various
solvents and displayed visible color variations and different photoluminescent properties for solvent
recognition. The mixed Eu/Tb-PMA-MPEG nanomaterials were investigated as ratiometric sensors
for the detection of trace water in DMF and Fe3+ ions in aqueous solutions. The sensor materials can
quantitatively detect trace water in DMF from 0% to 10% (v/v). The resultant materials also display a
strong correlation between the double luminescence intensity ratios (ITb/IEu) and Fe3+ concentration,
with a good linear detection concentration in the range of 0–0.24 mM and a limit of detection of
0.46 µM, and other metal ions did not interfere with the sensing mechanism for Fe3+ ions. The novel
nano-assemblies have potential applications as ratiometric fluorescent nanosensors in the chemical
industry as well as in biomedical fields.

Keywords: metal–organic frameworks; biomimetic mineralization; luminescent properties;
fluorescent nanosensors

1. Introduction

Fluorescence sensing has attracted great attention due to its convenience, sensitivity,
specificity and fast response time [1]. Quantum dots [2], organic molecules [3], luminescent
lanthanide (Ln) materials [4] and metal–organic framework materials (MOFs) [5] have
often been employed for the construction of multifunctional fluorescent sensors. Among
these, the unique optical characteristics of lanthanide ions (especially Eu3+ and Tb3+) are
particularly intriguing for sensor design because of their narrow and easily identifiable
emission bands, large Stokes shifts and long fluorescence lifetimes [6,7]. Ln3+ ions them-
selves display low fluorescence intensity resulting from their weak absorption efficiency
caused by the forbidden nature of the f–f transition [8]. The coordination of Ln3+ ions with
organic ligands with higher molar absorption can greatly enhance their absorption ability
and greatly improve the quantum efficiency of Ln3+ ions due to the so-called “antenna
effect” [9]. In contrast, MOFs, known as crystalline polymers generated from metal ions and
organic ligands, have emerged as important candidates for chemosensory materials owing
to their porous structures and high surface areas [10]. The self-assembly of Ln3+ ions with
suitable organic linkers into porous MOFs can render a powerful luminescent platform [11].
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Mixed-crystal LnMOFs, adopting two or more Ln ions, could be designed as ratiometric
fluorescent sensors to afford more accurate measurement by virtue of the self-calibration
of two signal peaks, avoiding the influence of several environmental factors on the abso-
lute fluorescence intensity of a single emissive transition [12]. In recent years, a series of
LnMOFs-based ratiometric sensor materials with specific sensing capabilities have been
successfully prepared and used as sensors for the highly sensitive and selective detection
of trace water in various solvents [13,14], small molecules [15,16], cations/anions [17,18],
humidity [19], pH [20–22] and temperature [23]. However, most LnMOFs studied and
applied are in the form of a crystalline powder, generally of submicron or micron size,
which greatly limits their abilities to act as universally applicable sensors due to poor
compatibility with other materials [24].

To date, LnMOFs are commonly prepared via hydrothermal or solvothermal ap-
proaches. High temperature, high pressure and a relatively long time are often neces-
sary [13,25]. Recently, obtaining MOFs through biomimetic mineralization using biomacro-
molecules (peptide or protein) has attracted attention due to the economically and envi-
ronmentally benign process, including neutral pH, room temperature, short time and no
requirements for other chemicals. The typical MOFs such as ZIF-8, KHUST-1 and Eu/Tb
BDC can be prepared via biomimetic mineralization process [26,27]. The biomimetic min-
eralization of Polymer@MOFs using a polymer as an organic ligand remains relatively
understudied [28,29]. In previous work, we developed an effective strategy to fabricate
nanoscale LnMOFs using a thermosensitive polymer bearing -COOH and -NH-CO- groups
on the polymer chains as organic links with Ln ions through a biomimetic mineralization
method [30]. Polymer@LnMOFs using polymer ligands could improve the compatibil-
ity of LnMOFs with other materials and the stability of LnMOFs, consequently greatly
broadening their application areas [31,32].

Poly(ethylene glycol) (PEG), a synthetic polymer, has been widely used in biomedical
applications due to its biocompatibility, hydrophilicity, non-immunogenicity and non-
toxicity [33]. Pyromellitic acid (PMA), a kind of insoluble multicarboxylic acid aromatic
molecule, is frequently investigated and employed as organic ligand to construct MOFs
with metal ions [34]. Herein, the partially esterified derivative (PMA-MPEG) of PMA
and MPEG (Mn = 1000) was designed and synthesized as a functional ligand that could
form micelles with PMA moieties as the core and MPEG blocks as the corona in aqueous
solution. In neutral aqueous medium, the luminescent Ln-PMA-MPEG nano-assemblies
could be readily fabricated by the self-assembly of MPEG functionalized with PMA with
Eu3+ ions or Eu3+/Tb3+ mixed ions via biomimetic mineralization process. The novel
Eu-PMA-MPEG nano-assemblies readily dispersed in different solvents, and displayed
variable emissive light colors visible to the naked eye and different fluorescence properties
for quantitative identification. The Eu/Tb-PMA-MPEG nano-assemblies as ratiometric
sensors were highly sensitive to trace water in DMF as well as to Fe3+ ions in aqueous
systems. These luminescent nanomaterials have potential applications as multifunctional
ratiometric nanosensors in the chemical industry and in biomedical fields.

2. Experimental
2.1. Materials and Measurements

Pyromellitic acid (PMA, 98%, Sigma, St. Louis, MO, USA). Methoxypoly(ethylene
glycol) (MPEG, Sigma, St. Louis, MO, USA) of Mn = 1000 g/mol was used after drying
under vacuum at 90 ◦C for 24 h. 4-(Dimethylamino) pyridine (DMAP, 99%) and 1,3-
dicyclohexyl carbodiimide (DCC, 99%) were purchased from Aladdin Reagent Co., Ltd.,
Shanghai, China. Eu(NO3)3·6H2O, Tb(NO3)3·6H2O and bovine serum albumin (BSA)
used for material preparation were reagent grade and used without further purification.
Triethylamine and THF (Sinopharm Chemical Reagent Co., Ltd., Shanghai, China) were
treated with CaH2 for four days and distilled just before use. All other chemicals were
of analytical grade and used without further purification. The water used was Milli-Q
ultrapure water (Millipore, Billerica, MA, USA).
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2.2. Synthesis of Partially Esterified Derivative (PMA-MPEG)

To obtain the partially esterified derivative of PMA and MPEG, 2 g (7.87 mmol) of PMA
was dissolved into 200 mL of dried THF under an argon atmosphere; 4.87 g (23.6 mmol)
of DCC was introduced into the solution, the mixture was reacted at room temperature
for 12 h, and the precipitate was removed by filtration. Then, 11.8 g (11.8 mmol) of MPEG,
1.44 g (11.8 mmol) of DMAP and 1.19 g (11.8 mmol) of triethylamine were added into the
filtration solution and the mixture was continuously reacted under an argon atmosphere at
room temperature for 48 h. The crude product was obtained using anhydrous ethyl ether.
The product was dissolved in ultrapure water, stirred for 48 h, and the precipitate was
then removed by centrifugation; finally, the partially esterified derivative was obtained by
freeze-drying (yield: 89%).

2.3. Preparation of Eu-PMA-MPEG and Eu/Tb-PMA-MPEG

Ln-PMA-MPEG was prepared via a similar method for the biomimetically mineral-
ized growth of MOFs [26]. Briefly, an aqueous solution (10 mL) containing PMA-MPEG
derivative (0.5 g) and BSA (0.015 g) was prepared, and then mixed with a separate aqueous
solution (5 mL) of Eu(NO3)3·6H2O or a mixture of Eu(NO3)3·6H2O and Tb(NO3)3·6H2O
(Eu:Tb = 1:1) (0.9 g) at room temperature. The mixture quickly became slightly turbid. The
mixture was subjected to dialysis (MWCO = 1000 Da) against distilled water for two days,
and Ln-PMA-MPEG was obtained via freeze-drying approach (yield: 80%).

2.4. Characterization Techniques and Analysis

2.4.1. 1H NMR Spectroscopy
1H NMR spectrum of the PMA-MPEG derivative was recorded at room temperature

on a Bruker AVANCE NEO 600 at 600 MHz using CDCl3 as the solvent.

2.4.2. Fourier Transform Infrared Spectroscopy

FT IR analysis of PMA, MPEG, PMA-MPEG and Ln-PMA-MPEG was conduced on a
Bruker Tensor 27 using KBr discs at room temperature.

2.4.3. Differential Scanning Calorimetry

DSC was employed to investigate the thermal behaviors of MPEG, PMA-MPEG1.4 and
Ln-PMA-MPEG on a TA Instruments Q20 differential scanning calorimeter under a nitrogen
atmosphere. The melting point and recrystallization measurements were performed at a
heating and cooling rate of 10 ◦C min−1, respectively.

2.4.4. Transmission Electron Microscopy

TEM was conducted on a HT7700 electron microscope (Hitachi, Tokyo, Japan) at an
acceleration voltage of 100 kV. Dilute DMF solutions of the Eu-PMA-MPEG and Eu/Tb-
PMA-MPEG (Eu/Tb = 1:1) were deposited in copper grids coated with carbon. Excess
solvent was swept away by touching the edge of the grids with a small piece of filter paper,
and the grids were allowed to dry at ambient temperature for 24 h before measurement.

2.4.5. Particle Size Distribution

The particle sizes of Ln-PMA-MPEG were determined using a Zetasizer Nano ZS
ZEN3600. Each formulation was analyzed in triplicate.

2.4.6. X-ray Diffraction

Wide X-ray diffraction patterns of MPEG, PMA-MPEG derivative, Eu-PMA-MPEG
were collected using a Panalytical X’Pert PRO X-ray diffractometer (PANalytical B. V.,
Almelo, The Netherlands) with Cu Kα (0.154 nm) radiation (40 kV, 40 mA) at a scanning
speed of 2θ = 1◦·min−1 over the range 2θ = 5–35◦.
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2.4.7. Fluorescence Measurements

Fluorescence spectra were recorded with an F-2500 fluorescence spectrophotometer
(Hitachi, Tokyo, Japan).

3. Results and Discussion
3.1. Synthesis and Micellar Behavior of Partially Esterified Derivative

MPEG (Mn = 1000), a semi-crystalline synthetic polymer, is soluble in water and many
organic solvents. A water-soluble PMA-MPEG derivative was synthesized via the coupling
reaction between the carboxyl groups of PMA and the terminal hydroxyl group of MPEG
using DCC as the coupling agent and DMAP/Et3N as the catalyst (Scheme 1), with the
molar feed ratio of PMA to MPEG as 1:1.5. 1H NMR measurement was performed to obtain
insight into the chemical structure of the derivative. Figure S1 (Supporting Information)
displays the 1H NMR spectrum of the derivative. The signal at 4.43 ppm belongs to the
methylene protons of the MPEG-CH2CH2-OCO-PMA derivative, indicating the successful
coupling reaction between MPEG and PMA [35]. The esterification degree of PMA could be
determined from the integration area ratio of the CH3O- protons (3.39 ppm) in the MPEG
chains and the protons (7.30 ppm) in the benzene ring, and was found to be 1.4 MPEG
chains per PMA molecule, coded as PMA-MPEG1.4. The chemical composition calculated
from 1H NMR analyses is nearly consistent with the feed composition.
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Scheme 1. Synthetic routes for PMA-MPEG derivative and Ln-PMA-MPEG.

The micelle formation by PMA-MPEG1.4 was verified by the fluorescence spectra using
pyrene as the probe [36]. Figure 1a presents the emission spectra of pyrene in the presence
of PMA-MPEG1.4. The intensity of the I1 peak gradually decreases with the incorporation of
pyrene into the hydrophobic core region of the micelles from water, and the intensity ratio
I3/I1 indicates the variation in micelle concentration. Figure 1b shows the intensity ratio
of I3/I1 in the pyrene excitation spectra as a function of the logarithm of PMA-MPEG1.4
derivative concentration. The intersection of the two tangent curves, a horizontal curve
at low derivative concentrations and the inflection, was determined to be the CMC; and
the CMC value was 4.63 × 10−4 mg/mL. This value implied that the derivative had a very
strong tendency to form micelles in aqueous solution.

3.2. The Structure and Morphology of Ln-PMA-MPEG

At present, many small-molecule carboxylic acids are frequently used as organic
ligands for the preparation of LnMOFs because lanthanide ions exhibit a strong preference
for negatively charged or neutral O donor atoms [37]. For the PMA-MPEG1.4 derivative,
some unreacted -COOH residues remain in the PMA moieties. MPEG functionalized with
PMA can be regarded as an organic ligand, and coordinates with lanthanide ions to form
complexes due to the strong activity between lanthanide ions and O atoms from the -COOH
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groups of PMA (Scheme 1). In addition, BSA, as a biological initiator, could accelerate the
reaction process via biomimetic mineralization.
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Figure 1. Emission spectra of pyrene in PMA-MPEG1.4 solution at a fixed excitation wavelength of
334 nm at 25 ◦C. The concentration of pyrene was 1 × 10−6 M (a) and the intensity ratio I3/I1 in the
emission spectra as a function of LogC for PMA-MPEG1.4 at 25 ◦C (b).

Figure 2 presents FT IR spectra of MPEG, PMA, PMA-MPEG1.4, Eu-PMA-MPEG
and Eu/Tb-PMA-MPEG (Eu/Tb = 1:1). The absorption peaks between 3400 cm−1 and
3600 cm−1 are normally assigned to symmetric and asymmetric stretching vibration
modes of the O-H bonds from -COOH; after coordinating with Eu3+ ions and Eu3+/Tb3+

mixed ions, the peaks become weaker and broader, and are shifted to a lower frequency
(3400–3200 cm−1), which might be ascribed to the complexation between the lanthanide
ions and the O atoms of O-H. The characteristic stretching peaks at 1730 cm−1 and
1640 cm−1 are the carbonyl (C = O) of the ester group and the -COOH groups, respectively;
the bands become very weak in the IR spectra of Eu-PMA-MPEG and Eu/Tb-PMA-MPEG
(Eu/Tb = 1:1). The lanthanide ions can coordinate with the two kinds of O from the ester
group and the -COOH groups, which makes the carbonyl stretching vibration much weaker.
The absorption peaks around 1000–1300 cm−1 are the -C-O- bands from the -COOH groups
and ester groups, and the peaks became much weaker. After biomimetically mineralized
growth of Ln-PMA-MPEG, the Ln ions could coordinate to the O atoms of the -COOH
groups and the ester groups to form complexes with PMA moieties as organic ligands.
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PEG is a typical semi-crystalline polymer. Here, MPEG with a low molecular weight
(Mn = 1000) was used to improve the hydrophilicity of the insoluble PMA molecules and
as-prepared nano-assemblies with Ln ions. DSC was employed to investigate the melting
and crystallization behaviors of MPEG chains when introduced into PMA and Ln-PMA
assemblies. Figure 3 depicts the second heating curves (a) and cooling curves (b) of MPEG,
PMA-MPEG1.4 and Eu-PMA-MPEG. As seen from Figure 3a,b, the endothermal peak and
the exothermal peak of the PMA-MPEG1.4 appeared at a relatively higher temperature
(about 40 ◦C) and lower temperature (about 10 ◦C), respectively, compared with that
of pure MPEG. The hydrogen bond interactions of unreacted carboxyl groups in PMA
component were responsible for the acceleration of the crystallization process of MPEG
moieties and the increased melting point of MPEG moieties. However, when the carboxyl
groups of PMA-MPEG1.4 coordinated with Eu3+ ions, both the melting and crystallization
behaviors of the MPEG component were destroyed, implying that the formation of Eu-PMA
structure completely restricted the crystallization process of MPEG moieties to produce an
amorphous state, which was consistent with previously reported results that the addition
of nanoparticles caused a further reduction in the crystallinity of PEG [38]. It was also
found that the Eu/Tb-PMA-MPEG sample was the same as Eu-PMA-MPEG, displaying a
transparent and viscous fluid state at room temperature due to the amorphous structure of
the MPEG component.

Further, the crystallinity of MPEG, PMA-MPEG1.4 and Eu-PMA-MPEG were inves-
tigated by XRD (Figure 4). As seen from Figure 4, pure MPEG displays the two main
characteristic peaks at 19.1◦ and 23.2◦, and the two characteristic peaks of MPEG moieties
slightly become weaker after the reaction with PMA to produce PMA-MPEG1.4. However,
for Eu-PMA-MPEG, neither crystal characteristics of MPEG moieties nor Eu-PMA assem-
blies could be observed, indicating that the semi-crystalline structure of MPEG moieties
was completely disturbed after coordination with Eu3+ ions. The results are consistent
with the DSC results (Figure 3a,b); the MPEG moieties in the Eu-PMA-MPEG exhibit
an amorphous state without melting and crystallization behaviors. The viscous MPEG
chains encapsulate the Eu-PMA nano-assemblies and may hinder the appearance of their
crystalline characteristics.
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Ln-PMA-MPEG samples dispersed easily in DMF, and the solutions are nearly clear.
Size distributions of Eu-PMA-MPEG and Eu/Tb-PMA-MPEG (1:1) can be observed in
Figure 5a,b, respectively. The particle sizes of Eu-PMA-MPEG and Eu/Tb-PMA-MPEG
(1:1) were mainly in the range of 80–140 nm (91 nm 19%, 106 nm 46%, 122 nm 33%) and
100–200 nm (122 nm 23%, 142 nm 45%, 164 nm 28%), respectively. The nanoscale Ln-PMA-
MPEG assemblies were fabricated successfully using PMA-MPEG1.4 as organic ligands with
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Ln3+ ions. TEM was further employed to examine the morphologies of the as-fabricated
Ln-PMA-MPEG nano-assemblies. As shown in the insert Figure 5(a1,b1), the individual
pristine Ln-PMA assemblies exhibited a nearly spherical morphology, and the particles of
Eu-PMA assemblies were more uniform with a size of around 70 nm. The uniformity of the
Eu/Tb-PMA assemblies was less than that of the Eu-PMA assemblies, and the particle size
was about 90 nm, slightly larger than that of the Eu-PMA assemblies, which may be due to
the different coordination ability between Eu3+ ions and Tb3+ ions with the neutral O atoms
of the -COOH and ester groups from PMA moieties. The particle sizes of as-fabricated
Ln-MPA-MPEG were relatively smaller and uniform, as compared with previously reported
poly-LnMOFs prepared via biomimetic mineralization [30]. This may be ascribed to the
micellar behaviors of PMA-MPEG1.4, which could act as nanoreactors regulating the growth
of the Ln-PMA assemblies. The particle sizes examined from TEM were smaller than that
in DMF solutions. This may be because TEM was used to examine the size of neat Ln-PMA
assemblies, whereas the sizes measured in DMF were that of Ln-PMA particles anchored
with MPEG chains, but the uniformity of the particles was coincided with that in DMF.
The EDS results of PMA-MPEG1.4, Eu-PMA-MPEG and Eu/Tb-PMA-MPEG are shown in
Figure S2a–c, respectively. The content of Eu element in Eu-PMA-MPEG is 14.61 wt%, and
Eu, Tb in the Eu/Tb-PMA-MPEG was 5.93 wt% and 9.75 wt%, respectively. The Pt element
originates from the coating layer used for the test. Encapsulating MOFs in nanoshells has
become one of the most promising strategies to overcome the stability issue of the MOFs.
Besides, the activity and selectivity could be simultaneously enhanced by taking advantage
of the synergy between the MOFs and the encapsulating materials, as well as the molecular
sieving property of the encapsulating materials [39].

3.3. The Excitation Spectra and Emission Spectra of Ln-PMA-MPEG in Water and DMF

The excitation spectra of Eu-PMA-MPEG were investigated at 617 nm (5D0→7F2
transition of Eu3+) in water and DMF, respectively, as shown in Figure S3. There are
multiple excitation peaks in the region of 260–450 nm; the peaks at 292 nm and 360 nm can
be assigned to the absorption of PMA-MPEG ligands (black line in Figure S3). Excitation
of the ligands at 360 nm results in a red line-shaped emission (red line in Figure S3). The
emission bands are assigned to the transition from the 5D0 to 7FJ (J = 0–4) levels of Eu3+

at 578, 592, 617, 652 and 696 nm in DMF (Figure S3b). However, the emission intensity
becomes weak and two main emission peaks at 592 and 617 nm are observed in water due
to the quenching of the water (Figure S3a). The excitation spectra of Eu/Tb-PMA-MPEG
were also evaluated at 544 nm (5D4→7F5 transition of Tb3+) and at 617 nm (5D0→7F2
transition of Eu3+) in water and DMF. In DMF (Figure S4b), the transitions from the 5D4
to 7FJ (J = 6, 5 and 4) levels of Tb3+ at 490, 544 and 584 nm and the 5D0 to 7FJ (J = 1–4)
levels of Eu3+ at 592, 617, 652 and 696 nm can be clearly observed. Despite the quenching
of water, the two main emission peaks of Tb3+ (at 490 nm and 544 nm) and the two main
emission peaks of Eu3+ (at 592 nm and 617 nm) are clearly present in the aqueous solution
of Eu/Tb-PMA-MPEG. The above results illustrate the formation of Ln3+-PMA-MPEG
complexes in the Ln-PMA-MPEG nano-assemblies and PMA-MPEG is a good sensitizer for
Eu3+ and Tb3+ ions.

3.4. Fluorescent Properties of Eu-PMA-MPEG in Different Solvents for Solvent Recognition

Eu-PMA-MPEG was readily dispersed into different solvents. The fluorescent prop-
erties of Eu-PMA-MPEG were investigated in different solvents. Figure 6a presents the
fluorescence spectra of Eu-PMA-MPEG at a concentration of 5 wt% in THF, H2O, ace-
tone, ethanol and DMF investigated using a 360 nm excitation wavelength. As seen from
Figure 6a, the peak at 390–480 nm is the emission of the ligand PMA-MPEG1.4. The peaks
at 592 nm, 617 nm and 652 nm are the emission peaks of the Eu ions with the 5D0→7FJ
(J = 1,2 and 3) transitions, respectively, and the peak at 617 nm is very intense, which is the
typical red luminescence observed in Eu3+. Their fluorescence intensities change signifi-
cantly in different solvents. The fluorescence intensity of Eu-PMA-MPEG is strongest in
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DMF, and then in THF, ethanol, acetone and water in sequence. There are several reasons
for these variations. First, the solubility of Eu-PMA-MPEG in various solvents is different
due to the various polarities (Figure 6c). Eu-PMA-MPEG is easily dispersed in DMF and
the solution is nearly transparent; the aqueous solution of Eu-PMA-MPEG is slightly turbid;
the solutions become increasingly turbid from THF, to ethanol and acetone, indicating that
the Eu-PMA-MPEG particles have a tendency to aggregate in these solvents, and that the
agglomeration of Eu-PMA-MPEG in these solvents could result in fluorescence quenching.
At the same time, in these systems, energy transfer occurs between the PMA-MPEG1.4
ligand and Eu3+ ions, which is more complex than when small molecules are used as or-
ganic links; as seen from Figure 6a, the fluorescence intensities of PMA-MPEG1.4 obviously
varied in different solvents. It is also possible that solvent molecules favor the formation of
Eu-PMA complexes with large coordination numbers that can affect the energy transfer
between PMA-MPEG1.4 and Eu3+ ions [40]. The abovementioned multiple effects lead to
the fluorescence intensity variations in different solvents, which present different emission
colors visible to the naked eye under 365 nm UV light (Figure 6d); the Eu-PMA-MPEG is
bright blue in THF and bright red in DMF. The corresponding CIE diagram in different
solvents is presented in the insert (Figure 6b). The observed emission colors are a good
match to the calculated chromaticity coordinates.
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Figure 5. Size distributions of Eu-PMA-MPEG (a) and Eu/Tb-PMA-MPEG (Eu/Tb = 1:1) (b). TEM
images of Eu-PMA-MPEG (a1) and Eu/Tb-PMA-MPEG (Eu/Tb = 1:1) (b1).
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3.5. Eu-PMA-MPEG as a Potential Fluorescent Sensor for Detection of Water in DMF

The detection of water and trace water in organic solvents is very important in many
chemical industries because water is a common impurity affecting many chemical and
industrial production processes [41]. As mentioned above, the fluorescence intensity of Eu-
PMA-MPEG is very weak in water and strongest in DMF. The fluorescent properties of Eu-
PMA-MPEG as a water sensor in water/DMF mixed solvents were investigated. Figure 7a
exhibits the fluorescence spectra of Eu-PMA-MPEG in water/DMF mixed solvents with the
water content varying from 0% to 100% (v/v). The broad peaks about 390–480 nm are the
emission of the ligand PMA-MPEG1.4. The peaks at 592 nm and 617 nm are the emission
peaks of Eu ions with the 5D0→7F1 transition and the 5D0→7F2 transition, respectively, and
the peak at 617 nm is very intense in pure DMF. The fluorescence intensity IEu at 617 nm
dramatically decreased when the water content reached only 10%. The IEu became more
and more weak until there was nearly no fluorescence as the water content increased from
20% to 100%. From the optical photographs illuminated by 365 nm UV light (Figure 7b),
variable colors can be clearly observed with naked eye when the water content increases
from 0 to 20%.

As seen from Figure 7a, as the water content increases from 0 to 10% in DMF, the
fluorescence intensity of Eu-PMA-MPEG is significantly quenched. Therefore, the flu-
orescence spectra of Eu-PMA-MPEG in trace water/DMF mixed solvents were studied
as the water content increased from 0% to 10% (Figure 7c). As seen in Figure 7d, IEu at
617 nm gradually decreases with the increasing water content from 0% to 10%. The insert
Figure 7(d1) shows the trend in IEu at 617 nm versus the water content could be well
fitted to the second-order exponential equation y = 2112.1 × exp (−x/0.04) + 2127.7 × exp
(−x/0.04) + 905.8 (R2 = 0.998). The I0/I ratio to water content follows the Stern–Volmer
equation I0/I = 1 + KSV[H2O] (KSV = 31.74) [42], where KSV is the Stern–Volmer quenching
constant, and I0 and I are the fluorescence intensities of Eu-PMA-MPEG at 617 nm in pure
DMF and different water content, respectively. The Stern–Volmer plot in Figure 7e shows
an adequate linear fit with a correlation coefficient (R2) of 0.998 between I0/I and the water
content in the water content range of 0–10%. Therefore, Eu-PMA-MPEG as a trace water
sensor in water/DMF solutions is more sensitive and exact.
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Figure 7. Fluorescence spectra of Eu-PMA-MPEG in DMF with water content from 0% to 100% (a);
Photos of Eu-PMA-MPEG in DMF with water content of 0%, 10% and 20% under 365 nm UV light
(b); fluorescence spectra of Eu-PMA-MPEG in DMF with trace water from 0% to 10% (c); fluorescent
intensity IEu at 617 nm (d); and the trend of IEu vs. the water content (d1); the I0/I vs. water content
plot from 0% to 10%, with the red solid line representing the theoretical fit (e).
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3.6. Eu/Tb-PMA-MPEG as a Potential Ratiometric Fluorescent Sensor for Detection of Water
in DMF

Most of the luminescent materials as trace detectors consisting of a single emission
center are susceptible to many factors, from the detector concentration, excitation power,
and optoelectronic system drift [43]. Eu/Tb mixed LnMOFs employed for detection
could be self-calibrated. Herein, the fluorescent water sensing properties of Eu/Tb-PMA-
MPEG are also evaluated. Figure 8a shows the fluorescence spectra of Eu/Tb-PMA-MPEG
(Eu:Tb = 1:1). The fluorescence spectra of Eu/Tb-PMA-MPEG exhibit both the typical
emission peaks of Eu ions (at 592 nm and 617 nm) and the typical emission peaks of Tb
ions (at 490 nm and 544 nm). The fluorescence intensity ITb (at 544 nm, typical green
luminescence of Tb ions) is much stronger than IEu (617 nm, typical red luminescence
of Eu ions) due to the different coordination ability and excited state energy levels of
Tb and Eu ions. The peaks at 544 nm and 617 nm in pure DMF are very strong; when
the water content reaches 10%, ITb/IEu dramatically decreases, and the reason is that
the quenching efficiency of water to Eu3+ is higher than Tb3+ [13]. As the water content
increases from 0 to 10%, the fluorescence intensity of Eu3+ quenches more significantly
than Tb3+, which eventually leads to a substantial increase in ITb/IEu. The water content
from 10% to 40%, ITb/IEu gradually decreases. The change that occurs in response to DMF
with a water content of 0%–10%–20% (v/v) is visible to the naked eye (Figure 8b), and the
weak emission peak of Eu3+ at 652 nm and 696 nm disappeared when the water content
reaches 20%. Then from 60% to 100%, ITb/IEu had little change (Figure 8d). Further, the
fluorescence spectra of the Eu/Tb-PMA-MPEG in DMF solutions containing trace water
from 0% to 10% are investigated (Figure 8c), as seen from Figure 8c, ITb and IEu gradually
decrease, the insert Figure 8e shows ITb/IEu versus the water content is a good match for a
linear relationship, and the linear equation is y = 2.39 + 17.69x (R2 = 0.997). A promising
value as compared with the previously literature [44], where lanthanide-based solid-state
sensors could achieve the quantitative detection over the range 10–120,000 ppm H2O in
D2O. With the aid of dual-response luminescence centers, the mixed Eu/Tb-PMA-MPEG
has promising potential application as ratiometric nanosensor in the field of trace water
detection in the chemical industry.

3.7. Eu/Tb-PMA-MPEG as a Potential Ratiometric Fluorescent Sensor for Detection of Aqueous
Fe3+ Ions

Fe3+ is an essential trace element in most physiological processes and it is also signifi-
cant in water quality assessment. Therefore, the detection of Fe3+ is critical for the early
identification and diagnosis of diseases caused by its excess or deficiency [45]. To evaluate
the sensitivity and selectivity of Eu/Tb-PMA-MPEG to different metal ions, changes in
fluorescence properties of Eu/Tb-PMA-MPEG upon addition of various metal ion salts
or mixed metal ion salts are investigated (Figure 9a). The change in ITb/IEu of Eu/Tb-
PMA-MPEG in the absence or presence of metal ions or mixed metal ions is presented
in Figure 9b, where ITb is the fluorescence intensity of Tb3+ ions at 544 nm and IEu is the
fluorescence intensity of Eu3+ ions at 617 nm. Significant fluorescent quenching is observed
for Eu/Tb-PMA-MPEG solution in the presence of Fe3+ ions with a concentration of 0.02 M
under the excitation of 360 nm (Figure 9a), while the solutions with the same concentration
of other metal ions result in small (in the case of Co2+ ion) or no obvious (in the case of K+,
Al3+, Mg2+, Zn2+, Ba2+, Cu2+ ions) fluorescence changes. The potential interfering ions are
also tested to check the selectivity of Eu/Tb-PMA-MPEG towards metal ions. Common
mixed metal ions (including K+, Al3+, Mg2+, Zn2+, Ba2+, Cu2+ and Co2+) were tested at
the same concentration of each ion as Fe3+ ions (0.02 M). The significant decay on photo-
luminescence intensity of mixed metal ions containing Fe3+ ions is observed under the
excitation of 360 nm while there is slight increase in fluorescence intensity of mixed metal
ions, as compared to that of Eu/Tb-PMA-MPEG aqueous solution (blank sample). These
results show that the high sensitivity and selectivity of as-prepared Eu/Tb-PMA-MPEG
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toward Fe3+ ions compared to other metal ions, and there was no interference with other
metal ions, indicating that Eu/Tb-PMA-MPEG is a stable luminescent Fe3+ sensor [46].
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indicating that Eu/Tb-PMA-MPEG is a stable luminescent Fe3+ sensor [46]  

0.0 0.2 0.4 0.6 0.8 1.0

2.0

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

0.00 0.02 0.04 0.06 0.08 0.10

2.2

2.4

2.6

2.8

3.0

3.2

3.4

3.6

3.8

4.0

4.2

I T
b/I

Eu

Concentration (vol)

e

I T
b/
I E

u

Concentration (vol)

d

Figure 8. Fluorescence spectra of Eu/Tb-PMA-MPEG in DMF with water content from 0% to 100%
(a); photographs of Eu/Tb-PMA-MPEG in DMF with water content 0%, 10% and 20% under 365 nm
UV light (b); fluorescence spectra of Eu/Tb-PMA-MPEG in DMF with trace water from 0% to 10% (c);
decreasing trend of ITb/IEu vs. water (d); ITb/IEu vs. water plots from 0% to 10% and the blue solid
line represents the theoretical fit (e).
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Figure 9. Fluorescence intensity of Eu/Tb-PMA-MPEG in the absence or presence of different
metal ions or mixed metal ions (each metal ion concentration: 0.02 M) (a); the ITb/IEu plots of
Eu/Tb-PMA-MPEG in the absence or presence of different metal ions or mixed metal ions (b); ion
concentration-dependent fluorescence intensity of Eu/Tb-PMA-MPEG in the absence of Fe3+ (c); the
ITb/IEu vs. Fe3+ plots from 0 to 2 mM (d) and the red solid line represents the theoretical fit (e).
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Further, for a sensitivity study, different concentrations of Fe3+ in the range of
0.002–2 mM were measured. Figure 9c shows the fluorescence spectra of the nanoscale
Eu/Tb-PMA-MPEG solutions after adding various amounts of Fe3+ ions under the ex-
citation wavelength of 360 nm. The fluorescence intensities IPMA-MPEG (the very broad
peak about 390–480 nm), ITb (the peak at 544 nm) and IEu (the peak at 617 nm) all de-
crease with the increase in Fe3+ concentration. Increasing Fe3+ concentration leads to an
obvious drop in Tb3+ emission intensity, whereas the emission intensity of Eu3+ exhibits
a slow decrease. This different Fe3+-dependent emission pattern of 5D4→7F5 transition
(Tb3+, ITb) and 5D0→7F2 transition (Eu3+, IEu) in the Eu/Tb-PMA-MPEG can used as a
promising candidate for self-referencing sensor. As seen from Figure 9d, the change rule
between ITb/IEu and the concentration of Fe3+ was clear. The plot in Figure 9e shows
an adequate linear fit with a correlation coefficient (R2) of 0.998 between ITb/IEu and the
concentration of Fe3+ in the concentration range of 0–0.24 mM, and the linear equation is
ITb/IEu = 5.17–1.86C (Fe3+). The limit of detection (LOD) was found to be 0.46 µM, a lower
value compared with that previously reported in the literature [47,48]. Figure S5 presents
the CIE chromaticity of the Eu/Tb-PMA-MPEG solutions after adding various amounts of
Fe3+ ions under the excitation wavelength of 360 nm. The quenching mechanism could
be explained as the interaction between Fe3+ and the PMA-MPEG1.4 ligand reduces the
energy transfer efficiency from PMA-MPEG1.4 ligands to Eu3+ and Tb3+ ions, especially
Tb3+ ions in Eu/Tb-PMA-MPEG, as seen in Figure 9c, and this effect increases with the
addition of Fe3+; thus, the luminescence of the nanomaterial is quickly reduced.

In aqueous media, the characteristic emission intensity (IEu) of Eu3+ ions at 617 nm
in Eu-MPA-MPEG is very low due to the quenching caused from water (as shown in
Figure S2a), but for Eu/Tb-PMA-MPEG (Figure S3a), the ITb of Tb3+ ions at 544 nm is
much higher than thw IEu of Eu3+ ions at 617 nm, and IEu in Eu/Tb-PMA-MPEG is also
higher than that in Eu-PMA-MPEG, which is ascribed to the energy transfer between
lanthanides [49]. Such a self-referring strategy amplifies the relative emission ratios, which
would also enhance the luminescence signals and facilitate the detection of the analytes
in aqueous systems. Using nanoscale Ln-assemblies, especially those easily dispersed in
liquid, to achieve fluorescence detection is fast, simple and accurate [50,51]. The mixed
Eu/Tb-PMA-MPEG nanomaterials have promising potential application as ratiometric
fluorescence nanosensor in biomedical fields due to the biocompatibility and hydrophilicity
of PEG.

4. Conclusions

In conclusion, a facile strategy to fabricate novel Ln-PMA-MPEG nano-assemblies
using a pyromellitic acid-poly(ethylene glycol) derivative as an organic ligand through
a biomimetic mineralization method. The particle size of the Ln-PMA-MPEG is around
80–200 nm. The Ln-PMA-MPEG nanomaterials are readily dispersed into various solvents.
Eu-PMA-MPEG could rapidly identify different solvents and quantitatively detect the
water content in DMF. The mixed Eu/Tb-PMA-MPEG was highly sensitive to trace water
in DMF and to Fe3+ in aqueous solutions without interference with other metal ions.
The ITb (544 nm)/IEu (617 nm) and trace water, as well as Fe3+, were a good fit to a linear
equation well. Eu/Tb-PMA-MPEG can be employed as potential ratiometric water and Fe3+

sensors. These Ln-PMA-MPEG nanomaterials have potential applications as ratiometric
fluorescence nanosensors in the field of chemical industry or biomedical fields due to the
biocompatibility and hydrophilicity of PEG.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/polym14101997/s1, Figure S1. 1H NMR spectrum of PMA-
MPEG derivative in CDCl3. Figure S2. EDS analysis of PMA-MPEG1.4 (a), Eu-PMA-MPEG (b) and
Eu/Tb-PMA-MPEG (c). Figure S3. Excitation spectrum of Eu-PMA-MPEG monitored at 617 nm
(black line), emission spectrum (red line) of Eu-PMA-MPEG in water (a) and in DMF (b), respectively.
Figure S4. Excitation spectra of Eu/Tb-PMA-MPEG monitored at 544 nm (black line) and monitored
at 617 nm (red line), emission spectrum (blue line) of Eu-PMA-MPEG in water (a) and in DMF
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(b), respectively. Figure S5. The CIE chromaticity diagram of Eu/Tb-PMA-MPEG solutions after
treatment with various amounts of Fe3+ ions under the excitation wavelength of 360 nm.
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