
Biomodel Engineering – from Structure to Behavior 
 
 

Rainer Breitling1, Robin A. Donaldson2, David R. Gilbert2,3 and Monika Heiner4 

 

1 Groningen Bioinformatics Centre, University of Groningen, Kerklaan 30, 9751 NN Haren, 
The Netherlands, r.breitling@rug.nl 

2 Bioinformatics Research Centre, University of Glasgow, Glasgow G12 8QQ, UK 
3 School of Information Systems, Computing and Mathematics, Brunel University, Uxbridge, 

UB8 3PH, UK 
4 Brandenburg University of Technology at Cottbus, Dept. of Computer Science, Postbox 10 13 

44, D 03013 Cottbus, Germany 
 
 

Abstract. Biomodel engineering is the science of designing, constructing and 
analyzing computational models of biological systems. It forms a systematic 
and powerful extension of earlier mathematical modeling approaches and has 
recently gained popularity in systems biology and synthetic biology. In this 
brief review for systems biologists and computational modelers, we introduce 
some of the basic concepts of successful biomodel engineering, illustrating 
them with examples from a variety of application domains, ranging from 
metabolic networks to cellular signaling cascades. We also present a more 
detailed outline of one of the major techniques of biomodel engineering – Petri 
net models – which provides a flexible and powerful tool for building, 
validating and exploring computational descriptions of biological systems.  

Keywords. Systems biology, Petri nets, computational modeling, differential 
equations 

 

1   What is Biomodel Engineering? 

Biomodel engineering takes place at the interface of computing science, mathematics, 
engineering and biology. It provides a systematic approach for designing, 
constructing and analyzing computational models of biological systems. Some of its 
central concepts are inspired by efficient software engineering strategies. Biomodel 
engineering does not aim at engineering biological systems per se, but rather aims at 
describing their structure and behavior, in particular at the level of intracellular 
molecular processes, using computational tools and techniques in a principled way. 
The two major application areas of biomodel engineering are systems biology and 
synthetic biology. In the former, the aim is the design and construction of models of 
existing biological systems, which explain observed properties and predict the 
response to experimental interventions; in the latter, biomodel engineering is used as 



part of a general strategy for designing and constructing synthetic biological systems 
with novel functionalities. 

2   Building a Computational Model 

In this paper we focus on computational models in the narrow sense, i.e. models that 
use formal computational descriptions or algorithms to describe and understand 
natural phenomena (these are also sometimes called “executable models” [1]). There 
are many strategies for building a predictive computational model of a biological 
system. All of them involve a high level of abstraction and need to start with a careful 
analysis of what the model is supposed to achieve (requirements capture analysis). In 
that context, it is most important to determine what kind of properties the biologists 
can observe (How do they measure it? What are the accuracy, scale and temporal 
resolution of the measurements?), and which components of the system are known to 
influence system behavior and how they can be manipulated (By knocking down 
genes? By inhibiting of enzymes? By changing environmental conditions?). These 
factors determine which type of model should be built and which variables have to be 
included in it. In general, models (of intracellular pathways) can be qualitative, 
describing the topology or wiring diagram of the biochemical entities, or quantitative, 
with the addition of kinetic information, e.g. equations and rates.  The latter can be in 
general continuous or stochastic [2, 3]. 

Figure 1. A simple enzyme-catalyzed reaction in four different representations. (a) As a 
biological cartoon, (b) as a set of chemical equations, (c) as a computational Petri net model, 
and (d) in the form of the corresponding system of differential equations. The equivalence of 
the last two representations can be clearly seen. The Petri net can be uniquely translated into 

differential equations (although the reverse is not generally the case). 



	  

If a model of a cellular system has to be built from scratch, the next step is to 
describe all relevant causal connections between the components in the system 
(chemical reactions, regulatory influences, physical interactions). This is most 
conveniently done in a graphical fashion, which comes as close as possible to the 
cartoon models of biological systems that are common in the biological literature 
(Figure 1a). The main challenge is a proper disambiguation of the informal 
descriptions provided in these cartoons. A popular software program for this purpose 
is, for example, Cell Illustrator [4-6], which uses a graphical user interface that 
employs an intuitive graphical notation to describe interactions between molecules. 
This is then translated into a Petri net, one of the most powerful and general types of 
computational models. More extensive reviews of this and alternative computational 
model types are provided in [1, 7, 8].  

Figure 2. Illustration of the token game of a simple chemical reaction represented as a Petri 
net. 

3   Playing the Token Game – an Example of Computational 
Modeling 

To illustrate the properties of computational models, we will briefly describe one of 
them, Petri nets, in more detail. Petri nets are just one of the many formalisms that can 
be used in biomodel engineering. They are a graphical tool for the description of 
complex system behavior that was originally inspired by the description of chemical 
processes [7, 9, 10]. A Petri net is a graph containing two types of nodes, places and 
transitions. In a (bio-)chemical system, places correspond to chemical entities, and 
transitions to the reactions that convert them. The state of a system (e.g., the current 
concentration of molecules) is indicated by the amount of tokens that are present at 
each place. Simulating the behavior of a biological system using Petri nets is done by 
“playing the token game” (Figure 2): Whenever there are sufficient tokens at the 



places upstream of a particular transition, the transition can fire, i.e it consumes 
tokens at upstream places and creates new tokens downstream. Weights on the 
transitions indicate the number of tokens that are “used” when a transition fires, i.e. 
they correspond to the stoichiometry of the chemical reaction.  

The token game can be played computationally, or using a visualization tool like 
Snoopy (Table 1), which can show how tokens move through the system over time. 
Such a direct exploration of molecular and signaling fluxes in a system can provide 
useful insights into the validity of the model and the underlying biology.  

Places, tokens and transitions in a Petri net can be interpreted in multiple ways, and 
different interpretations can be combined in a single model, which explains the 
flexibility of Petri net models in biology. For example, places can not only encode 
chemical compounds, but also different states of compounds, including the status of 
protein complexes. Tokens can represent individual molecules, but also discrete levels 
of concentrations (e.g., high–medium–low). Transitions can correspond to mass 
action chemical reactions, but also to complex enzymatic reactions, complex 
formation or the transmission of a cellular signal. 

The Petri nets described above are classical, discrete nets, where the amount of 
tokens is always an integer and there is not explicit notion of time (it is only implicitly 
given in the causality). Continuous Petri nets are not limited in this way and can 
describe continuous reactions in the same way as differential equations. In fact, they 
can be directly translated into the corresponding differential equation system using 
simple rules. Additional extensions of the Petri net formalism include stochastic 
modeling, which makes use of the fact that the firing of transitions is non-
deterministically delayed, so that multiple token games (simulations) of the system 
can result in quite different outcomes each time. All these Petri nets can employ 
hierarchical modeling, where certain subgraphs in the model can be defined 
independently and composed into larger models. 

4   Automated Model Construction 

However, as systems biology is advancing, it is becoming more likely that some form 
of quantitative system model already exists and initially just needs to be translated 
into a computational model.  

The translation of quantitative systems models into computational models is 
particularly straightforward for systems of ordinary differential equations, which can 
be shown to be equivalent to the continuous Petri net model of the system (although it 
is important to note that only the translation from Petri nets to differential equations is 
unique, while the reverse is not guaranteed to be the case). For small systems, the 
translation algorithm is easy to implement manually. For larger systems, it is more 
convenient to use automated translation tools, for example [11], which can directly 
convert Systems Biology Markup Language (SBML) descriptions of the differential 
equations into a Petri Net Markup Language (PNML) description of the 
corresponding Petri net. Automated translation has also been used on a larger scale to 
translate entire databases of biological knowledge into the corresponding Petri net 
description: Nagasaki et al. [12] demonstrated the feasibility of this approach by 



	  

translating the TRANSPATH database of signaling pathways [13] into a Petri net 
model, stored in Cell System Markup Language (CSML), yet another systems biology 
file format.  

Another obvious target for translation into a computational model are the 
stoichiometric matrices used for Flux Balance Analysis [14] and related popular 
approaches [15-17]. A stoichiometric matrix corresponds to the adjacency matrix of a 
Petri net graph. It has been shown that many of the key ideas of metabolite network 
analysis, such as elementary modes/extreme pathways [18] and metabolic pools [19] 
are equivalent to traditional concepts of Petri net theory, such a T(ransition)- and 
P(lace)-invariants [18, 20, 21]. Even extended models, which include Boolean 
descriptions of protein complexes, alternative splicing and isozymes [22], and 
transcriptional regulatory interactions [23], can be unified by translation into, for 
instance, a Petri net model to facilitate model management and exploration.  

5   Managing Models in Biomodel Engineering 

Biomodel engineering goes well beyond building a computational model. In particular 
it provides powerful ways for managing collections of models, including different 
versions of the same model. In biomodel engineering, computational models are 
considered in the same way as large computer programs in software engineering. For 
example, it is important to implement rules for version control, which document 
sources of information and each step in the model construction process. This makes it 
possible to explore alternative hypotheses about the system structure. Another 
important aspect is the systematic identification of building blocks and sub-models 
(modules), which can be described independently. It will be possible to reuse model 
modules across the model, in a similar fashion to objects in computer programming. 
They can be modified in a hierarchical manner, so that there may be one general 
module for enzymatic reactions, and specialized instances for reactions with different 
kinetics, which inherit the main structure and can in turn be modified to allow 
different mechanisms of enzyme inhibition.  

Within a model management system, version control and modularity permit an 
efficient distributed multi-modeler approach to model building, which is essential for 
genome-scale modeling by large teams of curators. All of the modelers have access to 
the same database of building blocks, allowing for rapid composition of larger 
models.  

6   Model Behavior Checking 

Another large and very promising area of research in biomodel engineering is 
based on the concept of model behavior checking. Once a computational (or 
mathematical) model of a biological system has been created, it needs to be validated 
in a principled way. Does it produce reasonable predictions of system behavior? 
Sometimes this can be done ‘by eye’, but for large models this is not an option. Most 
importantly, it is often necessary to explore model behavior in a wide range of 



conditions. For this purpose, the technique of formal model behavior checking can be 
very useful. It is based on the principles of model checking in traditional computer 
engineering, an approach that uses formal logics to express certain properties of a 
computer system, for example whether it is safe against deadlock and other forms of 
systems failure [21, 24-28], which are then proved in a rigorous way. The approach 
we present here differs from this classical model checking in that it can also be used 
to check the behavior of real biological systems, e.g. to check whether the observed 
time series behavior in a wet laboratory experiment conforms to some formally 
defined properties. 

Simulative model behavior checking comprises four main components: 
 

Model. A model of the system of interest. This can be implemented in a wide range 
of formalisms. 
Simulator. A program that produces simulated time courses from the system model. 
These can be stochastic or continuous simulations of a single model, or variant 
models that cover a range of possible parameters. 
Property. A temporal logic formula describing a (desired or expected) biochemical 
behavior. Such a logic is essentially a specialized “mini-language” to make statements 
about model behavior, such as “the concentration of [P] is oscillating” or “the peak of 
[X] occurs at least 5 minutes before the peak of [Y]” or “an increase of activator [A] 
is followed by a transient repression of its target [B]”.  
Model Checker. A program which tests whether the model exhibits the specified 
temporal property, using a collection of simulated runs as input. 
 
There are five major areas of application for model behavior checking in biology: 
1. Model validation: Does the model behave in the way we expect? 
2. Model comparison: How similar are two models, independent of their underlying 
formalisms? 
3. Model searching: In a database of alternative models, which of them show a 
particular property? This can be used to select among competing descriptions of a 
system produced by various research groups. Given a large database of models (either 
a general collection or variants of the same model), one can use model behavior 
checking to perform systematic database queries, such as “find all models that show 
oscillatory behavior under some conditions” or “find all descriptions of this signaling 
pathway that are transiently active after growth factor stimulation” 
4. Model analysis: In a collection of variants of a model (e.g., in silico gene knock-
outs), which models show a certain behavior? E.g., how many knock-outs lead to a 
loss of oscillating behavior? 
5. Model construction: Which modifications of a model lead to a desired property? 
Modifications can involve changes in kinetic parameters or initial concentrations, but 
they can also be more complex, for example changing the topology of the model by 
removing or even adding new components. How to do this efficiently is still an active 
area of research. 
 
The model behavior checking approach can be combined with automated model 
modification (adding/removing/modulating edges in the network; or adding/removing 
molecular species in the network). Given a particular collection of behaviors that a 



	  

correct model should exhibit, one can for example find the minimum number of 
modifications that are necessary for a given model that does not yet fulfill the 
conditions or detect the critical components that are most often added/ removed to 
achieve a particular behavior [25]. 

Ideally, such analysis would be performed in a comprehensive biomodel 
engineering environment, which supports all of the above. First steps in this direction 
are currently being made, but no fully featured system is available yet. Eventually, 
biomodel engineering would be used as part of an integrated biosystem design and 
construction process, i.e. it will be performed in close interaction with synthetic 
biologists.  

7   Computational versus Mathematical Models 

The traditional approach of describing biological system dynamics is mathematical 
and is based on differential equations. They are familiar to many biologists, for 
example in the form of mass action equations, Lotka-Volterra equations or Michaelis-
Menten enzyme kinetics. Mathematical and computational models are closely related. 
It can be shown that the graphical model description shown in Figure 1c can be 
directly translated into the differential equation system in Figure 1d, and vice versa. 
Both of them describe the same biological behavior. So, how do computational 
models differ from differential equation models?  

The main difference is the systematic structure enforced by the graphical form of 
the computational model. Differential equations lack this rigid structure; they can be 
re-arranged and transformed in infinite ways. In our view, this leads to three major 
advantages of a computational model description: 

Firstly, the major conceptual advantage is the gain in explanatory power, due to the 
formal structure of the computational models. In a computational model, each 
component corresponds to a biological entity that can be the target of an experiment 
(or at least a thought experiment). The model thus implies a well-defined set of 
modified systems, and predicts the response to a range of experimental interventions. 
Differential equation systems don’t allow this straightforward mapping onto 
biological entities that could be manipulated experimentally. To be interpreted and to 
be useful as a predictive biological tool, mathematical modeling critically depends on 
such a mapping, but this is provided only implicitly in the analysis process, rather 
than as an integral part of the model engineering process as for computational models.  

Secondly, their formal structure makes computational models eminently suitable 
for the storage of a diverse biological knowledge base: detailed quantitative 
information (e.g., kinetic rate laws), linear constraints (e.g., stoichiometric ratios), 
Boolean relationships (e.g., gene regulatory patterns), and qualitative data (e.g., 
protein-protein interactions) can all be stored and analyzed in one unified framework. 
For example, as described above, Petri nets can be both continuous and qualitative 
without a change in the overall formalism, and they can even incorporate stochastic 
elements, which are important for an accurate simulation of many biology processes 
[29-31]. This multiple nature also makes it possible to first validate that the structure 



of a model is reasonable (using topology-based analysis methods), before going on to 
quantitatively parameterize the description.  

Finally, the graphical structure of computational models allows straightforward 
exploitation of the modularity of biological systems. The structure of many biological 
processes, ranging from enzymatic mechanisms to regulatory motifs, occurs 
repeatedly in the system. Once its basic structure has been described, it can be re-used 
as a building block across the system, with only some re-parameterization necessary. 
Similar plug-and-play approaches, which are essential for structured biomodel 
engineering, are not possible for pure mathematical models. This ability to define 
structural modules is a major advantage for the use of computational modeling in 
synthetic biology: for instance, one can envisage that each standard biological part 
(such as the “BioBricks” [32]) comes along with a computational model of its 
function, so that predictive models of new systems can rapidly be assembled. Even 
automatic model composition and exploration of model behavior would be possible, 
making biomodel engineering a key tool for the new generation of large-scale 
synthetic bioengineering. 

8   Case Studies of Biomodel Engineering 

Many groups have recently shown the power of computational models for 
understanding biological systems. In this brief review we can only present a few 
selected examples that highlight the range of systems biology applications. 

Figure 3. Examples of computational models for different types of biological networks. (a) 
Part of the Petri net model of sucrose breakdown in the potato tuber discussed by Koch et al. 

[33]. (b) A subgraph of the simplified Boolean description of the yeast cell-cycle network 
presented by Li et al. [34]. (c) The main statechart of the vulval precursor cells in the model of 

C. elegans vulva development by Fisher et al. [35].   

Metabolic networks were the first molecular biological systems to be described and 
analyzed by differential equations and related mathematical models, and they were 



	  

also the first to be modeled by computational models such as Petri nets [36, 37]. 
Computational models have been shown to allow all the analytical methods that are 
used in the successful Flux Balance Analysis and related techniques [15]. For 
example, using a Petri net model of sucrose breakdown in the potato tuber, Koch et al. 
[33] use invariant analysis to identify sets of conserved co-factors (P-invariants) and 
independent sub-pathways (T-invariants) (Figure 3a).   

Gene regulatory networks also were an early application area of biomodel 
engineering. Their topology can be determined experimentally on a large scale. The 
directionality of regulatory connections is also accessible, but the strength of the 
interaction is very hard to measure. Therefore, Boolean descriptions are a natural way 
of computationally modeling gene regulation. Li et al. [34] described the cell-cycle 
regulatory network of yeast as a dynamic Boolean network and identified its global 
dynamic properties, including a surprising level of robustness against network 
perturbations (Figure 3b).   

Cellular signaling pathways are another popular target for computational modeling. 
For example, Ruths et al. [38] exploit the intermediate position of Petri nets between 
purely topological descriptions and fully kinetic descriptions to come up with a non-
parametric strategy for characterizing the dynamics of cellular signaling. Their 
method is fast and does not require detailed kinetic information, while still providing 
testable predictions about the temporal change of signaling intermediates, based on 
repeatedly playing the token game. 

Developmental differentiation processes are one of the main challenges for large-
scale system modeling, because they combine gene regulation and cellular signaling 
across multiple temporal and spatial scales. So far, computational models have been 
applied mainly to small, well-characterized model systems. For example, vulval 
development in the worm C. elegans involves only three cell types and was 
successfully modeled using interacting state machines [35] (Figure 3c). The model 
included different modes of crosstalk between signaling pathways, and the analysis 
was carried out using model checking to predict novel feedback loops that are 
required to explain the system behavior and robust patterning observed in biological 
experiments. 

9   Conclusions 

In this paper we have shown how using concepts from traditional computing science 
can be used to create more powerful models of biological systems. We have 
demonstrated that computational models are more than just quantitative descriptions 
of the system. Their structure enables systematic predictions of model behavior, and 
model behavior checking can be used to explore options for updating a model after 
new experimental evidence becomes available. The modularity of computational 
models makes composition of genome-scale models based on standardized building 
blocks much more efficient. The intuitive graphical nature of computational models 
and their ability to integrate qualitative/ structural and quantitative/kinetic information 
contributes to their raising popularity in many areas of biology.  We predict that we 



will see a continued surge of biomodel engineering throughout systems biology and 
synthetic biology in the coming years.  

References 

1. Fisher J, Henzinger TA: Executable cell biology. Nat Biotechnol 25, 1239-
1249 (2007) 

2. Gilbert D, Fuss H, Gu X, Orton R, Robinson S, Vyshemirsky V, Kurth MJ, 
Downes CS, Dubitzky W: Computational methodologies for modelling, 
analysis and simulation of signalling networks. Brief Bioinform 7, 339-353 
(2006) 

3. Gilbert D, Heiner M, Lehrack S: A Unifying Framework for Modelling and 
Analysing Biochemical Pathways Using Petri Nets. Computational Methods 
in Systems Biology (LNCS/LNBI) 4695, 200-216 (2007) 

4. Nagasaki M, Doi A, Matsuno H, Miyano S: Computational modeling of 
biological processes with Petri Net-based architecture. In: Bioinformatics 
Technologies. Edited by Chen Y, 179-242: Springer;(2005) 

5. Matsuno H, Li C, Miyano S: Petri net based descriptions for systematic 
understanding of biological pathways. IEICE Trans Fundam Electron 
Commun Comput Sci E89-A, 3166-3174 (2006) 

6. Nagasaki M, Doi A, Matsuno H, Miyano S: Genomic Object Net: a platform 
for modeling and simulating biopathways. Applied Bioinformatics 2, 181-
184 (2003) 

7. Chaouiya C: Petri net modelling of biological networks. Brief Bioinform 8, 
210-219 (2007) 

8. Heiner M, Gilbert D, Donaldson R: Petri nets for Systems and Synthetic 
Biology. School on Formal Methods (LNCS) 5016, 215–264) 

9. Petri CA, Reisig W: Petri nets. Scholarpedia 3, 6477 (2008) 
10. Breitling R, Gilbert D, Heiner M, Orton R: A structured approach for the 

engineering of biochemical network models, illustrated for signalling 
pathways. Brief Bioinform 9, 404-421 (2008) 

11. Shaw O, Koelmans A, Steggles J, Wipat A: Applying Petri Nets to Systems 
Biology using XML Technologies. In: Technical Report Series. University 
of Newcastle upon Tyne; 2004: CS-TR-827. 

12. Nagasaki M, Saito A, Li C, Jeong E, Miyano S: Systematic reconstruction of 
TRANSPATH data into cell system markup language. BMC Syst Biol 2, 53 
(2008) 

13. Krull M, Pistor S, Voss N, Kel A, Reuter I, Kronenberg D, Michael H, 
Schwarzer K, Potapov A, Choi C et al: TRANSPATH: an information 
resource for storing and visualizing signaling pathways and their 
pathological aberrations. Nucleic Acids Res 34, D546-551 (2006) 

14. Edwards JS, Palsson BO: Metabolic flux balance analysis and the in silico 
analysis of Escherichia coli K-12 gene deletions. BMC Bioinformatics 1, 1 
(2000) 



	  

15. Reed JL, Famili I, Thiele I, Palsson BO: Towards multidimensional genome 
annotation. Nat Rev Genet 7, 130-141 (2006) 

16. Becker SA, Feist AM, Mo ML, Hannum G, Palsson BO, Herrgard MJ: 
Quantitative prediction of cellular metabolism with constraint-based models: 
the COBRA Toolbox. Nat Protoc 2, 727-738 (2007) 

17. Palsson BO: Systems Biology: Properties of Reconstructed Networks. 
Cambridge University Press,  (2006) 

18. Papin JA, Stelling J, Price ND, Klamt S, Schuster S, Palsson BO: 
Comparison of network-based pathway analysis methods. Trends Biotechnol 
22, 400-405 (2004) 

19. Famili I, Palsson BO: The convex basis of the left null space of the 
stoichiometric matrix leads to the definition of metabolically meaningful 
pools. Biophys J 85, 16-26 (2003) 

20. Heiner M, Koch I, Will J: Model validation of biological pathways using 
Petri nets--demonstrated for apoptosis. Biosystems 75, 15-28 (2004) 

21. Heiner M, Koch I: Petri net based model validation in systems biology. 
Proceedings 25th ICATPN (LNCS) 3099, 216-237 (2004) 

22. Duarte NC, Becker SA, Jamshidi N, Thiele I, Mo ML, Vo TD, Srivas R, 
Palsson BO: Global reconstruction of the human metabolic network based on 
genomic and bibliomic data. Proc Natl Acad Sci U S A 104, 1777-1782 
(2007) 

23. Herrgard MJ, Lee BS, Portnoy V, Palsson BO: Integrated analysis of 
regulatory and metabolic networks reveals novel regulatory mechanisms in 
Saccharomyces cerevisiae. Genome Res 16, 627-635 (2006) 

24. Heath J, Kwiatkowska M, Norman G, Parker D, Tymchyshyn O: 
Probabilistic model checking of complex biological pathways. Theoretical 
Computer Science 391, 239-257 (2008) 

25. Kwiatkowska M, Norman G, Parker D: Using probabilistic model checking 
in systems biology. . ACM SIGMETRICS Performance Evaluation Review 
35, 14-21 (2008) 

26. Calder M, Vyshemirsky V, Gilbert D, Orton R: Analysis of Signalling 
Pathways using Continuous Time Markov Chains. Trans Computat Syst Biol 
(LNCS/LNBI) 4220, 44-67 (2006) 

27. Chabrier N, Fages F: Symbolic model checking of biochemical networks. 
Proc CMSB 2003 (LNCS) 2602, 149-162 (2003) 

28. Clarke EM, Grumberg O, Peled DA: Model checking. MIT Press,  (1999) 
29. Losick R, Desplan C: Stochasticity and cell fate. Science 320, 65-68 (2008) 
30. Gillespie DT: Stochastic simulation of chemical kinetics. Annu Rev Phys 

Chem 58, 35-55 (2007) 
31. Kaern M, Elston TC, Blake WJ, Collins JJ: Stochasticity in gene expression: 

from theories to phenotypes. Nat Rev Genet 6, 451-464 (2005) 
32. Shetty RP, Endy D, Knight TF, Jr.: Engineering BioBrick vectors from 

BioBrick parts. J Biol Eng 2, 5 (2008) 
33. Koch I, Junker BH, Heiner M: Application of Petri net theory for modelling 

and validation of the sucrose breakdown pathway in the potato tuber. 
Bioinformatics 21, 1219-1226 (2005) 



34. Li F, Long T, Lu Y, Quyang Q, Tang C: The yeast cell-cycle network is 
robustly designed. Proc Natl Acad Sci U S A 101, 4781–4786 (2004) 

35. Fisher J, Piterman N, Hubbard EJ, Stern MJ, Harel D: Computational 
insights into Caenorhabditis elegans vulval development. Proc Natl Acad Sci 
U S A 102, 1951-1956 (2005) 

36. Hofestädt R: A Petri Net Application of Metabolic Processes. Journal of 
System Analysis, Modelling and Simulation 16, 113-122 (1994) 

37. Reddy VN, Mavrovouniotis ML, Liebman MN: Petri Net Representation in 
Metabolic Pathways. In: First International Conference on Intelligent 
Systems for Molecular Biology: 1993; 328-336. AAAI Press (1993) 

38. Ruths D, Muller M, Tseng JT, Nakhleh L, Ram PT: The signaling Petri net-
based simulator: a non-parametric strategy for characterizing the dynamics 
of cell-specific signaling networks. PLoS Comput Biol 4, e1000005 (2008) 

 
 

  
 



	  

Table 1. A small selection of software and websites for biomodel engineering  

 URL 

BioNessie. ODE-based pathway 
construction, simulation and 
analysis  

http://www.bionessie.org 

CellDesigner. Graphical editing 
and simulation of biochemical 
models 

http://www.systems-biology.org/cd/ 

Cell Illustrator. Draw, model, 
elucidate and simulate 
biochemical models; Petri net 

http://www.cellillustrator.com/ 

Charlie. Tool for analyzing 
Petri net models 

http://www-dssz.informatik.tu-
cottbus.de/index.html?/software/charlie.html 

CPN Tools. Editing, simulating 
and analyzing Coloured Petri 
Nets  

http://wiki.daimi.au.dk/cpntools/cpntools.wiki 

MC2. Probabilistic linear-time 
temporal logic checker http://www.brc.dcs.gla.ac.uk/software/mc2/ 

Pathway Logic Assistant. 
Create, simulate and analyze 
based on rewriting logic 

http://pl.csl.sri.com/software.html 

Prism. Probabilistic branching-
time temporal logic model 
checker 

http://www.prismmodelchecker.org 

Snoopy. Petri net editor, 
simulator, and analysis interface 

http://www.informatik.tu-
cottbus.de/~wwwdssz/software/snoopy.html 

SPiM. Stochastic pi-calculus 
simulator http://research.microsoft.com/~aphillip/spim/ 

Cell System Markup 
Language http://www.csml.org/ 

Petri Net Markup Language http://www2.informatik.hu-berlin.de/top/pnml/about.html 

Systems Biology Markup 
Language http://sbml.org/Main_Page 

	  


