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The study of interactions among biological components can be carried out by using

methods grounded on network theory. Most of these methods focus on the comparison

of two biological networks (e.g., control vs. disease). However, biological systems often

present more than two biological states (e.g., tumor grades). To compare two or more

networks simultaneously, we developed BioNetStat, a Bioconductor package with

a user-friendly graphical interface. BioNetStat compares correlation networks based

on the probability distribution of a feature of the graph (e.g., centrality measures). The

analysis of the structural alterations on the network reveals significant modifications in

the system. For example, the analysis of centrality measures provides information about

how the relevance of the nodes changes among the biological states. We evaluated

the performance of BioNetStat in both, toy models and two case studies. The latter

related to gene expression of tumor cells and plant metabolism. Results based on

simulated scenarios suggest that the statistical power of BioNetStat is less sensitive

to the increase of the number of networks than Gene Set Coexpression Analysis (GSCA).

Also, besides being able to identify nodes with modified centralities, BioNetStat

identified altered networks associated with signaling pathways that were not identified

by other methods.

Keywords: differential network analysis, coexpression network, correlation network, systems biology, systems

biology tool, differential coexpression, differential correlation

1. INTRODUCTION

In the last two decades, the high-dimensional data production, such as metabolomics, proteomics,
transcriptomics, and genomics, increased considerably (Zhu et al., 2008; McKenzie et al., 2016). It
brings out the high complexity of the biological systems, posing the challenge to understand how
they work. In science, it is fundamental to compare the many states assumed by a system, such as
sick against healthy patients or developmental stages of a living being. A range of strategies can
be applied for comparing different states depending on the study hypothesis, such as the t-test
(to compare two means), the analysis of variance—ANOVA (to compare two or more means)
(de Souza et al., 2008; Wu et al., 2016) or Gene Set Enrichment Analysis (GSEA), to test whether
a gene set is differentially expressed between two conditions (Subramanian et al., 2005). However,
none of these methods takes into account the relationship among several biological components
at the same time. In this sense, methods based on networks represent the association between
each pair of components and may help to understand the role each variable plays in the system
(Barabási and Oltvai, 2004).
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Biological systems can be assessed by correlation networks,
in which the nodes represent the elements (variables) and edges
represent the statistical relations among its elements. Some
approaches have been proposed to qualitatively analyze the
correlation networks by performing a visual inspection of their
structure (Caldana et al., 2011; Weston et al., 2011), while others
are based on formal strategies to search for differences between
biological networks (Sun et al., 2013; Li et al., 2016; Zhang and
Yin, 2016). However, these studies do not apply statistical tests or
formal control of false positives.

Over the last years, several tools have been developed
to statistically test whether correlation networks are different
across conditions. Examples include DCGL (Liu et al., 2010),
EBcoexpress (Dawson et al., 2012), DiffCorr (Fukushima,
2013), and CoDiNA (Gysi et al., 2018), which evaluate whether
the correlations between pairs of nodes are different among
biological states. DiffCoEx (Tesson et al., 2010) coXpress
(Watson, 2006) searches for cohesive subgroups of variables in
one of the states and evaluates whether these groups change
their correlation patterns among states. DINGO (Ha et al., 2015),
DECODE (Lui et al., 2015), dCoxS (Cho et al., 2009), GSCA
(Choi and Kendziorski, 2009), GSNCA (Rahmatallah et al., 2014),
and CoGA (Santos et al., 2015) compare predefined sets of
variables (Santos et al., 2015). Here we focus on the last group,
in which the tests are performed for each predefined group
of variables.

Although several biological studies compare more than
two networks (Caldana et al., 2011; Weston et al., 2011;
Hochberg et al., 2013; Zhang and Yin, 2016), to the best of our
knowledge, there are only two tools that perform statistical
tests to compare two or more networks simultaneously:
DiffCoEx and GSCA. However, only GSCA performs tests
for predefined groups of variables. GSCA builds correlations
matrices and compares the biological condition networks
by using Euclidean distance (Choi and Kendziorski, 2009).
Pairwise comparison between the networks obtains the GSCA
generalization for comparing more than two networks.
However, this strategy, in general, gives an inadequate
control of type I error (Fujita et al., 2017). Besides, since
the network structure may vary over time and also across
systems from the same biological class, searching for precisely
similar structures between two graphs is not an effective
strategy to compare the behavior of biological pathways
(Santos et al., 2015).

In the context of functional brain network studies, a
generalization of CoGA, named by GANOVA, has been proposed
to compare more than two populations of graphs (Fujita et al.,
2017). This tool is specific for datasets containing several graphs
in each biological condition. GANOVA is not useful when only
one network is available per condition, such as in the case of
physiological or genes correlations networks. Here we combined
the methods proposed by Santos et al. (2015) and Fujita
et al. (2017) to compare two or more biological states, namely
BioNetStat. BioNetStat is available at Bioconductor
and includes a graphical user interface.We performed simulation
experiments and applied the proposed method in two biological
data sets.

2. MATERIALS AND METHODS

Wepropose amethod for comparing simultaneously two ormore
biological correlation networks. In the following subsections,
we explain the construction of correlation networks (graphs),
the structural graph analysis, and the statistical test performed
by BioNetStat.

2.1. Construction of Correlation Networks
A correlation network is an undirected graph, where each node
corresponds to a biological variable, and each edge connects a
pair of nodes indicating the association between two variables. In
our context, the edge corresponds to the statistical dependence
between two variables. To measure and detect monotonic
relations, BioNetStat includes the Pearson (1920), Spearman
(1904), and Kendall (1938) correlation coefficients. Given a
measure of statistical dependence, BioNetStat provides three
scales of association degree: the absolute correlation coefficient,
one minus the p-value of the dependence test, and one minus
the p-value adjusted by the False Discovery Rate method
(Benjamini andHochberg, 1995). Each association degree is a real
number varying from zero to one. The user can choose between
unweighted (zero or one) and weighted network (values from
zero to one). Zero means no monotonic association between
variables, while one means a monotonic association between
them. To construct a graph, the user can choose a threshold for
edges insertion, based on some association measure (correlation
or p-value of the independence test).

The proposed method is based on graph topological features.
In the following sections, we describe how BioNetStat
performs the comparisons based in the Probability Distribution
of a Feature of the Graph (PDFG), in the vector of some network
centrality, and in each node centrality measure.

2.2. Differential Network Analysis of
Multiple Graphs Based on PDFG
A random graph G is a graph generated by a random process.
In the last decades, several random graph models have been
proposed for studying biological networks. For example, Barabasi
and Albert (1999) proposed the scale-free model, in which a
few nodes have many connections (hubs) and many nodes
present a lower number of connections (Jeong et al., 2000). An
example where to which the scale-free model suits well is in the
representation of the protein-protein interactions networks, in
which only a few essential proteins interact with many others and
are central to metabolism, whereas many proteins display lower
numbers of interactions because they participate in a few specific
metabolic pathways.

Consider a set of nodes V = {v1, v2, . . . , vnv} of the graph,
r states S1, S2, . . . , Sr , and oi samples (number of observations)
for each state Si, for i = 1, 2, . . . , r. We want to test whether
the r graphs G1,G2, . . . ,Gr (each one representing a state) were
generated by the same random graph model. In case the PDFG
are different, it would be assumed that the graphs were generated
by different random graph models. As will be seen next, here we
analyzed correlation networks in which the elements correspond
to variables such as genes, proteins, metabolites, and phenotypic
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variables. Examples of states include different treatments or
conditions. An alteration in the structure of the network, detected
by a change in the PDFG, could mean that a healthy human cell
may be turning into a tumor cell or the tumor tissue might be
entering in a new degree of aggressiveness.

The differential network analysis consists of the following
steps: (i) construction of a correlation network for each state,
which are denoted by G1,G2, . . . ,Gr , (ii) computation of the
statistic test, denoted by θ , which quantifies the differences
among the networks, and (iii) a permutation test.

The PDFG is the probability density function of some
topological feature x and has nv elements x1, x2, . . . , xnv .
Examples of topological features are the set of eigenvalues of the
adjacency matrix of the graph, or graph centrality measures. Let
δ be the Dirac’s delta and the brackets “〈〉” denote the expectation
according to the probability law of a random graph. Formally, the
PDFG (g) is defined as:

ρg(x) = lim
nv→∞

〈 1
nv

nv∑
j=1

δ(x− xj/
√
nv)〉 (1)

In real systems, the PDFG is unknown. To estimate the PDFG,
BioNetStat uses the Gaussian Kernel estimator implemented
by the function density of the R base package. The user can
choose between the Sturges’ (Sturges, 1926) and the Silverman’s
(Silverman, 1986) criteria to define the Kernel bandwidth for
the Gaussian Kernel estimator. In the analyses performed in this
work, we used the Sturges’ criterion.

2.2.1. Computation of the Statistic Test

The differential network analysis is a comparison between two or
more graphs based on their PDFG.

The θ statistic is calculated as follows:

1. For each graph Gi (i = 1, . . . , r), compute the PDFG denoted
by ρgi .

2. Calculate the average PDFG as:

ρgM =
∑r

i=1 ρgi

r
. (2)

3. Calculate the Kullback-Leiber (KL) divergence between (ρgi )
and ρgM :

Di = KL(ρgi |ρgM ) (3)

4. The statistic θ , which measures the difference among graphs,
is the average distance:

θ =
∑r

i=1 Di

r
. (4)

The KL divergence measures the discrepancy between two
probability distributions. For graphs, we can use the KL
divergence to select the graph model that best describes the
observed graph or to discriminate PDFGs (Takahashi et al., 2012).
Formally, we define the KL divergence between graphs as follows.
Let g1 and g2 be two random graphs with densities ρg1 and ρg2 ,

respectively. If the support of ρg2 contains the support of ρg1 , then
the KL divergence between ρg1 and ρg2 is (Takahashi et al., 2012):

KL(ρg1 |ρg2 ) = −
∫ +∞

−∞
ρg1 (x) log

ρg1 (x)

ρg2 (x)
dx (5)

where 0 log 0 = 0 and ρg2 is called the reference measure. If
the support of ρg2 does not contain the support of ρg1 , then
KL(ρg1 |ρg2 ) = +∞. The KL divergence is non-negative, and
it is zero if and only if ρg1 and ρg2 are equal. For many cases,
KL(ρg1 |ρg2 ) and KL(ρg2 |ρg1 ) are different when ρg1 and ρg2 are
not equal, i.e., KL is an asymmetric measure.

2.3. Differential Network Analysis of
Multiple Graphs Based on Graph
Centralities
As in section 2.2, consider a set of nodes V = {v1, v2, . . . , vnv}
and a set of edges E = {e1, e2, . . . , ene} of the graph, r
states S1, S2, . . . , Sr , and oi samples (number of observations)
of each state Si, for i = 1, 2, . . . , r. The aim is to test
if the centrality values of r graphs G1,G2, . . . ,Gr , of each
state, are the same among all graphs. BioNetStat considers
five node centrality measures, namely degree, eigenvector,
closeness, betweenness, and clustering coefficient, and one edge
centrality (edge betweenness). The centrality measures quantify
the importance of each node/edge according to its position
in the network. The degree centrality counts the number of
connections of a node (Barabási and Oltvai, 2004). In correlation
networks, a node with high degree centrality is correlated with
several other nodes/variables. This, such a node may be involved
in numerous biological processes. The eigenvector centrality
of a node is proportional to the centralities of its neighbors
weighted by the strength of the connections (Bonacich, 1972).
That is, a node is progressively more important as it connects
with higher numbers of strongly connected neighbors nodes.
The closeness and betweenness centralities are related to the
shortest paths in the network (Rubinov and Sporns, 2010). The
closeness centrality measures the average proximity of a node
to all other nodes (Freeman, 1978). The betweenness centrality
measures the importance of a node in the communication of
the network. It counts how many shortest paths pass through
the node (Freeman, 1978). The clustering coefficient quantifies
how connected the neighbors of a node are (Watts and Strogatz,
1998). Finally, the edge betweenness centrality is similar to the
betweenness centrality for nodes (Girvan and Newman, 2002).
It quantifies how many shortest paths pass through an edge,
measuring its importance in the communication of the network.
The mathematical definitions of these six measures are shown in
the Table S5.

Alterations in the centrality measures among networks means
that the importance of the gene/protein/metabolite changed, i.e.,
its connectivity was altered regarding the main issues associated.
Our tool, therefore, affords evaluation of data by assessing: (i)
importance of a node in relation to the entire population of nodes
in the network; (ii) proximity among nodes; (iii) importance of
a node in the communication within the network, and (iv) the
connectivity strength of the network as a whole.
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The differential analysis consists of the same steps described
in section 2.2.1. However, since in this case we are comparing
the graphs centralities, the PDFG ρgi is replaced by the vector of
centrality measure and the Di by the Euclidean distance between
the vector of nodes/edges centralities of graph Gi and the vector
containing the average centralities among the graphs (steps 2 and
3 of section 2.2.1).

2.4. Differential Node Analysis of Multiple
Graphs Based on Node Centralities
Consider a set of nodes V = {v1, v2, . . . , vnv} and a set of
edges E = {e1, e2, . . . , ene} of the graph, r states S1, S2, . . . , Sr ,
and oi samples (number of observations) of each state Si, for
i = 1, 2, . . . , r. The aim is to test if the importance (centrality
value) of node vj, for j = 1, 2, . . . , nv, or for the edge el, for
l = 1, 2, . . . , ne, is the same among r graphs G1,G2, . . . ,Gr , of
each state. In the same way that was done in section 2.3, here we
considers the five node centrality measures (degree, eigenvector,
closeness, betweenness, and clustering coefficient) and the edge
centrality (edge betweenness).

The differential node analysis consists in similar steps as in
section 2.2: (i) construction of a correlation network for each
state, which are denoted by G1,G2, . . . ,Gr , (ii) computation of
the statistic test, denoted by θ , which quantifies the differences
among the node centralities of each network, and (iii) a
permutation test.

2.4.1. Computation of the Test Statistic for Node

Comparison

The θ statistic is calculated as follows:

1. For each node Vj (j = 1, . . . , nv) or for each edge El (l =
1, . . . , ev) in graph Gi (i = 1, . . . , r), compute the node

centrality denoted by C
j
i, or edge centrality, replacing j for l.

2. From the r centralities of each node/edge in each graph, we
obtain an average node/edge centrality as:

Mj =
∑r

i=1 C
j
i

r
. (6)

3. Calculate the distance between the centrality of nodes/edges in

each graph Gi (C
j
i) and the average node/edge centrality (Mj):

D
j
i = |Cj

i −Mj|. (7)

4. The statistic θ , which measures the difference among
centralities for each node/edge j of graphs, is the average
distance:

θ =
∑r

i=1 D
j
i

r
. (8)

2.5. Permutation Test
The hypotheses to be tested are defined as:

H0 : θ = 0 vs. H1 : θ > 0.
To construct the null hypothesis we perform a permutation

test as follows:

1. Compute θ̂ .

2. Construct r new graphs by resampling the observations
without replacement.

3. Compute θ̂∗ by using the graphs constructed in step 2.
4. Repeat steps 2 and 3 until obtaining the desired number of

permutation replications.
5. Test if θ̂ = 0 using the empirical distribution obtained in steps

2–4. Gather the information from the empirical distribution of
θ̂∗ to obtain a p-value for θ̂ = 0, by analyzing the probability
of obtaining values equal or greater than θ̂ .

2.6. Description of the BioNetStat Package
BioNetStat is implemented in R http://cran.r-project.org/,
provides a graphical interface, and is used to study correlation
networks. It is based on the following packages: (i) CoGA
to calculate the PDFG measures and the Kullback-Leibler
divergence; (ii) shiny, shinyBS, yaml, whisker, and
RJSONIO for browser interface; (iii) igraph to compute
graph topological properties; (iv) Hmisc and psych for graph
inference; and (v) ggplot2, pathview, pheatmap, and
RColorBrewer for plotting.

BioNetStat receives two files as input. One is the Biological
samples file, with the pre-processed data, containing the values
of the variables (e.g. gene expression levels or metabolites
concentration). This file must be a table, in which the columns
indicate the variables and rows indicate the biological samples.
At least one of these columns should indicate the label of
rows (e.g. state to which each biological sample is related
to). A second file, variable set file, contains the pre-defined
set of variables (e.g., sets of biological variables belonging
to the same metabolic pathways, sharing the same Gene
Ontology terms). As an example of gene set collections, we
suggest the use of Molecular Signature Database (MSigDB
in http://www.broadinstitute.org/gsea/msigdb/index.jsp)
(Subramanian et al., 2005), which is available for download.

For differential network analysis, presented in sections 2.2
and 2.3, BioNetStat returns a table containing the set name,
the number of compared graphs, the size of each set, the
statistics of the test, the permutation-based p-values, and the
adjusted p-values by False Discovery Rate method (Benjamini
and Hochberg, 1995) for multiple tests (q-values). An example of
the output is shown in Supplementary Data Sheet 1. If the user
performs the node differential analysis (section 2.4), the software
returns a table containing the variable name, the statistics of
the test, the permutation-based p-values, the q-values, and the
node/edge centrality in each network, as shown in Table 1.

BioNetStat also includes a visual inspection of alterations
in the correlation networks (heatmaps of the adjacency
matrices). It also includes a list of the differences in the
pairwise correlations, a table of variable set properties (e.g.,
spectral entropy, average node centrality, and average clustering
coefficient) for each biological state, a rank of the centrality
and local clustering coefficients, and a comparison of the
measurements obtained in each state by heatmaps and boxplots.
Also, BioNetStat provides a metabolic KEGG pathway view,
using pathview R package. This functionality allows the user
to visualize the gene expression, the concentration of proteins
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TABLE 1 | Differential node analysis based on the degree centrality.

Degree centrality

θ Statistic p-value q-value AST OAST ODG GBM

MAPK3 25.151 0.001 0.017 25 28.1 18.7 9.3

MAPK10 19.904 0.001 0.017 29 30.7 22.2 17.5

MAPK9 18.653 0.001 0.017 27.9 30.9 22.4 17.8

TOLLIP 17.877 0.002 0.026 25 28.2 20 15.3

TAB1 17.393 0.001 0.017 27.2 30.8 25.2 16.1

PIK3R1 17.098 0.001 0.017 28.9 30.7 24.5 18

AKT3 17.013 0.001 0.017 31.1 31.4 24.2 21.3

PIK3CB 15.215 0.002 0.026 29.1 31.8 23.9 21.7

Statistical tests results of the comparison of four glioma subtypes on Toll like receptor

signaling pathway geneset networks. Eight genes were selected as differentially

coexpressed, by considering a q-value threshold at 0.05. AST, astrocytoma; OAST,

oligoastrocytoma; ODG, oligodendroglioma; GBM, glioblastoma. BioNetStat identified

genes on important cell regulatory pathways involved in gliomas formation.

and metabolites, and the centrality of nodes at the KEGG
pathway maps.

The BioNetStat pipeline is summarized in Figure 1.
For a detailed tutorial and manual, we refer the user
to the Bioconductor page: doi: 10.18129/B9.bioc.
BioNetStat.

2.7. Example Datasets
To illustrate the utility of BioNetStat, we considered two
different datasets: (i) gene expression dataset from glioma, and
(ii) a plant metabolism dataset. The first dataset was selected
because the cancer gene expression data contain thousands of
variables and hundreds of samples (common features in this
area), allowing robust analysis. The second dataset was motivated
by a large number of experiments in plant studies that use a small
number of replicates.

The glioma dataset was obtained from a public database
(TCGA) (Tomczak et al., 2015). The glioma is a brain
tumor that occurs in glial cells, a tissue in charge of
protecting and nourishing the neurons (Purves et al., 2001).
We used gene expression data of 19,947 genes obtained
from 612 samples divided into four cancer cell types: 174
oligodendroglioma samples, 169 astrocytoma samples, 114
oligoastrocytoma samples, and 155 glioblastoma multiforme
(GBM) samples. The tumor tissues have different degrees of
aggressiveness. GBM is the most aggressive, while astrocytoma,
oligodendrogliomas, and oligoastrocytoma are less aggressive
than GBM (Louis et al., 2016). To approximate the genes
expression levels distribution to a normal distribution, we
transformed the values by their logarithm to the base two. For
constructing the correlation networks, we performed Spearman’s
independence test between each pair of genes and inserted an
edge for those whose p-value is smaller than 0.05. The absolute
Spearman’s correlation coefficient weights all edges.

The plant metabolism dataset contains 73 metabolites from
whole-plant sorghum development (de Souza et al., 2015).
The data were obtained from five organs (leaves, culm,

roots, prop roots, and grains) of six biological samples. We
consider correlation graphs in which the edges are weighted by
Pearson’s correlations >0.75, as used by Jeong et al. (2001) and
Ding et al. (2015).

3. RESULTS AND DISCUSSION

To evaluate the performance of BioNetStat, we applied it on
two datasets, namely glioma, and sorghum, and compared it to
GSCA. The results for these comparisons are described in the
following sections.

3.1. Analyses Using Glioma’s Data Set
We performed Monte Carlo experiments to verify the ability
of BioNetStat (based on the PDFG and the degree
centrality) and GSCA to control the rate of false positives
(control the proportion of type I error). We combined all 612
biological samples from four cancerous tissues (astrocytoma,
oligoastrocytoma, oligodendroglioma, and GBM). For each
test, we randomly selected, from a uniform distribution, 120
biological samples, and 50 genes to build each network. Thus,
we consider that they come from the same dataset (i.e., under
the null hypothesis). To analyze the results, we estimated the
proportion of false positives to each p-value threshold. We
analyzed the performance of the three methods (BioNetStat
based on the PDFG and the degree centrality, and GSCA) when
comparing five and ten networks (Figures S1A,B). Under the
null hypothesis, we expect that the observed proportion of false
positives is similar to the expected proportion set by the p-
value threshold. In Figure S1, we observe that all methods indeed
control the rate of false positives as expected.

To measure the statistical power (the ability to detect
differences among two or more networks when indeed they
are different) of the methods, we build r networks similarly
to described in the previous paragraph. However, for one of
the networks, we permuted the measurements of some gene
expressions to change its co-expression pattern. The proportion
of permuted genes is denoted by γ . In other words, for one of the
networks we set γ > 0 (the network is different from the others)
and γ = 0 for the others. Therefore, we expect that the methods
detect that there is a different network. Then, to estimate the rate
of false positives, we apply the tests in two networks selected from
the r − 1 networks that are under the null hypothesis (γ = 0).
Here, we expect to obtain a rate of false positives similar to the
level of significance set by the p-value threshold. We carried out
this experiment 1,000 times for different proportions of altered
genes (γ = 0.05, 0.1, 0.2, 0.3, 0.5) and number of networks (r =
2, 3, 5, 10, 15, 20).

To summarize the statistical power of the test, we constructed
Receiver Operating Characteristic (ROC) curves. The x and
y axes of the ROC curves are the empirical false and true
positive rates, respectively. The area under this ROC curve (AUC)
summarizes the empirical power of the test. Under the alternative
hypothesis (when at least one of the networks are generated by a
different model), we expect that the proposed test present a ROC
curve above the diagonal and consequently an AUC > 0.5.
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FIGURE 1 | Schematic diagram of BioNetStat. BioNetStat receives an input file containing the values of the variables to be analyzed and r biological states

(S1, . . . ,Sr ). This figure illustrates the method performed with PDFG, however it can be replaced by centralities (such as Degree, Betweenness, and Closeness)

without loss of generality.

In Figures 2A,B, we show the AUC when we compare five
and ten biological states/networks (denoted by r), respectively, to
γ = 0.05, 0.1, 0.2, 0.3, 0.5. In Figures 2C,D, we show the AUC for
each r = 2, 3, 5, 10, 15, 20, and a fixed γ = 0.1, 0.2, respectively.

As expected, we observe in Figures 2A,B that both
BioNetStat (based on PDFG and the degree centrality)
and GSCA increase the statistical power proportionally to the
increase of γ . Moreover, the performance of BioNetStat
based on the PDFG presented lower power than BioNetStat
based on the degree centrality and GSCA for 0.05 ≤ γ ≤ 0.2
(Figure 2A). By comparing ten networks, we observe that the
power of GSCA becomes lower than BioNetStat based on
the degree centrality for γ ≥ 0.05, and similar to BioNetStat
based on PDFG for γ ≥ 0.2 (Figure 2B).

We also observed that for a fixed γ , the empirical power
decreases with the increase of the number of networks, as shown
in Figures 2C,D. By comparing the performance of the methods,
we observe that the empirical power of GSCA is greater than
BioNetStat when the number of networks is small (r =
2, 3) and the changes in the networks are moderate (γ =
0.1) (Figure 2C). When the number of networks is five, the
performance of BioNetStat based on the degree centrality is
similar toGSCA for the two evaluated values of γ (Figures 2C,D).
When the number of networks is >10 and γ ≥ 0.2, the power
of BioNetStat based on PDFG becomes greater than GSCA.
Furthermore, we observe that the empirical power of GSCA
decreases faster than BioNetStat with the increase of the
number of networks.

Besides the statistical power, other criteria are relevant in the
choice of themethod to be used. In the following steps, we further
analyze the glioma dataset.

We applied BioNetStat based on PDFG and GSCA in
the glioma dataset comparing gene co-expression networks

across the glioma types. We defined gene sets according to the
canonical pathways obtained fromMolecular signature Database
Collection v5 (Subramanian et al., 2005). That database contains
1,329 canonical pathways. We performed the tests only with the
subsets that presented at least 10 genes. Then, we tested the 1,289
gene sets.

We show the results of the tests, each one based
on 1,000 permutation tests, for all gene sets in
Supplementary Data Sheet 1. For the significance values
(α) equal to 0.05 and 0.1, the total number of gene sets, which has
at least one network statistically different from each other, were
490 and 801, respectively. One hundred and twenty-two, and
305 gene sets were co-identified by both methods considering a
q-value of 0.05 and 0.1, respectively. For α = 0.05 and α = 0.1,
BioNetStat identified, respectively, 62 and 79 gene sets that
were not identified by GSCA. The latter identified, respectively,
306 and 417 gene sets that were not identified by BioNetStat.
Thus, these results suggest that BioNetStat obtains results
complementary to GSCA.

This complementarity is already expected, because GSCA
and BioNetStat present different statistical tests. GSCA
compares the Euclidean distances among matrices. It performs
the pairwise comparison, edge by edge, being more sensitive
to localized changes (few edges modifications) in networks,
while BioNetStat is more adequate for differences spread
across the correlation matrix. On the other hand, methods
such as CoGA (Santos et al., 2015) and GSCNA (Rahmatallah
et al., 2014) compare networks based on their overall structures,
such as eigenvector centrality and spectral distributions. These
strategies do not detect local changes in the network, since
structural properties may remain unaffected. Rahmatallah
et al. (2014) stated that GSCNA detects alterations when the
major players such as genes of signaling pathways change
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FIGURE 2 | Comparison of the statistical power of BioNetStat based on PDFG (black circles) and degree centrality (red circles), and GSCA (blue triangles). The values

in the y-axis represent the areas under the ROC curves, considering the confidence interval of 95%. In (A,B), the x-axis represents the ratio of perturbed genes (γ ), for

the comparison of 5 and 10 networks, respectively. In (C,D), the x-axis represents the number of compared networks, which varies from two to 20, by fixing the γ to

0.1 and 0.2, respectively. Observe in (A,B) that both BioNetStat and GSCA statistical power increases proportionally to the increase of γ . We also observed that for a

fixed γ , the empirical power decreases with the increase of the number of networks, as shown in (C,D). Furthermore, we observe that the empirical power of GSCA

decreases faster than BioNetStat with the increase of the number of networks.

across the different biological states, whereas GSCA detects
these modifications when the average correlation changes
(Rahmatallah et al., 2014), such as in pathways related
to metabolism. As BioNetStat is based on topological
features of the network, we expect that it would detect
changes in signaling pathways rather than pathways related
to metabolism.

To verify this hypothesis, we classified the 1,289 gene
sets in signaling or non signaling pathways and compared
the performance of GSCA against BioNetStat. To classify
as signaling pathway, we searched for key terms in gene
sets such as “signal,” “cascade,” “receptor,” “activ*,” “regula*,”
“pid,” “ach,” “arrestin,” and the transcription factor names
obtained from MsigDB website. The proportion of signaling
pathways in the 1,289 gene sets is 51.2%. Only the gene
sets selected by each method for a q-value threshold at 0.05
were considered. Our test classified 52.8% of the selected
gene sets by GSCA as signaling pathways. Whereas, for
BioNetStat, the test selected 59.2% out of 184 gene sets
as signaling pathways. We performed the proportion method
(prop.test R function), considering the null hypothesis that
measured proportion is equal to 51.2% and the alternative

that the measured proportion is greater than 51.2%. Only
BioNetStat presented a proportion of signaling pathways
statistically greater than the entire dataset (p = 0.018),
whereas GSCA did not (p = 0.269). Therefore, as expected,
BioNetStat detects more changes in signaling pathways
than GSCA.

To highlight the applicability of the proposed method,
we went deeper in the analysis of the 62 gene sets that were
detected by BioNetStat, but not by GSCA, considering
a q-value threshold at 0.05. Among this 62 differentially
coexpressed gene sets, 38 were classified as signaling
pathways. We searched for a gene set that contained NFκB
gene, a transcription factor which controls more than a
hundred of genes, well-known to be associated with glioma’s
formation (Mieczkowski et al., 2015; Kinker et al., 2016;
Ferrandez et al., 2018). Then, we selected “KEGG TOLL-
LIKE RECEPTOR SIGNALING PATHWAY.” Also, Toll-like
receptors (TLRs) is an important gene set, part of a signaling
pathway gene set associated with gliomas (Ferrandez et al.,
2018). TLRs are membrane-bound receptors, which serve
as crucial pattern recognition receptors with central roles
in the induction of innate immune responses (Kawai and
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Akira, 2007). Pathogen recognition by TLRs provokes rapid
activation of innate immunity by inducing production of
proinflammatory cytokines and upregulation of costimulatory
molecules (Ferrandez et al., 2018). Therefore, the TLR
genes trigger a signaling chain reaction that leads to NFκB
activation which, in turn, triggers inflammatory responses
(Kawai and Akira, 2007).

Our analyses suggested that at least one network is different
from the others in the TLR gene set. Then, we performed a
pairwise comparison of the four cancer types to understand
better how they differ from each other. Figure 3 presents
the dendrogram obtained by calculating the pairwise Jensen-
Shannon divergence (a symmetric version of KL divergence
to pairwise comparison) between the networks. We expected
that the most aggressive cancer type, namely GBM, be in
one branch and the other three types, on another branch.
However, the cancer types GBM and oligoastrocytoma are
in one branch and oligodendroglioma, and astrocytoma are
in another branch. The unexpected closeness between GBM
and oligoastrocytoma could be a consequence of a confusing
clinic classification method of gliomas subtypes. The TCGA
database classifies gliomas only into four types astrocytoma,
oligoastrocytoma, oligodendroglioma, and GBM. However,
there is a more aggressive type of oligoastrocytoma, called
anaplastic oligoastrocytoma, that can also be classified as a
glioblastoma with an oligodendroglial component (Nakamura
et al., 2011). Since 2007, the World Health Organization (WHO)
defines the anaplastic oligoastrocytoma as a Glioblastoma
(Marucci, 2011). Therefore, there must be intermediate
states between both types (Oligoastrocytoma and GBM),
not discriminated in our data, that explain this closeness
between them.

BioNetStat also allows us to identify in which node
the connections change significantly by the differential node
analysis. We performed this analysis by using the degree
centrality. The TLR signaling pathway presented statistically
significant changes of nodes degree centrality (θ = 2.88

FIGURE 3 | Dendrogram of the distances among the four glioma subtypes

regarding the Toll like receptor signaling pathway. The unexpected closeness

between Oligoatrocytoma and GBM is probably due to the specific features in

tissues characterizations.

and p = 0.027). In this gene set, eight genes presented
their degree centrality significantly altered (Table 1). Three
of them are mitogen-activated protein kinase MAPK (3, 9,
and 10) and are integrated into the RAS/MAPK signaling
pathway. When RAS (Rat Sarcoma) genes are active, they
regulate the MAPK pathway and vital processes into the
cell, such as proliferation, differentiation, signal transduction,
apoptosis, and tumorigenesis (Mao et al., 2013). Modifications
in this pathway could lead to abnormal function of these
processes. As an example, the overexpression of RAS was
detected in astrocytoma and GBM (Mao et al., 2013). Other
three genes differentially coexpressed are in the PIK3-PTEN-
Akt-mTOR pathway. The genes PIK3 indirectly activates
Akt which, in turn, activates mTOR (mammalian target of
rapamycin). This gene cascade leads to an integration of
upstream signals into effector actions, controlling multiple
downstream targets involved in cell growth and division. Most
of the genes differently coexpressed such as MAPKs, PIK3s,
and AKT3 are involved into the gliomas formation (the PIK3
pathway is altered in about 70% of GBMs) (Mao et al.,
2013), demonstrating the importance of gene set detected
by BioNetStat.

3.2. Analyses Using Sorghum bicolor’s
Data Set
In the second data set, we studied how the metabolic networks
of five plant organs differ from each other. The 73 metabolites
analyzed in sorghum organs (leaf, culm, root, prop root, and
grains) were partitioned in five groups according to their
biochemical roles: carbohydrates, amino acids, organic acids,
nucleotides, and all 73 metabolites. We built one network for
each organ and each metabolic group. Then we compared the
networks across the organs using the PDFG, the centrality tests
of BioNetStat, and GSCAmethod.

The grain-filling stage in plants is largely dependent on
metabolic status (Schnyder, 1993). Thus, it is important
to understand to what extent the metabolic networks in
distinct organs differ from each other. de Souza et al. (2015)
investigated whether each organ performs a specific role in plant
metabolism during the grain-filling in sorghum plants. Here,
we complemented their study by analyzing the same dataset
based on a systemic point of view and network modeling.
First, we investigated if the PDFG and degree centralities are
different among the networks (organs). Table 2 presents the
results of PDFG, degree centrality, and GSCA tests. Comparing
the metabolic networks structures, through their PDFG, it
can be observed that at least one organ is different from
the others, regarding the all metabolites and the carbohydrates
set. According to the degree centrality analysis, the organs
networks are significantly different in the five metabolites
sets. GSCA detected the organic acids and the nucleotides sets
as differentially coexpressed. Analyzing the concentrations of
metabolites, de Souza et al. (2015) also found differences among
organs in the four metabolites sets.

We obtained pairwise distances among the organ networks
for those metabolic sets with a statistically significant difference.
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TABLE 2 | Results of the PDFG and degree centrality statistical tests comparing all five organs networks.

PDFG Degree centrality GSCA

Name Size θ Statistic p-value q-value θ Statistic p-value q-value θ Statistic p-value q-value

All 73 0.017 0.006 0.015 17.167 0.001 0.002 0.329 0.006 0.042

Carbohydrate 18 0.056 0.003 0.015 3.857 0.001 0.002 0.299 0.416 0.416

Organic acid 13 0.044 0.065 0.108 3.482 0.001 0.002 0.341 0.019 0.044

Amino acid 24 0.018 0.292 0.312 5.152 0.003 0.004 0.314 0.179 0.313

Nucleotide 12 0.034 0.312 0.312 3.041 0.006 0.006 0.352 0.019 0.044

The q-values < 0.05 are in bold.

FIGURE 4 | (A) Dendrogram of distances among five network PDFG for the groups of all metabolites and carbohydrates. (B) Dendrogram of distances among five

network degree cetrality of the organs for the organic acid metabolites. (C) Dendrogram of distances among five network of the organs for the organic acid metabolites

measured by GSCA. We can conclude that the grain network is more distant network from the others, reinforcing that this organ has a different metabolism.

Figure 4A shows the distances among networks according to
Jensen-Shannon divergence. Considering the all metabolites
network, the grain is significantly different from the culm,
prop root, and roots (Table S1). Additionally, according to
the carbohydrate results, the metabolism of the grains is
different from all other organs (Table S2). The results suggest
that the grain has a specific metabolic structure and that
the leaf network is more similar to the grain network than
to the other organs. Considering that the grain is the main
sink of the plant during the grain-filling (period of the
experimental harvest of the studied data) (de Souza et al.,

2015), we expected that its metabolism to be different from
other organs.

For the tests performed with the degree centrality, we
identified significant differences in all groups. The results suggest
that even if the network structure (PDFG) does not change,
the role of the metabolites and its mean correlation values
in each organ can be different. The organic acid, identified
by BioNetStat degree centrality network and GSCA can
exemplify this phenomenon. According to both methods, the
grain and leaf networks are the most distant (Figures 4B,C) and
statistically different from the remaining organs (Tables S3, S4).
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TABLE 3 | Differential node analysis based on degree centrality.

Degree centrality

Metabolite θ Statistic p-value q-value Leaf Culm Root Prop root Grain

Piruvate 4.219 0.001 0.003 10.328 1.906 0.765 0.821 9.579

Mevalonate 4.215 0.001 0.003 9.93 0 0.838 0 8.191

cis-Aconitate 3.582 0.001 0.003 9.361 0 0.872 0.821 6.693

AKG 3.499 0.001 0.003 9.474 2.641 0.872 5.11 10.854

2/3PGA 3.862 0.001 0.003 10.412 0.805 5.216 0 9.695

Chiquimate 3.523 0.002 0.004 8.97 0 0.913 2.517 7.994

Malate 3.029 0.003 0.005 10.374 1.917 0.765 5.206 7.376

Isocitrate 2.782 0.003 0.005 9.588 1.872 4.654 5.316 9.898

Citrate 2.631 0.009 0.013 10.019 1.857 2.702 6.104 7.156

PEP 2.205 0.064 0.083 9.393 1.863 3.583 5.111 2.529

Fumarate 2.387 0.089 0.105 4.018 1.845 3.505 0.829 10.01

trans-Aconitate 2.712 0.097 0.105 0 1.842 0.913 3.304 9.835

Succinate 2.115 0.141 0.141 8.871 1.84 4.567 6.22 7.738

Statistical tests results of comparison among five organs on the 13 organic acids. The table shows the metabolite’s name, the θ statistic, the nominal p-value, the adjusted p-value for

tests performed (q-value), and the degree centrality of each node in the five organs.

For this reason, we investigated which nodes changed the degree
centrality value in the organic acids network among the organs
(Table 3), by performing the differential node analysis. The GSCA
has not implemented a similar method capable of comparing
whether the importance of the nodes changes among states.
Therefore, we forwarded the analysis using only BioNetStat.

The majority of the metabolites of the organic acids
dataset belong to the citrate cycle (or Krebs cycle), a chain
of reactions that transfer energy (by electrons transferring)
from complete pyruvate oxidation to cofactors used in ATP
production (Siedow and Day, 2000). The network of the
organic acid is more connected in the leaf and grain than
in the culm, prop root and root. The average degree
centrality in the leaf and grain is 8.51 and 8.27, respectively,
whereas in the culm, prop root, and root networks the
average degree centrality is 1.41, 3.18, and 2.32, respectively
(extracted from Table 3). The metabolites with highest degree
centrality in the leaf and in the grain are the pyruvate
and the AKG (α-ketoglutarate), respectively (Table 3). These
results are in agreement with previous observations by
de Souza et al. (2015) that pointed out pyruvate as a central
molecule in metabolism, connecting the citrate cycle with many
other pathways. Our network analysis using BioNetStat
revealed that the AKG is also a relevant metabolite, being a
precursor of many amino acids synthesis pathways (Figure 5)
(Siedow and Day, 2000).

The analyzed data were collected between 10 a.m. and
12 a.m. when the leaf performs constant photosynthesis and
mobilization of carbon. Also, the grain metabolism is geared
toward storage of carbohydrate and proteins. Therefore, we
have evidence to believe that the average degree centrality of
metabolites are higher in the leaf and grain networks because
the organic acid metabolism of these organs is more active than
the organic acid metabolism of the other organs. Our findings
reinforce that network analysis brings a new view to the data,

since de Souza et al. (2015) did not find these molecules in
comparisons among organ metabolisms, as highly concentrated
in these organs. Furthermore, to highlight relevant variables
in the system, BioNetStat performs the differential node
analysis, a method not available in other tools considered in
this work.

4. CONCLUSION

BioNetStat is a network analysis Bioconductor package,
containing a Graphical User Interface, that allows the comparison
of two or more correlations networks. The proposed method
is an adaptation and generalization of CoGA, which aims to
meet demand on multistate experiments. We show here that
BioNetStat performs the differential network analysis,
exploring networks features and highlighting the main
differences among states. Moreover, it carries out statistical
tests to estimate the significance of the results. We showed that
all the statistical tests performed by BioNetStat effectively
control the rate of false positives. Our simulation experiments
and applications in real datasets suggest that BioNetStat
complements and advances previous tools (CoGA and GSNCA)
for differential co-expression analysis, i.e., BioNetStat allows
the comparison of more than two networks simultaneously.
We also conclude that BioNetStat is less sensitive to the
increase in the number of networks than GSCA. Furthermore,
it is able to identify more gene sets associated with important
signaling pathways than GSCA, and also highlights key genes
in the networks (centrality analyses). The study cases show
that BioNetStat helps to find differences beyond the
analysis of the network, highlighting features that can be
biologically supported while undetected by in orthodox analyses.
BioNetStat provides numerical results combined with visual
inspection in the graphical user interface that might be helpful
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FIGURE 5 | Citrate cycle (TCA Cycle) metabolic pathway from KEGG database (Kanehisa and Goto, 2000). Each metabolite, represented by the circles, is partitioned

in five columns, in which each one represents one of the organs, leaf (L), culm (C), prop root (PR), root (R), and grains (G), from the left to right, as shown in the

highlighted node of 2-Oxoglutarate (AKG) at the right of the figure. The color of the columns represents the degree centrality value of that metabolite in the organ

network. The values of degree centrality in this figure vary from 0 to 10.9.

in the identification of critical elements of the analyzed system.
BioNetStat is not restricted to analyses of genes coexpression
networks. Differently from other tools, BioNetStat can be
used with different types of data sets such as the ones generated
by metabolomics, proteomics, phenomics, and possibly social
and economic data.
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