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Abstract. Land use and land cover change (LULCC) alter the biophysical properties of the Earth’s surface. The

associated changes in vegetation cover can perturb the local surface energy balance, which in turn can affect the

local climate. The sign and magnitude of this change in climate depends on the specific vegetation transition,

its timing and its location, as well as on the background climate. Land surface models (LSMs) can be used to

simulate such land–climate interactions and study their impact in past and future climates, but their capacity to

model biophysical effects accurately across the globe remain unclear due to the complexity of the phenomena.

Here we present a framework to evaluate the performance of such models with respect to a dedicated dataset

derived from satellite remote sensing observations. Idealized simulations from four LSMs (JULES, ORCHIDEE,

JSBACH and CLM) are combined with satellite observations to analyse the changes in radiative and turbulent

fluxes caused by 15 specific vegetation cover transitions across geographic, seasonal and climatic gradients. The

seasonal variation in net radiation associated with land cover change is the process that models capture best,

whereas LSMs perform poorly when simulating spatial and climatic gradients of variation in latent, sensible

and ground heat fluxes induced by land cover transitions. We expect that this analysis will help identify model

limitations and prioritize efforts in model development as well as inform where consensus between model and

observations is already met, ultimately helping to improve the robustness and consistency of model simulations

to better inform land-based mitigation and adaptation policies. The dataset consisting of both harmonized model

simulation and remote sensing estimations is available at https://doi.org/10.5281/zenodo.1182145.

Published by Copernicus Publications.
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1 Introduction

Terrestrial vegetation regulates land–climate interactions

through both biogeochemical and biogeophysical mecha-

nisms. The role of vegetation from the biogeochemical side

relies on its capacity to act either as a carbon sink or a car-

bon source (Le Quéré et al., 2016). Changes in land cover,

which are dominated by forest area loss, have a pronounced

effect on climate by reducing the terrestrial carbon stocks

(Canadell and Raupach, 2008). However, land cover also

controls both radiative and non-radiative biophysical surface

properties of vegetation that influence the water, momentum

and energy budgets (Bonan, 2008). Land use and land cover

change (LULCC) alters these biophysical properties and in

turn affects the local climate through changes in the surface

energy balance (Anderson et al., 2011; Bonan, 2008; Davin

and de Noblet-Ducoudré, 2010; Lee et al., 2011; Mahmood

et al., 2014; Pielke et al., 2011). For instance, a vegetation

cover transition from forest to grassland typically causes an

increase in albedo (because grasses are generally brighter

than trees and in cold climates grasses have a more homoge-

neous snow cover during the cold season; see Betts and Ball,

1997; Jackson et al., 2008; Loranty et al., 2014), but also

a decrease in summer evapotranspiration (because grasses

have lower aerodynamic conductance, see Bonan, 2008, and

they typically have shallower roots and thus cannot access

water in deeper soil horizons, e.g. Canadell et al., 1996; Fan

et al., 2017; Oliveira et al., 2005). The result of competing

biophysical processes on the surface energy balance varies

spatially and temporally and can lead to warming or cooling

depending on the specific vegetation change and on the back-

ground climate (e.g. presence of snow or soil moisture) (Pit-

man et al., 2011). In some cases, the associated changes in

biophysical properties may offset the intended biogeochem-

ical effects of land-based mitigation (Betts, 2000). Yet, poli-

cies tackling climate mitigation through land management

focus only on biogeochemical mechanisms and neglect their

biophysical consequences.

Recent advances have demonstrated that satellite remote

sensing observations can provide valuable diagnostics of the

effect of vegetation cover change on their biophysical prop-

erties (Alkama and Cescatti, 2016; Duveiller et al., 2018b;

Forzieri et al., 2017; Li et al., 2015; Zhao and Jackson, 2014).

Biophysical surface properties, such as albedo (Schaaf et al.,

2002) and land surface temperature (Wan, 2008), are typi-

cally more accessible to remote sensing instruments than bio-

geochemical properties like carbon stocks and fluxes. The

latent heat flux of the land can also be estimated from re-

mote sensing observations using data-driven models (Mc-

Cabe et al., 2016; Miralles et al., 2011; Mu et al., 2007),

while the residual sensible and ground heat fluxes can be ob-

tained from a combination of such datasets by imposing the

closure of the surface energy balance (Duveiller et al., 2018b;

Forzieri et al., 2017). To exploit such datasets for analysing

the biophysical effects of LULCC, two different approaches

are typically adopted. The first focuses on places where veg-

etation cover has changed over a period of time and com-

pares the situation before and after this event, taking care in

controlling for the effects of inter-annual climatic variability

over a local window (e.g. Silvério et al., 2015; Alkama and

Cescatti, 2016). The second approach relies on a space-for-

time substitution that isolates the potential impact of a land

cover transition by comparing neighbouring areas with simi-

lar environmental conditions but contrasting vegetation (e.g.

Zhao and Jackson 2014; Li et al., 2015; Peng et al., 2014;

Duveiller et al., 2018b). Both appear to yield similar results

(Li et al., 2016), but the space-for-time approach allows the

exploration of more transitions and over a larger spatial ex-

tent since it is not limited to places where actual change has

occurred (Duveiller et al., 2018b).

The biophysical consequences of LULCC are known to

depend on the background climate (Pitman et al., 2011;

Winckler et al., 2017b), which in turn varies with climate

change (IPCC, 2014). To better anticipate these changes it

is necessary to predict these biophysical effects with robust

model frameworks. Land surface models (LSMs) are used

to represent terrestrial processes within Earth system mod-

els, in which they simulate both the carbon cycle and land-

atmosphere fluxes of energy, water and momentum. Initia-

tives like the Land-Use and Climate, Identification of Robust

Impacts (LUCID) project (de Noblet-Ducoudré et al., 2012;

Pitman et al., 2009) have attempted to evaluate the capacity

of LSMs to represent biophysical effects of LULCC by inter-

comparing several simulations of past LULCC and showing

large discrepancies amongst models, especially in separating

between turbulent fluxes. Such inter-comparison exercises

should also continue within broader initiatives such as the

Land Use Model Inter-comparison Project (LUMIP) contri-

bution to the Coupled Model Intercomparison Project Phase

6 (CMIP6) (Lawrence et al., 2016). However, there is a lack

of model evaluation against observation-driven datasets, in

which the spatial, temporal and climatic patterns can be eval-

uated at finer scale. Confrontation with observations could

considerably contribute towards improving the robustness

and consistency of models, but requires special attention to

ensure simulations and observations are comparable regard-

ing how vegetation cover is implemented and how biophysi-

cal processes are represented.

This study presents a framework for process-oriented

model evaluation specifically tailored towards analysing how

local biophysical effects of vegetation cover change are rep-

resented in LSMs. Simulations from four major LSMs are

confronted with satellite remote sensing observations across

geographic, seasonal and climatic dimensions for a range of

vegetation transitions and for different components of the

surface energy balance. The main objectives of this study are

to create a harmonized multi-dimensional dataset, to illus-

trate its content and to demonstrate its utility by evaluating

the agreement amongst models and against satellite observa-

tions.
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Figure 1. Flowchart resuming the processing steps undertaken for the present study. The part in the grey box corresponds to work done in a

previous study (Duveiller et al., 2018b).

2 Material and methods

Isolating the effect of vegetation cover change from both

model simulations and observations in order to make them

comparable requires a series of dedicated processing steps.

To assist the reader in following the methodology developed

in this work, Fig. 1 summarizes the main steps in a synthetic

flowchart.

2.1 Remote sensing estimations

The observation part of the analysis is based on satellite re-

mote sensing observations to assess the effects of vegetation

on the surface energy balance for different vegetation cover

types (Duveiller et al., 2018a). This remote sensing dataset

(RS dataset for short) consists of spatially and seasonally

explicit estimates of changes in surface properties follow-

ing specific vegetation transitions. These surface properties

are albedo, land surface temperature (LST) and evapotranspi-

ration (ET), obtained from the respective MODIS products

MCD43C3 (Schaaf et al., 2002), MYD11C3 (Wan, 2008)

and MOD16A2 (Mu et al., 2011). The changes in these vari-

ables are calculated at the original scale of the product 0.05◦,

but the dataset is provided at a spatial resolution of 1◦, with

each cell representing the mean changes occurring at the finer

scale of 0.05◦. This coarser spatial resolution is necessary for

a specific step to ingest CERES EBAF surface radiation data

(Kato et al., 2013) in the processing chain, but is also ideal

to align the dataset with the simulations of LSMs. The data

represent a multi-annual average year with a monthly tem-

poral resolution. This synthetic year is constructed from the

median values for a given month over the period 2008–2012

for every 0.05◦ pixel. The original land cover map used to

build this dataset is the ESA CCI land cover map for 2010

(ESA, 2017), but with a simplified reclassification of land

cover types into major vegetation classes according to the

International Geosphere-Biosphere Programme (IGBP) clas-

sification scheme. A total of 45 distinct vegetation transitions

are provided in the RS dataset. Although these are referred to

as vegetation transitions, the information does not come from

observations over transient vegetation changes, but rather

from paired observations of distinct vegetation cover types

at the same location. As a result, values for a given pair are

only available where there is sufficient spatial abundance, or

co-occurrence, of both vegetation types. For more details on

the dataset and how it was produced, readers may refer to

Duveiller et al. (2018a).

The surface property variables from the RS dataset are net

radiation (Rn), latent heat flux (LE), and the sum of sensi-

ble and ground heat flux (H + G). Sensible and ground heat

fluxes have to be considered together because they cannot be
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directly retrieved from satellites and are computed as a resid-

ual flux from the closure of the surface energy balance. How-

ever, it can be considered that H + G is dominated by H since

the ground heat values are generally much smaller and can be

neglected at annual scale. In this study net radiation is con-

sidered positive when the flux goes from the atmosphere to

the ground, while latent, sensible and ground heat fluxes are

positive when they exit from the surface to the atmosphere.

2.2 Land surface model simulations

To simulate the biophysical effects of local vegetation tran-

sitions that are comparable to the RS dataset, we need to run

LSMs forced by a realistic climate and with idealized vege-

tation distributions. The four models evaluated here are OR-

CHIDEE (Krinner et al., 2005), JULES (Best et al., 2011;

Clark et al., 2011), JSBACHv3.1 (Reick et al., 2013) and

CLM4.5 (Oleson et al., 2013). The forcing consists of his-

toric climate data from CRU-NCEP v6, and observationally

derived global atmospheric CO2 concentration (Le Quéré et

al., 2015). Models were spun up for steady state in biomass

pools and leaf area index (LAI) and then forced with transient

CRU-NCEP v6 reconstructed climate and CO2 from 1950 or

earlier, and up until 2014. To obtain values of the surface

variables of interest (Rn, LE and H + G) that are coherent

with those of the RS dataset, the median monthly values of

these fluxes from 2008 until 2012 was calculated.

Models differ in how they represent the surface energy bal-

ance per plant functional type (PFT) at the sub-grid level. Not

all models can calculate heat fluxes per PFT within a grid

cell, and thus some need to resort to flux aggregation at grid

cell level to derive resulting variables such as temperature.

To overcome this problem and isolate the effect of vegeta-

tion cover change on the surface energy budget, simulations

are made in which the entire grid cell is covered by a sin-

gle PFT. Separate simulations are run for each PFT of every

model, in which the entire surface of the Earth is covered by

a single PFT. The effect of a change in PFT can then be re-

trieved by subtracting values of biophysical fluxes between

the two corresponding simulations. Since there is no feed-

back between the vegetation and the climate in this set-up,

having such homogeneous distributions of vegetation across

vast geographic extents does not generate climate biases out-

side of the grid cell.

2.3 Harmonizing vegetation classes

The models differ in how they represent vegetation using dif-

ferent PFTs, each with their own parametrization. To facili-

tate the harmonization with the IGBP vegetation classes in

the remote sensing dataset, only 6 broad vegetation classes

are considered: evergreen broadleaf trees (EvgTr), decidu-

ous broadleaf trees (DecTr), needleleaf trees (NedTr), shrubs

(Shrub), grasses (Grass) and crops (Crops). A total of 15

transitions (from paired comparisons of PFTs) are thus avail-

able and can also be used to represent inverse transitions (e.g.

1LE for DecTr to Crops is equal to −1LE for Crops to

DecTr). To obtain these broad vegetation classes from the RS

dataset, the IGBP classes of evergreen and deciduous needle-

leaf forest (ENF and DNF, respectively) were merged into

NedTr, whereas classes not represented by models or mixed

classes such as woody savannas (SAV), mixed forests (MF)

and wetlands (WET) have been omitted. The other three

classes (Shrub, Grass and Crops) can be directly assigned

with their corresponding classes in the scheme used in the

RS dataset (SHR, GRA and CRO).

The harmonization of the different modelled PFTs to these

6 broad classes required the use of some decision rules that

are summarized in Table 1. PFTs whose differences relate

to their climatic regime (such as “Tropical broadleaf decidu-

ous” and “Temperate broadleaf deciduous” in ORCHIDEE)

are geographically separated and can be aggregated into a

single global PFT. The spatial representation of the climate

zones is taken from the revisited Köppen–Geiger classifi-

cation product (Kottek et al., 2006). A similar approach is

adopted to keep all needleleaf tree PFTs in a single layer, as

the deciduous needleleaf trees are predominantly located in

a well-defined geographic area in Siberia without a strong

overlap with evergreen needleleaf trees. For grasses and

crops, LSMs typically make a separation between C3 and C4

systems for carbon fixation, which is not currently feasible

to detect from remote sensing observations (and thus is ab-

sent in the RS dataset). For the two classes, Grass and Crops,

the decision rule adopted is to assign the dominant photosyn-

thetic pathway (C3 or C4) within a grid cell to the entire grid

cell. Since different models may have a different default PFT

distribution map, the PFT distribution of JSBACH (based on

work by Knorr and Heimann, 2001) is selected here as refer-

ence and used for the harmonization of the other models as

well. An exception to this rule is applied for JULES, which

represents crops as grasses. In this case, to maximize infor-

mation content the Crops class is assigned exclusively with

the C3 grass PFT and the Grass class contains only the C4

grass PFT. There are some further model-specific details in

the harmonization procedure. For CLM, the Crops simula-

tion is composed exclusively of the generic C3 crop. Even if

some LSMs can simulate some crop managements options,

such as irrigation, this has been switched off to maximize

inter-comparability amongst model runs. Regarding trees,

JULES does not distinguish PFTs based on phenology, con-

sidering only the difference between broadleaf and needle-

leaf trees. The EvgTr and DecTr simulations will therefore

be identical in JULES. Shrubs are simulated as a PFT by all

models except for ORCHIDEE, for which the Shrub class

remains empty.

As mentioned previously, the RS dataset can only provide

reliable estimations where the vegetation types of interest lo-

cally co-exist. Although the models could theoretically sim-

ulate the vegetation even where is does not naturally occur,
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Table 1. Summary of how the specific plant functional types (PFTs) of the different land surface models (LSMs) are mapped into the six

broad vegetation classes used in this study. Model-specific nomenclature of PFT is used in italics.

Vegetation

classes used in

this paper

JSBACH JULES CLM ORCHIDEE

Broadleaf ever-

green trees

(EvgTr)

Tropical broadleaf evergreen

are placed in grid cells with

tropical climatea;

Extra-tropical evergreen popu-

late the remaining vegetated ar-

eas.

Broadleaf trees Broadleaf ever-

green trees

Tropical broadleaf evergreen are placed in

grid cells with tropical climatea; Temperate

broadleaf evergreen populate the remaining

vegetated areas.

Broadleaf

deciduous

trees

(DecTr)

Tropical broadleaf decidu-

ous are placed in grid cells

with tropical climatea; Extra-

tropical broadleaf deciduous

populate the remaining vege-

tated areas.

Broadleaf trees Broadleaf decidu-

ous trees

Tropical broadleaf deciduous are placed in

grid cells with tropical climatea. Temperate

broadleaf summergreen are placed in grid

cells with arid and temperate areasa. Boreal

broadleaf summergreen populate the remaining

vegetated areas.

Needleleaf

trees

(NedTr)

Coniferous deciduous are

placed in grid cells where they

are dominant according to

the default PFT distributionb.

Coniferous evergreen populate

the remaining vegetated areas.

Needleleaf

trees

Needleleaf trees Boreal needleleaf summergreen trees are placed

in grid cells where they are dominant according

to the default PFT distributionb Boreal needle-

leaf evergreen populate the remaining boreal

and polar areasa. Temperate needleleaf ever-

green populate the remaining tropical, temper-

ate and arid areasa.

Shrubs

(Shrub)

Deciduous shrubs are placed in

grids where they are dominant

in the default PFT distributionb;

Raingreen shrubs populate the

remaining vegetated areas.

Shrubs Shrubs No PFTs are available.

Grasses

(Grass)

Grid cell assigned either C3

grass or C4 grass, based

on the dominant photosynthetic

pathway at grid cell levelb.

C4 grass Grid cell assigned

either C3 crop or

C4 crop, based

on the dominant

photosynthetic

pathway at grid cell

levelb

Grid cell assigned either C3 grass or C4 grass,

based on the dominant photosynthetic pathway

at grid cell levelb.

Crops

(Crops)

Grid cell assigned either C3

crop or C4 crop, based on the

dominant photosynthetic path-

way at grid cell levelb.

C3 grass Standard C3 crop

(representing

wheat)

Grid cell assigned either C3 crop or C4 crop,

based on the dominant photosynthetic pathway

at grid cell levelb.

The spatial merging of different PFTs into single simulation layers requires assignment from ancillary maps indicated by the following superscripts: a Köppen–Geiger classification (Kottek

et al., 2006) to distinguish arid, tropical, temperate and boreal climate zones; b default PFT distribution of JSBACH including dominant photosynthetic pathways (Knorr and Heimann, 2001).

the harmonized dataset presented here only includes simu-

lated values over the areas where the RS data are available.

2.4 Protocol to evaluate agreement

The harmonized dataset is presented and analysed along

three different bi-dimensional spaces. The first is geographic

space, in which mean annual values per pixel are obtained by

averaging all monthly observations. The second is labelled

seasonal space, in which averages are made along latitudinal

bands for each month, illustrating the seasonal course of the

variables, such as in Hovmöller diagrams (Hovmöller, 1949).

The third is climatic space, in which variables are analysed

along temperature and precipitation gradients. The climatic

axes of this space are mean annual temperature and annually

cumulated precipitation for the period 2008–2012 based on

the CRU TS4.00 climate data (Harris et al., 2014). The ratio-

nale behind using these spaces is to encourage more process-

based model evaluation by ensuring that the agreement or

disagreement between models and observations is coherent

spatially, seasonally and climatically.

In this context of quantifying the biophysical effects of

vegetation cover change, neither the satellite-derived estima-

tions nor any of the model simulations can pretend to be an

absolute reference, as all of them have some level of assump-

tions and uncertainties. While observation-driven datasets
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(c) Changes in climate space

Changes in LE for transition EvgTr to crops
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Figure 2. Inter-comparison of how the land surface models and remote sensing (RS) estimate a change in latent heat flux (LE) for the

vegetation transition from evergreen broadleaf trees to crops (Crops – EvgTr). We summarize the data within three different comparison

spaces to illustrate (a) the spatial variability, representing the annual mean for each pixel; (b) the seasonal variability; and (b) the variability

in climate space, represented by mean annual temperature and annually cumulated precipitation.

are usually taken as a reference over model simulations, in

some cases the latter can also serve to evaluate the quality of

the former (Massonnet et al., 2016). In order to evaluate the

agreement without setting a single product as a reference, we

measure agreement based on a metric that has the property of

being symmetric. This means the value of the metric remains

numerically unchanged whether it is applied to products X

and Y , or if these are inverted. This is not the case when us-

ing a coefficient of determination R2 from a standard regres-

sion of Y on X, which differs from that of a regression of

X on Y . Beyond being symmetric, the index of agreement λ

that we use is also dimensionless, bounded (between 0 for no

agreement to 1 for perfect agreement) and easy to compute

(Duveiller et al., 2016). Furthermore, its interpretation is rel-

atively intuitive for practitioners since its value is the same

as that of the familiar correlation coefficient r when there

are no additive or multiplicative bias contributing to the dis-

agreement between X and Y . When there are biases, its value

reduces proportionately to this bias. For two sets, X and Y ,

each containing n values, the index is defined as follows:

λ = 1 −

n−1
n
∑

i=1

(Xi − Yi)
2

σ 2
X + σ 2

Y + (µX − µY )2 + κ
, (1)

where µ and σ represent the mean and standard deviation,

respectively. κ is a term set to zero if the correlation between

X and Y is positive, and otherwise set as follows:

κ = 2

∣

∣

∣

∑n

i=1
(Xi − µX)(Yi − µY )

∣

∣

∣

. (2)

Besides this index of agreement, the analysis also uses the

correlation coefficient r and the mean absolute bias B as de-

fined by the following formulas:

r =

n−1
n
∑

i=1

(Xi − X)(Yi − Y )

σXσY

, (3)

B =

n
∑

i=1

|Xi − Yi |

n
. (4)

3 Results

Due to its high dimensionality, it is challenging to illustrate

exhaustively all the facets of information represented in the

Earth Syst. Sci. Data, 10, 1265–1279, 2018 www.earth-syst-sci-data.net/10/1265/2018/
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(c) Changes in climate space
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Figure 3. Same as Fig. 2 for a change in the residual flux of the energy balance composed of both sensible heat and ground heat fluxes

(H + G) for the vegetation transition from deciduous broadleaf trees to needleleaf trees (DecTr – NedTr).

dataset. Therefore, this section starts by describing a selec-

tion of cases of how different products portray changes in

geographic, seasonal and climatic space of a given variable

following a specific vegetation cover transition.

The first case, shown in Fig. 2, consists of changes in LE

resulting from the conversion of evergreen broadleaf trees

to crops (EvgTr to Crops) corresponding to a common land

cover change associated with tropical deforestation. It is clear

from this figure that not all models reproduce the expected

effects of tropical deforestation (i.e. a reduction in LE due

to crops having shallower roots and thus less access to wa-

ter for transpiration) that are seen in the RS dataset. JSBACH

and CLM see an increase in mean annual LE following defor-

estation in large parts of the world. ORCHIDEE and JULES

generally predict the sign correctly, a reduction of LE, but

for JULES the behaviour in the seasonal and climatic space

shows contrasting patterns to those of RS, while those of JS-

BACH might be more in line despite the constant bias of this

model. Please note that in this and similar figures presented

in this work, data for a given transition are only available for

areas where there is a local co-occurrence of the two vegeta-

tion types according to the land cover distribution used in the

RS dataset.

The second case, displayed in Fig. 3, concerns changes

in H + G following the conversion of broadleaf deciduous to

needleleaf trees (DecTr to NedTr). This transition can rep-

resent for instance changes in planted forest species, such

as what occurred for most of the past 250 years in Eu-

rope (Naudts et al., 2016). According to the RS dataset, this

change is associated with a general increase in H + G, par-

ticularly in the summer period and across all latitudes (at

least those in which there is a joint presence of DecTr and

NedTr, and thus a higher likelihood that this conversion oc-

curs). ORCHIDEE and JSBACH do not capture the sign of

change in H + G dynamic, sometimes showing a reduction in

H + G that is quite large for ORCHIDEE in the summertime

and in warmer climates. CLM and JULES show more con-

sistent patterns with RS. However, JULES overestimates the

magnitude of change, especially in warmer climates, while

CLM simulates a higher rise in H + G in spring in northern

mid-latitudes to high latitudes that is not present in the ob-

servations.

The effect on net radiation caused by vegetation change

from grasses to needleleaf trees (Grass to NedTr) is the third

case, illustrated in Fig. 4. This transition reflects the effect

of a northward expansion of the boreal forests into tundra,

which is expected to happen as the temperatures in the higher

latitudes increase. It also represents land abandonment and

reforestation in the mid-latitudes. The general direction of

change is captured by all models, showing how transform-

ing grasslands to forests leads to an increase in net radiation,

mostly due to the increase in shortwave radiation absorbed
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Figure 4. Same as Fig. 2 for a change in the net radiative flux (Rn) for the vegetation transition from grasses to needleleaf trees (Grass –

NedTr).

by the darker canopy. However, the geographic, seasonal and

climatic patterns differ from observations and vary across the

models. Seasonally, the RS dataset illustrates the strong snow

effect on albedo in northern latitudes in spring, when the radi-

ation load increases substantially as the days become longer

while snow cover remains, thus amplifying the albedo differ-

ences between snow-covered grasses and darker evergreen

trees. The higher increases in Rn that are present in the RS

observations along the mountain ranges in North America are

only captured by JULES. The magnitude of the spring albedo

effect for this transition is slightly underestimated in OR-

CHIDEE and overestimated in JSBACH and CLM, although

for CLM it appears to extend more in time and latitude than

what is reported in the RS dataset. While these discrepancies

might be due more to misrepresentation of snow-related pro-

cesses within the models than to misrepresentation of vege-

tation, it remains a good example of a process-based model

evaluation, since it focuses on the comprehensive biophysical

effect of the process of vegetation cover change.

For any vegetation transition, the similarities and discrep-

ancies, both amongst models and with the RS dataset, can be

summarized synthetically in a single diagram for all fluxes

and for the three spaces under investigation (geographic, sea-

sonal and climatic). Figure 5 shows such a diagram for the

case of the tropical deforestation transition EvgTr to Crops,

the same transition which is represented in Fig. 2. Every

panel in Fig. 5 provides an inter-comparison of the pair-wise

agreement between products either with the index λ, using

squares in the lower right triangle of the panel, or with the

correlation coefficient, r , using circles in the upper left tri-

angle. Whilst the sizes of the symbols represent the rela-

tive value of the metric, the colour provides the value of the

mean absolute bias. For two products X and Y , all metrics

(λ, r and B) are calculated using the respective equations

with the aggregated values over the three reasoning spaces,

i.e. the binned values in geographic, seasonal and climatic

space, such as those represented in Fig. 2. Generally Rn is

better represented across the board, especially the seasonal

patterns, and LE tends to suffer larger biases. The agreement

amongst the models can be also gauged by comparing the

size of the symbols within the triangles of Fig. 5. Analogous

plots to those in Fig. 5 are available for all 15 transitions in

the Supplement.

To provide a general overview for all transitions, Fig. 6

shows the agreement for each model with the RS dataset

for all three fluxes averaged over geographic, seasonal and

climatic space. The transitions are ordered according to the

magnitude of gross transitions that have occurred in the re-

cent past between 2000 and 2015 according to the annual

ESA CCI annual land cover maps (ESA, 2017), with EvgTr

to Crops being the largest. Generally, the agreement in ge-

ographic space is very poor, followed by occasional agree-
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Figure 5. Summary of the agreement between land surface models amongst themselves and with the remote sensing estimations for the

vegetation transition from evergreen broadleaf trees to crops (Crops – EvgTr). The agreement is measured using the index of agreement λ

(size of the squares), the Pearson correlation coefficient r (size of the circles, red border indicates negative correlation) and the absolute bias

(colour of the symbols). The data used to calculate these metrics are the values previously averaged in bins according to the spatial, seasonal

and climatic analysis spaces shown in Fig. 2. Hence, these metrics relate only to areas where both vegetation types locally co-exist in reality.

The fluxes represented are net radiation (Rn), latent heat flux (LE), and the combination of the sensible and ground heat fluxes (H + G).

ment in climatic space, and then more frequent agreement

regarding the seasonal cycle. Net radiation is the variable

that models simulate best, particularly the seasonal patterns,

while H + G come second and LE comes third. Overall, the

transition in which there is highest agreement between mod-

els and RS across all variables and spaces is DecTr to Crops,

while the one with least agreement is Grass to Crops.

No model stands out as having consistently better per-

formance than the others. Models differ in which transi-

tions they simulate best. JULES performs best for NedTr to

Grass, CLM for EvgTr to Crops, and both JSBACH and OR-

CHIDEE for DecTr to Crops. When looking at each vari-

able across transitions and facets, the models showing high-

est mean agreement for LE, H + G and Rn are JULES, CLM

and JULES respectively. Disregarding the situations when

agreement is very poor, rare are the cases when all models

similarly agree with RS, i.e. when all colours in a single box

of Fig. 6 have similar colours. Those that stand out always in-

volve Rn and are seasonal agreement for Grass to DecTr and

both seasonal and climatic agreement for DecTr to Crops.

There are also cases in which a single model stands out as

having much higher agreement than all the others, such as

CLM for the spatial agreement of Rn for EvgTr to Crops,

JULES for the seasonal agreement of Rn for NedTr to DecTr,

JSBACH for climatic agreement of H + G for NedTr to Shrub

and ORCHIDEE for climatic agreement of H + G for NedTr

to Crops.

A final synoptic summary is provided in Fig. 7 that en-

compasses all transition and all fluxes and separates the total

agreement in the recurrent three spaces: geographic, seasonal

and climatic. A further division is made by distinguishing be-

tween the mean agreement amongst models (analogously to

the triangle of values mentioned for Fig. 5) and the mean

model agreement with remote sensing. The more salient fea-

ture is that models seem to agree most over Europe. Inter-

model agreement is also high over northern America, but

with the notable exception of the southeast of the United

States. Inter-model agreement is also higher in drier and

colder areas. However, for many of these areas models do

not agree with RS. Western Canada and southern Australia
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Figure 6. Summary of the agreement between models and remote sensing for all fluxes and all transitions in each of three facets of analysis:
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between 2000 and 2015 according the ESA CCI land cover maps, which is provided below each transition label in megahectares (Mha).

appear as the places where there is the strongest agreement

with RS, while the tropics show decisively lower agreement.

The higher agreement amongst models in northern latitudes

is maintained across the seasons, but the agreement with RS

is only high in spring, probably due to the capacity of some

models to catch the snow-induced albedo changes when trees

are replaced by shrubs or grasses. The overall agreement in

climate space indicates how for warm climates, models agree

amongst themselves less in the more humid conditions, while

there is generally a large disagreement with RS for all condi-

tions. In colder climates, inter-model agreement is high but

agreement with RS is higher for wetter conditions.

4 Discussion

This model-evaluation framework specifically targeting the

biophysical effects of LULCC is unique in that it brings

model simulations and observation-driven estimates to-

gether. By focusing on a model set-up with prescribed ho-

mogeneous vegetation types within grid cells, the biophysi-

cal impacts of specific LULCC transitions within the models

can be recombined to match RS observations without requir-

ing a complex disaggregation of the energy balance fluxes

per sub-grid PFT. The resulting harmonized dataset should

be of interest for a range of stakeholders. Model develop-

ers will find it useful to assess how their model performs

with respect to other models and to an observational bench-

mark, which in turn can serve to identify areas across geo-

graphic, seasonal and climate space where model develop-

ment efforts should be prioritized. Developers of LSMs that

are not included in this study can follow the protocol and

use the dataset to evaluate the resulting model performance.

Model users can use the dataset and the analysis to choose

the LSM that performs best over their areas of interest. For
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Figure 7. Agreement amongst models and between models and remote sensing for all transitions and all fluxes together. The agreement

amongst models (a) is calculated as the mean of all λ values calculated for each model pairs, while the agreement with remote sensing (b) is

the mean values of λ for each model with respect to the remote sensing dataset.

people making decisions based on conclusions derived from

model outputs, the dataset and the evaluation can provide a

welcome overview of model performance across space, time

and climate zones, along with an overall an idea of the cur-

rent level of uncertainty associated with using these tools for

estimating the biophysical impacts of LULCC.

The overall picture of the general benchmarking exercise

of model performances is not encouraging. For various veg-

etation transitions, models do not even agree amongst them-

selves on the magnitude nor the sign of the change. The study

confirms with observational data what previous analyses had

reported based on model inter-comparisons regarding how

models have more difficulties to simulate turbulent fluxes

than radiative ones (de Noblet-Ducoudré et al., 2012), despite

that the former have been shown to drive the local tempera-

ture response to land cover and management (Bright et al.,

2017). As can be expected, the seasonal patterns observed

in the RS dataset are better simulated than climatic or spa-

tial patterns. Models are especially poor in capturing the spa-

tial patterns, arguably because LSMs typically use the same

parameterization for a given PFT across the globe, thereby

disregarding the spatial variability of traits that can naturally

occur, which in turn is sampled by the observation-driven es-

timates. In this sense, some model improvement could come

by adopting the concept of optical functional types, based on

traits detectable by remote sensing (Ustin and Gamon, 2010).

Models also tend to agree more amongst themselves than

with observations. This may stem from similarities in the

construction of models and their underlying assumptions.

Europe may come out as a place of higher inter-model

agreement because vegetation models were based heavily

on information on temperate ecosystems, resulting in a bet-

ter representation of temperature deciduous systems than

drought-deciduous systems (Morales et al., 2005). Data for

other ecosystems have only become available in more re-

cent decades. Inter-model agreement, and to a lesser ex-

tent RS-model agreement, is also higher in the areas where

flux measurements from eddy-covariance towers, frequently

used for carbon cycle calibration, are denser (Schimel et al.,

2015). This converges towards an evident conclusion that

strengthening the observational base is still essential to en-

sure the quality of model results. As discussed in Duveiller et

al. (2018b), the RS dataset also has shortcomings, and these

may partly explain discrepancies with respect to model sim-

ulations. A valid criticism is that the RS dataset relies on an

evapotranspiration product (Mu et al., 2011) that has been

shown to underperform compared to other satellite-driven

products both at local (Michel et al., 2016) and at global

scales (Miralles et al., 2016). However, this was the only

available product at the sufficiently fine spatial resolution of

0.05◦, and despite the underperformance, ancillary analyses

in Duveiller et al. (2018a, b) suggest that the product quality

is sufficient for the purpose of studying local differences.

Some caveats regarding the specific model set-up need to

be highlighted. The first relates to the spatial scale at which

processes are represented. The use of homogeneous PFTs

across grid cells successfully isolates the effect of a total

vegetation cover change within an LSM grid, but this has

a natural trade-off: intrinsically heterogeneous ecosystems,

such as savanna systems and taiga, could not be evaluated as

these are represented by models using a mixture of tree and

grass PFTs. A dedicated evaluation could be done in a more

sophisticated version of this work using the savanna class

transitions in the RS dataset (which was not used here), but

would require the use of the same prescribed mixture of trees

and grasses for all models. Such an exercise would probably

reveal strong changes in biophysical effects linked to canopy

roughness. Another option could be to do the entire exercise

on LAI, which can integrate this heterogeneity, comparing

changes in modelled LAI with LAI estimated from satellite

remote sensing. A related caveat in the current set-up linked

to mixed systems is that a within-grid cell bias may result
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from the mismatch between climate and vegetation. In an all-

forest simulation over a grid cell subjected to the real climate

observed over a savanna, the trees may be more stressed than

if they were mixed with low-evaporative grasses. Therefore,

transitions of forests to grasses reported in this dataset may

be overestimating the reduction of processes such as evapo-

transpiration over savanna regions. Overall, these issues il-

lustrate how increasing the spatial resolution of the model

simulations to better match that of observations should im-

prove their inter-comparisons. This would result both from a

better characterization of vegetation heterogeneity, but also

from enabling LSMs to better resolve local climate variabil-

ity and the resulting biophysical effects of LULCC.

Another particularity of the model set-up employed here is

that only the local first-order biophysical effects of LULCC

are explored. Non-local effects related to LULCC occur-

ring elsewhere, as explored by modelling exercises such as

Winckler et al. (2017a), are not considered here because they

cannot be directly estimated by remote sensing diagnostics.

Given that the analysis is also based on uncoupled LSMs

runs, there are no possible feedbacks of the vegetation cover

change on global climate, nor are there any local atmospheric

feedbacks. Considering second-order effects stemming from

the bi-directional land–climate interactions would require us-

ing LSMs coupled with a general circulation model within

an Earth system model in which some cells are affected by

LULCC, but this is beyond the scope of the present work.

The inter-comparison exercise presented here can be ex-

tended and improved. Doing so could further address other

limitations of the current set-up, such as the fact that only a

single source of meteorological forcing data is used to run

the model simulations. Such datasets, based on climate re-

analysis, can be particularly prone to errors and uncertainties

in data-poor regions. Initiatives such as LUMIP (Lawrence et

al., 2016) could use the present framework to run LSMs with

different forcing datasets and evaluate how the simulated bio-

physical impacts of LULCC are sensitive to the quality of

the input data. Another criticism of the inter-comparison is

the mismatch between model runs, which do not explicitly

include the effects of land management, and the RS dataset,

which intrinsically does, simply because these are present in

the observations. The biophysical impacts of land manage-

ment changes have been shown to be as important as the ef-

fects of land cover change (Luyssaert et al., 2014), and could

thus further account for the discrepancies between models

and observations. The exercise could thus be extended with

runs that include management for the models which can ef-

fectively simulate it, and it could also evaluate the improve-

ment based on the RS benchmark. Finally, the exercise could

be improved by extending the observational part to an en-

semble of RS datasets. The input biophysical variables used

to construct the RS dataset, namely albedo, land surface tem-

perature and evapotranspiration, could be derived from dif-

ferent satellite instruments and based on other, ideally bet-

ter algorithms. Ultimately, the RS dataset could be based on

products from geostationary satellites to be able to study the

diurnal patterns of biophysical effects of LULCC and how

these are represented in the models.

5 Data availability

The dataset consisting of both harmonized model simula-

tion and remote sensing estimations is freely available in

Zenodo: https://doi.org/10.5281/zenodo.1182145 (Duveiller

et al., 2018c).

6 Conclusions

This paper presents a process-oriented model evaluation

framework for biophysical effects of vegetation cover

change. A harmonized multi-dimensional dataset has been

generated including dedicated simulations from four ma-

jor LSMs along with observation-driven estimations based

on satellite imagery. The analysis of these data along ge-

ographic, seasonal and climate dimensions results in an

overview of model performance that can serve to highlight

hotspots of agreement and disagreement both amongst mod-

els and with respect to an observational benchmark. The

overall capacity of current LSMs to represent biophysical ef-

fects of LULCC is low. The seasonal cycle of radiative fluxes

is the process that models capture best, whilst performance

drops considerably when considering spatial and climatic

gradients for all fluxes. We anticipate that the dataset will

serve to identify specific model shortcomings with respect to

observations and to other models, but also to highlight where

models can be trusted more and where model development

should be prioritized. This should in turn contribute to the

larger goal to develop and inform land-based mitigation and

adaptation policies that account for both biogeochemical and

biophysical vegetation impacts on climate. Improving the ro-

bustness and consistency of land-surface models is essential

to develop and inform land-based mitigation and adaptation

policies that account for both biogeochemical and biophysi-

cal vegetation impacts on climate.

Supplement. The supplement related to this article is available

online at: https://doi.org/10.5194/essd-10-1265-2018-supplement.
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