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Abstract

Background: Helium (4He) ion beam therapy provides favorable biophysical characteristics compared to currently

administered particle therapies, i.e., reduced lateral scattering and enhanced biological damage to deep-seated

tumors like heavier ions, while simultaneously lessened particle fragmentation in distal healthy tissues as observed

with lighter protons. Despite these biophysical advantages, raster-scanning 4He ion therapy remains poorly explored

e.g., clinical translational is hampered by the lack of reliable and robust estimation of physical and radiobiological

uncertainties. Therefore, prior to the upcoming 4He ion therapy program at the Heidelberg Ion-beam Therapy

Center (HIT), we aimed to characterize the biophysical phenomena of 4He ion beams and various aspects of the

associated models for clinical integration.

Methods: Characterization of biological effect for 4He ion beams was performed in both homogenous and patient-

like treatment scenarios using innovative models for estimation of relative biological effectiveness (RBE) in silico and

their experimental validation using clonogenic cell survival as the gold-standard surrogate. Towards translation of

RBE models in patients, the first GPU-based treatment planning system (non-commercial) for raster-scanning 4He

ion beams was devised in-house (FRoG).

Results: Our data indicate clinically relevant uncertainty of ±5–10% across different model simulations, highlighting

their distinct biological and computational methodologies. The in vitro surrogate for highly radio-resistant tissues

presented large RBE variability and uncertainty within the clinical dose range.

Conclusions: Existing phenomenological and mechanistic/biophysical models were successfully integrated and

validated in both Monte Carlo and GPU-accelerated analytical platforms against in vitro experiments, and tested

using pristine peaks and clinical fields in highly radio-resistant tissues where models exhibit the greatest RBE

uncertainty. Together, these efforts mark an important step towards clinical translation of raster-scanning 4He

ion beam therapy to the clinic.
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Background
With nearly 150,000 patients treated globally to date, par-

ticle therapy has revolutionized cancer therapy by offering

enhanced precision and radiobiological properties over the

conventional photons [1]. At the Heidelberg Ion-Beam

Therapy Center (HIT), proton (1H) and carbon (12C) ion

beams, the leading modalities in hadrontherapy, are applied

clinically, with two additional particle species available for

experimentation: oxygen (16O) and helium (4He) ion

beams. Interest in medical applications using helium ions

began during the clinical trials at Lawrence Berkeley La-

boratory (LBL) between the years of 1977 and 1993, with

over 2000 patients successfully treated [2]. Since the pro-

gram’s end, 4He ion beams remain clinically unexploited.

It is well known that, experimentally, heavier ions ex-

hibit greater biological damage and consequently, the

biophysical properties of 4He are intermediate of the two

clinically administered particle beams. That being said,

application of helium ions provides a distinct clinical ad-

vantage, i.e. favorable dose distributions with attributes

such as a sharper Bragg peak and lateral penumbra (re-

duced range straggling and scattering) compared to pro-

tons, and similar potential for tumor control with a

substantially reduced fragmentation tail compared to

carbons ions [3, 4]. With these characteristics, helium

ions have been proposed as an ideal treatment option

for radio-resistant diseases and delicate patient cases e.g.

meningioma and pediatrics [5, 6].

Next year, HIT will launch the first European clinical

program using therapeutic 4He ion beams, which marks

the world’s first clinical application of raster-scanning
4He ion therapy. Over the past decade, substantial ef-

forts have been made at HIT to characterize 4He ion

beams via measurement and FLUKA Monte Carlo (MC)

simulation [7, 8] both dosimetrically, i.e. in terms of

depth and lateral dose distributions with single pencil

beam (PB) and spread-out Bragg peak (SOBP) plans, as

well as nuclear fragmentation [9–12]. In addition, classi-

fication of the beam’s biological effects is in progress,

studying both in silico [5] and clonogenic cell survival in

clinically-relevant conditions [13–15]. Presently, there is

no commercial treatment planning system (TPS) avail-

able for 4He ion beams; however, research-based tools

were recently introduced or updated to allow planning

with 4He ion beams [10, 14, 16].

Relative to the clinical standard photons and protons,
4He ion beams exhibit, in certain cases, more advanta-

geous biological dose distributions with a higher linear

energy transfer (LET) [17] in the tumor, resulting in su-

perior relative biological effectiveness (RBE) in the target

compared to the entrance channel, a valuable attribute

for treatment of deep-seated radio-resistant tumors. To

anticipate variability of tissue-specific radio-sensitivity in

the clinic, the TPS predictions of physical dose will be

coupled with a biophysical (RBE) model for calculation

of an effective dose.

In contrast with proton RBE with nearly 300 experi-

mental in vitro measurements, data for helium is rela-

tively scarce (~ 1/3 as large), leading to larger

uncertainties in helium RBE. As for in vivo investigation

of 4He ion beams, few publications examine evidence of

enhanced tumor control compared to conventional tech-

niques, most of which originate from the LBL trials from

prior decades, yet only a fraction of these works relate

findings to RBE [18, 19]. In preparation for the first pa-

tient treatment with 4He ion beams at HIT, we com-

pared the predictions of three existing RBE models to

biological measurements in vitro with monoenergetic

beams and in clinically-relevant scenarios, as well as

highlighting the inter- and intra-model variations as

a function of tissue type, dose level, LETd, depth and

beam configuration in silico. For the in vitro study, a

cell line exhibiting substantial radio-resistance was se-

lected for irradiation with both pristine beams and

clinical-like fields. These more radio-resistant tissues (α/

β < 4Gy) are of particular interest considering they make

up only ~ 5% of the available experimental data in the

literature for 4He ion beams. In addition to in vitro

study, patient treatment plans were calculated and com-

pared, applying the various 4He RBE schemes in place of

a constant RBE [20]. The three published models for

RBE prediction with 4He ion beams investigated in this

study are as follows: a data-driven phenomenological

model (DDM) [13, 14] and two biophysical models fea-

turing the Local Effect Model (LEM, version IV) [21]

and the modified Microdosimetric Kinetic Model

(MKM) [22, 23]. With a long-term outlook in mind for
4He RBE study and clinical integration, this work can

serve as a foundation for clinical decision-making re-

garding effective dose calculation, in preparation for the

first 4He ion beam therapy patient treatments in Europe.

Methods and materials

Experimental investigations

Cell culture and clonogenic assay

Murine renal adenocarcinoma cells (Renca ATCC®

CRL-2947™) were cultured in RPMI-1640 Medium (Gibco,

Germany) supplemented with 10% heat-inactivated Fetal

Bovine Serum (FBS, Millipore, Germany) and 1% Penicil-

lin/Streptomycin (Gibco, Germany) at 37 °C and 5% CO2

atmosphere. Clonogenic cell survival assay, i.e. seeding, ir-

radiation, incubation and read-out, was performed as previ-

ously described using 96-well plates [24]. Image acquisition

took place with the IncuCyte® System (Essen BioScience,

UK) for colony counting. A baseline characterization of the

cell line was performed separately prior to experiment A

(pristine peaks) and experiment B (SOBPs), which involved

photon irradiation delivery (LINAC, 6 MV, Artist Siemens)
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with dose levels of 1, 2, 4, and 8Gy for determination of

the LQ parameters (αx and βx).

Irradiation with Monoenergetic beams

To most closely resemble track segment conditions, cell

were irradiated with monoenergetic 4He beams (E4-He =

56.66MeV/u, dBP = 25.9mm) in experiment A. Two sets

of biological measurement points were taken at 6mm and

12mm water-equivalent depth (WED). Cell-kill measure-

ments were collected for the pristine beams at dose levels

of approximately 0.25, 0.5, 0.75, 1.0, 1.5, 2.0, 2.5, and 3.0

Gy. Dosimetric measurements were performed using a

Farmer ionization chamber (TM30010, PTW, Freiburg)

for validation of FLUKA MC predictions.

Irradiation with SOBPs

For investigating clinical-like conditions, the same plate

configuration was used as in the base-line photon irradia-

tions. Experiment A and B involved 96-well plates posi-

tioned against various thicknesses of PMMA, such that

each plate corresponded to a specific depth (and hence,

LETd) in the SOBP irradiation [24], with positions of 3.0

cm (p1), 5.98 cm (p2), 7.61 cm (p3), and 8.35 cm (p4) in

PMMA. WED values were calculated using a multiplica-

tive factor of 1.165 and are highlighted in Fig. 1 (right

panel). SOBP plans were physically optimized in water for

the following doses in the 12 cm× 8 cm× 4 cm target re-

gion centered at 8 cm depth: 0.5, 1.0, 2.0, 3.0, 4.0 and 6.0

Gy. The 96-well plate geometry with corresponding ma-

terial composition was integrated into the FLUKA MC

simulation.

Models and MC simulation

Modeling the relative biological effectiveness of 4He ion

beams

Biological dose prediction begins with modeling cell sur-

vival (S), traditionally described as a linear-quadratic (LQ)

trend, with α and β representing the linear and quadratic

coefficients, respectively, as a function of physical dose

(D). The ratio of the linear and quadratic coefficients, (α/

β)x, is often referred to as a description for the sensitivity

of the cell line when exposed to photon radiation (x). The

RBE is a multifunctional quantity defined as the isoeffec-

tive dose ratio between a reference radiation (Dx) and a

particle radiation (Dp), traditionally modeled as a function

of three parameters: (α/β)x, LET and Dx. Biological (or ef-

fective) dose (DRBE) is defined as the product of the RBE

and the physical dose.

Within the LQ framework, we can determine a de-

pendency of RBE on (α/β)x, the helium absorbed dose,

RBEα and Rβ [13, 14]:
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In the next sections, the expressions for RBEα and Rβ

per the three models will be introduced. In the case of

the LEM, the LQ approximation for the photon response

is valid up to threshold dose Dt, which marks the transi-

tion dose at which the survival curve for photon irradi-

ation is assumed to have an exponential shape with the

Fig. 1 Left: cross-section of schematic for the 96-well plate geometry and composition in FLUKA MC for experiment A and B. Right: central line

profile through physically optimized SOBP plan for experiment B, displaying both physical dose and LETd. The biological measurement positions

are designated by the highlighted regions (p1, p2, p3, p4)
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maximum slope Smax = αx + 2βxDt [25]. In this work,

the dose levels have been chosen within the range of

LQ applicability, i.e. < Dt.

The predictions of the three RBE models have been

assessed by comparing RBEα and Rβ as a function of

LET, and the RBE values as a function of LET and dose

for two tissue types irradiated with 4He ion beams. Pa-

rameters characterizing the hypothetical tissues consid-

ered for this study are reported in Table 1 and labeled

water case. The (α/β)x values were selected similar to re-

cent works [26] to represent late-responding tissues (low

(α/β)x from 2 to 3 Gy), and early-responding normal tis-

sues and most common tumors (high (α/β)x from

around 10 Gy).

Data-driven LET-based model

A phenomenological model for RBE with 4He ion beams

was developed by fitting in vitro experimental data avail-

able in the literature in Mairani et al. 2016a [11] and re-

fined in Mairani et al. 2016b [12]. For RBEα, the

following parameterization has been introduced:

RBEα ¼ 1þ k0 þ
α

β

� �−1

x

" #

k1L
�e−k2L

�2

ð3Þ

where L* represents the rescaled 4He LET [13]:

L� ¼ LET−LETx þ LET60Co ð4Þ

LETx and LET60Co are, respectively, the LET of pho-

ton under study and of the reference 60Co. The parame-

ters used in eq. 3 are as follows [12]: k0 = 8.924 × 10− 2

Gy− 1 and k1 = 3.368 × 10− 1 μm·keV−1, and k2 = 2.858 ×

10− 5 μm2
·keV− 2. For Rβ, we have introduced an

LET-dependent parameterization fitting the running av-

erages of Rβ as function of LET:

Rβ ¼ b0e
−

L�−b1
b2

� �2
� �

ð5Þ

The coefficients for the Rβ parameterization are b0 =

2.66, b1 = 62.61 keV μm−1 and b2 = 48.12 keV μm−1 .

For comparison in track-segment conditions, we have

assumed L* = LET while for the clinically-relevant sce-

narios and in vitro studies, we used 6 MV photon beams

as a reference radiation for calculating rescaled L*

values.

Modified Microdosimetric kinetic model (MKM)

In the modified MKM [22, 23], for any radiation quality,

RBEα is expressed as a function of the saturation-corrected

dose-mean specific energy of the domain delivered in a sin-

gle event z�1D divided by the (α/β)x ratio:

RBEα ¼ 1þ
α

β

� �−1

x

∙z�1D ð6Þ

z�1D depends on z, the specific energy, and zsat, the

saturation-corrected specific energy which accounts for

the decrease of RBE due to the overkilling effect for high

specific energy values [27]. z depends on the radius of

the domain (Rd) while zsat depends Rd and the radius of

the cell nucleus (Rn) [22]. MKM input parameters (Rd

and Rn) have been tuned in a previous work [22] to re-

produce an in vitro experimental biological database of

Table 1 Photon parameters applied during the in silico investigations. The Dt parameter is required for LEM calculations only

αx [Gy
−1] βx [Gy

− 2] (α/β)x [Gy] Dt [Gy] calculation type References

0.2 0.1 2 6.2 water

0.2 0.02 10 15 water

0.036 0.024 1.5 5.65 prostate Brenner and Hall (1999) [39]

0.089 0.0287 3.1 7.41 prostate Terry and Denekamp (1984) [41]

0.077 0.009 8.6 13.41 head Jones and Sanghera (2007) [42]

0.0499 0.0238 2.1 6.31 head Meeks et al. (2000) [43]

Table 2 Clonogenic cell survival LQ fit parameters for photon (αx and βx) and helium ion beam (α and β) irradiation using the

Renca cells in vitro with corresponding LETd derived from MC simulation. Data for both experiment A (pristine peaks) and experiment

B (SOBPs) are provided

Exp. αx [Gy
−1] βx [Gy

−2] (α/β)x [Gy] α [Gy−1] β [Gy−2] LETd [keV/μm]

A 0.034 (±0.004) 0.018 (±0.001) 1.79 0.039 (±0.013) 0.029 (±0.003) 5.33

A 0.034 (±0.004) 0.018 (±0.001) 1.79 0.094 (±0.012) 0.046 (±0.012) 14.81

B 0.050 (±0.064) 0.023 (±0.014) 2.17 0.076 (±0.083) 0.024 (±0.02) 4.78

B 0.050 (±0.064) 0.023 (±0.014) 2.17 0.150 (±0.071) 0.018 (±0.018) 10.18

B 0.050 (±0.064) 0.023 (±0.014) 2.17 0.201 (±0.048) 0.017 (±0.005) 15.37

B 0.050 (±0.064) 0.023 (±0.014) 2.17 0.305 (±0.144) 0.022 (±0.032) 26.52
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initial RBE. The resulting best fit values of Rd = 0.3 μm

and Rn = 3.6 μm obtained in Mairani et al. 2017 have

been used in this work without further adjustments. For

the Rβ term, it is assumed [28]:

Rβ ¼ 1: ð7Þ

Local effect model (LEM)

The LEM-version IV developed by the GSI Helmholtz

Centre for Heavy Ion Research (Darmstadt, Germany)

[21] relates the biological response directly to the

double-strand breaks pattern and has been benchmarked

by its developers in various publications [10, 21]. The

LEM intrinsic αz tables are obtained using the PT RBE

Generator software by Siemens which is available at

HIT, while for βz, we have used the approximation βz = (

smax − αz)/(2Dt), with negative values found at high LET

forced to zero [25]. The LQ parameters are calculated at

different energies applying the low dose approximation,

which describes how to link the input LEM-calculated

intrinsic microscopic parameters, αz and βz, to the

macroscopic values, α and β. The initial RBE can be

written as:

RBEα ¼
1−e−αzd1

αxd1
ð8Þ

with Rβ as:

Rβ ¼
α

αz

� �2 βz
βx

� �

ð9Þ

d1 is the dose deposited by a single particle traversal

[29, 30].

MC simulation of the in vitro study

For both experiment A and B, the target (96-well

plate irradiation system) was incorporated into

FLUKA MC, including a detailed geometry of the

HIT beam-line [31], for validating the biological dose

models against experimental measurements. Once bio-

logical measurements were acquired, simulations were

executed to score physical dose and LETd, as well as

the various biological parameters necessary for DRBE

using the DDM, MKM and LEM. With a detailed

geometry of the 96-well plate target, parameters were

scored on a per well basis to reduce physical and bio-

logical uncertainties during evaluation of measure-

ment and simulation outcomes, as shown in Fig. 1.

Cell survival and, in turn, RBE results were compared

to MC prediction to validate enhanced cell-kill with

increased LETd for helium ions and to evaluate model

performance.

Patient studies and validations

Retrospective study: patient treatment planning and

forward computation of DRBE

In this work, the MC-based treatment planning tool

(MCTP) [32, 33] is employed to create biologically opti-

mized treatment plans and to perform forward dose cal-

culation for retrospective study. The MCTP relies on

FLUKA’s capability to describe the interaction and trans-

port of radiation with matter for 4He ion beams and is

coupled with both biophysical and phenomenological

RBE models for 4He. FLUKA has been benchmarked

against dosimetric data, demonstrating overall a satisfac-

tory agreement [11].

The MCTP uses dosimetrically commissioned scanned

pencil beams as available at HIT [34]. The data-driven

RBE model has been used for treatment plan optimization.

The MCTP tool relies on externally generated databases

for each biological effect model to calculate RBE and DRBE

values [37, 38]. To properly calculate effective dose for he-

lium ion beams, Z = 2 primary particles and secondary

fragments as well as Z = 1 secondary fragments must be

scored separately. Hence, both the DDM and a phenom-

enological model for Z = 1 were used during biological

dose weighting of Z = 2 and Z = 1, respectively [35].

MCTP-based plans have been calculated to achieve a

homogeneous three-dimensional DRBE of 2.0 Gy (RBE)

and 4.0 Gy (RBE) in the target region with a single field

and a two opposing fields arrangement in water. Two

targets were chosen: rectangular parallelepiped volumes

of 6 cm × 6 cm × 6 cm and 3 cm × 3 cm × 3 cm centered

at 12.5 cm water-equivalent depth. FLUKA MC scoring

for physical and biological quantities was performed in

voxels of 2 mm × 2mm × 2mm. The lateral PB spacing

was 3 mm while the depth separation between Bragg

peak positions of two consecutive energy slices was 2

mm. The plans have been calculated assuming two rep-

resentative tissues with (α/β)x of 2 Gy and 10 Gy as re-

ported in the first two rows of Table 1.

MCTP-based plans for two patients (previously treated

with protons at HIT) were simulated using one and two
4He ion beam portals. Beam configurations for the head

and prostate case involved a single field (superior-infer-

ior direction) and parallel opposed fields (anterior-pos-

terior / posterior-anterior direction), respectively. To

achieve dose homogeneity in the target of the head case,

a ripple filter has been used for broadening the beam

longitudinally [36]. The lateral PB spacing was 3 mm

while depth separation between two consecutive energy

slices was 3 mm. FLUKA MC scoring was performed in

voxels of 1 mm × 1 mm × 3 mm. The planned doses

were 54 Gy (RBE) in 27 fractions and 66 Gy (RBE) in 20

fractions for the head and the prostate cases, respectively

[35], applying the clincal fractionation scheme used at

HIT with proton beams.
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Forward re-computation of the optimized plans have

been carried out to investigate the variation of the DRBE as

a function of the depth, applying the biophysical models

previously described. LETd distributions were additionally

scored for dose values larger than 5% of the maximum

Z = 2 dose. For dose distribution characterization in the

target of the SOBPs, equivalent uniform dose (EUD) was

applied [37]. We have calculated EUD as follows [38]:

EUD ¼ −
1

2

α

β

� �

x

þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

4

α

β

� �2

x

−
ln S
	 


βx

s

ð10Þ

where S is the mean survival in the target. For the pa-

tient cases, we have also analyzed the DRBE volume his-

tograms (DRBEVH).

Following the previous works [14], tissue parameters for

the prostate case were set to αx = 0.036 Gy−1 and βx =

0.024 Gy−2 for (α/β)x = 1.5 Gy [39, 40]. For the surround-

ing healthy tissues, (α/β)x = 3.1 Gy with αx = 0.089 Gy−1

and βx = 0.0287 Gy−2 was applied [41]. For the head pa-

tient case, for the planning target volume (PTV) assuming

a glioma tumor, we have used αx = 0.077 Gy−1 and βx =

0.009 Gy−2, yielding (α/β)x = 8.6 Gy [42] while for the rest

of the brain, we have assumed αx = 0.0499 Gy−1 and βx =

0.0238 Gy−2, yielding (α/β)x = 2.1 Gy [43]. Further details

regarding these values are provided in Table 1.

Development and validation of an analytical biological

dose calculation engine: FRoG

Once patient case dose calculation was established via bio-

logical dose models coupled with FLUKA, validation of the

fast (GPU-based) analytical dose engine, FRoG, was per-

formed [44, 45]. Physical and biological parameter database

generation took place using FLUKA MC simulation. Corre-

sponding biological parameters for DDM (αHe and βHe),

LEM (αHe and βHe), and MKM (z�1D) were scored as a func-

tion of depth, along with the necessary physical parameters

(dose and LETd). The physical and biological tables were

incorporated into the FRoG platform, enabling multi-tissue

(variable (α/β)x) dose calculation for the three biological

dose models. The glioma patient plan was executed in

FRoG for comparison with the gold standard FLUKA MC.

All patients records were anonymized prior to the study,

obtained with informed consent and handled following

the Helsinki Declaration. All methods were approved by

the Heidelberg University Medical Faculty, following ap-

plicable guidelines and regulations of the institution.

Results
Investigating model dependencies in silico: SOBPs and

patient cases

Clinically relevant scenarios were used to further

characterize model variations. Figure 2 presents RBE-

weighted dose (DRBE) for the SOBPs, calculated via MC

simulation, as a function of depth in water for the three in-

vestigated models, as well as physical dose and LETd. RBE

variation and %ΔRBE are also visualized in the following

middle and lower panels, respectively. The SOBP plan, bio-

logically optimized using the DDM, was applied to reach a

biological dose level of 2 Gy (RBE) and for two tissue types,

exhibiting (α/β)x of 2Gy and 10Gy, experimental surro-

gates for testing radio-resistant and radio-sensitive tissues,

respectively. A similar investigation was executed for an ir-

radiation plan with two opposing fields, as shown in Add-

itional file 1: Figure S1. For quantification of global

difference in the target between the various models, EUD

calculations for the SOBPs studied in silico are provided in

Additional file 1: Table S2 and S3.

Model dependencies in clinically-relevant scenarios:

patient cases

In Fig. 3, an investigation of RBE model performance of

a prostate cancer patient in silico is displayed. The

MCTP calculated DRBE distribution for the pelvic case

applying the DDM and LETd distribution are shown as

well as dose difference (ΔGy(RBE)) from the reference

when performing forward calculations with LEM and

MKM. The physical dose volume histogram (DVH) and

biological dose volume histogram (DRBEVH) for the PTV

and rectum, chosen as a representative organ at risk

(OAR), are displayed in the bottom panel. DVH statistics

for the PTV in terms of D50%, DRBE-50% and the inhomo-

geneity coefficient I5% = (D5% - D95%) / DRBE,p have been

analyzed. DRBE-50%, DRBE-5%, and DRBE-95% represent the

biological dose received by 50%, 5% and 95% of the PTV

volume in the cumulative DRBEVH, respectively. DRBE,p

is the prescribed biological dose. I5% evaluates the bio-

logical dose gradient introduced in the PTV by perform-

ing forward calculation of the patient plans with the

various RBE models. LEM resulted in −5.7% lower D50%,

while applying the MKM yielded 8.3% higher D50%. The

I5% values were, respectively, ~ 12% for MKM, and ~

10% for both LEM and the reference (DRBE calculated

with DDM). The D5% for the rectum was 50.2 Gy (RBE)

for MKM, 46.0 Gy (RBE) for LEM and 48.2 Gy (RBE) for

DDM.

Validating RBE models in a clinical platform: FRoG

A glioma patient case is displayed in Fig. 4 for RBE

evaluation and validation of a fast analytical dose calcu-

lation engine (FRoG). FRoG calculation run-time for the

glioma patient (yielding D and DRBE applying DDM,

MKM and LEM) was 142 s, a time gain factor of ~ 225

when compared to MC simulation using a 300 node

CPU-cluster. The MCTP calculated DRBE distribution

for the head case applying the DDM and the resulting

LETd distribution are shown as well as dose difference

ΔGy (RBE) from the reference when performing forward
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calculations with (c) LEM and (d) MKM. For the LEM-

and MKM-based forward biological dose calculations,

D50% for the PTV is 1.5% higher and −3.7% lower, respect-

ively, than the reference. Larger I5% values were found for

LEM and MKM of ~18% and ~14%, respectively, relative

to the reference of ~13%. The greatest variations between

the models occur for the normal tissue with (α/β)x = 3.1

Gy, outside of the PTV, especially in the distal region

where the highest LET components of the distribution are

prevalent. For the glioma patient case, there are no OARs

in proximity of the target.

As shown in Fig. 4, DVH and DRBEVH plots be-

tween FRoG and FLUKA are in good agreement.

The percent absolute deviations in D50% and

DRBE-50% for the PTV between FLUKA and FRoG for

physical dose (Dphys) and the three biological doses

are as follows: 0.2, 0.4, 0.4, 0.6%, for Dphys, DDDM,

DLEM and DMKM, respectively. Further details regard-

ing DVH and DRBEVH statistics are provided in

Additional file 1: Table S1.

Experimental evaluation of the RBE models

Enhanced cell-killing was observed in the biological mea-

surements of experiment A for higher LETd (~ 15

keV·μm− 1) compared to lower LETd (~ 6 keV·μm− 1). Fig-

ure 5 displays both the experimental findings (points with

error bars) and FLUKA MC-coupled RBE model predic-

tions for cell survival and RBE, as well as percent differ-

ence in RBE (%ΔRBE) of the three models against

experimental data. Linear quadratic (LQ) fitting of the cell

survival data from photon irradiations with the 6MV

LINAC yielded αx = 0.034 Gy− 1 and βx = 0.018 Gy− 2, for

an (α/β)x of 1.79 Gy. For the lower LETd condition, LEM

exhibited the most stable prediction of RBE as a function

of dose below 1.5 Gy with %ΔRBE < 5% but consistently un-

derestimates RBE. On the other hand, DDM and MKM

yielded better RBE predictions from 1.5 Gy and above. For

the higher LETd condition, DDM and MKM predicted

with the highest relative accuracy within the studied dose

range, with %ΔRBE < 5% up to 2 Gy. LQ-fit parameters for

two LETd conditions are listed in the Table 2.

Fig. 2 Biologically optimized SOBPs at 2 Gy (RBE) using the data-driven model (DDM) assuming two distinctive tissue types with (α/β)x = 2 Gy

(left) and (α/β)x = 10 Gy (right) are displayed as function of the depth in water, plotted against forward calculations with the two biophysical

models applied, as well physical dose and LETd distributions (calculated via MC simulation). RBE variation as a function of depth with percent

difference DRBE (%∆D-RBE) between planned and forward calculation DRBE for MKM and LEM are displayed in the middle and bottom panel,

respectively. The top axis of each figure segments regions of normal tissue (NT) and tumor tissue (T) for a representative clinical treatment
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Regarding outcome of experiment B, initial investiga-

tion of cell-kill response to photon irradiation yielded

αx = 0.050 Gy− 1 and βx = 0.023 Gy− 2, for an (α/β)x of

2.17 Gy, which is on average 0.38 Gy higher than the (α/

β)x found in experiment A. Figure 6.a displays the cell

survival versus dose for the four LETd conditions (~ 5

keV·μm− 1, ~ 10 keV·μm− 1, ~ 15 keV·μm− 1, ~ 27 keV·μm−

1) within a clinically relevant dose range (Dphys ≲3 Gy).

For both model predictions and experimental data, a

dose dependence in RBE was observed in all cases. In

general, DDM and MKM performed best for both higher

and lower LETd conditions in the studied dose range,

consistent with findings from the monoenergetic beam

experiment. RBE predictions for all three models agreed

within ±5% of the experimental data for the two highest

LETd conditions (~ 15 keV·μm− 1 and ~ 27 keV·μm− 1),

especially DDM and MKM for dose levels > 2 Gy. For 2

Gy, %ΔRBE for the four LETd conditions (in ascending

order) were roughly, + 3.7%, − 1.9%, − 1.9%, − 4.4% for

DDM, − 1.7%, − 5.3%, − 3.4% and + 0.9% for LEM, and −

4.1%, − 1.1%, − 1.1% and − 4.8% for MKM. For the lower

LETcondition of ~ 5 keV·μm− 1 (entrance channel measure-

ment), all models produced RBE predictions within ±5

−10%, reaching ~ 1.3 for 0.5Gy, ~ 1.25 for 1 Gy, ~ 1.18 at 2

Gy and stabilizing to ~ 1.1 for the higher doses. As for the

LETd conditions found in the target (~ 10 keV·μm− 1, ~ 15

keV·μm− 1, ~ 27 keV·μm− 1), representing a low, mid and

high range LETd for therapeutic helium ion beams, respect-

ively, greater variability was observed as a function of dose,

especially for doses < 2Gy. For 1 Gy, observed RBE values

were ~ 1.8, ~ 2.2, ~ 2.8 for the low, mid and high LETd con-

ditions in the target. At 4Gy, RBE values decreased to ~

1.3, ~ 1.5, ~ 1.8 for the low, mid and high LETd conditions.

Discussion
RBE model assessment

To best interpret the biological models for 4He ion beams,

one must begin with a survey of their dependencies in

track-segment conditions, i.e. monoenergetic beam case

disregarding contributions from a mixed radiation field. In

a b

c d

Fig. 3 DRBE comparison illustrated in a clinical case (prostate cancer). a MC-optimized DRBE distribution applying the DDM for the prostate case

with resulting (b) LETd distribution for Z = 2 particles. c Differences between the reference DRBE (DDM) and LEM and MKM DRBE are displayed in

panels (c) and (d), respectively. Contours for the PTV, femurs and rectum are displayed in blue, green/yellow and red, respectively. DVH and

DRBEVH for the three biological models are depicted for the PTV and the rectum in the bottom left and right panel, respectively. Note that the

critical organs at risk (e.g. anterior rectum) are susceptible to large variations in small volumes (< 5% of the relative total volume per organ) due

to overlap with the tumor structure delineation. The asymmetric LETd gradient (indicated by the yellow arrow) in panel (b) is indicative of the

applied beam optimization procedure to meet dose constraints in the rectum while maintaining target coverage
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Fig. 5 Clonogenic survival (top) of the Renca cells when exposed to various doses of a monoenergetic 4He ion beam at two measurements

points. MC-estimated LETd values are ~ 6 keV·μm−1 at 6 mm depth (upper left) and ~ 15 keV·μm−1 at 12 mm depth (upper right) using a 4He

beam energy E = 56.65 MeV/u with a BP position (dBP) of 25.9 mm. FLUKA-coupled biophysical and phenomenological models predicted cell

survival and corresponding RBE (bottom) with varying degree of accuracy as a function of dose. The dotted and solid black line represent the LQ-

fit of the Renca cells photon irradiation (γ) with (α/β)x = 1.79 Gy and 4He irradiation, respectively

a b

c d

Fig. 4 Validation of the FRoG dose engine for helium ion beam therapy dose calculation with a glioma patient case. DRBE applying (a) DDM and

(b) LETd is displayed, along with dose difference between DRBE applying DDM and (c) LEM and (d) MKM. DVH and DRBEVH for the three biological

models are depicted for the PTV (right panel) for FRoG versus FLUKA. The yellow arrow directs attention to the LETd gradient at the distal edge of

the tumor, which could lead to larger uncertainty in RBE prediction for both the tumor and neighboring heathy issues beyond the target
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track-segment conditions, one can clearly discern the

basis of intra- and intermodal variation as a function of

dose, LET and tissue type.

Figure 7.a shows the comparison of RBEα (top) and Rβ

(bottom), for mono-energetic 4He ion beams as a

function of LET for two tissues, (α/β)x = 2 Gy (left

panels) and 10 Gy (right panels), representing two dis-

tinct tissue types with differing responses to radiation.

Comparison of these cases shows RBEα and (α/β)x are

negatively correlated. As particle LET increases, an

a

b

Fig. 6 Clonogenic assay for clinical-like fields (SOBPs) for the Renca cell line in experiment B. MC simulation estimated LETd values of biological

measurement were ~ 5 keV·μm−1, ~ 10 keV·μm−1, ~ 15 keV·μm−1, ~ 27 keV·μm−1. FLUKA-coupled biophysical and phenomenological models

predicted cell survival (a) and corresponding RBE (b) with varying degree of accuracy as a function of dose. The dotted and solid black line

represent the LQ-fit of the Renca cells photon irradiation and 4He irradiation, respectively. LQ-fit parameters for the four LETd conditions are listed

in the Table 2
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upward trend for RBEα as a function of LET is observed,

until a saturation point, where the RBEα plateaus prior

to fall-off. In general, this fall-off is more prominent and

occurs at a lower LET range in lower (α/β)x tissues. For

lower LET, the largest inter-model variation occurs for

the (α/β)x = 2 Gy case between LEM and the other two

models, while for the higher LET region, all models ex-

hibit a varying response. For (α/β)x = 10 Gy, the models

yield similar predictions for LET values lower than about

20 keV·μm− 1. The location of RBEα maximum changes

as a function of the model applied.

Regarding Rβ, the models assume or predict different

behaviors as function of LET. In the MKM [28], Rβ is as-

sumed to be unity, i.e. βHe = βx, while for the single-hit

based version of LEM applied in this work [21], Rβ de-

creases as LET increases. In the LET-based DDM

a

b

c

Fig. 7 Comparison between the three model predictions. (a) RBEα (top) and Rβ (bottom) as function of LET for (α/β)x = 2 Gy (left) and 10 Gy

(right). (b) RBE as a function of LET for (α/β)x = 2 Gy (left panel) and 10 Gy (right panel) at 2 Gy reference photon dose. (c) RBE as a function of 4He

ion beam physical dose for (α/β)x = 2 Gy (top) and 10 Gy (bottom) at 4 keV·μm−1 and 15 keV·μm−1 as shown in the left and right

column, respectively
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approach, Rβ increases with LET until reaching a max-

imum at ~ 63 keV·μm− 1 and then drops to zero for LET >

100 keV·μm− 1. For the data-driven approach, Rβ is inde-

pendent of (α/β)x, and therefore it’s behavior is consistent

between tissue types. These differences in expressing Rβ

lead to significant variations among the models which, in

part, reflect the large experimental uncertainties of the

available experimental in vitro data [13].

RBE versus LET for the two tissues at physical dose

levels of 2 Gy (left column) and 4 Gy (right column) are

depicted in Fig. 7 b. As expected, the RBE initially in-

creases with LET, reaches a maximum and then de-

creases. The RBE decreases for increasing dose mainly

for low (α/β)x, and increases for decreasing (α/β)x of the

tissue. RBE results at lower LET and higher LET are pre-

sented as a function of physical dose for the two tissues.

The chosen LET values are representative of the LETd

values found in the entrance channel and in the middle

of an SOBP, respectively, for the two opposing beam

fields arrangement depicted in Additional file 1: Figure

S1. For clinical targets like an SOBP, one must consider

a mixed radiation field with a complex LET spectrum,

rather than a single LET value as in the case of an ion in

the track-segment condition.

As expected, an enhanced RBE is observed at lower

doses for all models, and this trend is more pronounced

for lower (α/β)x tissues. For the low LET condition, LEM

predicted a limited RBE variation within the studied dose

level, between maximum and minimum values, of about

20% and of about 4% for (α/β)x = 2Gy and (α/β)x = 10Gy,

respectively. For 15 keV·μm−1 and for (α/β)x = 2 Gy, MKM

and the DDM approach resulted in roughly the same pre-

dictions, while for (α/β)x = 10Gy the DDM estimated

about 15% higher RBE. In order to reduce model-related

uncertainties in the target region, assuming 15 keV·μm−1

is a representative LETd value for Z = 2 in the target, one

could use hypo-fractionated treatments (DRBE > 4Gy

(RBE)) where variations in RBE prediction decrease. In

addition, hypo-fractionated treatments reduce the impact

of precise (α/β)x value assignment for target tissues on

RBE determination. On the other hand, hypo-fraction-

ation may diminish the therapeutic window by reducing

the ratio of the target RBE compared to the entrance

channel (i.e. tumor to normal tissue effective dose ratio).

With typical peak-to-plateau dose ratio of ~ 2 for 4He ion

beams and assuming a dose value of 4 Gy in target, RBE

predictions (averaging over the three models in this work)

are as follows: ~ 1.1 for 4.0 keV·μm−1 and ~ 1.45 for 15

keV·μm−1 in low (α/β)x tissues, and ~ 1.1 for 4.0 keV·μm−1

and ~ 1.35 for 15 keV·μm−1 in high (α/β)x tissues. Con-

versely, standard fractionation schemes (~ 2 Gy (RBE) tar-

get doses) can enhance the peak-to-plateau ratio.

Close examination of the Rβ component for the DDM

reveals that for LET of ~ 4 keV·μm−1, Rβ converges to ~

0.6, while for 15 keV·μm−1 Rβ approaches ~ 1. As de-

scribed in previous works [13, 14], Rβ parameterization

was obtained by a convenient parameterization which fits

the running averages of the experimental data, neglecting

any (α/β)x dependencies due to the large uncertainties

effecting the β term. Recent works develop a phenomeno-

logical model for proton beams from in vitro data follow-

ing a similar approach to Rβ handling by assuming a

negligible (α/β)x dependency [35, 46]. With DDM, param-

eter fittings are merged to a relatively small amount of

data using a running average and thus, this work can shed

light on RBE model performance in regions where data is

sparse and predictions exhibit large uncertainties. More-

over, existing experimental data is especially scarce for low

(α/β)x values (< 3 Gy) [14], where the largest RBE values

are expected and the highest variations among the models

occur. Further data for low (α/β)x tissues and for

clinically-relevant dose levels, especially in standard frac-

tionation regimes (DRBE < ~ 3Gy (RBE)), are essential for

benchmarking the predictive power of these RBE models.

Experimental benchmarking (in vitro)

RBE model benchmarking through in vitro experimenta-

tion with a low (α/β)x cell line was the next logical step

to verify the significant RBE enhancement observed in

the models for dose levels < 4 Gy, a clinically relevant

range bearing in mind the typical fractionation size for

proton beams of ~ 2 Gy (RBE). Qualitatively, the study

investigated both lower LETd (< 10 keV·μm
−1) and higher

LETd (≥10 keV·μm−1) values, pertinent endpoints for

both normal tissue complication and tumor control

probability (TCP). In addition, critical structures sur-

rounding or distal to the target are also associated with

the highest LETd values in the study. It is important to

note, however, that the in vitro data available in the lit-

erature is solely based on cell-kill of tumor tissues with

RBE as the end point. Therefore, the models provide

insight into RBE from the perspective of TCP rather

than normal tissue response, which requires the

immortalization of normal cell lines to investigate rele-

vant end points [47].

For RBE prediction versus measurement in experiment

A (Fig. 5), LEM exhibited the highest accuracy for low

LETd at dose levels <2Gy, while MKM and DDM per-

formed best for the higher doses. For higher LETd condi-

tions, MKM and DDM both outperformed LEM in

predictive power, with local %ΔRBE between ~ 1% and ~

8%, as the dose increases. Although direct comparison of

the track-segment condition in silico study shown in Fig.

7 and the monoenergetic beam in vitro study is incompat-

ible due to the oversimplification of LETd (neglecting

mixed field spectra) and the inherently non-linear rela-

tionship of RBE and LET, general trends between the

models are consistent.
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As for investigations in experiment B (clinical-like

fields in Fig. 6), interpretation becomes more convoluted

when considering the complex mixed radiation field. In

general, DDM and MKM demonstrated the lowest local

|%ΔRBE| of < 10%, overall. As anticipated, |%ΔRBE| de-

creased with increasing dose for all three models. Dis-

agreement in the lower LETd condition can be explained

by the scarce amount of data for low LETd, especially

with cell lines with (α/β)x < 3 Gy, which suggests that

further in vitro study and tweaking of the models could

yield improved RBE predictions. Nevertheless, 5% to

10% predictive power for RBE in the target region is ac-

ceptable considering the uncertainty of the reference

photon sensitivity measurement. For the entrance chan-

nel condition in Fig. 6, all three models (especially

DDM) tend to overestimate RBE for < 1 Gy, a typical

fractionation treatment dose range, offering a conserva-

tive estimate for normal tissue in the plateau region.

DDM depends only on the (α/β)x ratio while the MKM,

instead, depends also on the absolute value of βx, which

contributes in the determination of zsat [22]. Low βx values

result in a reduced saturation coefficient, leading to RBE

enhancement. To further shed light on this point, calcula-

tions were performed with the two fields arrangement ap-

plying (α/β)x = 2.0 Gy, planned DRBE = 4Gy (data not

shown) and βx = 0.02Gy− 2, finding consistently higher

DRBE values (about 8%). In contrast, LEM depends on

multiple parameters, including αx, βx and Dt. By varying

αx and βx by 25% but maintaining the same (α/β)x, no

measurable dependence of RBEα was found for clinically-

relevant LET values using carbon ion beams, with a lim-

ited effect on the RBE at 10% survival [48].

Clinical outlook

Regarding patient dose calculation, LETd prediction

for the prostate case was in line with the findings

from the SOBP study; however, the head case plan

exhibited lower LETd values since the energy spread

of the beam is increased by the ripple filter (RiFi) to

reduce BP sharpness for clinically acceptable target

dose homogeneity. Furthermore, FRoG calculated

physical and biological dose distributions were in

good agreement with FLUKA MC and well within

clinically acceptable tolerances. At HIT, both the

MCTP and FRoG dose engine are functional for he-

lium ion beam therapy, enabling future treatment

planning comparison and robust RBE optimization

studies necessary before and during clinical trials, as

performed in previous works for carbon ions [49]. In

addition, the FRoG platform will support the develop-

ment and validation of the first analytical TPS for he-

lium ion beams, providing multiple biological models

for clinical research.

As HIT prepares for clinical translation of 4He, the

findings and efforts in this work may serve as a starting

point for clinical decision making. Currently, there is no

official consensus as to which RBE model for helium

ions is best suited for treatment and whether a single tis-

sue approximation for biological dose prediction will be

used as done with carbon ions. In light of these issues,

the FRoG platform includes all three models presented

in this work, as well as tissue-dependent biological dose

calculation, providing valuable insight into radiological

uncertainty during treatment planning. Regarding

optimization of a next generation TPS for particle ther-

apy, advanced optimization strategies are recommended

considering the large uncertainties associated with bio-

logical modeling and the lack of evidence supporting in

vitro model applicability to in vivo settings [50]. With

technqiues like RBE/LET gradient minimization in the

target, constant over- or under-estimation of DRBE could

be detected in an initial dose-escalation phase. At HIT, a

systematic clinical investigation with an initial group of

patients is anticipated to observe and analyze clinical

outcome.

All presented RBE models are based on the same set (or

sub-set) of the published biological in vitro data, used re-

peatedly for model tuning and benchmarking purposes. In

vivo data is sparse at best and rarely used to verify the

models’ predictions [51]. The experimental and intrinsic

uncertainties in the data constrain the confidence in these

models to a degree which is less than clinically desirable,

yielding model fits with significant variation. It is worth

noting here that the agreement of the LEM used for this

study with respect to the other models might further im-

prove if the same set of in vitro data would have been used

for tuning the LEM, as done for the DDM and MKM.

These findings suggest that systematics in RBE predictions

in the high dose region for clinical 4He ion treatment

fields due to different choices of RBE modelling ap-

proaches can be restricted to be mostly within 10% to 15%

when tuning the parameters of the RBE models to the

same (or a similar) set of the available in vitro cell data for
4He ions.

In turn, this may imply that systematic uncertainties in

the prediction of RBE for helium ions for clinical scenar-

ios are not primarily dominated by the choice of the

RBE model, but instead dictated by the choice of the in

vitro dataset and methodology used for tuning the RBE

model parameters. Similar conclusions might hold true

for RBE models of higher Z ion species. Additional sys-

tematic RBE uncertainties arise from differences between

in vivo and in vitro data; however, due to their scarcity,

in vivo and clinical data are hardly used to tune RBE

models, but rather for validation of commonly estab-

lished RBE models [52], exception being the

neutron-equivalent scaling point used for carbon ions
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[53, 54]. Previous works also propose application of clin-

ical data for RBE model tuning in addition to in vitro

and in vivo measurements [55].

For helium ions, it is certainly challenging to make de-

finitive statements about RBE considering the lacking of

experimental data. To reduce RBE model uncertainties

for 4He, collecting additional evidence, especially in vivo,

is recommended before clinical application. However,

the differences in RBE predictions found in this study

for the three presented models are similar to the RBE

variation for in vitro data in proton beams, which are

typically knowingly accepted when assuming RBE = 1.1

[47]. Ultimately, the choice of model and tissue type

for biological dose optimization is a clinical decision

to ensure the most safe and effective patient treat-

ment and care possible.

Conclusion
Before the start-up of a 4He ion beam therapy program,

a comprehensive evaluation of the variable RBE and the

associated models is critical. The main dependencies of

three RBE models for 4He ion beam therapy were stud-

ied in silico and validated against in vitro experimenta-

tion with a radio-resistant tumor cell line. Clinically

relevant uncertainties were observed, especially for low

(α/β)x values where the available literature data are

scarce. The observed uncertainties between the models

as well as variability of RBE as a function of its depend-

ency (especially for low (α/β)x tissues commonly treated

with particle therapy) suggest that the selection, refine-

ment and validation of either a biophysical/mechanistic-

or phenomenological-based approach are essential prior

to clinical translation of helium ion beam therapy.

Additional file

Additional file 1: Supplementary data analysis for biological dose

prediction using 4He ions, including SOBPs for a parallel opposed beam

plan (two-field), DVH statistics for FRoG against FLUKA MC for the two

patient cases, and EUD calculations comparing the three investigated RBE

models. (DOCX 1421 kb)
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