NASA Technical Memorandum 104568

Biophysical, Morphological, Canopy Optical Property, and Productivity Data From the Superior National Forest

F.G. Hall
NASA Goddard Space Flight Center
Greenbelt, Maryland
K.F. Huemmrich
Hughes STX Corporation
Lanham, Maryland

D.E. Strebel

VERSAR, Inc.
Columbia, Maryland

S.J. Goetz and J.E. Nickeson

Hughes STX Corporation
Lanham, Maryland
K.D. Woods

University of California, Santa Barbara
Santa Barbara, California

N/SN

National Aeronautics and
Space Administration
Goddard Space Filght Center
Greenbelt, Maryland 20771
\qquad

Acknowledgements

This experiment was conceived in 1982 by Daniel B. Botkin, University of California Santa Barbara (UCSB), and Robert B. MacDonald, Johnson Space Center (JSC) in Houston, Texas. A group of scientists at UCSB and JSC, including the Principal Investigators and Drs. Forrest Hall, Gautam Badhwar, Jack Estes, Alan Fieveson, Mark Wilson, Keith Henderson, Jack Paris, David Pitts and David Thompson, developed and submitted a proposal entitled "Habitability of the Earth: Assessing Key Vegetation Characteristics" to NASA Headquarters, Land Processes Branch, on November 1, 1982. The objective of the proposal was "... to investigate the use of satellite remote sensing to estimate leaf area index, biomass and net primary productivity..." . The proposal was funded and two field seasons were conducted in the summers of 1983 and 1984 over a test site near Ely, Minnesota.

Dr. Kerry Woods, then at UCSB (now at Bennington College), along with Daniel Botkin, Robert MacDonald, Forrest Hall, and David Pitts, designed a detailed ground-data collection scheme and, along with Laurie Schmidt and a field crew of approximately 12, acquired the ground data throughout the summers of 1983 and 1984. A NASA Bell Jet-Ranger helicopter, piloted by Mr. Jim Adamson (now a Shuttle astronaut) and Mr. Steve Feaster of Johnson Space Center acquired spectral data over approximately 60-30 meter-diameter sites. The NASA C-130, managed by NASA Ames Research Center acquired Thematic Mapper Simulator spectral image data and color infrared photography. The U.S. Forest Service also supported the experiment by providing access, detailed maps of the area, and laboratory space and support in Ely.

As the second year of data collection was nearing completion, the satellite remote sensing program was eliminated at JSC. As a consequence, Dr. Forrest Hall moved to the Goddard Space Flight Center (GSFC) and, supported by Dr. Donald Strebel now of VERSAR Inc., transported the dataset to the GSFC. NASA Headquarters continued support for the transfer and analysis of the data.

Badhwar et al. (1986, 1986a), Pitts et al.(1988), and Shen et al. (1985) at JSC have published analysis results on the relationship of spectral data to biophysical parameters. Botkin et al. (1984), and Woods et al. (1991) have published analysis results on the biometry and ecology of the study. Hall et al. $(1987,1991)$ have published results on the use of satellite data to study the large-scale successional dynamics of the boreal forest.

Mr. K. Huemmrich of ST Systems Corp. organized the biophysical and leaf optical data, and wrote and edited this document. He worked with Mr. S. Goetz, and Ms. J. Nickeson of ST Systems Corp., who organized the helicopter, aircraft, and satellite data and wrote chapters 6,7 and 8 documenting these data. Parts of chapter 3 were taken from the work of K. Woods (Woods et al. 1991). Ms. A. Montoro and Mr. E. Russell assisted by entering and formatting datasets.

Contents

Chapter 1 - Introduction 1-1
Chapter 2 - Ecological Setting 2-1
Table 2.1 SNF Plant Species
Table 2.1 SNF Plant Species 2-2 2-2
Table 2.2 SNF Study Site Locations 2-5
Chapter 3-Biophysical Data 3-1
Figures 3.1 and 3.2 Phenology Plots 3-5
Table 3.1 Canopy Species 3-6
Table 3.2 Subcanopy Species 3-8
Table 3.3 Understory Composition 3-9
Table 3.4 Cover by Stratum and Plot for Aspen Sites 3-14
Table 3.5 Statistics for Sacrificed Aspen Trees 3-15
Table 3.6 Statistics for Sacrificed Spruce Trees 3-16
Table 3.7 Aspen Biophysical Parameters 3-17
Table 3.8 Spruce Biophysical Parameters 3-18
Table 3.9 Aspen Canopy Phenology 3-19
Table 3.10 Subcanopy Phenology 3-20
Chapter 4-Climate 4-1
Table 4.1 Monthly Climatological Data 4-2
Chapter 5 - Leaf Optical Properties 5-1
Table 5.1 Optical Properties Data Availability 5-6
Table 5.2 TMS Band Averages 5-7
Table 5.3 Figure Captions 5-15
Figures 5.1 to 5.41 Spectral Properties Plots 5-19
Chapter 6 - Helicopter MMR Data 6-1
Figures 6.1 to 6.5 MMR Reflectance Plots 6-3
Table 6.1 Helicopter MMR Data Availability 1983 6-6
Table 6.2 Helicopter MMR Data Availability 1984 6-9
Table 6.3 1983 Helicopter MMR Data 6-10
Table 6.4 1984 Helicopter MMR Data 6-19
Chapter 7 - Thematic Mapper Simulator Data 7-1
Table 7.1 Thematic Mapper Simulater Data 7-3
Chapter 8 - Satellite Data Availability 8-1
Table 8.1 Satellite Image Data Acquired for the SNF
Table 8.1 Satellite Image Data Acquired for the SNF 8-2 8-2
Table 8.2 Comments on Satellite Image Data 8-3
Superior Natural Forest Related Publications 9-1
Appendix 1 SNF Data Disk Documentation A-1

1.0 Introduction

During the summers of 1983 and 1984, NASA conducted an intensive experiment in a portion of the Superior National Forest (SNF) near Ely, Minnesota. The purpose of this experiment was to investigate the ability of remote sensing to provide estimates of biophysical properties of ecosystems, such as leaf area index (LAI), biomass and net primary productivity (NPP). The SNF is mostly covered by boreal forest. Boreal forests were chosen for this experiment because of their relative taxonomic simplicity, their great extent and their potential sensitivity to climatic change. Satellite, aircraft, helicopter and ground observations were obtained for the study area. These data comprise a unique dataset for the investigation of the relationships between the radiometric and biophysical properties of vegetated canopies. This is perhaps the most complete dataset of its type ever collected over a forested region. This report contains a compilation of data collected in this experiment.

Detailed vegetation data were collected on the ground for about 100 sampled sites. These sites represent a range of stand density and age for spruce and aspen and also include jackpine and mixed stands. At each site, five circular subplots of 16 meters in diameter were sampled within a large plot of 60 -meters in diameter. Within the subplots, all woody stems over 2 meters tall were tallied by species, diameter and height. Within each subplot, coverage by vegetation was determined for the canopy, subcanopy and understory. Thirty each of black spruce and aspen trees from outside of the plots were sacrificed, and dimensional analysis relations developed between diameter at breast height, biomass and leaf area index. Also, above-ground net primary productivity was estimated for each test site. For the aspen sites, bark area and understory leaf area indexes were found. During the spring, measurements of understory leaf extension and canopy coverage were made on several days to describe the phenology of an aspen stand.

Measurements of the optical properties of canopy components were made for wavelengths between 0.35 and 2.1 micrometers. Reflectance and transmittance properties of leaves and needles of eight major overstory tree species and three understory shrubs were measured. Multiple measurements of aspen and spruce allow an investigation of the variability of optical properties within a species. Also, reflectance measurements were made for the bark of several tree species, sphagnum moss and leaf litter.

Above-canopy reflectance was observed by a helicopter-mounted Barnes Modular Multiband Radiometer (MMR). The helicopter MMR data have a spatial resolution of approximately 32 meters. In 1983, 10 days of data were collected between May and October, with a total of 105 sites observed. In 1984, 8 days of data were collected between May and September, with a total of 29 sites observed. Several sites have multiple observations, to allow studies of seasonal variation.

Thematic Mapper Simulator (TMS) data were collected from the NASA C-130 flying over the SNF. The flights were in a "criss-cross" pattern to allow observation of the same location with multiple sun and view angles. The TMS scans out to 50 degrees off nadir; in flights at 5000 feet above ground level, a nadir pixel covers 3.81 meters along the scan. Three days of TMS data are presented; these data have been geometrically corrected, registered, atmospherically corrected and calibrated to determine surface reflectance.

A key goal of the experiment was to use the aircraft measurements to scale up to satellite observations for the remote sensing of biophysical parameters. Landsat and SPOT data were collected and examined. A listing of scenes that were aquired and comments on their quality are provided.

The data collected in the SNF are reported here to provide the research community with access to this valuable dataset.

2.0 Ecological Setting

The experiment took place in the Superior National Forest (SNF) in northeastern Minnesota, north of the town of Ely. The study area was centered at approximately 48 degrees North latitude and 92 degrees West longitude. The SNF is primarily boreal forest. Boreal forests were chosen for this study because of their relative taxonomic simplicity, great extent, and potential sensitivity to climatic change. Boreal forests cover approximately 9 million km^{2} with eight species dominating in North America. The SNF is located near the southern edge of the North American boreal forest. This area may be particularly sensitive to climate change.

While several dozen tree species occur in the SNF, a few species dominate the landscape. Early successional stands on uplands are dominated by aspens (Populus tremuloides and P. grandidentata) or jack pines (Pinus banksiana). Jack pine, an evergreen conifer, generally dominates sites with shallow, dry soils, while the broadleaf deciduous aspens occur on mesic sites. Later in the succession, upland stands tend towards dominance by conifers: spruce (Picea mariana and P. glauca) and balsam fir (Abies balsamea). White and red pine (P. strobus and P. resinosa) are frequent and locally dominant, but constitute a small proportion of the total landscape cover. Extensive acidic peatlands often support sparse to dense stands of black spruce (P. mariana), mixed with open stands of tamarack (Larix laricina). Unforested areas occur on uplands in early succession or on rocky outcrops and in peatlands of perennially high water tables or extremely low nutrient availability.

Table 2.1 contains a list of the plant species encountered in the SNF with their scientific names and abbreviations used in this report.

Study sites were chosen in areas where the cover type was uniform. The sites in which biophysical measurements were made were, as much as possible, pure stands of aspen or spruce. The dominant species in each stand constituted over 80 percent, and usually over 95 percent, of the total tree density and basal area. Aspen stands were selected to be evenly distributed over the full range of age and stem density for stands that were essentially pure aspen, of nearly complete canopy closure, and greater than 2 meters in height. Spruce stands ranged from very sparse stands on wet, nutrient-poor bog sites to dense, closed stands on more productive peatlands. The sites were sampled to represent a variety of stand densities and leaf area indexes. Also, the sites needed to be accessible by investigators. Table 2.2 provides a list of the site locations and descriptions.

Table 2.1-SNF Plant Species

This table contains the abbreviation, common and scientific names of plant species found in the SNF. The abbreviations are used to identify species in Tables 3.1, 3.2 and 3.3.

Abbr	Common Name	Scientific Name
ABBA	Fir, Balsam	Abies balsamea
ACRU	Maple, Red	Acer rubrum
ACSP	Maple, Mountain	Acer spicatum
ACTA	Baneberry	Actaea spp.
ALCR	Alder, Green	Alnus crispa
ALRU	Alder, Speckled	Alnus rubra
AMEL	Juneberry	Amelanchier spp.
ANGL	Bog Rosemary	Andromeda glaucophylla
ANQU	Wood Anemone	Anemone quinquefolia
ARNU	Wild Sarsaparilla	Aralia nudicaulis
ASCA	Wild Ginger	Asarum canadense
ASMA	Big-leaved Aster	Aster macrophyllus
ATFE	Lady Fern	Athyrium felix-femina
BEPA	Birch, Paper	Betula papyrifera
BLIT	Brown Litter	
BLWT	Bellwort	
CHCA	Leatherleaf	Chamaedaphne calyculata
CLBO	Blue-bead Lily	Clintonia borealis
COAM	Hazelnut, American	Corylus americana
COCA	Bunchberry	Cornus canadensis
COCO	Hazelnut, Beaked	Corylus cornuta
COGR	Gold-thread	Coptis groenlandica
COMP	Composites	(Unidentified)
COST	Red-osier Dogwood	Cornus stolonifera
DILO	Bush Honeysuckle	Diervilla lonicera
DRYO	Shield Fern	Dryopteris spp.
EQUI	Horsetail	Equisetum spp.
ERIO	Cotton Grass	Eriophorum spp.
FRVE	Wood Strawberry	Fragaria vesea
FUNG	Fungi	
GACI	Bedstraw (Wide Leaves)	Galium circaezans
GAHI	Creeping Snowberry	Gaultheria hispidula
GAPR	WinterGreen	Gaultheria procumbens
GATR	Bedstraw (Narrow Leaves)	Galium triflorum

Abbr	Common Name	Scientific Name
GLIT	Green Litter	
GORE	Rattlesnake Plantain	Goodyera repens
GRAS	Grasses (Unidentified)	
IMBI	Touch-me-not/Jewelweed	Impatiens biflora
KAPO	Bog Laurel	Kalmia polifolia
LALA	Tamarack (Larch)	Larix laricina
LAOC	Yellow Vetchling	Lathyrus ochrobucus
LAVE	Veiny (Purple) Vetch	Lathyrus venosus
LEGR	Labrador Tea	Ledum groenlandicum
LIBO	Twinflower	Linnaea borealis
LICH	Lichens	
LOCA	Honeysuckle	Lonicera canadensis
LYAN	Running Club Moss	Lycopodium annotinum
LYCL	Hairy Club Moss	Lycopodium claratum
LYCO	Ground Cedar	Lycopodium complanatum
LYOB	Ground Pine	Lycopodium obscurum
MACA	Canadian Mayflower	Maianthemum canadense
MINT	Mint (Unidentified)	
MOSS	Mosses (Non-Sphagnum)	
OSCI	Cinnamon Fern	Osmunda cinnamomea
OSCL	Interrupted Fern	Osmunda claytoniana
PEPA	Early Sweet Coltsfoot	Pestasites palmata
PIBA	Pine, Jack	Pinus banksiana
PIGL	Spruce, White	Picea glauca
PIMA	Spruce, Black	Picea mariana
PIRE	Pine, Red	Pinus resinosa
PIST	Pine, White	Pinus strobus
POBA	Balsam Poplar	Populus balsamifera
POGR	Aspen, Big-Tooth	Populus gradidentata
POPE	May-Apple (Mandrake)	Podophyllum pletatum
POPU	Solomon Seal	Polygonatum pubescens
POTR	Aspen, Trembling	Populus tremuloides
POVU	Polypody Fern	Polypodium vulgare
PRPE	Cherry, Pin	Prunus pennsylvanica
PRVE	Cherry, Choke	Prunus virginiana
PTAQ	Bracken Fern	Pteridium aquilinum
PYEL	Shinleaf	Pyrola elliptica
QUBO	Oak, Northern Red	Quercus borealis
QUPA	Oak, Pin	Quercus palustris

Abbr	Common Name	Scientific Name RiBE
Gooseberry/Currant		
ROCK	Rocks	
ROSA	Roses	Rosa spp.
RUBU	Brier	Rubus spp.
SALX	Willows	Salix spp.
SAMA	Black Snakeroot	Sanicula marilandica
SAPU	Pitcher Plant	Sarracenia purpurea
SEDG	Sedges (Unidentified)	Smilacina trifoliata
SMTR	Bog False Solomon Seal	Sorbus americana
SOAM	Mountain Ash	Solidago spp.
SOL	Goldenrod	Sphagnum spp.
SPHA	Sphagnum Moss	Streptopus roseus
STRO	Twisted Stalk	Trientalis borealis
		Trillium cernuum
TRBO	Starflower	Vaccinium angustifolium
TRCE	Noffing Trillium	Vaccinium macrocarpon
		Vaccinium oxycoccus
VAAN	Lowbush Blueberry	Viola spp.
VAMA	Large Cranberry	Viburnum recognitum
VAOX	Small Cranberry	Viburnum trilobum
VIOL	Violet	
VIRE	Arrowood	

Table 2.2-SNF Study Site Locations

This table contains the locations of the study sites in the SNF experiment. The first column is the identification number assigned to the site. The location is given in north latitude and west longitude in the form degrees, minutes, seconds. The elevation is in feet above sea level. Tree height is an estimate of the average canopy height in feet.

Site	Latitude	Longitude	Elev.	Tree	Description
1	48646	922028	1380	80	high-density red pine
2	4887	921821	1360	50	dense, mature black spruce
3	48755	921515	1380	80	medium-density mature aspen
4	48830	92121	1440		medium-density red pine
5	48615	9299	1460		
6	4884	92157	1380		
8	48613	9244	1370	60	medium-density jack pine over black spruce
10	4867	92350	1370	70	mature jack pine over mixed species
12	48442	915736	1430	20	sparse, low black spruce
13	48440	915716	1480		medium-density red pine
14	48810	921824	1360	60	dense, mature black spruce
15	48814	921827	1360	60	dense, mature black spruce
16	48755	92153	1380	60	medium--density mature aspen
17					
18	48445	915736	1430	25	sparse, low black spruce
19	48449	915736	1430	25	sparse, low black spruce
20	48618	92234	1420	45	medium-density aspen, mixed
21	48559	92059	1440	65	medium-to high-density aspen
22	48556	92059	1440	50	high-density aspen
23	48815	921715	1360		water site, Lake Jeanette
24	48815	9280	1380		water site, Meander Lake
25	4850	9200	1410		water site, Big Lake
26	48430	915645	1460		water site, Ed Shave Lake
27			1370		water site
28			1390		water site
30	48422	92745	1420		medium-density red pine
36	475933	915435	1500		medium-density aspen, mixed
37	48652	92930	1410		medium-density aspen
38	48721	92954	1440	30	low-to medium-density black spruce
39	475952	915513	1440	20	low-to medium-density black spruce
40					
41	48025	915546	1400	60	high-density black spruce
42	48025	915542	1400	60	medium-density black spruce
43	48117	91558	1440	60	medium-density black spruce
45	48040	915018	1360	40	medium-density black spruce
46	48040	915013	1360	40	medium-density black spruce
47	4811	91532	1500	35	medium-density black spruce
48	4812	915329	1520	50	medium-density black spruce
49	4815	915326	1500	35	medium-density black spruce
50	48050	915345	1480	35	low-density black spruce
51	475957	915521	1440	25	low-density black spruce
52	4800	915519	1440	60	low-density black spruce
53	48014	91553	1450		medium-density red pine
54	48019	91553	1450	35	low-density black spruce
55	48013	915519	1450	40	medium-density black spruce

Site	Latitude	Longitude	Elev.	Tree Ht	Description
56	48218	915523	1430		medium-density black spruce
57	48744	921815	1360		high-density black spruce
58	48760	921918	1360	40	low-density tamarack and black spruce
59	48754	921914	1360	45	low-density black spruce
60	48740	92155	1360		low-density black spruce
61	48750	92238	1400		low-density, young jack pine
62	48456	915752	1430	35	low-density black spruce
63	4853	915735			low-density black spruce
64	48550	915826	1430	35	small growth, low-density black spruce
65	48615	92134	1430	35	medium-density red pine
66	48618	92144	1450	35	medium-density red pine
67	48612	92134	1430	30	medium-density red pine
68	4869	92120	1425	45	high-density black spruce
69	48641	92850	1430	20	high-density, young aspen
70	48637	92848		20	high-density, young aspen
71	48624	92853	1450	25	high-density, young aspen
72	48107	922959	1300	80	high-density, large aspen
73	481011	92305	1250	80	high-density, large aspen
74	48103	923015	1325	80	high-density, large aspen
75	48953	923021	1300	80	medium-density, large aspen
76	48955	92308	1250	60	medium-density aspen
77	4899	922617	1320	80	high-density, large aspen
78	4897	922624	1280	80	high-density aspen
79	475823	91467	1400	85	medium-density, large aspen, some birch
80	475820	91467	1400	80	medium-density aspen, birch
81	475843	914850	1400	85	high-density, large aspen
82	475839	914853	1410	85	high-density, large aspen
83	475836	914856	1410	85	high-density, large aspen
84	48651	92735	1500	15	high-density, small aspen
85	48652	92738	1510	65	medium-density, medium size aspen
86	47591	91537	1520	15	low-density aspen
87	48742	92726	1380	20	low-density aspen
88	48611	9299	1465	25	low-density, young aspen
89	4875	92919	1450	20	low-density aspen, with maple,oak,birch
90	48928	922210	1380	80	medium-density aspen
91	4898	922155	1380	80	high-density aspen
92	48933	922646	1260	85	high-density aspen
93	48935	922643	1285	90	high density aspen
94	48041	915045	1400	15	low-density, young aspen
95	48022	915052	1395	15	low-density aspen
96	475815	91460	1400	80	medium-density aspen
97	475820	914557	1410	80	medium-density aspen, open understory
98	48023	915059	1390	70	medium-density aspen
99	48045	915026	1440	20	low-density, young aspen, dense understory
100	48010	914960	1360		high-density black spruce
101	48034	91507	1380		high-density black spruce
102	4869	92114	1430	50	high-density black spruce
103	48551	915828	1450	45	low-density black spruce
104	48556	915828	1440	30	low-density black spruce
105	48438	92417	1375	50	high-density black spruce
106	48054	915334	1520	60	high-density jack pine and aspen mix
107	48050	915337	1520	60	high-density jack pine and aspen mix
108	48022	915258	1530	60	high-density jack pine and aspen mix

Site	Latitude	Longitude	Elev.	Tree Ht	Description
109			1520	60	high-density jack pine and aspen mix
110			1500	60	high-density jack pine and aspen mix
111	48057	915249	1500	60	high-density jack pine and aspen mix
112	48056	915235	1500	60	high-density jack pine and aspen mix
113	48059	915213	1440	60	high-density jack pine and aspen mix
114	48059	915215	1460	60	high-density jack pine and aspen mix
115	48050	915216	1440	60	high-density jack pine and aspen mix
116	474450	915812	1480	60	high-density jack pine
117	474257	915923	1460	60	high-density jack pine
118	474258	915925	1460	60	high-density jack pine
119	474049	915028	1530	60	high-density jack pine
120	474045	915024	1530	60	high-density jack pine
121	474047	915020	1530	60	high-density jack pine
122	474049	915025	1530	60	high-density jack pine
123	474044	915028	1540	60	high-density jack pine
124	473927	914741	1640	15	low-density jack pine
125	473945	914732	1610	15	low-density jack pine

3.0 Biophysical Data

3.1 Introduction

The purpose of the SNF study was to improve our understanding of the relationship between remotely sensed observations and important biophysical parameters in the boreal forest. A key element of the experiment was the development of methodologies to measure forest stand characteristics to determine values of importance to both remote sensing and ecology. Parameters studied were biomass, leaf area index, above-ground net primary productivity, bark area index and ground coverage by vegetation. Thirtytwo quaking aspen and thirty-one black spruce sites were studied.

3.2 Site Measurements

Sites were chosen in uniform stands of aspen or spruce. The dominant species in each site constituted over 80 percent, and usually over 95 percent, of the total tree density and basal area. Aspen stands were chosen to represent the full range of age and stem density of essentially pure aspen, of nearly complete canopy closure, and of greater than 2 meters in height. Spruce stands ranged from very sparse stands on bog sites to dense, closed stands on more productive peatlands.

In each stand a uniform site 60 meters in diameter was laid out. Within this site, five circular plots, 16 meters in diameter, were positioned. One plot was at the center of the site and four were tangent to the center plot, one each in the cardinal directions. In very dense stands, plot radii were decreased so that stem count for the five plots remained around 200 stems. Use of multiple plots within each site allowed estimation of the importance of spatial variation in stand parameters.

Within each plot, all woody stems greater than 2 meters in height were recorded by species and relevant dimensions were measured. Diameter breast height (dbh) was measured directly. Height of the tree and height of the first live branch were determined by triangulation. The difference between these two heights was used as the depth of crown. The distances between trees and observer were such that no angle exceeded 65 degrees. Most plots were level, small slopes were ignored in calculating heights. Similar measurements were made for shrubs between 1 and 2 meters tall in the aspen sites. Table 3.1 has the species counts of the trees over 2 meters, and Table 3.2 has the species counts for the subcanopy trees between 1 and 2 meters tall.

For each plot, a 2-meter-diameter subplot was defined at the center of each plot. Within this subplot, the percent of ground coverage by plants under 1 meter in height was determined by species. These data, averaged for the five plots in each site, are presented in Table 3.3. Also, in each plot for the aspen sites, a visual estimation of the percent coverages of the canopy, subcanopy and understory vegetation was made. Table 3.4 contains the site averages of these coverage estimates.

3.3 Sacrificed Trees

Dimension analysis of sampled trees was used to develop equations linking the convenience measurements taken at each site and the biophysical characteristics of interest (for example, LAI or biomass). To develop these relations, 32 aspen and 31 spruce trees were sacrificed. The trees were randomly sampled, with stratification by diameter, from stands similar and near to the study sites.

Fifteen mountain maple and fifteen beaked hazelnut trees were also sampled and leaf areas were determined. These data were used to determine understory leaf area.

For each sampled tree, diameter at breast height, height to first live branch and total height were measured before and after felling. Measurements of all branches included: height of attachment on bole, diameter, length to first secondary branch and total length. Crowns were vertically stratified into three equal sections and six branches were randomly sampled from each stratum. For each sampled branch, all leaves and wood were weighted green and the current year's woody growth was measured. A sample of 200 leaves from each stratum had leaf area measured with a Licor leaf area meter and were dried and weighed. Subsamples from each sampled branch were dried and weighed.

Removal of green spruce needles from branches proved impractical, so needle-bearing parts of sampled branches were cut off, separated between current year and older classes, and dried. A sample of 21 needles each from the new and older growth were randomly selected from each canopy stratum. The sampled needles were photographed and green and dry weights were measured. Projected area was determined from the digitized photographs.

Boles were sectioned and weighed green. Four sections, 5 to 20 centimeters long were cut from: the base of the bole; halfway between the base and first live branch; just below the first live branch; and halfway between the first live branch and the tree top. Each section was measured, then dried and weighed.

3.4 Parameter Estimation from Sampled Trees

For each of the sacrificed trees, the total above-ground biomass was estimated as the sum of the branch and bole biomass. Branch biomass was estimated by finding the dry-to-green weight ratios for leaves, twigs and wood and using the ratios to convert the green-to-dry weights for the sampled branches. A regression of branch biomass on branch dimensions was done independently for each tree and used to determine biomass for the unsampled branches. Total branch biomass was the sum of the estimated biomass of the sampled and unsampled branches. Bole biomass was estimated by finding the dry-to-green weight ratios for each section, converting the green weights and summing. Total biomass is the sum of the branch and bole biomass.

Methods for estimating leaf area were parallel to those for estimating branch biomass. Leaf weights for unsampled branches were estimated using tree-specific, linear regressions on branch dimensions fit with data from sampled branches. For spruce, separate regressions were done for current-year and older needles. Measured and estimated foliage weights were summed within strata and, for spruce, age class. The foliage weights were converted to leaf areas using ratios determined from sampled leaves, then totaled for trees. The sacrificed tree statistics for aspen and spruce are in Tables 3.5 and 3.6.

Bark area in aspen was determined using similar techniques to those for leaf area. Sampled branches were divided into segments, each segment was assumed to be a cylinder and the surface area was calculated. Total branch surface area was the sum of the surface areas of the segments. A regression was developed to determine branch area for the unsampled branches. The sum of the estimated branch areas for the sampled and unsampled branches is the total bark area.

Net primary productivity was estimated from the average radial growth over 5 years measured from the segments cut from the boles and the terminal growth measured as the height increase of the tree. Allometric equations were used to find the height and radial increment as a function of crown height and diameter at breast height. Spruce used an additional parameter of stem density. The models were used to back project 5 years and determine biomass at that time. The change in biomass over that time was used to determine the productivity.

Measurements of the sacrificed trees were used to develop relationships between the biophysical parameters (biomass, leaf area index, bark area index and net primary productivity) and the measurements made at each site (diameter at breast height, tree height, crown depth and stem density). These relationships were then used to estimate biophysical characteristics for the aspen and spruce study sites as shown in Tables 3.7 and 3.8 , respectively.

3.5 Stand Characteristics

Aspen is an early successional, shade intolerant species. Aspen stands are essentially even aged, and stand age appears to be the most significant difference among sites in determining stand density, average diameter, and biomass density. Biomass density was highest in stands of older, larger trees and decreased in younger stands with smaller, denser stems. Since all aspen stands had closed canopies, the inverse relationship between biomass density and stem density suggests a series of stands in various stages of self thinning. Aspen trees do not survive suppression, so that bole diameters tend to be relatively uniform and age-determined and biomass increases with age and diameter while density declines. LAI, however, remains relatively constant once a full canopy is established with aspen's shade intolerance generally preventing development of LAI greater than two to three.

Biomass density and projected LAI were much more variable for spruce than for aspen. Spruce LAI and biomass density have a tight, nearly linear relationship. Stand attributes are often determined by site characteristics. Wet, ombrotrophic sites support open, low-biomass, mixed-age stands. Spruce stands with LAI below about two and biomass densities below about $5 \mathrm{~kg} / \mathrm{m}^{2}$ appear to be limited by site characteristics such as nutrient poverty and wetness. Stand quality improves with site richness until canopy closure brings on self thinning. Closed canopies attain maximum LAI at around four, higher than aspen, perhaps because spruce is more shade tolerant (it is often observed growing beneath closed aspen stands in the study area). However, differences between maximum LAI for aspen and spruce also may be related to differences in the leaf distribution within the canopy.

3.6 Phenology

Deciduous vegetation undergoes dramatic changes over the seasonal cycle. The varying amount of green foliage in the canopy effects the transpiration and productivity of the forest. Measurements of changes in the canopy and subcanopy green foliage amount over the spring of 1984 have been made. From above the subcanopy, photographs of the aspen canopy were taken, pointing vertically up. The photographs were taken at two locations in sites 16 and 93 on several different days. Foliage coverage was determined by overlaying grids with 200 points onto the photos of the canopy. The number of points obscured by vegetation were counted. These counts were adjusted for the area of the branches, which had been determined by photos taken before leaf out. The number of foliage points were then scaled between zero, for no leaves, to one, for maximum coverage. These values are presented in Table 3.9.

Subcanopy leaf extension was measured for beaked hazelnut and mountain maple, the two most common understory shrubs. For selected branches on trees in sites 16 and 93 , the length and width of all leaves were measured on several days. These measurements were used to calculate a total leaf area which was scaled between 0 and 1 as with the aspen. These data are in Table 3.10.

These measurements of leaf out show that the subcanopy leaf expansion lags behind that of the canopy (see Figures 3.1 and 3.2). Subcanopy leaf expansion only begins in earnest after the canopy has reached nearly full coverage.

Figure 3.1 Relative canopy coverage of aspen overstory and relative leaf extension of understory trees, mountain maple and beaked hazelnut, during the spring of 1984 at site 16.

Figure 3.2 Relative canopy coverage of aspen overstory and relative leaf extension of understory trees, mountain maple and beaked hazelnut, during the spring of 1984 at site 93.
 x｜y0N00000000000000000000000000000000000000包 $00000000000-0000000000000000000000000000$刿 0000000400000000000000000050000000000000 를
気
包 $0000000-000 \mathrm{~m} 00000000000000100000000070 \mathrm{in}$

	郎
	包000N000000000000－N0000000000000000000000
	woolvoooopoon000000－00000－000000000000000
	U00000000000N0000000000000000000000000000
	区00 M P000－00000
	别

気 000000 N00000000000000000000000000000000

 xo－000－n00000
OOM－000000000以1 00000000000 른
路（H0000000NのO勉 000000000000気 000000000000門0－0000000000 춘 $00000000000-$気00－－0000Nm00魅00－0000－000岛000000000000

気000000000000

嫘

Table 3.2-Subcanopy Species
This table provides a count of the number of trees between 1 and 2 meters tall, broken down by species. The first column contains the site numbers, the other columns are the population of each tree at each site. The site locations are given in Table 2.2 and the species codes used for the column headings are described in Table 2.1.

Site	ABBA	ACRU	ACSP	ALRU	AMEL	BEPA	COCO	COST	LOCA	POTR	PRPE	OTHER	Total
3	0	0	6	3	3	0	13	1	0	1	0	0	27
16	0	13	45	6	0	0	88	0	0	2	0	0	154
20	0	7	1	0	0	0	62	0	0	6	0	0	76
21	0	6	0	1	2	0	32	0	0	5	0	4	50
36	5	0	0	0	0	0	0	0	0	11	0	0	16
69	0	3	0	0	0	0	35	0	0	0	9	0	47
71	0	4	0	0	2	0	9	0	0	2	14	0	31
72	0	0	6	0	2	0	31	0	13	0	0	0	52
73	1	0	33	0	0	0	42	0	0	0	0	0	76
74	0	0	18	1	0	0	35	2	0	2	0	0	58
75	1	0	51	0	4	0	61	0	0	0	0	0	117
77	0	0	44	0	0	0	37	0	1	0	0	0	82
79	0	10	46	0	5	0	5	0	0	29	0	0	95
80	0	0	1	0	0	0	37	1	0	28	0	0	67
81	0	0	59	0	7	0	32	30	0	20	0	0	148
82	0	2	45	0	0	0	2	1	0	21	0	0	71
83	0	0	54	0	2	0	45	0	0	21	0	0	122
84	0	7	9	0	0	0	24	0	0	36	0	0	76
85	0	1	11	0	0	3	58	4	0	4	0	0	81
86	0	2	20	12	0	0	39	0	0	32	0	2	107
87	0	0	6	0	0	0	188	0	0	0	0	0	194
88	0	9	7	0	0	3	14	0	0	1	0	0	34
89	0	4	12	0	0	4	31	0	0	2	0	0	53
90	1	6	1	6	0	0	142	0	0	3	0	4	163
92	1	1	3	0	5	0	143	0	0	2	0	4	159
93	2	1	23	0	8	0	143	0	0	0	0	0	177
94	0	4	0	0	0	0	200	0	0	85	2	0	291
95	0	0	0	8	0	3	24	0	0	43	0	0	78
96	0	2	0	0	0	0	3	0	0	3	0	0	8
97	0	0	0	0	0	0	3	0	0	0	0	2	5
98	4	0	0	0	6	1	25	0	0	5	0	1	42
99	0	0	0	57	0	1	305	0	0	34	1	2	400

This table provides a measurement of the percent ground coverage provided by each species. The percentages are the average of five 2 -meter-diameter subsamples in each site. Each column is a study site with a row for each species. Species codes are described in Table 2.1, site locations are listed in Table 2.2.

ABBA
$\left.\begin{array}{rrrrrrrrrrrrrrrrrr} \\ 2 & 3 & 12 & 14 & 15 & 16 & 18 & 19 & \mathbf{0} & 21 & 36 & 38 & 39 & 41 & 42 & \mathbf{4 3} & \mathbf{4 5} & 47 \\ \mathbf{0} & \mathbf{0} & \mathbf{0} & \mathbf{0} & 0 & 0 & 0 & 0 & 3 & 2 & 6 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 10 & 0 & 0 & 1 & 5 & 6 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 17 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 4 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 18 & 0 & 0 & 0 & 14 & 0 & 0 & 8 & 26 & 38 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 6 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 8 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 14 & 6 & 1 & 14 & 7 & 14 & 7 & 5 & 5 & 16 & 25 & 10 & 3 & 17 & 14 & 13 & 25 & 8 \\ 5 & 0 & 9 & 1 & 8 & 0 & 12 & 28 & 0 & 0 & 0 & 12 & 0 & 0 & 1 & 3 & 4 & 8 \\ 0 & 1 & 0 & 0 & 0 & 3 & 0 & 0 & 3 & 2 & 6 & 2 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 10 & 6 & 7 & 0 & 1 & 0 & 4 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 6 & 0 & 0 & 8 & 5 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 3 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 2 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 0 & 0 & 0 & 11 & 10 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 5 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 1 & 1 & 4 & 0 & 4 & 1 & 1 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 3 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 28 & 0 & 2 & 7 & 13 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 4 & 6 & 8 & 5 & 3 & 4 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 4 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 2 & 1 & 0 & 0 & 0 & 2 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 3 & 8 & 2 & 5 & 3 \\ 5 & 5 & 12 & 2 & 4 & 2 & 4 & 1 & 4 & 1 & 5 & 8 & 5 & 3 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 3 & 1 & 0 & 0 & 2 & 5 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 2 & 3 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 33 & 0 & 5 & 14 & 27 & 0 & 6 & 6 & 0 & 0 & 0 & 24 & 24 & 6 & 15 & 28 & 7 & 9 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 3 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0\end{array}\right)$

Table 3.3 cont. - Sites 2 through 47

	$\underline{2}$	$\mathbf{3}$	12	14	15	16	18	19	$\mathbf{2 0}$	21	36	38	39	41	42	43	$\mathbf{4 5}$	$\mathbf{4 7}$
PIMA	1	0	3	2	3	0	13	15	0	0	0	2	6	1	4	2	0	2
PIST	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
POTR	0	1	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0	0
POPU	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
PTAQ	0	2	0	0	0	1	0	0	14	18	6	0	0	0	0	0	0	0
RIBE	0	2	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
ROSA	0	1	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
ROCK	0	0	0	0	0	0	0	0	17	2	10	0	0	0	0	0	0	0
RUBU	0	6	0	0	0	1	0	0	0	3	1	0	0	0	0	0	0	0
SALX	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0
SAMA	0	4	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
SAPU	0	1	3	0	0	0	2	2	0	0	0	0	0	0	0	0	0	0
SEDG	0	0	1	0	0	0	0	0	6	0	3	0	0	0	5	0	10	32
SMTR	14	0	14	13	12	0	0	0	0	0	0	6	9	5	6	6	4	20
SOLI	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0
SPHA	68	0	60	16	68	0	62	62	0	0	0	82	60	72	34	32	55	64
STRO	0	1	0	0	0	4	0	0	0	0	3	0	0	0	0	0	0	0
TRBO	0	2	0	0	0	1	0	0	1	4	4	0	0	0	1	0	0	0
TRCE	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0
VAAN	4	0	0	5	5	0	0	0	3	10	0	4	5	5	9	5	5	5
VAMA	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
VAOX	6	0	4	1	3	0	5	5	0	0	0	1	4	0	2	1	2	5
VIOL	0	0	0	0	0	1	0	0	0	0	3	0	0	0	0	0	0	0
VIRE	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VITR	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

	48	49	50	51	52	54	55	56	57	62	63	64	68	69	71	72	73	74
ABBA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	1
ACRU	0	0	1	0	0	0	0	0	0	0	0	0	0	1	2	2	4	2
ACSP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	4	4
ACTA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	0
ALRU	1	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
AMEL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
ANGL	0	0	0	1	1	0	0	2	0	0	2	5	0	0	0	0	0	0
ANQU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
ARNU	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	5	6	7
ASMA	0	0	0	0	0	0	0	0	0	0	0	0	0	11	16	14	21	4
ASCA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ATFE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
BEPA	0	0	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
BLIT	12	5	18	3	3	16	30	13	5	1	8	0	8	15	20	32	34	24
CHCA	0	0	0	17	9	10	2	5	20	20	12	24	5	0	0	0	0	0
CLBO	0	0	0	0	0	0	0	0	0	0	0	0	0	4	5	3	2	2
COCA	0	1	2	0	0	0	0	0	0	0	0	0	0	17	5	4	3	4
COCO	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1	2	2	5
COGR	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1	0	0
COMP	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0	2	1
COST	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	1
DILO	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	3	1	2
EQUI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	1
ERIO	0	0	0	8	0	0	0	0	0	0	24	0	0	0	0	0	0	0
FRVE	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	2	4	1
FUNG	3	0	0	0	1	0	0	4	3	0	0	0	2	0	0	0	0	0

Table 3.3 cont. - Sites 48 through 74

	48	49	50	51	52	54	55	56	57	62	63	64	68	69	7	72	73	4
GAPR	0	,	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
GATR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	4	1
GLIT	4	0	0	0	1	4	0	0	0	0	0	0	0	0	0	0	0	0
GRAS	10	5	2	1	17	5	0	0	0	17	6	0	1	2	2	1	4	5
KAPO	0	0	0	5	0	0	0	2	2	1	8	4	2	0	0	0	0	0
LALA	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LEGR	6	1	11	34	36	22	4	34	17	7	12	6	4	0	0	0	0	0
LICH	1	1	0	0	1	0	1	2	0	0	1	1	0	0	1	0	0	0
LOCA	0	0	0	0	0	0	0	0	0	0	0	0	0	3	1	2	1	0
LYCL	0	7	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0
LYCO	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LYOB	7	0	0	0	0	0	0	0	0	0	0	0	0	3	2	5	4	3
MAAP	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	4
MACA	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	4	4	3
MOSS	13	6	38	2	5	0	18	6	4	12	1	6	9	5	5	4	5	2
OSCI	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2	0
OSCL	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	5
PIBA	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
PIMA	1	0	0	6	1	1	4	6	3	4	8	7	1	0	0	0	0	0
PIST	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0
POTR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
POPU	0	0	0	0	4	5	0	0	0	0	0	0	0	0	0	0	0	0
PRPE	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0	0	0
PRVE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	,	0	1	0
PTAQ	0	0	0	0	0	1	0	0	0	0	0	0	0	2		0	1	3
QUBO	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
RIBE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	0	0
ROSA	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
ROCK	0	0	0	0	0	0	0	0	0	0	0	0	0	5	5	0	0	0
RUBU	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	4	2	4
SAPU	0	0	0	0	0	0	0	2	2	3	1	7	0	0	0	0	0	1
SEDG	2	14	6	0	1	0	2	5	14	6	0	34	10	0	2	0	0	0
SMTR	10	5	4	2	0	7	6	2	0	0	0	0	1	0	0	0		0
SPHA	64	48	38	74	86	62	38	68	72	66	56	56	62	1	1	0	0	0
STRO	0	0	0	0	0	0	0	0	0	0	0	0	0	1	4	5	4	4
TRBO	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	5	4	4
VAAN	0	2	0	0	0	4	5	2	0	0	0	0	0	7	3	0	,	1
VAMA	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0
VAOX	0	1	1	3	2	2	2	4	4	4	3	4	5	0	0	0	0	0
VIOL	0	0	0	0	0	0	0	0	0	0	0	0	0	1	2	3	3	3

	75	77	79	80	81	82	83	84	85	86	87	88	89	90	92	93	94	95
ABBA	3	1	3	0	2	0	1	0	0	0	0	0	0	1	1	1	0	0
ACRU	5	2	3	2	3	1	4	5	4	0	0	2	1	5	1	2	1	0
ACSP	7	4	9	2	8	12	3	1	2	0	0	1	1	0	2	4	0	0
ACTA	0	0	0	0	2	1	0	0	0	0	0	0	0	0	0	0	0	0
AMEL	1	0	2	0	2	0	0	0	0	0	0	0	0	0	1	1	0	0
ANQU	0	1	1	1	1	0	0	0	0	0	0	0	0	0	0	1	0	0
ARNU	4	4	14	7	6	8	6	8	0	0	0	4	0	0	5	3	6	2
ASMA	14	2	14	18	31	48	22	23	30	10	7	12	3	13	10	12	36	26
ASCA	0	0	2	3	0	0	0	0	0	0	0	0	0	0	0	1	0	0
ATFE	1	5	2	10	0	0	0	0	0	0	0	1	0	0	0	6	0	0
BEPA	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0
BLIT	20	46	14	6	32	18	24	22	24	22	30	42	24	24	32	26	10	16

Table 3.3 cont. - Sites 75 through 95

	75	77	79	80	81	82	83	84	85	86	87	88	89	90	92	93	94	95
CLBO	2	5	3	1	0	1	0	0	1	0	2	4	4	2	6	4	1	0
COCA	4	4	8	0	0	2	0	1	2	6	0	4	8	4	4	3	4	3
COCO	2	0	1	1	0	0	2	1	0	2	3	3	1	3	7	6	5	9
COGR	2	3	1	0	0	0	0	0	0	0	0	0	0	0	0	2	0	0
COMP	1	0	3	5	1	0	0	1	1	0	0	1	0	0	0	2	4	1
COST	0	0	2	4	3	0	0	0	0	0	0	0	0	0	0	0	0	1
DILO	2	0	8	3	2	3	3	0	1	1	1	1	2	0	1	1	1	1
DRYO	1	2	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
EQUI	0	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0	0	0
FRVE	4	0	5	5	1	3	1	0	0	0	0	0	0	1	0	0	1	2
FUNG	0	0	0	1	0	0	0	1	1	1	3	3	1	2	0	1	0	0
GACI	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GAPR	0	0	0	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0
GATR	2	2	4	4	3	4	4	0	0	0	0	0	0	0	0	4	1	2
GLIT	0	6	1	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
GRAS	6	2	3	5	4	5	5	1	4	5	3	2	1	5	5	4	4	7
IMBI	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
LAOC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3
LAVE	0	0	0	0	1	6	2	0	0	0	0	0	0	0	0	0	0	0
LEGR	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1
LIBO	0	0	0	0	1	0	0	0	0	2	0	0	0	0	0	0	0	0
LICH	0	0	0	0	0	0	0	1	0	0	1	0	0	0	0	0	0	0
LOCA	0	1	4	0	0	2	0	0	0	0	0	0	0	0	0	0	0	0
LYAN	0	5	0	0	0	0	0	0	0	0	0	0	0	0	3	1	0	0
LYCL	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
LYOB	0	2	2	0	0	0	0	3	4	4	3	6	6	6	8	6	5	0
MAAP	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
MACA	5	3	3	2	4	3	3	2	0	0	0	2	0	0	4	4	0	1
MINT	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	1
MOSS	6	7	7	2	5	6	6	4	11	4	5	4	17	6	3	1	0	2
OSCI	0	0	0	5	0	0	0	0	0	0	0	0	0	0	0	0	0	0
OSCL	1	1	1	0	0	0	0	0	0	0	0	0	0	0	2	0	1	0
PEPA	0	0	1	2	0	0	0	0	0	0	0	0	0	0	1	0	0	0
PIBA	0	0	0	0	0	0	0	0	0	1	0	1	0	0	0	0	0	0
PIRE	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1
POTR	0	1	2	1	5	1	3	4	0	0	0	0	0	0	3	1	1	1
PTAQ	0	0	7	2	0	1	2	20	7	4	0	0	0	0	1	3	4	3
PYEL	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
QUBO	0	2	0	0	0	0	0	0	1	0	0	0	0	4	0	0	0	0
RIBE	0	0	2	2	1	0	0	0	0	0	0	0	0	0	0	0	0	0
ROSA	0	0	0	1	3	1	0	1	0	0	0	0	0	0	1	0	3	0
ROCK	1	2	0	0	4	1	2	3	7	18	1	3	8	1	0	0	0	0
RUBU	5	3	7	6	0	4	5	0	0	4	1	2	1	1	1	3	3	8
SAMA	0	0	0	4	0	0	0	0	0	0	0	0	0	0	0	1	0	0
SAPU	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
SEDG	1	1	1	0	0	0	1	1	0	0	0	1	0	1	0	0	0	0
SPHA	0	0	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0
STRO	4	3	5	1	2	3	4	1	0	0	0	1	0	0	5	5	1	0
TRBO	5	4	5	2	0	2	1	3	4	0	2	3	0	2	4	4	0	1
VAAN	1	0	2	0	0	0	0	3	5	5	0	2	3	2	0	2	0	6
VIOL	5	4	3	0	1	3	0	3	0	0	0	1	1	0	2	2	1	1
VIRE	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VITR	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0
VTCH	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	2

Table 3.3 cont.

	96	97	98	99	100	101	102	103	105
ABBA	5	4	5	0	0	0	0	0	0
ACRU	6	3	0	0	0	0	0	0	0
ACSP	1	0	0	0	0	0	0	0	0
AMEL	0	0	1	0	0	0	0	0	0
ANGL	0	0	0	0	0	0	0	5	1
ARNU	2	2	0	0	0	0	0	0	0
ASMA	17	36	38	20	0	0	0	0	0
BLIT	31	11	14	42	17	35	8	2	9
CHCA	0	0	0	0	0	0	4	15	0
CLBO	1	2	0	0	0	0	0	0	0
COCA	8	4	0	4	0	0	0	0	0
COCO	1	1	3	3	0	0	0	0	0
COGR	1	2	0	0	0	0	0	0	0
COMP	2	1	1	0	0	0	0	0	0
DILO	2	8	1	1	0	0	0	0	0
EQUI	1	0	0	0	0	0	0	0	0
FRVE	4	4	1	1	0	0	0	0	0
FUNG	0	0	0	0	5	2	3	3	5
GACI	0	1	0	0	0	0	0	0	0
GAHI	0	0	0	0	2	1	4	1	3
GATR	2	1	1	0	0	0	0	0	0
GRAS	4	3	3	5	0	0	6	0	2
KAPO	0	0	0	0	0	0	1	5	0
LAOC	0	0	2	0	0	0	0	0	0
LAVE	0	1	0	0	0	0	0	0	0
LEGR	0	0	0	0	0	0	8	10	6
LIBO	0	0	1	0	0	0	0	0	0
LICH	0	0	0	0	0	0	0	1	0
LOCA	0	0	1	0	0	0	0	0	0
LYAN	2	0	9	1	0	0	0	0	0
LYCL	0	0	1	0	0	0	0	0	0
LYCO	0	0	0	1	0	0	0	0	0
LYOB	3	3	6	1	0	0	0	0	0
MACA	6	5	3	0	0	0	0	0	0
MOSS	3	2	3	4	10	10	10	9	16
PIMA	0	0	0	0	0	0	3	8	3
POTR	1	0	3	0	0	0	0	0	0
PTAQ	6	18	7	9	0	0	0	0	0
ROSA	1	0	2	1	0	0	0	0	0
RUBU	4	3	2	5	0	0	0	0	0
SAPU	0	0	0	0	0	0	0	4	0
SEDG	1	2	0	1	20	1	6	26	11
SMTR	0	0	0	0	2	0	2	1	3
SPHA	0	0	0	0	60	36	50	60	70
STRO	1	2	1	1	0	0	0	0	0
TRBO	5	2	2	0	0	0	0	0	0
VAAN	2	1	2	5	1	0	0	0	0
VAOX	0	0	0	0	1	2	4	5	5
VIOL	1	2	1	0	0	0	0	0	0
				0					

Table 3.4-Cover by Stratum and Plot for Aspen Sites

Average percent coverage and standard deviation from the five subplots at each aspen site. Site is the site identification number, Canopy is coverage of trees over 2 meters tall, Subcanopy is the percent coverage of trees and shrubs between 1 and 2 meters tall, Understory is coverage of plants under 1 meter, and Dead Canopy is the amount of coverage by dead limbs or trees.

Site	Canopy		Subcanopy		Understory		Dead Canopy	
	Avg	Std	Avg	Std	Avg	Std	Avg	Std
3	56.7	25.2	66.7	15.3	65.0	39.7	3.3	2.9
16	58.0	8.4	60.0	23.5	38.0	11.0	4.0	2.2
20	62.0	11.0	36.0	21.9	64.0	16.7	5.0	0.0
21	44.0	11.4	44.0	20.7	70.0	15.8	2.0	2.7
36	46.0	5.5	15.0	7.1	76.0	20.7	7.0	7.6
69	68.0	4.5	7.0	2.7	70.0	7.1	4.0	2.2
71	68.0	8.4	11.0	11.4	68.0	14.8	5.0	0.0
72	60.0	14.1	20.0	0.0	50.0	0.0	5.0	0.0
73	66.0	5.5	34.0	15.2	66.0	21.9	5.0	0.0
74	60.0	7.1	20.0	17.3	64.0	11.4	5.0	0.0
75	66.0	5.5	34.0	16.7	68.0	8.4	5.0	0.0
77	56.0	5.5	32.0	25.9	52.0	13.0	5.0	0.0
79	72.0	4.5	26.0	8.9	82.0	11.0	2.0	2.7
80	70.0	7.1	16.0	8.9	80.0	10.0	4.0	2.2
81	66.0	8.9	54.0	23.0	48.0	20.5	5.0	0.0
82	62.0	4.5	24.0	13.4	68.0	4.5	5.0	0.0
83	62.0	4.5	27.0	14.8	70.0	14.1	5.0	0.0
84	70.0	7.1	13.0	11.5	60.0	15.8	1.0	2.2
85	62.0	8.4	17.0	14.0	48.0	16.4	16.0	24.6
86	50.0	18.7	24.0	13.4	56.0	13.4	0.0	0.0
87	56.0	15.2	34.0	20.7	38.0	13.0	12.0	10.4
88	66.0	11.4	14.0	10.8	54.0	8.9	6.0	4.2
89	60.0	14.1	28.0	8.4	36.0	5.5	5.0	0.0
90	50.0	7.1	48.0	17.9	38.0	8.4	5.0	0.0
92	56.0	8.9	37.0	27.3	52.0	19.2	6.0	2.2
93	58.0	4.5	74.0	8.9	66.0	8.9	5.0	0.0
94	50.0	0.0	68.0	19.2	74.0	20.7	0.0	0.0
95	52.0	8.4	17.0	24.1	80.0	18.7	2.0	2.7
96	70.0	7.1	3.0	2.7	64.0	13.4	5.0	0.0
97	62.0	8.4	4.0	4.2	83.0	14.0	4.0	2.2
98	56.0	5.5	18.0	16.0	88.0	7.6	5.0	0.0
99	50.0	18.7	66.0	8.9	46.0	8.9	3.0	2.7

Table 3.5-Statistics for Sacrificed Aspen Trees

Values from aspen trees cut near to the study sites. Dbh is diameter breast height in centimeters; height is total height of tree in meters; doc is the depth of the crown, i.e., the height from the first leaf-bearing branches to the top of the tree in meters; leaf area is the total area of the leaves on the tree calculated from sampled branches with the standard error in square centimeters; and the tree biomass is calculated from sampled branches, with the standard error in grams.

$\mathrm{dbh}(\mathrm{cm})$	height (m)	$\mathrm{doc}(\mathrm{m})$	leaf area (cm^{2})	SE (la)	biomass (g)	SE (bm)
0.9	2.20	1.78	1280.16	0.00	112.58	2.10
1.2	2.80	1.77	1766.12	165.46	168.70	24.25
1.4	3.43	2.14	3677.92	290.14	256.28	8.83
1.8	3.78	2.62	9708.01	1685.75	598.47	70.36
2.0	4.60	2.40	9043.15	814.04	567.40	19.03
2.2	3.10	1.80	11658.80	1771.70	606.54	16.69
3.4	5.70	4.43	20256.21	853.54	1909.26	37.94
3.4	5.35	4.05	32123.67	3891.72	1936.82	59.93
3.5	5.35	4.15	14072.01	818.25	1532.02	29.73
7.3	9.20	4.90	102891.09	19216.20	14346.30	621.48
9.1	9.40	4.42	83769.87	9591.30	11250.38	313.15
10.5	11.50	5.30	148084.39	11454.91	29413.23	966.04
13.0	16.10	5.05	109339.86	12714.04	54486.61	1178.68
13.7	15.90	4.65	108924.04	8857.67	60834.46	1118.45
15.1	16.70	6.95	91855.49	4814.76	67338.04	1262.27
15.4	17.40	7.10	138091.91	8771.01	80391.10	1515.08
15.8	15.60	5.40	193240.13	8073.15	71016.01	1280.61
17.3	15.50	8.40	218524.41	6802.89	73012.54	1162.92
19.4	23.00	10.30	312907.63	10882.57	171922.24	2513.05
19.5	19.35	7.40	175246.08	10190.74	107218.69	1803.00
21.5	23.10	5.75	182521.34	19549.84	177285.82	2196.16
22.5	22.50	7.25	500455.06	41004.35	238477.34	3218.93
22.6	18.10	7.40	287153.53	11609.84	191767.73	2248.49
22.8	22.40	6.60	422196.53	23861.99	233177.57	2992.33
23.0	22.50	8.70	382654.50	12988.99	237964.00	3036.38
25.1	23.80	8.85	273654.69	23332.50	274651.80	3343.34
25.2	22.50	8.80	241456.02	49253.56	270825.85	3766.19
27.8	23.50	16.25	745781.00	73361.20	448440.07	6264.33
30.2	23.50	10.05	743229.75	71937.20	437031.91	5502.92
32.1	23.80	8.90	531668.81	71937.81	456140.40	4753.74
32.4	23.50	12.80	1017735.38	91915.13	533887.77	5360.41
35.4	22.50	11.50	1228601.50	112045.76	559046.90	5050.19

Table 3.6-Statistics for Sacrificed Spruce Trees

Values from spruce trees cut near to the study sites. Dbh is diameter breast height in centimeters; height is total height of tree in meters; doc is the depth of the crown, i.e., the height from the first leaf-bearing branches to the top of the tree in meters; leaf area is the total area of the leaves on the tree calculated from sampled branches with the standard error in square centimeters; and the tree biomass is calculated from sampled branches with the standard error in grams.

dbh (cm)	height (m)	doc (m)	leaf area (cm^{2})	SE (la)	biomass (g)	SE (bm)
2.9	2.90	1.66	8303.50	1307.83	957.73	59.84
4.1	3.70	3.60	28230.51	5520.61	3541.01	230.67
4.1	4.37	4.24	42984.57	18818.73	5251.89	445.79
4.4	4.20	2.61	19539.94	2915.01	3286.88	152.28
4.9	5.60	2.15	13361.46	2415.06	3720.22	320.19
5.1	4.15	1.90	18259.08	1675.77	4389.37	105.35
5.5	8.55	5.00	37405.26	4111.27	6242.02	260.35
5.7	6.00	3.10	46803.37	2895.23	6177.99	376.14
6.9	6.90	5.12	46080.43	6772.37	8869.33	233.97
8.2	9.35	3.55	34179.43	5821.31	14609.92	377.44
9.1	10.56	4.82	57286.88	7504.30	16967.75	622.87
9.2	11.70	3.40	50016.85	6077.54	19912.67	411.31
11.0	12.86	5.11	115016.66	12092.50	35581.93	581.85
11.0	10.90	7.50	115095.30	18986.75	31188.50	716.32
11.5	12.60	7.55	160659.06	15806.49	43375.69	942.15
12.1	11.00	4.00	93923.11	14070.42	32544.85	876.03
12.7	14.70	7.70	77944.05	17154.32	45656.59	1637.72
14.1	11.94	9.38	165289.27	27741.48	53860.68	2846.02
14.3	13.90	7.80	335712.03	29299.56	60976.55	1218.13
14.4	13.10	7.50	119594.65	21101.48	52109.21	1331.45
15.6	14.40	8.00	66331.88	6845.71	59780.82	917.52
15.6	13.10	8.15	115336.13	22047.93	62144.07	1152.50
16.4	11.80	8.50	438570.81	73382.71	70466.63	1878.40
18.1	19.90	8.65	214715.11	36310.12	133180.07	2484.47
18.9	18.80	8.43	241654.33	34868.48	128709.13	2019.30
19.0	14.15	12.43	450936.09	69085.73	114136.00	2979.51
19.6	14.70	10.47	298449.13	45453.35	114821.05	3087.88
20.2	14.60	12.40	243767.86	27349.37	128890.17	3164.18
20.8	15.30	7.27	146029.06	24910.89	104981.92	2439.91
22.8	17.50	10.10	239635.28	37735.02	137075.67	2088.36
23.0	19.95	12.49	492978.78	60853.75	204608.74	6718.30

 Area is the site area in square meters，Avg DBH and SD DBH are the average and standard deviation of the tree diameter at breast height in cm ，Stems p er
 Standard deviation in $\mathrm{kg} / \mathrm{m}^{2}$ ，NPP is the net primary production in $\mathrm{kg} / \mathrm{m}^{2} /$ year，LA SD BAI are the bark area index and its standard deviation．The bark area is the entire surface area of the boles and branches．Sub LAI is the subcanopy leaf area index．

Stems

률 Ki
名
0
0
0誌 O

 꿍 ${ }^{4}$ $\stackrel{n}{2}$ 등 | 8 |
| :--- |
| 0 |
| |
| |

多品 \begin{tabular}{c}
08

8

in

\hline

4

0

0

0

\hline
\end{tabular}

 348
0
0.8
0 Nㅓㅇ No $\stackrel{8}{N}$ $\dddot{3}$
$\frac{8}{0}$
$\frac{3}{0}$

 닝윽

Table 3．8－Spruce Biophysical Parameters

[^0]倞
 ～
 ๓

 8.每 ${ }_{3}^{\infty}$俞 N 앙 드응 뭉
 N 0.00050
0.00447
Stems

 느N．

Table 3.9-Aspen Canopy Phenology

This table contains measurements of the green leaf coverage during the spring of 1984 for two aspen sites. The canopy was photographed from below at two locations at each site on several days during the spring. Coverage was determined from the photographs and scaled such that 0 is no leaves and 1 is the maximum leaf coverage.

Site is the site number, Day is the day of the year the photos were taken, View is the position of the camera at the site, Cover is the scaled coverage, and GDD is the number of growing degree days (difference between daily average temperature and 40 degrees Farenheit, when positive, summed for the year to that day).

$\frac{\text { Site }}{}$	$\frac{\text { Day }}{16}$	$\frac{\text { View }}{136}$	1	$\frac{\text { Cover }}{0.304}$
16	136	2	$\frac{\text { GDD }}{188}$	
16	139	1	0.090	188
16	139	2	0.554	231
16	145	1	0.382	231
16	145	2	0.739	300
16	148	1	0.809	300
16	148	2	0.891	306
16	152	1	0.843	306
16	152	2	0.967	376
16	161	1	0.888	376
16	161	2	1.000	554
			1.000	554
93	137	1		
93	137	2	0.000	208
93	139	1	0.000	208
93	139	2	0.123	231
93	146	1	0.068	231
93	146	2	0.189	302
93	149	1	0.205	302
93	149	2	0.557	308
93	155	1	0.466	308
93	155	2	0.962	436
93	161	1	0.966	436
93	161	2	1.000	554
93			1.000	554

Table 3.10-Subcanopy Phenology

This table contains data on leaf expansion for the two major understory species in the SNF, mountain maple and beaked hazel. The size of all the leaves on selected twigs was determined for several days in the spring of 1984. A relative area was determined, by scaling the leaf areas between 0 for no leaves to 1 for maximum leaf extension.

Site is the study site number, Day is the day of the year, Rel Area is the relative leaf extension, and GDD is the number of growing degree days (difference between daily average temperature and 40 degrees Farenheit, when positive, summed for the year to that day).

Mountain Maple

$\frac{\text { Site }}{16}$	$\frac{\text { Day }}{132}$	$\frac{\text { Rel Area }}{0.008}$	$\frac{\text { GDD }}{153}$
16	135	0.010	177
16	138	0.011	223
16	142	0.039	272
16	144	0.122	299
16	147	0.167	306
16	151	0.238	355
16	155	0.742	436
16	160	0.923	544
16	164	1.000	606
93	138	0.015	223
93	145	0.046	300
93	148	0.152	306
93	153	0.381	394
93	157	0.799	486
93	160	0.910	544
93	164	1.000	606

Beaked Hazelnut

$\frac{\text { Site }}{16}$	$\frac{\text { Day }}{}$	$\frac{\text { Rel Area }}{}$	
	132	0.008	$\frac{\text { GDD }}{153}$
16	135	0.014	177
16	138	0.042	223
16	142	0.086	272
16	144	0.259	299
16	147	0.330	306
16	151	0.539	355
16	155	0.777	436
16	160	0.950	544
16	164	1.000	606

Beaked Hazelnut (cont.)

$\frac{\text { Site }}{93}$	$\frac{\text { Day }}{132}$	$\frac{\text { Rel Area }}{0.009}$	$\frac{\text { GDD }}{}$
93	136	0.020	153
93	138	0.079	188
93	145	0.160	223
93	148	0.186	300
93	153	0.393	306
93	157	0.860	394
93	160	0.964	486
93	164	1.000	544
			606

4.0 Climate

Northern Minnesota has a humid continental climate with cold winters, cool summers, and precipitation scattered throughout the year. Continental climates characteristically have a great range in temperatures between the winter and summer. The average temperature is below freezing for 5 months of the year and extreme cold is frequent in the winter. The coldest temperature recorded for this region is -59 degrees $\mathrm{F}\left(-51^{\circ} \mathrm{C}\right)$. In the summer, hot periods occur with temperatures in the 90 s . Although the summers are generally mild, midsummer frosts may also occur. Most of the precipitation falls during the 5 months from May to September. Often the precipitation during this time of year comes as thunderstorms. These storms may be quite powerful, producing strong winds called downbursts, which may be very destructive. In 1976, a downburst storm in the SNF destroyed forests in an area one fourth of a mile wide and 10 miles long. In the winter, almost all of the precipitation which falls comes as snow. Most of the snowfall occurs in the early months of the winter before the freezing of the lakes shuts off the major source of moisture to the atmosphere.

Table 4.1-Monthly Climatological Data

The climatological data presented in the following table was collected by the National Weather Service in International Falls, Minnesota. International Falls is about 80 miles from the SNF, but the weather data is representative of the area. Total solar insolation measurements were made at Fall Lake Dam in Winton, Minn. by Prof. Donald Baker of the Department of Soil Science at the University of Minnesota, St. Paul. Insolation values were measured using a Yellow Springs solar cell calibrated against an Eppley Pyranometer. The data presented here are monthly summary values. The temperature columns contain the monthly averages of the daily minimum (Min), maximum (Max), and average (Avg) temperatures. All temperatures are in Fahrenheit degrees. The precipitation column contains the water equivalent of the total monthly precipitation in inches. The insolation column contains the monthly average of the daily values in Langleys. There are gaps in the insolation data (but not in the Weather Service data) and the Days column contains the number of days of insolation data available in each month.

	Temperature $\left({ }^{\circ} \mathrm{F}\right)$										
Date	Min	Max	$\underline{\text { Avg }}$	Precip (in)	Insolation	Days					
JAN 76	-12.1	12.7	-0.3	0.99	121.7	31					
FEB 76	3.0	26.1	14.6	0.46	207.5	29					
MAR 76	7.3	30.9	19.3	1.82	280.1	31					
APR 76	31.1	54.5	43.1	1.02	438.3	30					
MAY 76	37.2	69.8	53.4	0.12	582.7	31					
JUN 76	52.0	76.7	64.8	7.01	529.5	30					
JUL 76	52.5	77.5	66.0	5.70	548.8	31					
AUG 76	50.9	76.8	65.1	1.85	466.1	28					
SEP 76	39.2	67.6	54.7	1.19	337.1	30					
OCT 76	26.2	44.5	35.6	0.84	187.6	31					
NOV 76	7.7	24.2	16.1	0.19	130.1	30					
DEC 76	-14.4	8.0	-3.1	0.59	109.9	30					
JAN 77	-15.6	4.1	-5.8	0.66	132.4	31					
FEB 77	3.3	22.0	12.8	1.01	210.4	28					
MAR 77	19.5	39.7	29.9	1.89	289.7	31					
APR 77	30.0	55.6	43.1	1.01	424.5	30					
MAY 77	47.3	73.7	61.2	5.81	483.0	31					
JUN 77	50.9	72.5	62.1	4.20	468.5	30					
JUL 77	54.5	78.7	66.9	2.16	462.9	31					
AUG 77	45.0	69.0	57.1	3.01	399.7	31					
SEP 77	44.0	61.0	52.8	6.81	240.1	10					
OCT 77	32.6	53.9	43.5	0.80							
NOV 77	14.0	31.1	22.8	3.49	105.5	23					
DEC 77	-4.8	11.8	3.5	0.98	86.3	31					

Table 4.1 cont.

Temperature (${ }^{\circ} \mathrm{F}$)						
Date	Min	Max	Avg	Precip (in)	Insolation	Days
JAN 78	-13.1	6.2	-3.4	0.78	149.2	31
FEB 78	-9.2	14.4	2.7	0.27	244.3	28
MAR 78	6.3	30.6	18.7	0.41	362.1	31
APR 78	26.6	47.4	37.3	1.12	429.4	30
MAY 78	42.2	68.7	55.7	3.86	460.0	31
JUN 78	46.7	72.4	59.9	2.89	483.2	30
JUL 78	53.2	73.8	63.8	6.29	423.5	31
AUG 78	52.5	73.3	63.2	2.96	413.9	31
SEP 78	46.2	65.8	56.2	3.62		
OCT 78	33.7	53.7	43.7	0.39	225.5	24
NOV 78	10.8	30.2	20.7	1.60	130.7	18
DEC 78	-10.8	12.2	0.7	0.93		
JAN 79	-19.0	2.0	-8.6	0.58	139.0	12
FEB 79	-11.1	10.0	-0.6	1.03	188.8	15
MAR 79	10.1	29.2	19.8	1.66	249.3	31
APR 79	24.5	43.5	34.2	2.70	352.6	25
MAY 79	36.2	55.8	46.1	1.73	407.4	31
JUN 79	47.6	71.0	59.7	4.06	467.0	30
JUL 79	54.4	78.4	67.4	1.08	481.2	27
AUG 79	48.2	72.0	60.4	1.68	398.3	31
SEP 79	42.2	64.6	53.7	2.12	296.8	30
OCT 79	28.2	46.1	37.3	1.55	159.9	24
NOV 79	15.9	30.9	23.7	3.08	112.8	16
DEC 79	4.6	24.7	14.9	0.42		
JAN 80	-8.8	12.9	2.1	0.92		
FEB 80	-2.1	18.2	8.2	0.55	184.7	28
MAR 80	3.5	30.0	17.0	0.90	341.6	31
APR 80	30.9	57.6	44.5	0.45	421.5	30
MAY 80	44.3	73.2	58.9	0.83	464.3	31
JUN 80	50.3	74.3	62.6	1.70	521.3	30
JUL 80	55.0	82.0	69.0	2.23	461.7	31
AUG 80	54.3	75.5	65.2	4.03	345.0	31
SEP 80	42.8	62.7	53.0	4.08	274.1	30
OCT 80	30.2	47.5	38.7	1.81	196.3	31
NOV 80	18.2	33.9	26.3	1.62	92.1	30
DEC 80	-5.5	14.5	4.6	0.56	78.9	30

Table 4.1 cont.

Temperature (${ }^{\circ} \mathrm{F}$)						
Date	Min	Max	Avg	Precip (in)	Insolation	Days
JAN 81	-5.1	17.5	6.4	0.26	159.6	25
FEB 81	5.1	23.8	14.6	0.22	177.1	28
MAR 81	19.1	38.1	28.9	1.18	309.2	31
APR 81	29.9	51.9	41.1	1.49	361.5	30
MAY 81	40.6	66.0	53.6	2.47	475.3	31
JUN 81	50.6	72.4	61.7	3.71	409.7	30
JUL 81	55.7	81.5	68.8	2.33	490.5	31
AUG 81	56.9	78.7	68.1	2.03	384.1	31
SEP 81	43.4	64.6	54.3	4.12	306.7	30
OCT 81	31.5	48.6	40.4	2.86	168.9	31
NOV 81	27.0	42.8	35.2	0.67	113.7	30
DEC 81	3.0	18.0	10.6	0.76	77.9	31
JAN 82	-22.8	1.8	-10.6	1.24	127.5	31
FEB 82	-3.8	16.8	6.2	0.51	208.6	28
MAR 82	10.5	30.4	20.6	1.85	270.4	31
APR 82	24.8	50.3	37.8	0.56	446.2	30
MAY 82	43.6	66.6	55.4	3.58	381.6	5
JUN 82	45.6	69.3	57.7	2.69	469.9	15
JUL 82	56.0	78.5	67.6	3.05	417.9	31
AUG 82	48.6	72.7	60.9	2.74	367.2	31
SEP 82	42.7	63.0	53.5	4.00	266.4	30
OCT 82	36.8	52.2	44.8	2.76	151.5	31
NOV 82	16.4	29.5	21.7	1.45	110.5	30
DEC 82	6.2	23.6	15.1	0.28	72.2	31
JAN 83	2.6	19.8	11.3	0.36	93.8	31
FEB 83	7.7	25.4	16.7	0.98	125.1	28
MAR 83	20.7	34.9	28.1	0.72	265.9	31
APR 83	27.6	48.8	38.4	0.62	384.4	30
MAY 83	36.4	61.9	49.2	1.21	488.2	31
JUN 83	50.3	73.5	62.1	5.02	457.9	30
JUL 83	58.7	80.5	69.9	2.98	453.4	31
AUG 83	56.6	80.5	68.8	3.66	404.2	25
SEP 83	45.6	64.6	55.3	4.23	269.9	30
OCT 83	33.3	50.1	41.9	2.58	170.5	31
NOV 83	22.7	32.6	27.8	1.95	83.4	30
DEC 83	-13.5	4.9	-4.3	0.66	98.0	26

Table 4.1 cont.

Temperature (${ }^{\circ} \mathrm{F}$)						
Date	Min	Max	Avg	Precip (in)	Insolation	Days
JAN 84	-9.7	11.2	0.6	0.29	128.8	31
FEB 84	12.2	29.2	21.0	0.76	184.8	29
MAR 84	6.7	28.3	17.6	0.22	329.7	31
APR 84	31.7	56.3	44.3	0.89	409.8	30
MAY 84	36.0	60.9	49.2	1.77	394.8	25
JUN 84	50.8	72.2	61.8	6.50	417.2	30
JUL 84	53.0	77.2	65.4	2.14	480.6	31
AUG 84	55.6	79.7	67.9	1.30	399.4	31
SEP 84	38.2	59.7	49.2	1.14	262.1	30
OCT 84	36.9	52.2	44.8	4.11	145.3	31
NOV 84	17.3	33.8	25.8	0.91	112.9	30
DEC 84	-6.8	13.5	3.5	1.27	87.7	30
JAN 85	-10.9	10.8	0.0	0.38	113.1	31
FEB 85	-5.9	15.2	4.8	0.70	203.4	28
MAR 85	16.9	36.4	26.9	0.72	316.8	31
APR 85	30.8	52.8	42.2	3.17	377.3	30
MAY 85	42.4	66.1	54.5	6.31	548.2	3
JUN 85	43.7	64.7	54.5	6.51		
JUL 85	51.7	75.6	64.0	1.21	586.0	9
AUG 85	49.9	70.3	60.4	3.33	425.2	31
SEP 85	42.2	61.6	52.1	3.76	334.9	30
OCT 85	31.9	52.1	42.1	2.12	260.9	31
NOV 85	6.7	25.3	16.2	1.53	126.7	30
DEC 85	-8.9	8.5	-0.2	0.55	91.8	31
JAN 86	-2.2	17.5	7.8	0.61	150.4	31
FEB 86	-0.1	18.8	9.6	0.95	192.2	28
MAR 86	16.5	38.7	27.8	0.26	351.9	25
APR 86	32.7	53.7	43.5	3.33	443.9	30
MAY 86	43.2	68.7	56.4	0.50	559.4	31
JUN 86	47.9	72.9	60.7	3.67	625.3	30
JUL 86	55.9	77.4	67.0	2.59	498.0	31
AUG 86	48.8	73.5	61.4	1.52	472.9	31
SEP 86	43.0	61.9	52.8	2.42	304.8	30
OCT 86	31.6	51.2	41.7	0.64	197.5	31
NOV 86	11.3	28.5	20.1	1.27	154.3	30
DEC 86	6.1	25.6	16.1	0.35	129.5	31

5.0 Leaf Optical Properties

5.1 Introduction

Knowledge of the optical properties of the components of the forest canopy is important to the understanding of how plants interact with their environment and how this information may be used to determine vegetation characteristics using remote sensing.

During the summers of 1983 and 1984, samples of the major components of the boreal forest canopy (needles, leaves, branches, moss, litter) were collected in the Superior National Forest (SNF) of Minnesota and sent to the Johnson Space Center (JSC). At JSC, the spectral reflectance and transmittance characteristics of the samples were determined for wavelengths between .35 and $2.1 \mu \mathrm{~m}$ using the Cary- 14 radiometer. This report presents plots of these data as well as averages to the Thematic Mapper Simulator (TMS) bands.

There were two main thrusts to the SNF optical properties study. The first was to collect the optical properties of many of the components of the boreal forest canopy. The reflectance and transmittance properties of the leaves and needles of eight major overstory tree species and three understory shrubs were measured. Also, reflectance measurements were made for the bark of several tree species, sphagnum moss and leaf litter. The second goal of the study was to investigate the variability of optical properties within a species. Measurements of reflectance and transmittance of quaking aspen leaves and black spruce needles were made at three levels in the canopy and for three stand densities. The results of these studies allow a comparison of the optical properties of a variety of different species and a measure of the variability within species. These data provide basic information necessary to model canopy reflectance patterns.

5.2 Methodology

The vegetation samples were collected in the SNF and placed in zip-lock plastic bags. These bags were packed in cardboard boxes and sent to JSC by priority mail. Samples were collected from late August through September in 1983. In 1984, samples were collected on May 23, June 25 and August 14 and mailed the same day. It took between 3 and 6 days for the samples to reach JSC.

The handling of the samples at JSC evolved over time. In 1983 and early 1984, the samples were stored in plastic bags and refrigerated at JSC. Later, due to problems with too much wetness on the leaves, the branches were not refrigerated and their ends were put in water to keep the leaves alive.

The optical properties were measured using the Cary-14 system at JSC. The Cary-14 has a wavelength range between 0.35 and $2.1 \mu \mathrm{~m}$. The sampling interval varies between 0.002 and 0.01 micrometer, depending on the rate of change between the values in each
sample interval. Each measurement samples at approximately 250 different wavelengths.

Optical-property measurements were made for both the tops and bottoms of leaves. When leaf top or bottom is referred to in these observations it indicates the side of the leaf which is illuminated by the Cary-14. For observing broad leaves, a sample of the leaf without holes or visible defects was used; however, for needle leaves, either a collection of individual needles was aligned in the instrument holder or a section of twig with needles attached was used. Each of the spectra reported represents a single measurement of an individual leaf, needle, or bark sample.

The optical properties measured by the Cary-14 are displayed in Figures 5.1 through 5.41. An inventory of the data is presented in tabular form in Table 5.1. In Figures 5.19 through 5.23 and 5.32 through 5.35 , averages and standard deviations of sets of data are plotted. Since the Cary-14 does not sample in exactly the same wavelengths in each measurement, the data were resampled using a one-dimensional, quasi-cubic hermite interpolation before averaging. Table 5.2 lists the Cary- 14 reflectance and transmittance values averaged to Thematic Mapper Simulator wavelength bands.

5.3 Results

Three species of broad leafed deciduous trees were sampled: paper birch (Betula papyrifera), red maple (Acer rubum) and quaking aspen (Populus tremuloides). Figures 5.1 through 5.4 show the optical properties of the birch and maple. These plots are representative of the spectral pattern of green leaves. In the visible region (0.4 to 0.7 $\mu \mathrm{m})$, most of the radiation is absorbed by the leaf and little is reflected or transmitted. Reflectance and transmittance minima occur at approximately 0.45 and $0.65 \mu \mathrm{~m}$ due to chlorophyll absorption. The near-infrared region (0.7 to $1.3 \mu \mathrm{~m}$) is characterized by very high reflectance and transmittance and low absorptance. The internal structure of the leaf determines the optical properties in this region. The middle infrared (1.3 to $3.0 \mu \mathrm{~m}$) is dominated by strong water-absorption bands at approximately 1.4 and $1.9 \mu \mathrm{~m}$. Reflectance and transmittance in the mid-infrared is related to the amount of water in the leaf.

All the birch and maple leaves were collected on the same day and received the same treatment. The leaf-top reflectance and transmittance are very close for all four samples in all wavelengths measured. However, there is a great deal of variation in the leafbottom transmittance. The differences in leaf optical properties for these four samples do not seem to be related to the differences in species or canopy height.

Quaking aspen leaves were sampled for three canopy heights and three stand densities. Aspen optical properties are plotted in Figures 5.5 through 5.23. A striking feature in these graphs is the differences between the optical properties of healthy and diseased leaves. For example, in Figure 5.5 the diseased leaf (line 7) has a much lower reflectance in both the near-and mid-infrared regions. This effect occurs even when the leaf appears green. In Figure 5.10, the leaf sample used for line 4 is described as being "most
uniform in color and clean," but, once more, in the near and mid-infrared, the reflectance is much lower than for the healthy leaves. The diseased leaves also have a much higher transmittance in all wavelength bands.

The leaf-top reflectance for aspen (Figures 5.5, 5.10, 5.15 and 5.19) show that in the visible region, the high-density stand has a lower reflectance. In the infrared regions, the reflectances do not distinguish between stand density or crown height. The midinfrared wavelengths show the most separability between the different samples. The variability between different aspen leaves is greater than the variability between the birch and maple samples. The leaf-top reflectances of the birch and maple match up well with aspen from the high-density stand in the visible. However, aspen has a much higher reflectance in the near infrared. In the mid-infrared, the birch and maple reflectances fall within the range of the aspen, but the aspen tends to have a slightly higher reflectance.

The aspen leaf-bottom reflectances (Figures 5.6, 5.11, 5.16 and 5.20) tend to be higher than the leaf-top reflectances in all wavelengths. In the visible, this is readily seen in the light color of the aspen leaf bottoms. The aspen leaf-bottom reflectances do not show any pattern based on canopy height or stand density. The leaf-bottom reflectance is similar between aspen, birch and maple in the visible, but in the infrared the aspen has the higher leaf-bottom reflectance.

Aspen leaf transmittance (Figures 5.7,5.8,5.12,5.13,5.17,5.18, 5.21 and 5.22) is slightly greater in the infrared for high density stands versus low-density stands. The maple and birch leaf transmittances tend to be greater in all wavelengths than the aspen transmittances.

Bark reflectance for aspen (Figures 5.9, 5.14 and 5.23) varies greatly in all wavelengths. There are two spectral reflectance patterns for the bark. The first pattern has a steep jump in reflectance at $0.7 \mu \mathrm{~m}$ and high near-infrared reflectance values. The second bark reflectance pattern does not have the jump at $0.7 \mu \mathrm{~m}$ and increases monotonically through the visible and near infrared. Both bark types have similar patterns in the midinfrared. The first type of bark tends to be found in the upper crown of the aspen. The second type of bark is found low in the aspen canopy, suggesting that it is older bark.

Five species of needle-leafed trees were sampled in this study: jack pine (Pinus banksiana), red pine (Pinus resinosa), larch (Larix laricina), balsam fir (Abies balsamea) and black spruce (Picea glauca). Figure 5.24 shows the needle-top reflectance for the larch, fir, jack and red pines. While the reflectance pattern is similar to broad leaves, the reflectance of the needles is much more variable in all wavelengths. The variability in needle reflectance is not just a function of species since jack pine has both high and low reflectance values. In the visible region, the red pine and larch reflectances are similar to broad-leaf reflectance, but fir and the low value for jack pine are much less. In the near-infrared plateau, there are two depressions occurring around 1.0 and $1.2 \mu \mathrm{~m}$. These depressions are also present in broad leaves but are less pronounced. Broad-leaf reflectance in the near infrared falls in the middle of the range of needle near-infrared
reflectances. In the mid-infrared region, broad-leaf reflectance is much higher than that of needles. The needle-bottom reflectance (Figure 5.25) has similar characteristics to the needle-top reflectance. In the visible region, fir has a greater bottom reflectance than top reflectance.

Needle transmittance (Figure 5.26) is much lower in all wavelengths than that of broad leaves.

While the reflectance of the bark of needle-leafed trees (Figure 5.27) shows a great deal of variability, the pattern of the reflectance is the same as that of aspen bark from the lower canopy. The needle-leaved tree bark does not show a jump at the visible nearinfrared boundary as does some of the aspen bark.

Several samples of black spruce needles were measured to look at the variability of optical properties within a conifer species. In Figure 5.28, spruce needle-top reflectance is plotted. Spruce needle-top reflectance falls mid-range with other needle reflectances. Within spruce, needles from high-density stands have the highest reflectance in near and mid-infrared. Needles from a middle-density stand have lower reflectance in the near and mid-infrared, with reflectances of needles from a low-density stand being lowest in the near infrared and about the same as the mid-density needles in the midinfrared. Spruce-needle reflectance data taken in 1983 were of a combination of both the tops and bottoms of the needles (Figures 5.30 and 5.34). The results are comparable with the 1984 data in the near and mid-infrared, however the 1983 visible reflectances are much higher than the 1984 data. This is not due to the effects of needle-bottom reflectance in 1983 samples since the 1984 needle-bottom reflectances (Figures 5.29 and 5.33) in the visible are not much different than those of the needle tops, and are much lower than the 1983 visible reflectances. Spruce-needle reflectance (Figure 5.32) in comparison with aspen leaf reflectance (Figure 5.19) is a little lower in the visible, much lower in the near infrared, and greatly lower in the mid-infrared.

Spruce-needle transmittance (Figures 5.31 and 5.35) is slightly higher than other needle transmittance in the visible and near-infrared regions. In comparison with aspen leaf transmittance (Figure 5.21), they are nearly equal in the visible, spruce is slightly lower in the near infrared, and much lower in the mid-infrared.

Three species of understory shrubs were sampled: beaked hazel (Corylus cornuta), labrador tea (Ledum groenlandicum) and leatherleaf (Chamaedaphne calyculata) (Figures 5.36 through 5.39). Only leaf-top reflectance was determined for labrador tea and leatherleaf. The labrador tea and leatherleaf have very high reflectances in the near infrared compared to other leaves or needles sampled. The hazel has much lower reflectance in the near infrared. The water absorption bands at 1.4 and $1.9 \mu \mathrm{~m}$ are not very deep for the hazel.

Sphagnum moss (Sphagnum spp.) reflectance (Figure 5.40) is extremely variable in all bands. The difference between samples may be caused by differences in location, moisture or type of sphagnum. Background reflectance can have a significant effect on
the total canopy reflectance. If sphagnum is the background, the reflectance may vary with place and time. This variable background can be an important complication in the understanding of reflectance images of the boreal forest regions. In contrast to the sphagnum reflectance is the reflectance of aspen leaf litter (Figure 5.41). The leaf litter reflectance is much different than that of the sphagnum and appears to be more like the needle-leafed tree bark (Figure 5.27).

Table 5.1-Optical Properties Data Availability

This table provides an inventory of the Cary-14 spectrometer measurements of the optical properties of canopy components. The numbers refer to the number of samples measured, where each measurement is a single scan by the Cary-14. The values in the N/A column for the Reflectance and Transmittance refer to measurements of entire shoots.

Species	Plant Part	Reflectance			Transmittance		
		Top	Bottom	N/A	Top	Bottom	N/A
Jack Pine	Needle	2	1		1		
(Pinus banksiana)	Bark	1					
Red Pine	Needle	1			1		
(Pinus resinosa)	Bark						
Larch	Needle	2	2				
(Larix laricina)	Bark	1					
Balsam Fir	Needle	1	1	5			
(Abies balsamea)	Bark	1					
Black Spruce	Needle	5	5				4
(Picea glauca)	Bark	2					
Red Maple	Leaf	2	2		2	2	
(Acer rubum)	Bark						
Paper Birch	Leaf	2	2		2	2	
(Betula papyrifera)	Bark						
Quaking Aspen	Leaf	17	17		17	17	
(Populus tremuloides)	Bark	10					
Beaked Hazel	Leaf	1	1		1	1	
(Corylus cornuta)	Bark						
Labrador Tea	Leaf	1					
(Ledum groenlandicum)	Bark						
Leatherleaf	Leaf	1					
(Chamaedaphne calyculata)	Bark						
Sphagnum Moss		4					
(Sphagnum spp)							
Leaf Litter		1					

This table lists the Cary-14 reflectance and transmittance values averaged to Thematic Mapper Simulator wavelength bands. The Thematic Mapper Simulator bands are:

TM 1 0.45-0.52 $\mu \mathrm{m}$
TM 2 0.52-0.60 $\mu \mathrm{m}$
TM $3 \quad 0.63-0.69 \mu \mathrm{~m}$
TM $4 \quad 0.76-0.90 \mu \mathrm{~m}$
TM 5 1.00-1.30 $\mu \mathrm{m}$
TM $6 \quad 1.55-1.75 \mu \mathrm{~m}$
TM 7 2.08-2.35 $\mu \mathrm{m}$
A weighted average is calculated based on the width of the sampling interval for the Cary-14 measurements in each TMS band.

The file name is the unique name given to each sample measured. The Fig column refers to the figure number in this report with the plot of the Cary- 14 data. The Line column gives the line type in the figure. The line types and numbers are displayed on each plot.

Jack Pine (Pinus banksiana)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Needle Reflectance/Top:									
PB0N2T1R	5.24	2	3.261	6.231	3.830	37.215	33.575	12.418	1.817
PBLR	5.24	3	6.201	12.710	6.237	54.317	49.179	23.199	7.830

Needle Reflectance/Bottom:

PBON2B1R	5.25	2	3.191	6.071	3.231	34.890	31.508	11.904	1.542

Needle Transmittance:

			1	0.416	1.956	0.581	33.547	30.364	10.354	0.806

Bark Reflectance:

PB0B201R	5.27	2	6.774	7.985	8.863	14.106	33.267	40.477	27.730
Red Pine (Pinus resinosa)									
File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Needle Reflectance:									
PRLR	5.24	6	6.189	11.258	6.025	49.165	45.819	24.076	9.174

Red Pine (Pinus resinosa) cont.

| File | Fig. | Line | TM 1 | TM 2 | TM 3 | TM 4 | TM 5 | $\underline{\text { TM 6 }}$ | $\underline{\text { TM 7 }}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Needle Transmittance: | | | | | | | | | |
| PRLT | 5.26 | 2 | 1.451 | 4.902 | 1.523 | 36.916 | 34.441 | 14.639 | 3.245 |

Larch (Larix laricina)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7	
Needle Reflectance/Top:										
LLON2T1R	5.24	4	5.841	12.712	6.478	48.436	46.656	23.054	3.597	
LLON7T1R	5.24	5	4.497	12.139	5.711	53.489	51.759	24.722	6.789	

Needle Reflectance/Bottom:

LL0N2B1R	5.25	3	6.418	13.850	9.090	48.913	48.979	26.742	9.573
LLON7B1R	5.25	4	6.171	12.815	8.231	42.973	42.162	23.388	7.635
Bark Reflectance:									
LLOB201R	5.27	3	8.753	10.275	12.029	18.185	32.206	45.939	22.064

Balsam Fir (Abies balsamea)									
File Needle Refl	$\underset{\operatorname{ctance}}{\text { Fig. }}$	$\frac{\text { Line }}{\mathrm{p}:}$	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
AB0N2T1R	5.24	1	2.636	5.526	3.537	29.542	29.545	14.661	5.038
Needle Reflectance/Bottom:									
AB0N2B1R	5.25	1	9.758	16.270	8.973	53.960	51.091	25.496	10.067
Bark Reflectance:									
AB0B201R	5.27	1	18.815	21.984	24.135	34.443	42.720	33.693	18.179

Black Spruce (Picea glauca)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Needle Reflectance/Top:									
PM3N2T1R	5.28	1	4.248	9.433	4.307	50.277	47.278	19.773	6.062
PM2N2T1R	5.28	2	4.411	9.267	4.806	40.813	38.529	15.887	4.010
PM1N2T1R	5.28	3	4.429	9.044	4.144	37.707	35.588	15.862	4.737
PM0N7T1R	5.28	4	5.137	11.312	5.602	45.205	38.574	12.928	1.347
PM6N7T1R	5.28	5	4.417	8.463	4.290	38.930	36.316	14.818	3.514

Needle Reflectance/Bottom:

PM3N2B1R	5.29	1	4.708	8.642	4.614	42.400	39.919	18.027	4.607
PM2N2B1R	5.29	2	5.143	10.212	5.410	40.585	37.482	16.625	5.362
PM1N2B1R	5.29	3	5.051	9.259	5.179	35.166	33.418	15.752	5.961
PM0N7B1R	5.29	4	8.208	15.885	10.946	52.556	43.850	17.227	2.910
PM6N7B1R	5.29	5	4.294	8.182	5.342	34.705	36.008	17.259	6.543

Needle Reflectance (1983):

			11.907	20.376	11.859	53.258	48.137	22.995	8.285
S60H01R	5.30	1	13.288	20.848	12.678	50.085	44.803	20.115	7.420
S60H02R	5.30	2	13.284	40.393	37.999	18.210	6.924		
S60H03R	5.30	3	7.499	12.840	8.284				
SY2R	5.30	4	6.702	12.421	7.508	44.566	40.602	19.296	8.027
SYYR	5.30	5	8.284	15.906	8.811	45.943	42.093	20.875	8.153

Needle Transmittance (1983):

S60H01T	5.31	1	2.835	8.409	3.767	39.514	37.835	17.428	4.871
S60H02T	5.31	2	0.630	4.793	1.477	35.871	34.129	12.364	1.994
SYYT	5.31	3	2.272	4.825	2.444	39.123	38.014	15.689	2.014
SYYT	5.31	4	1.076	5.372	1.591	40.391	38.172	14.677	2.078

Bark Reflectance:

PMOB201R	5.27	4	2.571	3.038	3.744	9.428	24.091	20.944	5.704

Red Maple (Acer rubum)
File Fig. Line TM1 TM 2 TM 3 TM 4 TM 5 TM 6 TM 7 Leaf Reflectance/Top:

			5.065	10.526	5.240	45.877	44.065	30.479	11.234
AR0L3T1R	5.1	3	4.902	9.980	4.941	43.194	41.663	32.143	12.507
AROL3T2R	5.1	4	4.90						

Red Maple (Acer rubum) cont.

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Leaf Reflectance/Bottom: L M									
AR0L3B1R	5.2	3	18.105	24.817	17.170	44.201	43.466	31.703	14.862
AR0L3B2R	5.2	4	13.010	19.677	12.437	39.091	37.504	29.823	12.551
Leaf Transmittance/Top:									

AR0L3T1T	5.3	3	1.965	11.072	2.976	44.660	46.654	38.835	19.600
AR0L3T2T	5.3	4	3.641	14.068	4.620	48.453	49.356	45.262	16.978
Leaf Transmittance/Bottom:									
AR0L3B1T	5.4	3	1.556	7.752	2.123	34.481	36.248	29.149	12.075
AR0L3B2T	5.4	4	4.328	15.339	5.306	51.469	53.185	49.676	29.916

Paper Birch (Betula papyrifera)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Leaf Reflectance/Top:									
BPOL3T1R	5.1	1	5.698	11.945	5.526	44.065	42.892	32.234	15.287
BPOL3T2R	5.1	2	5.036	10.802	4.939	43.751	42.322	32.768	15.537

Leaf Reflectance/Bottom:

BPOL3B1R	5.2	1	11.976	19.835	13.014	38.042	37.694	29.428	14.430
BPOL3B2R	5.2	2	10.833	17.416	10.135	37.106	36.519	29.534	15.528
Leaf Transmittance/Top:									

BPOL3T1T	5.3	1	4.603	16.026	6.311	46.241	47.886	41.519	18.895
BPOL3T2T	5.3	2	4.180	15.826	5.344	50.251	50.987	43.720	23.663

Leaf Transmittance/Bottom:

BPOL3B1T	5.4	1	4.481	15.937	6.042	48.297	49.809	43.198	14.323
BPOL3B2T	5.4	2	4.940	17.912	6.341	54.888	55.588	49.488	31.447

Quaking Aspen (Populus tremuloides)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Leaf Reflectance/Top:									
A25H29RF	5.5	1	6.286	11.048	6.628	46.087	44.808	32.821	16.418
A 26 H 21 RF	5.5	2	6.626	11.321	7.425	50.530	49.552	35.794	18.491
A25M11RF	5.5	3	6.740	10.625	6.706	50.905	48.220	33.521	15.653
A26M11RF	5.5	4	6.117	9.699	6.870	50.762	48.392	34.765	16.447
A25L01RF	5.5	5	7.199	11.630	7.572	52.586	50.049	35.325	18.650
A26L01RF	5.5	6	7.384	11.607	7.451	52.068	49.925	36.866	19.107
PT3L2T1R	5.5	7	4.682	9.687	5.430	34.898	37.204	25.443	8.187
A27H21RF	5.10	1	7.774	13.218	7.861	52.664	49.637	34.669	15.785
A27M19RF	5.10	2	7.142	11.557	6.982	48.907	46.066	31.351	14.177
A27L01RF	5.10	3	6.723	10.468	7.119	52.056	49.194	33.069	14.544
PT2L2T1R	5.10	4	5.920	16.397	6.731	40.667	37.789	25.318	8.916
AXXH21RF	5.15	1	5.697	10.167	6.433	52.569	50.130	34.881	16.238
AXXM19RF	5.15	2	7.345	10.628	7.350	45.557	52.027	38.874	20.528
AXXL01RF	5.15	3	7.185	14.658	7.652	50.274	48.838	36.350	18.848
PT1L2T1R	5.15	4	5.790	15.112	6.080	36.246	33.319	22.306	8.616
PT1L3T1R	5.15	5	5.416	11.072	4.700	51.850	49.305	31.874	9.766
PT1L3T2R	5.15	6	7.391	13.098	6.948	51.826	50.402	38.561	18.028

Leaf Reflectance/Bottom:

A25H29RB	5.6	1	13.065	21.033	14.371	49.432	47.594	36.615	21.961
A26H21RB	5.6	2	12.209	19.212	13.101	53.250	50.967	38.358	22.873
A25M11RB	5.6	3	12.621	19.810	13.200	51.435	48.445	35.759	20.035
A26M11RB	5.6	4	11.752	18.817	12.589	51.623	49.000	37.069	20.753
A25L1RB	5.6	5	12.851	20.194	12.922	53.351	50.427	37.747	22.273
A26L1RB	5.6	6	11.731	19.211	12.567	53.115	50.681	38.983	22.845
PT3L2B1R	5.6	7	8.793	15.232	10.083	35.258	36.472	26.835	6.623
A27H21RB	5.11	1	13.841	23.272	15.126	54.215	51.292	38.205	21.493
A27M19RB	5.11	2	12.723	20.796	12.771	50.322	47.157	34.769	19.481
A27L01RB	5.11	3	13.639	22.536	14.776	52.789	49.731	36.609	20.624
PT2L2B1R	5.11	4	12.206	22.486	12.993	39.849	37.615	26.032	9.974
AXXH21RB	5.16	1	15.445	22.128	15.586	52.702	49.749	36.684	21.009
AXXM19RB	5.16	2	12.780	16.490	14.272	46.593	51.832	40.139	23.586
AXXL01RB	5.16	3	14.690	24.913	15.818	51.698	49.343	37.785	21.829
PT1L2B1R	5.16	4	8.666	17.639	9.382	33.788	32.604	22.825	11.263
PT1L3B1R	5.16	5	14.154	24.093	13.889	51.052	47.107	33.342	15.696
PT1L3B2R	5.16	6	12.363	20.792	12.134	50.091	47.482	38.427	19.638

Quaking Aspen (Populus tremuloides)

File Leaf Transm	Fig. tance	$\frac{\text { Line }}{\mathrm{p}:}$	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
A25H29TF	5.7	1	2.408	7.910	4.155	43.467	46.150	39.131	25.560
A26H21TF	5.7	2	1.475	4.916	2.808	41.232	43.716	36.259	22.073
A25M11TF	5.7	3	1.977	7.014	3.039	45.225	46.025	36.747	20.452
A26M11TF	5.7	4	1.679	6.140	2.868	46.152	47.286	40.024	24.415
A25L01TF	5.7	5	1.756	5.785	3.127	42.998	44.107	35.721	20.019
A26L01TF	5.7	6	1.712	5.302	2.765	40.383	43.008	36.339	22.341
PT3L2T1T	5.7	7	3.690	14.945	7.960	45.549	53.544	46.854	29.613
A 27 H 21 TF	5.12	1	2.053	8.196	3.791	47.764	43.470	35.750	22.140
A27M19TF	5.12	2	2.751	9.488	4.740	47.151	48.051	39.272	23.178
A27L01TF	5.12	3	1.526	6.185	3.189	41.046	41.741	33.446	19.033
PT2L2T1T	5.12	4	9.036	27.819	13.240	54.989	55.142	47.803	15.873
AXXH21TF	5.17	1	1.402	4.405	2.261	39.264	40.675	32.204	17.723
AXXM19TF	5.17	2	0.764	1.877	1.841	26.546	38.363	32.403	20.100
AXXL01TF	5.17	3	2.787	9.853	4.523	39.572	41.515	34.369	19.971
PT1L2T1T	5.17	4	9.109	28.886	14.053	54.971	58.744	52.361	34.680
PT1L3T1T	5.17	5	1.589	7.270	2.738	41.284	42.481	31.634	7.153
PT1L3T2T	5.17	6	1.777	6.635	2.591	40.231	41.544	37.129	19.402

Leaf Transmittance/Bottom:

A25H29TB	5.8	1	2.118	7.480	4.112	43.016	46.553	40.279	26.810
A26H21TB	5.8	2	1.580	6.704	3.031	46.368	47.341	37.903	20.532
A25M11TB	5.8	3	2.079	6.269	3.398	44.772	45.885	37.254	21.039
A26M11TB	5.8	4	1.573	5.426	2.660	44.821	46.243	39.359	25.159
A25L01TB	5.8	5	1.433	4.949	2.665	42.880	44.614	37.187	21.962
A26L01TB	5.8	6	1.594	5.445	2.972	43.132	46.087	37.834	22.224
A27H21TB	5.13	1	2.003	7.704	3.898	42.813	43.679	36.065	23.005
A27M19TB	5.13	2	2.420	8.363	4.343	46.232	47.712	39.830	24.094
A27L01TB	5.13	3	1.511	5.662	2.802	40.290	41.741	34.137	19.435
PT2L2B1T	5.13	4	8.680	27.590	12.075	56.943	57.613	48.410	15.542
AXXH21TB	5.18	1	1.480	4.760	2.785	41.611	43.161	33.169	17.479
AXXM19TB	5.18	2	0.926	2.515	2.014	26.733	37.334	31.944	19.958
AXXL01TB	5.18	3	2.711	9.881	4.378	42.189	43.975	36.798	21.875
PT1L2B1T	5.18	4	9.271	30.111	14.499	57.417	59.522	51.976	26.441
PT1L3B1T	5.18	5	1.532	6.527	2.265	39.082	39.450	29.472	10.807
PT1L3B2T	5.18	6	1.863	6.911	2.535	39.794	41.765	37.070	20.683

Quaking Aspen (Populus tremuloides) cont.

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5		TM 6	TM 7
Bark Reflectance:										
A25HB1RF	5.9	1	16.203	21.441	21.738	71.859	66.736	37.195	21.683	
A26HB1RF	5.9	2	25.821	32.494	36.779	71.587	66.835	41.696	28.893	
A25MB1RF	5.9	3	16.136	19.960	19.534	62.522	58.079	35.439	23.267	
A26MB1RF	5.9	4	16.975	22.435	24.790	67.643	64.433	39.141	25.323	
A25LB1RF	5.9	5	18.073	19.878	22.479	31.104	38.871	43.223	37.276	
A26LB1RF	5.9	6	21.154	24.083	27.413	39.297	52.271	48.308	36.854	
A27HB1RF	5.14	1	12.422	17.312	18.337	62.955	59.913	30.887	18.303	
A27MB1RF	5.14	2	14.346	17.549	19.611	26.897	48.769	32.898	20.681	
A27LB1RF	5.14	3	13.710	17.930	18.975	56.822	55.245	33.141	20.449	
PT0B200R	5.14	4	7.065	9.503	10.426	29.684	41.565	24.356	4.835	

Beaked Hazel (Corylus cornuta)

| File | Fig. | Line | TM 1 | TM 2 | TM 3 | TM 4 | TM 5 | TM 6 | TM 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Leaf Reflectance/Top: | | | | | | | | | |
| CC0L3T1R | 5.36 | 1 | 5.032 | 10.189 | 5.046 | 43.927 | 42.907 | 36.844 | 24.451 |

Leaf Reflectance/Bottom:
$\begin{array}{llllllllll}\text { CCOL3B1R } & 5.37 & 1 & 12.259 & 16.695 & 11.223 & 36.818 & 35.989 & 30.609 & 16.675\end{array}$
Leaf Transmittance/Top:

CCOL3T1T	5.38	1	2.905	11.394	3.991	43.216	46.199	43.754	31.136

Leaf Transmittance/Bottom:

| CCOL3B1T | 5.39 | 1 | 3.359 | 10.560 | 3.951 | 40.782 | 43.871 | 40.115 | 31.177 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Labrador Tea (Ledum groenlandicum)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7	
Leaf Reflectance/Top:					\underline{T}					
LG0L7T1R	5.36	2	5.835	15.080	6.289	63.527	64.294	41.256	18.050	

Leatherleaf (Chamaedaphne calyculata)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7	
Leaf Reflectance/Top:										
CH0L7T1R	5.36	3	5.760	13.149	6.325	66.766	63.900	38.129	12.713	

Sphagnum Moss (Sphagnum spp)

File	Fig.	Line	TM 1	TM 2	TM 3	TM 4	TM 5	TM 6	TM 7
Plant Reflectance/Top:									
SM00201R	5.40	1	6.172	11.838	14.263	27.062	29.836	12.181	1.579
SM607T1R	5.40	2	15.608	29.521	24.383	61.302	65.386	51.722	17.664
SM707T1R	5.40	3	4.806	11.209	7.445	32.156	26.639	6.244	0.835
SM807T1R	5.40	4	5.266	11.393	12.794	48.649	49.280	22.533	4.016

Leaf Litter

| File | Fig. | Line | TM 1 | TM 2 | TM 3 | TM 4 | TM 5 | TM 6 | TM 7 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Reflectance/Top: | | | | | | | | | |
| BL00201R | 5.41 | 1 | 6.078 | 8.687 | 13.104 | 23.040 | 33.820 | 35.820 | 9.864 |

Table 5.3-Figure Captions

Figures 5.1 through 5.4: Broad-leaf trees
Line Description
1 Paper birch leaf from lower canopy, collected June 1984
2 Paper birch leaf from upper canopy, collected June 1984
3 Red maple leaf from lower canopy, collected June 1984
4 Red maple leaf from upper canopy, collected June 1984
Figures 5.5 through 5.8: Aspen leaves from high-density stand
Line Description
1 Leaf from upper canopy of tree 25, collected 1983
2 Leaf from upper canopy of tree 26, collected 1983
3 Leaf from middle canopy of tree 25, collected 1983
4 Leaf from middle canopy of tree 26, collected 1983
5 Leaf from lower canopy of tree 25, collected 1983
6 Leaf from lower canopy of tree 26, collected 1983
7 Leaf described as "very mottled and probably diseased," collected May 1984

Figure 5.9: Aspen bark reflectance from high-density stand

Line Description

1 Bark from upper canopy of tree 25, collected 1983
2 Bark from upper canopy of tree 26, collected 1983
3 Bark from middle canopy of tree 25, collected 1983
4 Bark from middle canopy of tree 26, collected 1983
5 Bark from lower canopy of tree 25, collected 1983
6 . Bark from lower canopy of tree 26 , collected 1983
Figures 5.10 through 5.13: Aspen leaves from middle-density stand

Line Description

1 Leaf from upper canopy of tree 27, collected 1983
2 Leaf from middle canopy of tree 27, collected 1983
3 Leaf from lower canopy of tree 27, collected 1983
4 Leaf described as "most uniform in color and clean" of mottled leaves sent, collected May 1984

Figure 5.14: Aspen bark reflectance from middle-density stand

Line Description

1 Bark from upper canopy of tree 27, collected 1983
2 Bark from middle canopy of tree 27, collected 1983
3 Bark from lower canopy of tree 27, collected 1983
4 Bark collected May 1984, stand density or canopy height unknown
Figures 5.15 through 5.18: Aspen leaves from low-density stand

Line Description

1 Leaf from upper canopy of tree XX, collected 1983
2 Leaf from middle canopy of tree XX, collected 1983
3 Leaf from lower canopy of tree XX, collected 1983
4 Leaf with dark spots, collected May 1984
5 Leaf from lower canopy, collected June 1984
6 Leaf from lower canopy, collected June 1984
Figure 5.19: Average and plus-and-minus one standard deviation aspen leaf-top reflectance from all stand densities and canopy heights, not including diseased leaves, 14 samples used

Figure 5.20: Average and plus-and-minus one standard deviation aspen leaf-bottom reflectance from all stand densities and canopy heights, not including diseased leaves, 14 samples used

Figure 5.21: Average and plus-and-minus one standard deviation aspen leaf-top transmittance from all stand densities and canopy heights, not including diseased leaves, 14 samples used

Figure 5.22: Average and plus-and-minus one standard deviation aspen leaf-bottom transmittance from all stand densities and canopy heights, not including diseased leaves, 14 samples used

Figure 5.23: Average and plus-and-minus one standard deviation aspen bark reflectance from all stand densities and canopy heights, 10 samples used

Figure 5.24: Needle leaf-top reflectance

Line Description

1 Balsam fir, collected May 1984
2 Jack pine, collected May 1984
3 Jack pine, mixed tops and bottoms of needles, collected 1983
4 Larch, collected May 1984
5 Larch, collected August 1984

Figure 5.24 cont.
Line Description
6 Red pine, mixed tops and bottoms of needles, collected 1983
Figure 5.25: Needle leaf-bottom reflectance

Line Description

1 Balsam fir, collected May 1984
2 Jack pine, collected May 1984
3 Larch, collected May 1984
4 Larch, collected August 1984
Figure 5.26: Needle leaf transmittance
Line Description
1 Jack pine, mixed tops and bottoms of needles, collected 1983
2 Red pine, mixed tops and bottoms of needles, collected 1983
Figure 5.27: Needle-leafed tree bark reflectance
Line Description
1 Balsam fir, bark air dried, includes some white patches, collected May 1984
2 Jack pine, bark damp, measurement taken on driest piece, collected May 1984
3 Larch, collected May 1984
4 Spruce, collected August 1984
Figures 5.28 and 5.29: Spruce needle reflectance
Line Description
1 Needles from high-density stand, collected May 1984
2 Needles from middle-density stand, collected May 1984
$3 \quad$ Needles from low-density stand, collected May 1984
4 Collected August 1984
5 Collected August 1984
Figure 5.30: Spruce needle reflectance, mixed tops and bottoms of needles, collected 1983

Line Description

1 Needles from tree 60
2 Needles from tree 60
3 Needles from tree 60
4 Needles without tree identifier

Figure 5.30 cont.

Line Description

5 Needles without tree identifier
Figure 5.31: Spruce needle transmittance, mixed tops and bottoms of needles, collected 1983

Line Description
1 Needles from tree 60
2 Needles from tree 60
3 Needles without tree identifier
4 Needles without tree identifier
Figure 5.32: Average and plus-and-minus one standard deviation spruce needle-top reflectance from 1984 data, five samples used

Figure 5.33: Average and plus-and-minus one standard deviation spruce needlebottom reflectance from 1984 data, five samples used

Figure 5.34: Average and plus-and-minus one standard deviation spruce needle reflectance, mixed tops and bottoms of needles, from 1983 data, five samples used

Figure 5.35: Average and plus-and-minus one standard deviation spruce needle transmittance, mixed tops and bottoms of needles, from 1983 data, four samples used

Figures 5.36 through 5.39: Shrub leaves
Line Description
1 Beaked hazel, collected June 1984
2 Labrador tea, collected August 1984
3 Leatherleaf, collected August 1984
Figure 5.40: Sphagnum moss reflectance
Line Description
1 Collected May 1984
2 Dry sphagnum moss, collected August 1984
3 Collected August 1984
4 Sphagnum moss from hummock, collected August 1984
Figure 41: Aspen leaf-litter reflectance

Figure 5.1 See Table 5.3 for description of line numbers.

Figure 5.2 See Table 5.3 for description of line numbers.

Figure 5.3 See Table 5.3 for description of line numbers.

Figure 5.4 See Table 5.3 for description of line numbers.

Figure 5.5 See Table 5.3 for description of line numbers.

Figure 5.6 See Table 5.3 for description of line numbers.

Figure 5.7 See Table 5.3 for description of line numbers.

Figure 5.8 See Table 5.3 for description of line numbers.

Figure 5.9 See Table 5.3 for description of line numbers.

Figure 5.10 See Table 5.3 for description of line numbers.

Figure 5.11 See Table 5.3 for description of line numbers.

Figure 5.12 See Table 5.3 for description of line numbers.

Figure 5.13 See Table 5.3 for description of line numbers.

Figure 5.14 See Table 5.3 for description of line numbers.

Figure 5.15 See Table 5.3 for description of line numbers.

Figure 5.16 See Table 5.3 for description of line numbers.

Figure 5.17 See Table 5.3 for description of line numbers.

Figure 5.18 See Table 5.3 for description of line numbers.

Figure 5.19 See Table 5.3 for plot description.

Figure 5.20 See Table 5.3 for plot description.

Figure 5.21 See Table 5.3 for plot description.

Figure 5.22 See Table 5.3 for plot description.

Figure 5.23 See Table 5.3 for plot description.

Figure 5.24 See Table 5.3 for description of line numbers.

Figure 5.25 See Table 5.3 for description of line numbers.

Figure 5.26 See Table 5.3 for description of line numbers.

Figure 5.27 See Table 5.3 for description of line numbers.

Figure 5.28 See Table 5.3 for description of line numbers.

Figure 5.29 See Table 5.3 for description of line numbers.

Figure 5.30 See Table 5.3 for description of line numbers.

Figure 5.31 See Table 5.3 for description of line numbers.

Figure 5.32 See Table 5.3 for plot description.

$$
5-50
$$

Figure 5.33 See Table 5.3 for plot description.

Figure 5.34 See Table 5.3 for plot description.

Figure 5.35 See Table 5.3 for plot description.

Figure 5.36 See Table 5.3 for description of line numbers.

Figure 5.37 See Table 5.3 for description of line numbers.

Figure 5.38 See Table 5.3 for description of line numbers.

Figure 5.39 See Table 5.3 for description of line numbers.

Figure 5.40 See Table 5.3 for description of line numbers.

Figure 5.41 See Table 5.3 for description of line numbers.

6.1 Introduction

A major aspect of the ground data collection effort in the SNF during the summers of 1983 and 1984 was the acquisition of helicopter canopy reflectance measurements. Canopy measurements were made at numerous sites with a helicopter-mounted Barnes Modular Multiband radiometer (MMR). The MMR measures on the same wavelength bands as the Thematic Mapper Simulator (see Table 5.2). MMR data were collected on ten dates in 1983 and eight dates in 1984. An additional Barnes radiometer was used to make simultaneous reference panel measurements. The canopy reflectance was derived from the canopy and reference panel measurements. All canopy and reference panel measurements were made under clear sky conditions. A majority of the helicopter measurements were taken at nadir view, although some off-nadir view angle measurements were taken primarily over black spruce and aspen sites. The acquisition dates in 1983 were: May 5 and 16, June 9, July 12 and 13, August 12 and 14, and October 6, 26 and 27. The 1984 acquisition dates were: May 18 and 28, June 3, August 2, 3 and 16, and September 16 and 23.

6.2 Methodology

Reference panel measurements were used to convert voltages measured by the canopy instrument to reflectance factors. The reference panel was a surface painted with barium sulfate. The reflectance factor is the ratio of radiant flux of the canopy measurement to that of the reference or calibration panel under the same illumination and viewing conditions. Another component to be considered is atmospheric scatter, especially for aircraft measurements taken at higher altitudes. The amount of atmospheric scattering can be determined by using reflectance measurements of water targets. Assuming the reflectance of water is zero, reflectance measured at these targets is a measure of the amount of atmospheric scatter. Reflectance measurements over water targets are included for all acquisitions in 1983. However, no water target measurements were taken during the 1984 field campaign.

During the 1983 field campaign, the helicopter measurements were usually taken at an altitude of 122 meters (400 feet), with a few observations at 61 and 91.5 meters (200 and 300 feet). At an altitude of 122 meters and a radiometer field of view of 15 degrees, the canopy area being sensed is approximately 32 meters (105 feet) in diameter. In 1984, most measurements were taken at an altitude of 183 meters (600 feet). To measure the same canopy area at this altitude, the field of view was reduced to 10 degrees, although on two dates this was reduced further to 6 degrees. At 183 meters, the reduction of the field of view from 10 to 6 degrees reduces the canopy area being sensed from 32 to 19.2 meters (105 to 63 feet) in diameter.

6.3 Results

There are approximately 317 observations made over 105 different sites in 1983 and about 160 observations made over 29 sites in 1984. Tables 6.1 and 6.2 are a summary of the sites observed and the dates of observation for the 1983 and 1984 datasets, respectively. Each set of reflectance values for a site is actually the mean of observations taken over a given time interval and generally averaged between 16 and 20 separate measurements.

The summarized MMR data listed in Tables 6.3 and 6.4 includes: site number, number of observations averaged, code for altitude of instrument above the canopy (in hundreds of feet), the time (GMT) at which observations begin, the time at which observations end (each a six-digit number: the first two correspond to hours, the second and third two correspond to minutes and seconds, respectively), solar zenith angle, solar azimuth angle, and reflectance for each of the bands with standard deviations. Values of -1.0 signify missing data. All measurements were taken at nadir, except where otherwise indicated.

Figures 6.1 through 6.3 are reflectance plots for a sample set of black spruce and aspen sites. The black spruce sites, 14 and 15, are located within the same bog, and the aspen sites, 3 and 16, are located only about 80 meters apart. These sample plots were produced to note the differences in MMR band reflectance for aspen and black spruce at the beginning, middle, and end of the growing season. These plots show the consistency of the spectral reflectance of the spruce sites in comparison with the seasonal changes in the aspen. Another comparison between aspen and spruce sites may be seen in Figure 6.4, where values for the Normalized Difference Vegetation Index (NDVI) are plotted throughout 1983 for an aspen site (site 16) and a spruce site (site 14). NDVI is the difference between the reflectance in MMR bands four and three divided by their sum, and is related to the amount of green foliage present in the canopy. Figure 6.4 shows the aspen stand "greening up" in the spring and becoming senescent in the autumn, while NDVI in the evergreen spruce stand does not show a seasonal variation.

In 1984, MMR data were collected using off-nadir view angles to measure the bidirectional reflectance characteristics of the forests. Figure 6.5 shows the reflectances for three different view angles for a spruce and aspen site. In the backward scattering direction (view azimuth=0) both the spruce and aspen stands have higher reflectances in all channels because more of the illuminated foliage is seen. There is little difference between the nadir (view zenith $=0$) and forward scattering (view azimuth=180) views within each stand.

Figure 6.1 Spectral reflectance in each MMR band collected from the helicopter for two spruce and two aspen sites on May 15, 1983.

Figure 6.2 Spectral reflectance in each MMR band collected from the helicopter for two spruce and two aspen sites on July 12, 1983.

Figure 6.3 Spectral reflectance in each MMR band collected from the helicopter for two spruce and two aspen sites on October 6, 1983.

Figure 6.4 Normalized Difference Vegetation Index (NDVI) from helicopter MMR throughout 1983.

Figure 6.5 Spectral reflectance in each MMR band at three different view and zenith angles collected from the helicopter for spruce and aspen sites on September 16, 1984.

Table 6.1-Helicopter MMR Availability 1983

Number of observations aquired for each site and date. Each row is for a given site and each column is a seperate date given by month and day.

Acquisition Dates 1983

Site	05/15 05/16	06/09	07/12	07/13	08/12	08/14	10/06	10/26	10/27	$\underline{12 / 03}$
58						1				
59						1				
60				1	1					
61						1				
62				1	1					
63				1	1					
64				1	1					
65					1	1			1	
66					1	1			1	
67					1	1			1	
68				1	1	1	1	1		
69			1		1	1	1	1		
70			1							
71			1		1	1	1	1		
72				1	1		1		1	1
73			1		2		1		1	1
74				1	1					
75				1	1					
76				1	1					
77			1		1					
78				1	1					
79				1	1				1	
80				1	1	1			1	
81				1						
82				1						
83				1	1					
84				1	2	1			1	
85				1		1			1	
86				1						
87				1						
88				1					1	
89				1					1	
90				1	1				1	
91				1	1		1		1	
92				1	1		1		1	
93				1	1					
94					1					
95					1					
96					1					1
97					1				1	
98					1					
99		1			1					
100					1					
101					1					
102					1	1	2	1	2	
103					1	1				
104					1	1				
105								1		
106							1	1		
107							1	1		

Acquisition Dates 1983

$\underline{\text { Site }}$	$\underline{05 / 15}$	$\underline{05 / 16}$	$\underline{06 / 09}$	$\underline{07 / 12}$	$\underline{07 / 13}$	$\underline{08 / 12}$	$\underline{08 / 14}$	$\frac{10 / 06}{10 / 26}$
108				$\underline{10 / 27}$	$\underline{12 / 03}$			
111				1	1			
112				1	1			
113					1			
114				1				
115				1	1			
116						1		
117					1			
118					1			
119					1			
120					1			
121					1			
122					1			
124				1				

Table 6.2 - Helicopter MMR Availability 1984
Number of observations acquired for each site and date. Each row is for a given site and each column is a separate date given by month and day.

Acquisition Dates 1984				08/02	08/03	08/16	09/16	09/23
Site	05/18	05/28	06/03					
2	1	1	1		3	2	4	1
3	1	1	1	1	3	2	3	
10							1	1
12	1	1	1	2	3	2	2	1
14	1		1		3	2	3	1
16	1	1	1	1	3	2	3	
18	1						1	1
19	1		1				1	1
21	1						1	
39								1
42			1					1
48			1					1
52	1	1	1	2	2	1	2	1
61							3	1
70	1	1	1				1	
73	1	1	1	1			1	
75	1	1	1	1			1	
84			1					
87		1						
88	1	1	1	1	3	2	3	
89				1	3	2	3	
92	1	1	1		3	1	4	
93	1	1	1		3	1	3	
102	1						3	1
119								1
121								1
122								1
124								1
125								1

Table 6．3－1983 Helicopter MMR Data

Reflectance data collected from the helicopter－mounted MMR in 1983．Each table has data collected from a single day．Site is the site location；Obs．is the number of observations averaged；Hgt．is the altitude of the helicopter in hundreds of feet；start and end times are in GMT in the form HHMMSS；Sol Zen and Sol Az are the solar zenith and azimuth angles；Rfl 1 through 7 are the average percent reflectance measured by the MMR．Std 1 through 7 are the standard deviations of the reflectance measurements． Unless otherwise noted，all observations are nadir views．Reflectances of -1.00 are missing values．

受楞

 H

新

tin ふóo rooooo		
	島云	
	行No MNNm0 o	氙出家
		\cdots
	 	تّ
 		ザ
	 島苟	\％
	 	Non On 0
\＃	 	\＃
겅88ㅇ8ㅇㅇ 顶 000000	 山゙	
H88888888 ๙00000000	 	F－8
	N 4088 은 88888888888888888 ぶ	
	N88888888in888\％88888888888面	$\begin{array}{c\|c} 5 \\ N & 8 \\ \hline 8 \\ \hline 8 & 8 \\ \hline \end{array}$
	 जn \ddagger 药	
	 턱 ज納	
$\begin{aligned} & \text { 苟 } \\ & \text { 值 } \end{aligned}$		$\begin{aligned} & \text { ت̈ } \\ & \text { İ } \end{aligned}$

気|

August 12,	1983	(continued)	
Site	Obs.	Hgt.	St Time
68	Ot	4	152733
21	16	4	153016
25	20	4	153253
56	15	4	153816
12	16	4	15415
18	16	4	154615
19	16	4	154913
41	20	4	155524
42	16	4	155709
51	20	4	160345
84	20	4	165441
83	12	4	16513
84	16	4	165817
45	16	4	170545
46	28	4	170753
79	20	4	171629
80	16	4	172132
96	16	4	172432
97	20	4	172642
28	16	4	172824
47	16	4	173551
50	16	4	173930
49	16	4	179310
48	12	4	174430
54	16	4	175016
53	16	4	175146
55	16	4	155359
43	16	4	175851
56	16	4	180157
13	16	4	180634
63	16	4	180912
62	16	4	181150
64	16	4	181704
104	16	4	181917
103	16	4	190333
22	20	4	190830
102	16	4	191526
66	16	4	191820
65	28	4	192150

 " ๙ 깩충

 August 14, 1983 (continued)

N Nan

⿹ㅠㄱ응 궁

 へَّ

甙永

 October 6， 1983 （continued）

 No

N 888888888888888888888888848888888888888888

Reflectance data collected from the helicopter-mounted MMR in 1984. Each table has data collected from a single day or view angle. Site is the site location; Obs is the number of observations averaged; Hgt is the altitude of the helicopter in hundreds of feet; start and end times are in GMT in the form HHMMSS; Sol Zen and Sol Az are the solar zenith and azimuth angles; Rfl 1 through 7 are the average percent reflectance measured by the MMR in bands 1 through 7 . Std 1 through 7 are the standard deviations of the reflectance measurements. Unless otherwise noted, all observations are nadir views. Reflectances equal to -1.00 are missing values.

May 18,	1984																			
Site	Ob	Hgt.	St Time	End Time	Sol Zen	Sol Az	Rf1 1	Std1	$\underline{\mathrm{Rfl2}}$	Std 2	Rfl 3	Std 3	Rfl 4	Std 4	Rfl 5	$\frac{\text { Std } 5}{0.40}$	$\underline{\text { Rf16 }}$	$\frac{\mathrm{Std} 6}{03}$	$\frac{\mathrm{Rfl}}{811}$	$\frac{\mathrm{Std} 7}{0.20}$
75	12	,	161133	161153	37.00	123.17	2.80	0.06	4.71	0.10	3.70	0.10	23.04	0.55	25.85	0.40	17.75	0.33	8.11	0.22
73	12	6	161415	161435	37.00	124.08	2.58	0.08	4.16	0.15	3.32	0.12	19.02	1.05	22.0ε	1.09	15.50	0.84	7.18	0.36
93	12	6	161859	161919	36.00	125.83	3.11	0.07	4.12	0.14	4.60	0.09	11.79	0.54	18.74	0.54	19.08	0.30	12.16	0.23
92	12	6	162201	162221	36.00	126.75	3.15	0.23	4.69	0.31	4.52	0.47	15.47	0.41	20.99	0.80	18.17	1.48	10.45	1.13
14	12	6	162815	162835	35.00	128.50	1.84	0.09	2.77	0.14	2.16	0.11	12.20	0.51	14.16	0.51	7.97	0.30	3.30	0.15
2	12	6	163105	163125	34.00	129.33	1.94	0.14	2.86	0.21	2.32	0.15	12.41	0.66	14.61	0.72	8.41	0.49	3.58	0.27
3	12	6	16350	16352	34.00	1.17	3.16	0.29	4.75	0.28	4.61	0.50	18.65	0.49	24.48	0.72	19.42	1.22	10.11	0.96
16	12	6	16371	163735	4.00	31.1	2.92	0.18	. 45	0.22	4.17	0.26	17.89	0.53	23.10	0.66	18.23	0.64	9.41	0.42
70	12	6	164512	164532	33.00	134.75	4.02	0.18	6.06	0.14	6.46	0.31	21.31	0.25	30.40	0.44	24.99	0.63	13.38	0.53
88	12	6	164730	164750	3.00	134.75	3.90	0.29	5.33	0.22	5.82	0.53	16.69	0.65	25.52	0.61	23.30	1.45	13.44	1.30
102	12	6	165317	165336	32.00	137.42	2.14	0.14	3.32	0.21	2.53	0.17	14.23	0.51	15.69	0.64	8.28	0.49	3.31	0.28
21	12	6	165528	165548	32.00	138.33	3.56	0.08	5.20	0.04	5.39	0.11	18.21	0.23	26.12	0.28	22.32	0.34	12.14	0.23
19	12	6	170038	170057	31.00	140.08	3.17	0.10	4.77	0.14	4.86	0.15	18.76	0.28	23.37	0.64	14.10	0.53	6.66	0.26
18	12	6	170124	170143	31.00	140.08	3.41	0.10	5.16	0.15	5.23	0.16	19.91	0.46	23.12	0.52	13.70	0.50	6.57	0.28
12	12	6	170210	170229	31.00	141.00	2.96	0.20	4.35	0.34	4.32	0.35	18.30	1.56	21.65	0.94	11.64	0.60	5.34	0.31
52	12	6	170851	170911	31.00	143.42	1.93	0.09	3.01	0.14	2.41	0.14	12.95	0.54	14.70	0.63	7.95	0.50	3.29	0.27
May 28,	1984																			
Site	Obs.	Hgt.	St Time	End Time	Sol Zen	Sol Az	Rfl 1	Std1	Rfl2	Std 2	Rfl 3	Std 3	Rfl 4	Std 4	Rfl 5	Std 5	Rfl6	Std 6	Rfl 7	$\frac{\text { Std } 7}{}$
52	36	,	144510	144924	47.67	104.72	1.52	0.13	2.35	0.18	1.98	0.17	11.35	0.72	15.29	1.38	7.12	0.76	2.95	0.36
12	12	6	145718	145738	46.00	102.83	2.56	0.05	3.86	0.04	3.72	0.05	17.30	0.21	24.43	0.22	12.25	0.21	5.68	0.17
70	12	6	150823	150842	44.00	105.42	2.10	0.03	3.77	0.03	2.47	0.07	27.32	0.83	34.16	0.33	18.08	0.33	6.67	0.28
88	12	6	151247	151307	44.00	106.33	2.11	0.09	3.93	0.10	2.52	0.14	25.28	0.45	31.07	0.48	17.08	0.62	6.50	0.41
87	12	6	151756	151816	43.00	108.00	2.32	0.05	3.76	0.11	2.57	0.10	29.66	0.42	34.94	0.20	18.09	0.24	6.53	0.17
16	12	6	152310	152330	42.00	108.92	1.99	0.07	3.09	0.11	2.22	0.10	22.05	0.42	26.36	0.57	13.75	0.48	5.23	0.27

	N	N
	可笑	
 	伿示	
炒の M M M M Y あり 00000		
no	 	
		す
勿品		
開へ （N～N N N N	 	
可めすずすが山̈lo．OO 000		
	 	舜会N
		ज 8888888888
	梪 00000000000000000000000	
 え		

円

 すだ

 N

August 3， 1984																				
View zenith 50 degrees，view azimuth 0 degrees																				
Site	Obs．	Hgt．	St Time	End Time	Sol Zen	Sol Az	Rfl 1	Std 1	Rfl2	Std 2	Rfl 3	Std 3	Rff 4	Std 4	Rfl 5	Std 5	Rf16	Std 6	Rff 7	Std 7
92	12	6	133813	133833	63.00	90.50	4.67	0.10	6.72	0.07	－1．00	0.00	56.20	0.99	49.57	0.53	26.00	0.24	8.73	0.11
93	12	6	133907	133927	63.00	90.50	3.64	0.15	5.19	0.28	－1．00	0.00	46.31	1.04	40.71	0.76	20.69	0.45	6.55	0.17
2	24	6	134722	134822	62.00	93.63	4.80	0.59	7.01	0.65	－1．00	0.00	29.40	1.81	29.28	1.94	16.07	1.48	6.97	0.82
14	12	6	134926	134946	62.00	92.25	5.36	0.15	7.81	0.22	－1．00	0.00	31.31	0.66	30.75	0.74	16.23	0.54	6.93	0.33
16	12	6	135445	135505	60.75	93.33	4.92	0.23	6.28	0.28	－1．00	0.00	55.34	1.24	48.90	1.17	24.38	0.86	7.82	0.43
3	12	6	135544	135604	60.00	93.92	4.46	0.19	5.89	0.28	－1．00	0.00	52.31	1.46	46.90	1.23	23.82	0.73	7.82	0.34
89	24	6	140121	140217	59.00	96.38	4.86	0.28	7.07	0.51	－1．00	0.00	62.75	2.08	56.85	1.59	28.74	1.30	9.30	0.88
88	12	6	140612	140632	59.00	95.67	5.56	0.73	8.95	1.15	－1．00	0.00	58.65	2.00	53.26	2.20	28.32	1.86	10.25	1.22
12	12	6	143957	144016	53.00	101.58	8.25	0.65	12.86	0.85	－1．00	0.00	48.11	2.70	51.53	2.20	33.62	1.19	16.69	1.12
52	12	6	144641	144701	52.00	102.50	5.55	0.23	8.04	0.31	－1．00	0.00	27.77	0.95	30.14	0.95	18.07	0.60	8.71	0.32
93	24	6	154143	154356	44.00	117.79	2.80	1.13	3.91	1.65	－1．00	0.00	35.70	9.21	34.34	9.26	17.66	6.21	5.56	2.40
August 16， 1984																				
Site	Obs．	Hgt．	St Time	End Time	Sol Zen	Sol Az	Rfl 1	Std1	Rfl2	Std 2	Rfl 3	Std 3	Rfl 4	Std 4	Rfl 5	Std 5	Rfl6	Std 6	Rff 7	Std 7
52	12	，	224309	224329	65.00	246.50	0.57	0.07	－1．00	0.00	－1．00	0.00	10.87	0.56	9.26	0.91	－1．00	0.00	－1．00	0.00
12	12	6	225023	225042	66.00	247.50	1.45	0.10	－1．00	0.00	－1．00	0.00	17.92	1.21	19.74	1.32	－1．00	0.00	－1．00	0.00
89	12	6	225802	225822	67.00	248.50	0.87	0.13	－1．00	0.00	-1.00	0.0	19.97	1.13	18.01	0.78	－1．00	0.00	－1．00	0.00

꾼웅응응응
⿹ㅠㄴ앙 8808080
島｜O

氙응 888080
 \＃\＃

島事品

氙응응응응응응응 M

 azimuth 0 degrees
End Time Sol Zen N

 ज0000～0OOOON

 Nand⿹ㅜㄴ응응응응응궁ㅇㅇㅇㅇㅇ응응응気｜

 September 16， 1984

⿹弋工凡（

⿹ㅐำ

気员

⿹ㅜㄴ응궁
ज⿹\zh26灬干人

N

 움

 ＂
挐｜
器勿

 ज畄伿

N

気N゙

 View zenith 50 degrees，view azimuth 180 degrees

Nop wion in	ज00000000000000000
吅资	
की \％N	
可 $\because 8 \mathbb{O}$ 	ずツ W000000000N000000
気풍	
	N
	 茄聝000000000000000000
	が

7.0 Thematic Mapper Simulator Data

7.1 Introduction

The NS001 Thematic Mapper Simulator (TMS) was flown on the NASA C-130 aircraft over the SNF study area. The TMS was a scanning radiometer with eight wavelength bands (see Table 5.2). Band 8 was a thermal band and not processed in this study. The C-130 flew a "crisscross" pattern over the SNF, which provided a variety of sun and view angles. The TMS data were processed to provide reflectance values of study sites. These data are useful in the analysis of the bidirectional reflectance function of forest canopies. TMS data were collected and processed for three days: July 13 and August 6, 1983; and June 28, 1984.

7.2 Data Processing

Several processing steps were required to turn raw TMS data into physically meaningful numbers for the test sites.

The TMS scanner sweeps through view angles of plus or minus 50 degrees. This introduces both geometric distortions and varying atmospheric path lengths across the scan line. At extreme scan angles, a pixel covers an area on the ground several times larger than at nadir. At the nominal 1524 meter (5,000 -foot) altitude flown, a nadir pixel covers 3.81 meters along the scan, expanding to 9.22 meters at 50 degrees off nadir. To compensate for this distortion, the data were linearly resampled to a constant pixel size, the same size as the nadir pixel. The scan-angle-corrected images from different flight lines were then registered to a common image. The registration algorithm used control points to remove distortions locally rather than globally, and was effective in correcting for perturbations introduced by variations in aircraft motion. Sites were located in the imagery using photographs, descriptions of site locations, first hand knowledge and maps. Digital count values for areas four by four pixels, approximately 16 by 16 meters, were extracted from each flight line. Using the calibration data provided for each scan line, these values were converted to radiance values by subtracting the low blackbody radiance count and multiplying by the radiance calibration factor.

The TMS radiance values were converted to reflectances using values for insolation, atmospheric transmittance, and path-scattered radiance for the appropriate solar and view angles. No measurement of these values was made, so the LOWTRAN6 atmosphere model was used to generate them. Scattering contributions calculated from the path between the canopy and the sensor were subtracted from the sensordetected radiances and divided by the incident flux to generate reflectance factors.

7.3 Results

Corrected canopy reflectance values for 3 days are presented in Table 7.1. The sun and view angles are referenced to the same coordinate system centered on the observation point. Standard spherical polar coordinates, with zero-degree azimuth due north, are given. Note that the sensor and the Sun are in line when they have the same coordinates, i.e. the sensor looks at its shadow. Errors in the determination of these angles are possible due to the lack of precise aircraft position. The sensor zenith angles were determined from the sensor scan angle and should be accurate to within a degree. The sensor azimuth angles were determined from plotting the center points of a nadir view camera on an air photo of the area and connecting them to determine the aircraft heading. Because of the errors in this method, view azimuth accuracy is probably no more than 2 to 3 degrees. Solar zenith and azimuth were determined computationally from the time at the beginning of each flight line and should be within a degree. Sites referred to as 0 and 999 in the tables are observations of water.

	푸웅 $7{ }^{\circ}$ 0000	0000	
N.	－伿 A tion ONOーm	○N～N	लু No ○お永
かすOOOO	Winco	M ○OOOOF	
 	$\underset{\sim}{9}$		$\Varangle+\infty$ かの
島刻		 －OM－N	－ioninin
	F Wow 		
			－orini
	NiNo 	 	
 		$\mathrm{N}_{\mathrm{O}}^{2} \underset{O}{\mathrm{O}} \mathrm{G}$	00000
 		N－incim	
ज⿹弋工二小刂	H～Nm 000000	000.00	in Min OCOM 00000
		웅 monn on $\forall+\infty+\infty$	$\mathrm{m}_{\mathrm{m}}^{\infty} \mathrm{O}$
	888888 	888888 	888888
	ザ ず －		ले 8 ती $\therefore \infty$
禹丽的的守守		呙侖的夺夺ま	
			in in in in in in

N.	웅웅융	N్ర్రీ	 	000000
N'	芯		 	
		꺼엉웅		Nomid
๙ $\dot{\sim}$	ヘ $\underset{\sim}{\infty} \underset{\sim}{\sim}$	N゙ボ 	あNOONOO	
	구N लm゙NiN	응궁웅궁훙	Hinconjonioio	
Nㅔㄲ 우 운 in 	궁ㅇㅇㅇ윽 べ	Nㅡㅇ우운 0 in 0.00	40000000	
문 앙 앙 둥응 	侖芯 N～～～～	88순ํㅜㄴ 00000	 	が心
－ ๙	 	$0 \rightarrow 0000$	ザ ๙ơo ioiojo	－స్ల Jo
あo io iod	00000	응	 	0000000
 	M Hion No 	N	受垈	
わり		$\cdots{ }_{\sim}^{\sim}$		
部玉 的 0 禺				
	국NN్N 00000		勿家 000000	000000
	 	Nom Ni NiN		
		888888 		
			칙	$\stackrel{\infty}{\infty} \stackrel{N}{\sim}$
 	今ロ゙ずす 	ふin ing ま	Nた 	
	－Nのザロ	ーNのザロー		ーNのザロのヘ
	只枵品品品品			NNNNNNN

 	Gnかim Non 000000	00000	N్చ్ర刂	웅 융
敬が会	$\begin{gathered} \ln _{n}^{n} \\ 0 \end{gathered}$			$\underset{\sim}{\underset{\sim}{\sim}} \stackrel{\infty}{\sim} \underset{\sim}{\sim}$
		NM M $\dot{\sim}$	比	
 	 －N～N	$\underset{\sim}{\text { Nos }}$	 	
あん べ	ホ̛̣		 	
 			껏ㅇNㅇㅇㅇㅇㅡN 	
 			 	Nin M No
๙	 		 	N
 	000000		N 메N顿家00000	$\underset{\sim}{\infty}$
 			が	
 		$\stackrel{\circ}{\sim}$	 	
効				
	が			
				Oo M
	ざホボざさ			mmmm

	-200000	000000
	が	등 F内ल
		ำ\％
		内人 in oin in
nor	 	
サ్ర刂	 	
	겅 へべ心灾	
	0 －icooso	000000
		ヘウーゥー ゥ へ
N゙	F	ヲ O 으NNㅓㅇ 000000
$\stackrel{N}{\wedge}$		
	순NNNㅜㅇ 000000	끅NN N N ○○OO 0
$\stackrel{G}{a} \underset{\sim}{\sim}$		 －N～N～N～
		운 멍웅
	O28 8 N 	9 68 T
	$\rightarrow N m$－	－Nm＊incor
쀼엥mm	mmmmmmm	$\cdots \mathrm{mmmm}$

8.0 Satellite Data Availability

The purpose of the SNF study was to develop the techniques to make the link from biophysical measurements made on the ground to aircraft radiometric measurements and then to scale up to satellite observations. Therefore, satellite image data were acquired for the Superior National Forest study site. These data were selected from all the scenes available from Landsat 1 through 5 and SPOT platforms. Image data substantially contaminated by cloud cover or of poor radiometric quality were not acquired. Of the Landsat scenes, only one Thematic Mapper (TM) scene was acquired; the remainder are Multispectral Scanner (MSS) images. Table 8.1 contains a listing of the scenes which passed inspection and were acquired and archived by Goddard Space Flight Center. Some of the acquired image data have cloud cover in portions of the scene or other problems with the data. These problems and other comments about the images are summarized in Table 8.2.

TABLE 8.1 Satellite Image Data Acquired for the SNF Study Area

This table contains a listing of the satellite image data acquired for the SNF study area in Minnesota. The first column is the date of the satellite overpass; Plat is the platform with Landsat abbreviated LS; Inst is the instrument the data were collected with, MSS is the Multi-Spectral Scanner, TM is the Thematic Mapper and HRV1 and 2 are High-Resolution Visible sensors on SPOT; Sol Zen for solar zenith angle (degrees); Sol Az for solar azimuth angle (degrees); View Zen for view zenith angle (degrees); View Az for view azimuth angle (degrees); Pixels for the number of pixels in a record; Recs for number of image records (or lines); GMT for Greenwich Mean Time when the image was collected.

Date	Plat	Inst	Sol Zen	Sol Az	View Zen	View Az	Pixels		
03-JUL-73	LS-1	MSS	$\frac{32}{}$	$\frac{132}{}$	View Zen	Vew Az	$\frac{\text { Pixels }}{3264}$	$\frac{\text { Recs }}{2983}$	GMT
23-JUN-75	LS-1	MSS	35	125	0	0	3264	2983	1628 1609
21-MAY-76	LS-2	MSS	36	131	0	0	3264	2983	1614
05-JUL-76	LS-1	MSS	40	117	0	0	3264	2983	1544
01-AUG-76	LS-2	MSS	39	130	0	0	3264	2983	1612
06-SEP-76	LS-2	MSS	49	139	0	0	3264	2983	1611
24-SEP-76	LS-2	MSS	54	144	0	0	3264	2983	1610
21-JUN-77	LS-2	MSS	36	122	0	0	3264	2983	1559
11-JUN-79	LS-2	MSS	35	127	0	0	3264	2983	1612
05-JUN-82	LS-3	MSS	34	133	0	0	3264	2983	1628
01-MAY-83	LS-4	MSS	38	141	0	0	3264	2983	1628
18-JUN-83	LS-4	MSS	32	133	0	0	3264	2983	1628
25-APR-84	LS-5	TM	40	139	0	0	6967	5965	1628
28-JUN-84	LS-5	MSS	32	129	0	0	3264	2983	1628
21-AUG-86	LS-5	MSS	43	136	0	0	3264	2983	1628
22-JAN-87	SPOT	HRV2	69	165	2.3	103.4	3000	3000	1719
25-APR-87	SPOT	HRV2	36	164	17.2	105.3	3000	3000	1730
05-MAY-87	SPOT	HRV2	33	168	27.6	106.8	3000	3000	1738
31-MAY-87	SPOT	HRV2	27	165	26.2	106.6	3000	3000	1738
28-JUL-87	SPOT	HRV1	31	155	7.3	104.0	3000	3000	1723
08-AUG-87	LS-5	MSS	40	134	0	0	3264	2983	1628 。
13-AUG-87	SPOT	HRV1	35	155	3.6	102.6	3000	3000	1715
14-SEP-87	SPOT	HRV1	46	157	24.1	100.0	3000	3000	1700
24-SEP-87	SPOT	HRV1	50	162	13.8	101.4	3000	3000	1708
04-OCT-87	SPOT	HRV2	53	167	3.3	102.7	3000	3000	1715
23-JUL-90	LS-4	MSS	36	131	0	1	3264	2983	1628
31-JUL-90	LS-5	MSS	38	130	0	0	3264	2983	1628
16-AUG-90	LS-5	MSS	42	134	0	0	3264	2983	1628

Table 8.2 Comments on Satellite Image Data Acquired for the SNF Study Area
This table contains brief descriptions of the quality of the satellite image data described in Table 8.1.

Date	Comments
03-JUL-73	Band 1 and 2 data striped, scattered cumulus in SNF.
23-JUN-75	Band 1 and 2 data striped, SNF clear of cloud cover.
21-MAY-76	Band 1 and 2 data striped, SNF clear of cloud cover.
05-JUL-76	Band 1 and 2 data striped, few cumulus.
01-AUG-76	Band 1 and 2 data striped, few cumulus.
06-SEP-76	Band 1 and 2 data striped, SNF clear of cloud cover.
24-SEP-76	Band 1 and 2 data striped, SNF clear of cloud cover.
21-JUN-77	Band 1 and 2 data striped, SNF clear, SNF cut off to East of Big Lake.
11-JUN-79	Band 1 and 2 data striped, SNF at bottom of scene.
05-JUN-82	Line start error North and West of Ely, SNF cut off to East of Big Moose Lake.
01-MAY-83	SNF clear of cloud cover.
18-JUN-83	SNF clear of cloud cover, image used as reference for GSFC work.
25-APR-84	SNF clear of cloud cover.
28-JUN-84	SNF clear of cloud cover, possible calibration problems.
22-JAN-87	Snow covered, SNF has some cirrus.
25-APR-87	Heavy cirrus cloud cover in northern SNF.
05-MAY-87	Cirrus cloud cover in Western portion of SNF.
31-MAY-87	Heavy cumulus cloud cover throughout SNF.
28-JUL-87	SNF clear of cloud cover.
08-AUG-87	SNF clear of cloud cover.
13-AUG-87	Few scattered cumulus.
14-SEP-87	SNF clear of cloud cover.
24-SEP-87	SNF clear of cloud cover.
04-OCT-87	Some cirrus cloud cover in Eastern SNF.
23-JUL-90	Band 1 and 2 data striped, some cumulus outside SNF.
31-JUL-90	Band 1 and 2 data striped, SNF clear of cloud cover.
16-AUG-90	Band 1 and 2 data striped, some cirrus cloud cover in SNF.

9.0 Superior National Forest Related Publications

Ahlgren, C. E. (1960), Some effects of fire on reproduction and growth of vegetation in northeastern Minnesota, Ecology 41 (3): 431-445.

Alban, D. H., D. A.Perala and B. E. Schlaegel (1978), Biomass and nutrient distribution in aspen, pine, and spruce stands on the same soil type in Minnesota, Can J For Res 8: 290-299.

Badhwar, G. D., R. B. Macdonald, F. G. Hall and J. G. Carnes (1986), Spectral characterization of biophysical characteristics in a Boreal Forest: Relationship between Thematic Mapper band reflectance and leaf area index for aspen, IEEE Trans Geosci Rem Sens GE-24 (3): 322-326.

Badhwar, G. D., R. B. Macdonald and N. C. Menhta (1986a), Satellite-derived leaf-area-index maps as input to global carbon cycle models - a hierarchical approach, Int. J. Remote Sensing 7 (2): 265-281.

Baker, W. L. (1989), Landscape ecology and nature reserve design in the Boundary Waters Canoe Area, Minnesota, Ecology 70 (1): 23-35.

Botkin, D. B., J. E. Estes, R. M. MacDonald and M. V. Wilson (1984), Studying the Earth's vegetation from space, BioScience 34 (8): 508-514.

Botkin, D. B. and K. D. Woods (1985), developing a conceptual framework for remote sensing studies of ecological patterns, Bull. Ecol. Soc. Am. 66: 144-145.

Grigal, D. F. and H. F. Arneman (1970), Quantitative relationships among vegetation and soil classifications from northeastern Minnesota, Can. J. Bot. 48: 555-566.

Grigal, D. F. and L. F. Ohmann (1975), Classification, description, and dynamics of upland plant communities within a Minnesota wilderness area, Ecol. Mono. 45: 389-407.

Hall, F. G., D. E. Strebel, S. J. Goetz, K. D. Woods and D. B. Botkin (1987), Landscape pattern and successional dynamics in the boreal forest, In: International Geoscience and Remote Sensing Symposium (IGARSS 87), pp. 473-482, Ann Arbor, Michigan.

Hall, F. G., D. E. Strebel and P. J. Sellers (1988), Linking knowledge among spatial and temporal scales: Vegetation, atmosphere, climate and remote sensing, Landscape Ecology 2 (1): 3-22.

Hall, F. G., D. E. Strebel, J. E. Nickeson and S. J. Goetz (1988), Satellite tracking of growth and disturbance in Boreal Forest stands, In: Proceedings of the Third Annual Landscape Ecology Symposium, Albuquerque, New Mexico.

Hall, F. G., D. E. Strebel, S. J. Goetz and J. E. Nickeson (1989), Landscape scale forest phenology using remote sensing, In: Proceedings of the Fourth Annual Landscape Ecology Symposium, Fort Collins, Colorado.

Hall, F. G., D. B. Botkin, D. E. Strebel, K. D. Woods and S. J. Goetz (1991), Large scale patterns of forest succession as determined by remote sensing, Ecology 72 (2): 628640.

Hall, F. G., D. E. Strebel, J. E. Nickeson and S. J. Goetz (1991), Radiometric rectification: Toward a common radiometric response among multi-date, multisensor images, Rem Sens Environ. 35: 11-27.

Hall, F. G., S. J. Goetz and J. E. Nickeson (1992), Seasonal and interannual variability in photosynthetic activity in the boreal forest of northeast Minnesota: a remote sensing based model, In: Proceedings of the Seventh Annual Landscape Ecology Symposium, Corvallis, Oregon.

Hall, F. G., D. E. Strebel, J. E. Nickeson and S. J. Goetz (in preparation), Boreal forest seasonal dynamics derived from satellite remote sensing.

Hall, F. G., K. F. Huemmrich, S. J. Goetz, J. E. Nickeson and D. E. Strebel (in preparation), Remote sensing and canopy modeling of phenological development in a boreal forest.

Hall, F. G., S. J. Goetz, J. E. Nickeson and K. F. Huemmrich (in preparation), Interannual variability of photosynthetic activity in a boreal forest.

Heinselman, M. L. (1973), Fire in the virgin forests of the Boundary Waters Canoe Area, Minnesota, Quaternary Res 3: 329-382.

Heinselman, M. L. (1981), Fire and succession in the conifer forests of northern North America, Forest succession: Concepts and applications, Springer-Verlag.

Nordin, J. O. and D. F. Grigal (1976), Vegetation, site, and fire relationships within the area of the Little Sioux Fire, northeastern Minnesota, Can J For Res 6: 78-85.

Ohmann, L. F. and D. F. Grigal (1979), Early revegetation and nutrient dynamics following the 1971 Little Sioux forest fire in northeastern Minnesota, For. Sci. Monograph 21.

Ohmann, L. F. and D. F. Grigal (1985), Biomass distribution of unmanaged upland forests in Minnesota, Forest Ecology and Management 13: 205-222.

Ohmann, L. F. and R. R. Ream (1971), Wilderness ecology: virgin plant communities of the Boundary Waters Canoe Area, USDA Forest Service Res. Paper NC-63.

Perala, D. A. and D. H. Alban (1982), Biomass, nutrient distribution and Litterfall in Populus, Pinus and Picea stands on two different soils in Minnesota, Plant Soil 64: 177-192.

Pitts, D. E., G. D. Badhwar and A. H. Feiveson (1988), Comparison of measured Cband scattering coefficients with model predictions as a function of leaf area index and biomass, In: International Geoscience and Remote Sensing Symposium 1988 (IGARSS 88), , pp 1271-1275, Edinburgh, Scotland.

Sando, R. W. and D. A. Haines (1972), Fire weather and behavior of the Little Sioux Fire, North Cent. For. Exp. Stn., Research Paper NC-76.

Shen, S. S., G. D. Badhwar, and J. G. Carnes (1985), Separability of boreal forest species in the Lake Jennette area, Minnesota, Photog. Eng. and Rem. Sens. 51 (11): 1775-1783.

Strebel, D. E., S. J. Goetz and F. G. Hall (1987), Atmospheric correction of NS-001 images and extraction of multiple angle reflectance data sets, In: 21st Internation Symposium on Remote Sensing of Environment, pp. 939-948, Ann Arbor, Michigan.

Swain, A. M. (1973), A history of fire and vegetation in northeastern Minnesota as recorded in lake sediments, Quat Res 3: 383-396.

Swain, A. M. (1980), Landscape patterns and forest history in the Boundary Waters Canoe Area, Minnesota: a pollen study for Hug Lake, Ecology 61: 747-754.

Woods, K. D. and D. B. Botkin (1984), Direct measurement by remote sensing of biomass and leaf area in natural forest stands, Bull. Ecol. Soc. Am. 65: 61.

Woods, K. D., D. B. Botkin and A. H. Fieveson (1985), Dimension analysis: new developments in models and statistical treatment, Bull. Ecol. Soc. Am. 66: 297.

Woods, K. D., A. H. Fieveson and D. B. Botkin (1991), Statistical error analysis for biomass density and leaf area index estimation, Can J For Res 21:974-989.

Appendix 1-SNF Data Disk Documentation

In order for the SNF data to be useful to investigators, a floppy disk has been created that contains the data presented in this document. This disk can be ordered from the Pilot Land Data System (PLDS) at Goddard Space Flight Center by contacting:

PLDS User Support Office
NASA/Goddard Space Flight Center
Greenbelt, MD 20771
Phone: (301) 286-9761
E-mail: pldsuso@pldsg3.gsfc.nasa.gov
All data tables in this document are on the disk. Tables that have been left out are ones which provide inventory information. Data tables are stored as ASCII files with the columns of the data separated by tabs. Each file begins with a description of the data. The files are named for the table number as they appear in this document.

There are two subdirectories on the disk. They contain additional data which was not included in the text document. The directory WEATHER contains daily weather data from International Falls; a full description of the data is in the file WEATHER.TXT. The directory SPECTRA contains leaf and bark spectral reflectance and transmittance data.

Disk contents:
README.TXT - Appendix 1, SNF data disk description
TABLE2.1-SNF plant species names and abbreviations
TABLE2.2 - SNF study site locations and description
TABLE3.1-Canopy species
TABLE3.2-Subcanopy species
TABLE3.3 - Understory composition
TABLE3.4 - Cover by stratum and plot for aspen sites
TABLE3.5-Statistics for sacrificed aspen trees
TABLE3.6-Statistics for sacrificed spruce trees
TABLE3.7-Aspen biophysical parameters
TABLE 3.8 - Spruce biophysical parameters
TABLE3.9-Aspen canopy phenology
TABLE3.10 - Subcanopy phenology
TABLE4.1 - Monthly climatological data
TABLE5.2 - TMS band averages of leaf and bark optical properties
TABLE6.3 - Helicopter MMR data, both 1983 and 1984
TABLE7.1 - Thematic Mapper Simulator data
TABLE8.1 - Satellite image data acquired for the SNF

SPECTRA.DIR - This directory contains in numerical form the spectral reflectance and transmittance data displayed graphically in Section 5. The file SPECTRA.TXT provides a description of the contents of each file. Files in SPECTRA:

A25H29RB.DAT	A25H29RF.DAT	A25H29TB.DAT	A25H29TF.DAT
A25HB1RF.DAT	A25L01RB.DAT	A25L01RF.DAT	A25L01TB.DAT
A25L01TF.DAT	A25LB1RF.DAT	A25M11RB.DAT	A25M11RF.DAT
A25M11TB.DAT	A25M11TF.DAT	A25MB1RF.DAT	A26H21RB.DAT
A26H21RF.DAT	A26H21TB.DAT	A26H21TF.DAT	A26HB1RF.DAT
A26L01RB.DAT	A26L01RF.DAT	A26L01TB.DAT	A26L01TF.DAT
A26LB1RF.DAT	A26M11RB.DAT	A26M11RF.DAT	A26M11TB.DAT
A26M11TF.DAT	A26MB1RF.DAT	A27H21RB.DAT	A27H21RF.DAT
A27H21TB.DAT	A27H21TF.DAT	A27HB1RF.DAT	A27L01RB.DAT
A27L01RF.DAT	A27L01TB.DAT	A27L01TF.DAT	A27LB1RF.DAT
A27M19RB.DAT	A27M19RF.DAT	A27M19TB.DAT	A27M19TF.DAT
A27MB1RF.DAT	AB0B201R.DAT	AB0N2B1R.DAT	AB0N2T1R.DAT
AR0L3B1R.DAT	AR0L3B1T.DAT	AR0L3B2R.DAT	AR0L3B2T.DAT
AR0L3T1R.DAT	AR0L3T1T.DAT	AR0L3T2R.DAT	AR0L3T2T.DAT
AXXH21RB.DAT	AXXH21RF.DAT	AXXH21TB.DAT	AXXH21TF.DAT
AXXL01RB.DAT	AXXLL01RF.DAT	AXXL01TB.DAT	AXXL01TF.DAT
AXXM19RB.DAT	AXXM19RF.DAT	AXXM19TB.DAT	AXXM19TF.DAT
BL00201R.DAT	BP0L3B1R.DAT	BP0L3B1T.DAT	BP0L3B2R.DAT
BP0L3B2T.DAT	BP0L3T1R.DAT	BP0L3T1T.DAT	BP0L3T2R.DAT
BP0L3T2T.DAT	CC0L3B1R.DAT	CC0L3B1T.DAT	CC0L3T1R.DAT
CCC0L3T1T.DAT	CH0L7T1R.DAT	FH0B201R.DAT	LG0L7T1R.DAT
LL0B201RRAT	LL0N2B1R.DAT	LL0N2T1R.DAT	LL0N7B1R.DAT
LL0N7T1R.DAT	PB0N2B1R.DAT	PBNN2T1R.DAT	PBLR.DAT
PBLT.DAT	PM0B201R.DAT	PM0N7B1R.DAT	PM0N7T1R.DAT
PM1N2B1R.DAT	PM1N2T1R.DAT	PM2N2B1R.DAT	PM2N2T1R.DAT
PM3N2B1R.DAT	PM3N2T1R.DAT	PM6N7B1R.DAT	PM6N7T1R.DAT
PRLR.DAT	PRLT.DAT	PT0B200R.DAT	PT1L2B1R.DAT
PT1L2B1T.DAT	PT1L2T1R.DAT	PT1L2T1T.DAT	PT1L3B1R.DAT
PT1L3B1T.DAT	PT1L3B2R.DAT	PT1L3B2T.DAT	PT1L3T1R.DAT
PT1L3T1T.DAT	PT1L3T2R.DAT	PT1L3T2T.DAT	PT2L2B1R.DAT
PT2L2B1T.DAT	PT2L2T1R.DAT	PT2L2T1T.DAT	PT3L2B1R.DAT
PT3L2B1T.DAT	PT3L2T1R.DAT	PT3L2T1T.DAT	S60H01R.DAT
S60H01T.DAT	S60H02R.DAT	S60H02T.DAT	S60H03R.DAT
SM00201R.DAT	SM607T1R.DAT	SM707T1R.DAT	SM807T1R.DAT
SPECTRA.TXT	SY2R.DAT	SY2T.DAT	SYYR.DAT

WEATHER.DIR - This directory contains daily weather data from International Falls, MN for the years 1976 through 1986. The file WEATHER.TXT provides a description of the data files. Files in WEATHER:

MET76.DAT	MET77.DAT	MET78.DAT	MET79.DAT
MET80.TXT	MET81.DAT	MET82.DAT	MET83.DAT
MET84.DAT	MET85.DAT	MET86.DAT	WEATHER.TXT

National Aeronautics and
Space Administration
Washington, D.C.
20546
Official Business
Penalty for Private Use, $\$ 300$

Postage and Fees Paid National Aeronautics and Space Administration NASA 451

[^0]: This table contains data on the biophysical characteristics of the spruce sites．The Site column contains the site number，NT is the number of trees on the site， Area is the site area in square meters，Avg DBH and SD DBH are the average and standard deviation of the tree diameter at breast height in cm，Stems per m standard deviation in $\mathrm{kg} / \mathrm{m}^{2}$ NPP and SD NPP Basal Fraction is the ratio of bole area to surface area，BMI and SD BMI are the biomass index and its index and its standard deviation．Spruce leaf area is the projected area oftion and its standard deviation in $\mathrm{kg} / \mathrm{m} /$ year，LAI and SD LAI are the leaf area

