
Mark D. Wilkinson

is a Research Associate of

Bioinformatics at the Plant

Biotechnology Institute of the

National Research Council of

Canada. His research interests

include database

interoperability, user interface

design and floral developmental

mutants.

Matthew Links

is a bioinformatician at the

University of Saskatchewan.

His research interests are

focused on the application of

Beowulf supercomputers to

bioinformatics problems, and

the application of wavelet

analysis to genome annotation.

Keywords: BioMOBY, web
services, interoperability, I3C,
UDDI

Mark D. Wilkinson,

BioMOBY Project,

Plant Biotechnology Institute,

National Research Council Canada,

110 Gymnasium Place,

Saskatoon,

Saskatchewan,

Canada S7N OW9

Tel: +1 306 975 5279

Fax: +1 306 975 4839

E-mail:

mwilkinson@gene.pbi.nrc.ca

BioMOBY: An open source
biological web services
proposal
Mark D. Wilkinson and Matthew Links
Date received (in revised form): 24th September 2002

Abstract
BioMOBY is an Open Source research project which aims to generate an architecture for the

discovery and distribution of biological data through web services; data and services are

decentralised, but the availability of these resources, and the instructions for interacting with

them, are registered in a central location called MOBY Central. BioMOBY adds to the web

services paradigm, as exemplified by Universal Data Discovery and Integration (UDDI), by

having an object-driven registry query system with object and service ontologies. This allows

users to traverse expansive and disparate data sets where each possible next step is presented

based on the data object currently in-hand. Moreover, a path from the current data object to a

desired final data object could be automatically discovered using the registry. Native BioMOBY

objects are lightweight XML, and make up both the query and the response of a simple object

access protocol (SOAP) transaction.

INTRODUCTION
A vast number of biological data hosts and

analytical services have arisen in the wake

of the explosion of available genome

sequence information over the past

decade. With few exceptions, these

disparate hosts and services distribute their

data in an uncoordinated manner via

distinct CGI-based interfaces. The

BioMOBY project was established to

address the problem of discovering and

retrieving related pieces of biological data

from multiple hosts and services by

attempting to generate a standardised

query and retrieval interface using

consensus object models.

In September 2001, representatives

from the model organism databases, and

other interested parties met at the first

MOBY-DIC (Model Organism Bring

Your own Database Interface

Conference) meeting. After considering

examples of successful data/service

integration such as AceDB,1 DAS2,3 and

ISYS,4,5 principles were established upon

which a solution would be founded:

• The project must be fully Open Source

(OS).6

• Existing standards should be used,

where appropriate, to enhance

interoperability.

• The system should treat retrieval and

analytical services identically.

• Applications should not need to be

hard-coded to a remote, possibly

unstable application program interface

(API).

• Biological data centralisation should be

avoided.

• User-defined queries should be

facilitated as much as possible.

• Preference should be given to simple

and lightweight data objects to

minimise unnecessary network traffic,

simplify the creation of clients and

servers, and exploit the most basic

HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I OI N F O R M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002 3 3 1

threads of commonality between pieces

of data.

• The ‘investment’ for service providers

implementing BioMOBY should be

minimised to encourage rapid and

widespread participation in the project.

The BioMOBY project shares

similarities with other interoperability and

integration projects, but has some novel

aspects, such as a knowledge-driven query

system and service-type hierarchy, which

strive to better reflect the way biologists

explore and manipulate their data. In

addition, the OS and community-driven

nature of the project allows the

framework to quickly evolve to include

new data types and services as they arise.

BIOMOBY OVERVIEW
Scientific questioning rarely begins in a

void; researchers usually will have a piece

of data in-hand that they wish to

investigate more deeply. This initiates a

knowledge-driven line of questioning

spanning the entirety of the expansive

biological data space:

What known genes are similar to the

gene I just cloned? Of those, which are

annotated as cyclins? Show me an

alignment of those genes. . . . This one

looks quite different from the others

and more similar to mine – show me

the alignment in this active site

compared to the consensus. What folds

or domains does it have? Who

annotated this as a cyclin? What did

they describe as its mutant phenotype?

What is its expression pattern through

the cell cycle? Bring up the article

where this information is published.

What is the mailing address of this

author so that I can write to them for a

reprint?

The BioMOBY project facilitates this

flow of thought by providing an

information discovery system that

identifies and retrieves related data based

on a priori or in-hand knowledge. Further,

it insulates the bench scientist from the

complexity of interacting with numerous

disparate data retrieval systems by

providing a simple, common format able

to describe a wide range of host interfaces

in a machine-readable manner. Finally, it

provides a common format for the

representation of retrieved data, regardless

of origin, eliminating the need for endless

‘cutting and pasting’ and enhancing the

connections between disparate hosts.

Each host is a ‘service provider’, and all

service providers, and their service types,

are recorded in a central registry. Services

may be as simple as the retrieval of a

sequence based on an ID, or as complex

as performing the determination of, and

alignment between, a functional domain

of interest among several hundred gene

sequences. From the perspective of the

end-user, all services that are competent

to act on the data in-hand are presented,

and execution of a chosen service can be

automated. In addition, cross-references

may be provided at any step, allowing the

scientist to branch off and gather

supplementary information about the data

they have just received. Thus, the

discovery and analysis process quite

literally becomes as simple as ‘surfing’.

The BioMOBY project is limited in

scope, focusing on the areas of service

description, discovery, transaction and

simple input/output object type

definitions. Individual implementations of

BioMOBY may add to this foundational

set of functionality; similarly, client

programs may also expand on the

specification to include additional useful

features such as logging and automated

workflow discovery, however these

things do not exist in the BioMOBY

specification.

OVERALL ARCHITECTURE
The primary components of the

BioMOBY architecture are:

• MOBY Objects – the structured data

passed between client and server, the

templates for which are stored at

MOBY Central.

The ‘investment’ for
service providers should
be minimal

All competent services
are presented to the
end-user

BioMOBY facilitates the
scientist’s flow of
thought

3 3 2 HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F OR M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002

Wilkinson and Links

• MOBY Central – a registry holding

the input and output object types of all

registered services, the URL for these

services, and their service types.

• Object and Service hierarchies – two

hierarchies describing the relationships

between MOBY Objects and MOBY

Service types respectively.

MOBY OBJECTS
An ID number is often sufficient to

uniquely describe a piece of data, and is

common to all representations of that data

regardless of its instantiation, or the

application displaying it. Similar to the

ISYS application-integration system,4

BioMOBY attempts to avoid issues of

data standardisation, preferring to focus

on data integration. In contrast to many

other data representation projects,7,8

BioMOBY is ‘minimalist’ in its data

templates. MOBY Objects are

lightweight XML, whenever possible

consisting of only a unique data identifier,

the ‘MOBY Triple’ (described below).

This minimal data may be supplemented

with additional ‘payloads’. A payload may

be native to the MOBY system, or may

be an object from a foreign object model

system such as Microarray Gene

Expression Markup Language

(MAGE-ML9) Objects from the Object

Management Group (OMG).7 The

payloads of native MOBY Objects are

organised in a hierarchy.

BioMOBY Object hierarchy
The structures of native MOBY Objects,

defined using World Wide Web

Consortium XML Schema (XSD10),

reflect a hierarchical relationship. This

organisation provides several advantages:

input and output data have a predictable

structure; ‘heavy’ objects can be derived

by extending existing objects (Child IS A

Parent; inheritance-type relationship), or

combining simple objects to create more

complex objects (Child HAS A parent;

container-type relationship); sub-objects

within complex objects may be extracted

as the input to new service requests; and

backwards compatibility is achieved by

allowing an existing client to interpret

new complex objects by examining the IS

A/HAS A relationships of those objects

and extracting only the data it can

manage; finally, data providers are

encouraged to conform to pre-existing

data formats rather than create new ones.

Non-native objects, though they can

be discovered and transported by the

BioMOBY system, are currently not fully

described by the inheritance hierarchy,

nor are they fully described by the XML

Schema. Though the BioMOBY project

is more concerned with the discovery and

transport of objects, it is likely that

additional ontologies will be developed to

describe the full relationship between the

various object types passed in the

BioMOBY system. These issues are

discussed in more detail in a later section.

The BioMOBY Triple
The smallest unit of information that is

passed by BioMOBY is the MOBY

Triple – a unique identifier consisting of

three elements: the MOBY Object type,

a commonly used identifier namespace

(eg a Genbank accession number), and a

value representing an instance of that

namespace. The ‘root’ of the MOBY

Object hierarchy has the name ‘Object’,

thus the base Triple takes on this type

identifier. Triples may or may not enclose

additional information, described as their

‘payload’.

Thus, for example, a base MOBY

Object representing the Genbank record

for the Arabidopsis APETALA3 mRNA

would be represented by the following

Triple:

A slightly more complex object with the

same identifier would be the

VirtualSequence object. VirtualSequence

objects inherit from Object, but have an

additional ‘Length’ element as the payload.

Thus the same data could be cast as:

Non-native objects can
be passed by BioMOBY

Objects in BioMOBY
are ‘minimalist’

The MOBY Triple is the
root of all objects

,Object namespace¼"Genbank/AC"
ID¼"AY070397.1"/.

HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I OI N F O R M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002 3 3 3

BioMOBY

Sequence objects further inherit from

VirtualSequence, and add a

‘SequenceString’ payload attribute:

Since every piece of data passed by

BioMOBY must inherit from the base

‘Object’, all objects in the BioMOBY

system must have a Triple regardless of

the contents of their payload. These

lightweight objects represent the core of

all MOBY transactions, allowing the rapid

‘skimming’ over data sets without the

overhead of passing fully fleshed-out data

models, particularly when working with

large query/result sets. At any time more

details may be retrieved, in the form of

either a more complex native MOBY

Object, or alternatively an object from

another object standard.

The MOBY Triple is similar in many

ways to the recently proposed Life

Sciences Identifier (LSID11). The primary

components of the LSID are contained in

the Triple – Authority, Namespace and

ID – with the addition of a type field

indicating how the data indicated by the

identifier are instantiated in the MOBY

Object payload.

BioMOBY cross-references
In addition to the Triple and the payload,

MOBY Objects may optionally carry an

additional Cross-Reference Information

Block (CRIB). The CRIB is a list of

cross-referencing MOBY Triples which,

being the base form of a MOBY Object,

may be used directly as the input to new

queries. Cross-references are meant to

carry more than simply synonymous

references to the primary triple, but also

to related data objects, as known by the

service provider.

A fully fleshed-out MOBY Sequence

object for the Apetala3 mRNA might be

structured as follows:

MOBY CENTRAL
BioMOBY enables the discovery of

services by having a centralised registry.

Service providers register themselves with

‘MOBY Central’, including the

following:

• The service name.

• Service type – from the Service-type

hierarchy.

• Input object(s) – by name from the

Object-type hierarchy.

• Output object(s) – by name from the

Object-type hierarchy.

• A URI identifying the service provider.

• The URL to the service script.

• A human readable description of the

service.

Objects contain cross-
referencing Triples

,VirtualSequence namespace¼
"Genbank/AC" ID¼"AY070397.1".
,Length.960,/Length.

,/VirtualSequence.

,Sequence namespace¼"Genbank/AC"
ID¼"AY070397.1".
,Length.960,/Length.
,SequenceString.
aacaaaaagattaaacaaagagag
aagaat
atggcgagag ggaagatccagat
caaga. . .

,/SequenceString.
,/Sequence.

,Sequence namespace¼"Genbank/AC"
ID¼"AY070397.1".
,CrossReferences.
,Objectnamespace¼
"PubMed/PMID"ID¼"11959818"/.
,Object namespace¼
"Genbank/GI" ID¼"17979335"/.
,Object namespace¼
"Genbank/Taxa" ID¼"3702"/.
,Object namespace¼
"GO/Acc" ID¼"GO:0016563"/.

,/CrossReferences.
,Length.960,/Length.
,SequenceString.
aacaaaaagattaaacaaagagag
aagaat
atggcgagag ggaagatccagat
caaga. . .

,/SequenceString.
,/Sequence.

3 3 4 HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F OR M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002

Wilkinson and Links

The MOBY Central API allows

queries for service providers based on

service-type, input, output and/or

authority. Queries based on input type

allow the user to ‘wander’ through the

data space with each next step being

offered as a list of services able to act on

the data objects they have received from

the previous service transaction (or one of

their cross-references). In addition, since

output objects may immediately be used

as input to a new service, this registry

structure also allows the discovery of a

‘workflow’ or ‘pipeline’ through a series

of services to obtain a desired output

object based on the object in-hand.

Once the desired service has been

selected, the client requests more detailed

service instructions. MOBY Central

communicates the required transaction

information in the form of a Web

Services Description Language (WSDL)

document, which is generated by MOBY

Central on the fly. All information

needed to generate this document is

present in the service registration

information, and thus neither the service

provider, nor the registry, are required to

store these documents. WSDL is an

emerging standard, and was chosen

because of its modular structure, which

simplifies automated document creation,

as well as its use of another emerging

standard, XSD, to describe the structure

of the input and output objects in a

hierarchical manner.

At the present time, BioMOBY uses its

own registry system rather than the draft

UDDI12 registry system. There were

several considerations that led to this

decision early in the project’s inception:

• The UDDI API had a restrictive

licence agreement at the time the

BioMOBY project was initiated.

• The UDDI registry system is business-

centric and complex.

• Freedom to explore alternative registry

architectures is a useful endeavour and

may lead to a more powerful or more

broadly applicable system in the

biological context.

Recently, development of UDDI has

been assumed by the Organization for the

Advancement of Structured Information

Standards (OASIS),13 and the restrictive

licence has been removed. Thus none of

the arguments above preclude our use of

UDDI at some point in the future;

however, BioMOBY is a research project

attempting to define biologically intuitive

registry behaviour. Once this behaviour is

determined, we can assess if UDDI is

sufficient to achieve this end and, if so,

build the BioMOBY system on top of

UDDI, or alternately request an extension

of UDDI that is agreed upon by OASIS

and other interested parties.

MOBY Central API
The current MOBY Central API has

three types of calls: register/deregister,

locate and retrieve. Registration calls

include adding new object and service

types, registering a new service instance,

or deregistering a service that no longer

exists, has been modified, or has moved.

Locate calls return lists of service instances

that meet certain specifications. Retrieve

calls allow more general browsing of the

registry contents. In general, the API calls

return simple XML documents in

response. An overview of the current API

for MOBY Central is presented in Table

1. A simple Client could be built using

only two of these methods –

locateServiceByInput, and retrieveService

– and still exploit the power of the

MOBY Central registry model. Such a

client could iteratively locate services that

take in-hand data as input, transact the

service, and use the result as the input to

the next locateServiceByInput query,

leading to a ‘surfing’-style user

interaction.

BioMOBY Services
A key consideration in the design of the

BioMOBY system was ease of

deployment. This led to several design

decisions that shifted the burden of

The MOBY Central
Registry API allows the
end-user to wander
through the data

The WSDL service
description is auto-
generated at MOBY
Central

Simple client programs
require only two
registry API calls

Ease of deployment

HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I OI N F O R M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002 3 3 5

BioMOBY

implementing and interacting with web

services onto either MOBY Central or

the Client program. The use of SOAP,14

rather than common object request

broker architecture (CORBA)15 is one

such decision. Modules supporting SOAP

transactions are freely available for most

common programming languages, and

deployment of SOAP services can often

be achieved with only a few lines of code

in addition to the underlying script that

generates service output. Auto-generation

of WSDL16 documents by MOBY

Central (as described below) alleviates the

need for these somewhat complex

documents to be created by the service

host for each of their services, and

removes the burden of updating these as

MOBY Objects and Services evolve.

Defined input/output Object structures,

the Object hierarchy, and the overall

simplicity of most MOBY objects were

also intended to simplify service creation.

The trade-off to having this simplicity,

however, is in the number of services that

must be created to achieve comprehensive

coverage of the available data; service

providers should implement Services that

generate not only the lightweight

Objects, but also the rich Objects and/or

Objects from external representation

schemas, in order to provide clients with

all of the available information if they

require it.

Deploying a MOBY Service requires

the following simple steps:

• Set up SOAP server on your web site,

with subroutines for each Service you

wish to provide.

• Register these Services with MOBY

Central

• Handle incoming requests

– parse Objects from the arguments

passed to your Service,

– validate these Objects (and/or

Namespaces) as correct input to

your service,

– extract the necessary data from each

Instructions for
deploying a service

Simplicity requires
additional services

Table 1: Overview of the current API for MOBY-Central. The API consists of three types of
actions: registration, location/search and retrieval

API method Use

RegisterObject Register a new Object type and its relationships
DeregisterObject Deregister or deprecate an existing Object type
registerServiceType Register a new Service type and its relationships
deregisterServiceType Deregister or deprecate an existing Service type
registerNamespace Register a new name space
registerService Register a new instance of a MOBY Service
registerServiceWSDL Register a new instance of a MOBY Service based on a WSDL service description (not yet

implemented)
deregisterService Deregister an instance of a MOBY Service
locateServiceByType Locate all services which perform a particular type of service (from hierarchy; plus child-

types)
locateServiceByInput Locate all services which accept this Class type(s) as input
locateServiceByOutput Locate all services which return this Class type as output
retrieveService Retrieve the WSDL specification for a particular named service. This is called immediately

prior to a service transaction.
retrieveServiceProviders Retrieve list of all registered service providers
retrieveServiceNames Retrieve names of all registered services
retrieveServiceTypes Retrieve all registered Service types
retrieveObjectNames Retrieve all registered Objects
retrieveNamespaces Retrieve all registered name spaces
retrieveObject Retrieve the XSD schema for a particular MOBY Class

API = Application Program Interface
WSDL = Web Services Description Language
XSD = XML Schema Description

3 3 6 HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F OR M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002

Wilkinson and Links

Object (use hierarchy to discover

internal object data),

– perform computation on this data.

• Generate output

– assemble output according to the

XSD of the output Class(es),

– wrap output objects in a MOBY

envelope indicating the URL of the

service provider,

– return it.

Example code for deployed MOBY

Services is available on the BioMOBY

web site.17 Re-deployment of existing

CGI services can usually be achieved with

minimal coding.

It is critical to note that the BioMOBY

system currently does not enforce a one to

one correlation between the input

namespace and the output object. For

example, passing a PubMed/ID to a

service may not return the associated

Citation object. It is up to the service

provider what output he or she wishes to

generate from the input object. A service

provider given a PubMed/ID may, for

example, return the Sequence objects

described in that publication. We believe

this flexibility is crucial to successful

interconnection of the vastly different

biological data types, while registration of

input, output, service type and a human-

readable description of the service assists

users in navigating through and

interpreting these tangential relationships.

As the BioMOBY project develops, a

new focus on developing richer

ontologies for service description will

emerge in order to enable fully automated

navigation of these indirect relationships

between disparate pieces of data.

COMPARISON TO OTHER
PROPOSALS AND
PROTOCOLS
Several projects have recently emerged

that deal with various aspects of the

problem BioMOBY is focused on. In

some cases, their approach is similar to

BioMOBY, while in other cases our

approach is novel. Below is a brief

description of several select projects

dealing with biological data

interoperability, and a comparison of their

pursuits with the approach that we have

adopted.

Other biological object model
systems
Numerous projects are building rich

XML representations of biological data. It

may then seem redundant that

BioMOBY builds its own data models.

The response to this is twofold: (1)

BioMOBY function requires ‘minimalist’

objects, and this necessitates the (relatively

simple) task of creating our own

lightweight object models and (2)

BioMOBY is more concerned with data

discovery and transport than

standardisation or representation.

BioMOBY is capable of, and intends to,

pass rich objects from other data

modelling standards. It is already the case

that complex data such as MAGE-ML,

and plain-text data such as BLAST18

reports, are registered in MOBY Central

and are passed verbatim by enclosing them

in a MOBY Triple. Non-native objects

are not part of the object hierarchy per se,

but are passed as the payload of an object

that inherits directly from the base

Object, having only a MOBY Triple

indicating the name space, ID and type of

foreign object contained in the payload.

In this way, the BioMOBY project

enhances the efforts of these other data

modelling projects by providing a

mechanism for their objects to be

discovered and transported between both

MOBY and non-MOBY Services.

I3C

At the inception of the BioMOBY

project, there was little publicly accessible

information about the activities

happening within the Interoperable

Informatics Infrastructure Consortium

(I3C19), though it was known that

Re-coding existing CGI
services is straight
forward

MOBY facilitates the
discovery of objects
from other modelling
systems

Input and output object
types may be
tangentially related

HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I OI N F O R M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002 3 3 7

BioMOBY

intellectual property issues were a

concern. Thus, it seemed unlikely that the

resulting I3C proposal would be Open

Source. The desire for an Open Source

alternative, together with the need to

move forward in a timely way, led us to

initiate the BioMOBY project in parallel

with I3C. Since that time, the I3C has

become considerably more open;

however, membership fees are still

imposed. Nevertheless there is now a fair

amount of crossover and discussion

between I3C and BioMOBY developers.

It is hoped that, in the future, I3C

software will be developed as truly Open

Source, which will allow even closer ties

between the two projects.

Like BioMOBY, the current I3C

architecture is SOAP/web services-based;

however, I3C has chosen to use UDDI as

its registry system, while BioMOBY is

experimenting with its own registry

architecture(s) to ensure that it has the

freedom to explore more biologically

intuitive data discovery methodologies. In

addition, the I3C web services model

currently lacks object and service type

ontologies, which are critical to the

functionality of BioMOBY.

caBIO

caBIO8 (Cancer Bioinformatics

Infrastructure Objects) is a standards-

based set of genomic components

developed in cooperation with the

National Cancer Institute Center for

Bioinformatics (NCICB).20 caBIO objects

are very rich, but are primarily genome-

centric; this reflects the questions being

studied more than any inherent limitation

in the system itself. The objects are passed

from server to client in various ways,

including SOAP, using UDDI as a

registry system.

One of the most significant differences

between caBIO and BioMOBY is that

native BioMOBY objects are data-only,

while caBIO objects allow method calls to

obtain pieces of internal or related data.

This approach simplifies client

development, but is more difficult to

implement on the Server side. In

addition, it is difficult to anticipate all

desirable methods an end-user might

want to invoke – the continually

increasing complexity of the BioPerl21

API shows this to be the case. BioMOBY

avoids the considerable effort of creating

of a new biological manipulation library

by passing only data; however it suffers

the expense of having ‘flat’ objects whose

data must be interconnected through calls

to the registry or by cross-references.

Experiments have been planned where

serialised rich caBIO objects will be

passed in MOBY payloads. If this is

successful, then the power of both

approaches might be realised.

SRS

The Sequence Retrieval System (SRS)22

is an example of a unifying solution to the

interoperability problem. The major

downside to the use of an SRS-type

solution to the bioinformatics problem is

that it is monolithic. In order to

comprehensively bring data and services

together you would require every tool

and database to be installed and/or

configured into one SRS installation. The

BioMOBY system aims to reduce this

type of redundancy, and the

administrative load of maintaining such a

system, by keeping the data distributed

and having individual database

administrators create/modify their own

data and service registrations. Thus, data

under BioMOBY is updated at the

moment that the remote database

becomes updated, and no re-indexing or

mirroring of remote data sources is

required. Finally, while the centralisation

of services under SRS allows only the

queries that have been configured on that

particular installation, BioMOBY can

support true dynamic ad hoc queries.

myGrid

myGrid23 is one of a number of multi-

organisational projects funded by the

Engineering and Physical Sciences

Research Council24 as part of the United

Kingdom Research Council’s e-Science

programme.25 It intends to build on and

MOBY discourages data
centralisation

MOBY objects are data-
only

3 3 8 HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F OR M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002

Wilkinson and Links

extend the Grid framework of distributed

computing through the use of a web-

services architecture and discovery system.

With respect to data discovery and service

execution methodologies, myGrid and

BioMOBY are nearly identical in their

approach, and will likely become more

so. Both projects have similar ideas for

representing knowledge of data and

services in ontologies, and passing data-

only objects through web services.

myGrid, however, is more ambitious in

its inclusion of bench-scientist’s tools such

as workflow, personalised data

repositories, provenance and update

notification; such issues are not directly

within the scope of the BioMOBY

project, but are seen as ‘client-side’ tools

that could be built in various ways upon a

BioMOBY data discovery and execution

infrastructure. Nevertheless, the two

projects have surprisingly similar visions,

and both will benefit from the expanding

collaborations that have already begun

between the participants. In particular,

plans are already underway for the two

projects to adopt the same ontology for

representation of the service hierarchy,

and myGrid will be able to recognise and

pass BioMOBY objects.

Current status
A number of services are already available

through the MOBY Central Registry

which combine to create useful data

discovery and retrieval workflows. As an

example, starting from a keyword it is

possible to retrieve all Genbank entries

that share homology to Arabidopsis

sequences annotated to that keyword. A

keyword can be used to retrieve Gene

Ontology Term objects, from which

corresponding Arabidopsis sequences may

be retrieved. These sequences can be

searched against Genbank and the

Genbank BLAST reports may be parsed

to obtain the Genbank GI numbers for all

hits. Genbank GI numbers may then be

used to retrieve the corresponding

Genbank records as sequence objects. All

of these transactions may be done en masse

through single mouse clicks using the

simple prototype MOBY Client;26

moreover, this workflow transparently

requests services hosted by various

institutions in Canada and the USA.

OUTLINE OF A MOBY
INTERACTION
Overview
Figure 1 presents an overview of a

MOBY interaction. There are three

phases: Registration, Query and

Transaction.

• Registration: this is a one-time only

event, where a Service host registers

the availability of a new service with

MOBY Central (deregistration of

services is also possible). The Service

host then waits for incoming service

requests.

• Query: this phase may be quite

complex. The client may request a

search for available services based on

their input, output, service type,

authority or various combinations of

these. What is returned from each

query is a list of authorities providing

such services, the service type and a

human readable description of the

service. At any time, the client may

select one of these services and request

a WSDL document describing how to

transact the service. Additional methods

are currently being added to the

MOBY Central API to assist in

mapping multi-service paths to desired

output Class types.

• Transaction: having interpreted the

WSDL document, the client then sends

the Service the appropriate MOBY

Object(s) (these are generally going to

be the in-hand Objects resulting from a

prior Service transaction) and retrieves

the response.

During the Query phase, MOBY

Central can be made aware of the object

and service type ontologies, and

automatically return appropriate responses

based on inheritance relationships of the

MyGrid and BioMOBY
share many similarities

Example MOBY
services exist and are
publically available

HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I OI N F O R M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002 3 3 9

BioMOBY

input object type. For example, a request

for services that are able to use the Class

‘Sequence’ as input, could additionally

stipulate the inclusion of services that are

able to use any parent object (eg

VirtualSequence, since Sequence ISA

VirtualSequence).

Service ‘amplification’
Where appropriate, a Service may pass as

many cross-references as it is aware of in

its response CRIB. Cross-references allow

us to branch out from our flow of

exploration to obtain related information

about the Object in hand. Further, we

expect that many Client programs will

take advantage of these cross-references to

amplify the range of next-step Services

presented to the user after each Service

transaction. This is achieved by adding

the cross-referencing Triples as additional

input object types to the MOBY-Central

query phase. What is returned is thus a list

of services available to work not only on

the requested data object, but also any of

the cross-references. We also anticipate

that services will be constructed whose

sole purpose is to generate cross-

references as an additional way to ensure

that the user is presented with all possible

services that exist for the data in-hand.

Collaborations and data
security
The BioMOBY architecture facilitates

collaborative data-sharing in a local area

network (LAN) environment or a wider

network. Local installations of MOBY

Central may exist on which only locally

available data services are registered.

Client programs would be configured to

check the local MOBY Central in

addition to a public server in order to

present users with both local and publicly

available data. Alternately, data may be

securely shared by an authentication

system running over an HTTPS

connection to the server. In the latter

case, HTTPS connections could also be

made to the individual secure services

during the transaction phase.

CONCLUSION
BioMOBY is an Open Source research

project with the aim of exploring novel

ways of implementing a web-services

registry to facilitate the discovery and

sharing of biological data. The approach

extends the current web-services

paradigm by implementing an innovative

registry model that allows search and

retrieval based on object and service

hierarchies. In addition, by passing

minimalist data objects whenever possible

as both the input and output of a query

the BioMOBY system facilitates the

‘wandering’ through large data sets in a

manner similar to the thought process

MOBY Central can be
deployed in a LAN
environment

Cross-references
amplify the number of
available next-steps

Figure 1: Progression of a typical BioMOBY session. Messages with a
light grey background represent the Registration phase, those with a
white background represent the Query phase, and a dark grey
background represents the Transaction phase. Apart from the initial
seeding of data into the system, user interaction is required only once
per transaction (��) in order to select the service they desire to transact.
Other transactions are done between Client and MOBY-Central, or
Client and Service provider

MOBY
Client

MOBY
Central

MOBY
Service 1

MOBY
Service 2

Register Service

OK

Register Service

OK

DATA

Data Object Type

Available Services

Service Types

**

**

Selected Service

Service Def. Request

WSDL

Data Object

Data Object

DATA

Data Type(s)

Available Services

Service Types

Selected Service

Service Def. Request

WSDL

Data Object

Data Object

DATA

Data Type(s)

Available Services

Service Types

3 4 0 HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I O I N F OR M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002

Wilkinson and Links

biologists use when approaching their

problems.

BioMOBY is a product of the Model

Organism database community, and

enjoys a great deal of support from these

data hosts, who are already in the process

of deploying prototype MOBY Services.

In addition, the project has recently won

funding from both Canadian and

American public funding agencies,

ensuring that the project will expand and

develop rapidly. Moreover, the growing

collaboration between BioMOBY and

European initiatives such as myGrid will

help to ensure global applicability and

participation in the project.

Acknowledgments

Numerous BioMOBY project members have

contributed to this work through discussions and

software development.

#National Research Council of Canada,

Plant Biotechnology Institute 2002.

References

1. URL: http://www.acedb.org

2. Dowell, R. D., Jokerst, R. M., Day A. et al.
(2001), ‘The distributed annotation system’,
BMC Bioinformatics, Vol. 2(7).

3. URL: http://www.biodas.org

4. Siepel, A. C., Tolopko, A. N., Farmer, A. D.
et al. (2001), ‘An integration platform for
heterogeneous bioinformatics software
components’, IBM Syst. J., Vol. 40(2), pp.
570–591.

5. Siepel, A., Farmer, A., Tolopko, A. et al.
(2001), ‘ISYS: a decentralized, component-
based approach to the integration of

heterogenous bioinformatics resources’,
Bioinformatics, Vol. 17(1), pp. 83–94.

6. URL: http://www.opensource.org/docs/
definition_plain.php

7. URL: http://www.omg.org

8. URL: http://ncicb.nci.nih.gov/NCICB/
core/caBIO

9. URL: http://www.mged.org/Workgroups/
MAGE/mage-ml.html

10. URL: http://www.w3.org/XML/Schema

11. URL: http://www.i3c.org/workgroup/
technical_architecture/resources/
lsid0/lsid-tawg-5-03-2002a.pdf

12. URL: http://www.uddi.org

13. URL: http://www.oasis-open.org/cover/
uddi.html

14. URL: http://www.w3.org/TR/
soap12-part1/

15. URL: http://www.omg.org/gettingstarted/
corbafaq.htm

16. URL: http://www.w3.org/TR/2001/
NOTE-wsdl-20010315

17. URL: http://www.biomoby.org

18. URL: http://www.ncbi.nlm.nih.gov/
BLAST/

19. URL: http://www.i3c.org

20. URL: http://ncicb.nci.nih.gov

21. Stajich, J. E., Block, D., Boulez, K. et al.
(2002), ‘The Bioperl Toolkit: Perl modules for
the life sciences’, Genome Res. (in press).

22. URL: http://www.lionbioscience.com/
solutions/srs/srs-7

23. URL: http://www.mygrid.org.uk

24. URL: http://www.epsrc.ac.uk

25. URL: http://www.research-councils.ac.uk/
escience

26. URL: http://mobycentral.cbr.nrc.ca/cgi-bin/
MOBY-Client.cgi

HENRY STEWART PUBLICATIONS 1467-5463. B R I E F I N G S I N B I OI N F O R M A T I C S . VOL 3. NO 4. 331–341. DECEMBER 2002 3 4 1

BioMOBY

